

KNOWN FROM A HANDFUL OF SPECIMENS: ANALYZING THE WORLDWIDE PATTERNS OF OCCURRENCE AND CONSERVATION OF RODENTS AND SHREWS RECORDED ONLY FROM THE TYPE LOCALITY

Giovanni Amori¹, Guido Alari Esposito² & Luca Luiselli³

^{1,2} CNR - Institute for Ecosystem Study, Piazzale Aldo Moro, 7 - 00185, Rome, Italy ³ Niger Delta Ecology and Biodiversity Conservation Unit, Department of Applied and Environmental Biology, Rivers State University of Science and Technology, PMB 5080, Port Harcourt, Rivers State, Nigeria ¹giovanni.amori@uniroma1.it (corresponding author), ²al.gu@hotmail.it, ³lucamlu@tin.it

Abstract: Traditionally, conservation research has not focused on Rodentia and Soricomorpha, and many species are known from a handful of specimens and the type locality only (few and type locality species (FETP)). Here we studied the patterns of occurrence of FETP rodents and soricomorphs in relation to geographical area and vegetation zones and report some conservation considerations. Overall, 91 species of Rodentia and 19 species of Soricomorpha were selected. There was a positive correlation between number of species per genus and number of FETP species in each genus. The majority of FETP rodents occur in the Neotropical, Afrotropical and Oriental regions, and soricomorphs in the Afrotropical and Oriental regions. Higher numbers of FETP rodent species occurred in Argentina and Indonesia. There was a positive relationship between species richness of rodents per country and number of FETP species. In terms of habitat type, FETP species of rodents and soricomorphs howed similar patterns, with most species being found in rainforest. The great and 5.3% of Soricomorpha. Overall, IUCN threatened species mostly occur in the Neotropical region, followed by the Afrotropical region. It is urged that IUCN authorities should promptly revise all FETP species and their precautionary CR status, at least when a reasonable timespan (i.e., >25 years) has passed since the last records.

Keywords: Ecological patterns, small mammals, rare species, type locality.

Riassunto: Tradizionalmente, la ricerca sulla biologia della conservazione non si è concentrata sui Rodentia e Soricomorpha, e molte specie sono note da pochi esemplari rinvenuti esclusivamente nella località tipo (specie 'FETP' nel presente articolo). In questo lavoro, sono stati studiati i modelli di occorrenza di roditori e soricomorfi FETP in relazione alle regioni zoogeografiche e ai tipi di vegetazione. Inoltre, vengono riportate alcune considerazioni di conservazione. Nel complesso, sono state selezionate 91 specie di Rodentia e 19 specie di Soricomorpha. E' risultata una correlazione positiva tra il numero di specie per genere e numero di specie FETP all'inerno di ogni genere. La maggior parte dei roditori FETP si trovano nelle regioni neotropicale, afrotropicale e orientale, mentre la maggiore concentrazione di Soricomorpha FETP nelle regioni afrotropicale e orientale. Il maggior numero di specie di roditori FETP è stato rinvenuto in Argentina e Indonesia. E' stata osservata una relazione positiva tra ricchezza di specie di roditori per paese e numero di specie FETP. Per quanto concerne il tipo di habitat, le specie FETP di roditori e di soricomorfi hanno mostrato modelli simili, con la maggior parte delle specie riscontrate in foresta pluviale. La grande maggioranza delle specie selezionate di entrambi i gruppi sono risultate, secondo la lista rossa UICN, come DD, mentre le specie CR hanno rappresentato il 16,5% dei Rodentia e 5,3% dei Soricomorpha. Nel complesso, le specie minacciate sono concentrate soprattutto nella regione neotropicale, seguita dalla regione Afrotropicale. Si suggerisce che le autorità dell'IUCN dovrebbero rivedere lo status di tutte le specie FETP e attribuire loro, in via precauzionale, lo status di CR, almeno quando un periodo ragionevole di tempo (cioè > 25 anni) è passato dagli ultimi record attendibili.

DOI: http://dx.doi.org/10.11609/jott.2405.8.3.8556-8563 | ZooBank: urn:lsid:zoobank.org:pub:11E66E4F-20D1-41E8-88F4-D8E3B96EF66E

Editor: Rainer Hutterer, Zoological Research Museum Alexander Koenig, Bonn, Germany. Date of publication: 26 March 2016 (online & print)

Manuscript details: Ms # 2405 | Received 08 November 2015 | Final received 20 January 2016 | Finally accepted 29 February 2016

Citation: Amori, G., G.A. Esposito & L. Luiselli (2016). Known from a handful of specimens: analyzing the worldwide patterns of occurrence and conservation of rodents and shrews recorded only from the type locality. *Journal of Threatened Taxa* 8(3): 8556–8563; http://dx.doi.org/10.11609/jott.2405.8.3.8556-8563

Copyright: © Amori et al. 2016. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: None.

Conflict of Interest: The authors declare no competing interests.

Author Details: GIOVANNI AMORI is a professor of zoology and works at the National Council of Research and is a leading expert of small mammal ecology, conservation and evolution. GUIDO ALARI ESPOSITO is a master student in biology at the Sapienza University of Rome and is interested in the mammal conservation. LUCA LUISELLI is a professor of ecology and works at the IDECC and at the Rivers State University of Science and Technology, Port Harcourt (Nigeria) and is a tropical ecologist and conservation biologist.

Author Contribution: GA and LL designed the study and wrote the article; GAE produced the dataset; all authors reviewed the article

Acknowledgements: We are indebted to Dr Giuliano Milana for having drafted the figures.

ISSN 0974-7907 (Online) ISSN 0974-7893 (Print)

OPEN ACCESS

 (\mathbf{i})

INTRODUCTION

Narrow distribution ranges and small/restricted populations are key elements of extinction risk (e.g., Gaston 1994), with species having restricted distributions and low population sizes being at greatest immediate risk of extinction. Some taxa are known only from a handful of individuals and may be functionally analogous to 'singletons' in ecological communities (Gaston 1994). As with singletons these species are still largely unknown, and it is open to debate whether face a high risk of extinction or their rarity is a collection artefact.

The orders Rodentia and Soricomorpha include about 50% of mammal species, with 2,705 species out of a total of 5,416 (Wilson & Reeder 2005). They inhabit almost every habitat and terrestrial and freshwater niche available, including flying species (Churchfield 1990; Hafner et al. 1998; Nowak 1999), and also play a key role in natural ecosystems (Golley et al. 1975; Carpaneto et al. 2011). Traditionally, conservation research and applications have been focused on large mammals (Amori & Gippoliti 2000; Amori et al. 2011a, 2011b), despite the fact that many small mammal species are known from a handful of specimens. Some have been suspected to be extinct, with novel specimens not having been found for several decades (e.g., the Togo Mouse Leimacomys buettneri, see Schlitter 1989; Wilson & Reeder 2005), although some have been recently rediscovered (e.g., Řeháková et al. 2015). This study highlights the distribution patterns, main habitats and conservation implications of the rarest/most neglected species of Rodentia and Soricomorpha, known only from their type locality and less than 10 individuals (hereby FETP species).

MATERIALS AND METHODS

In this paper we considered species of Rodentia and Soricomorpha fulfilling two concurrent criteria:

- (i) being known just from the type locality;
- (ii) being known from <10 individuals.

Species fulfilling these criteria are defined as FETP species. The list of FETP species was obtained using Wilson & Reeder (2005). Distribution, habitat and conservation status were obtained from the IUCN database available at www.iucnredlist.org (accessed on 15 August 2015). For each FETP species we also recorded the corresponding biogeographical region. We excluded from analysis:

(i) species known from few individuals that were recorded from distinct areas. For example instance the rodent *Sigmodontomys aphrastus*, is known from only seven specimens originating from widely separated locations in Costa Rica, Panama and the western slope of Ecuador (McCain et al. 2007)

(ii) species described after 2005 (e.g., *Fukomys ilariae* Gippoliti & Amori 2011), on the assumption that additional individuals of recently-described species may be found in the future field surveys.

The following main habitat categories were considered for the analyses: (i) rainforest, (ii) wetlands, (iii) scrublands, (iv) grassland, (v) desert, (vi) temperate forest, (vii) urban, (viii) unknown.

Differences in the frequencies of species belonging to the various IUCN Red List categories between Rodentia and Soricomorpha were assessed by χ^2 test. The correlation between number of rodent species per country and number of FETP species was run by Pearson's correlation coefficient, and the same analysis was also performed to explore the correlation between number of species of each genus and number of FETP species per genus. Data were log-transformed to achieve normality when necessary, prior to apply any parametric tests. All analyses were performed by PAST 3.0 statistical software.

RESULTS

The list of FETP species for both Rodentia and Soricomorpha is given in Table 1. Overall, 91 species of Rodentia and 19 species of Soricomorpha fulfilled the inclusion criteria of our study. The number of species per genus was positively correlated with the number of FETP species in each genus (r = 0.436, r²= 0.190, P < 0.001; Fig. 1).

Concerning rodents, the majority of selected species occur in the Neotropical, Afrotropical and Oriental regions, whereas for soricomorphs in the Afrotropical and Oriental regions (Fig. 2). Looking at the country of origin, we observed that a high number of FETP species occurred in Argentina and Indonesia for rodents, whereas no country emerged as for the soricomorphs (Table 2). Overall, there was a significantly positive relationship between species richness of rodents per country and number of FETP species (r = 0.540, $r^2= 0.292$, P < 0.01; Fig. 3). Thus, the high number of FETP species in Argentina and Indonesia merely depended on a overall high number of rodent species in these countries.

Known from a handful of specimens: rodents and shrews

Table 1. List of FETP species of Rodentia and Soricomorpha.

Family	Species	Biogeographical region	Habitat	Country	IUCN status
Rodentia					
Abrocomidae	Abrocoma boliviensis	Neotropical	rainforest	Bolivia	CR
Abrocomidae	Abrocoma shistacea	Neotropical	grasslands	Argentina	DD
Abrocomidae	Abrocoma uspallata	Neotropical	desert	Argentina	DD
Abrocomidae	Abrocoma vaccarum	Neotropical	scrublands	Argentina	DD
Abrocomidae	Cuscomys ashaninka	Neotropical	rainforest	Peru	DD
Capromyidae	Mesocapromys sanfelipensis	Neotropical	rainforest	Cuba	CR
Capromyidae	Mysateles garridoi	Neotropical	rainforest	Cuba	CR
Cricetidae	Akodon aliquantulus	Neotropical	grasslands	Argentina	DD
Cricetidae	Akodon oenos	Neotropical	desert	Argentina	DD
Cricetidae	Brucepattersonius albinasus	Neotropical	unknown	Brazil	DD
Cricetidae	Brucepattersonius guarani	Neotropical	rainforest	Argentina	DD
Cricetidae	Brucepattersonius igniventris	Neotropical	rainforest	Brazil	DD
Cricetidae	Brucepattersonius misionensis	Neotropical	unknown	Argentina	DD
Cricetidae	Brucepattersonius paradisus	Neotropical	rainforest	Argentina	DD
Cricetidae	Euneomys fossor	Neotropical	grasslands	Argentina	DD
Cricetidae	Graomys edithae	Neotropical	grasslands	Argentina	DD
Cricetidae	Habromys delicatulus	Neotropical	rainforest	Mexico	CR
Cricetidae	Juscelinomys guaporensis	Neotropical	grasslands	Bolivia	DD
Cricetidae	Juscelinomys huanchacae	Neotropical	grasslands	Bolivia	DD
Cricetidae	Microtus irani	Palearctic	urban	Iran	DD
Cricetidae	Neotoma bryanti	Neotropical	scrublands	Mexico	EN
Cricetidae	Neotoma nelsoni	Neotropical	rainforest	Mexico	CR
Cricetidae	Oecomys cleberi	Neotropical	rainforest	Brazil	DD
Cricetidae	Oxymycterus hucucha	Neotropical	rainforest	Bolivia	EN
Cricetidae	Peromyscus mayensis	Neotropical	rainforest	Guatemala	CR
Cricetidae	Rhipidomys ochrogaster	Neotropical	rainforest	Peru	DD
Cricetidae	Thomasomys apeco	Neotropical	rainforest	Peru	VU
Cricetidae	Thomasomys hudsoni	Neotropical	unknown	Ecuador	DD
Cricetidae	Tylomys bullaris	Neotropical	rainforest	Mexico	CR
Ctenomyidae	Ctenomys coludo	Neotropical	unknown	Argentina	DD
Ctenomyidae	Ctenomys fodax	Neotropical	unknown	Argentina	DD
Ctenomyidae	Ctenomys johannis	Neotropical	unknown	Argentina	DD
Ctenomyidae	Ctenomys juris	Neotropical	unknown	Argentina	DD
Echimyidae	Phyllomys unicolor	Neotropical	rainforest	Brazil	CR
Echimyidae	Santamartamys rufodorsalis	Neotropical	rainforest	Colombia	CR
Geomyidae	Orthogeomys lanius	Neotropical	rainforest	Mexico	CR
Gliridae	Chaetocauda sichuanensis	Oriental	temperate forest	China	DD
Muridae	Archboldomys musseri	Oriental	rainforest	Philippines	LC
Muridae	Batomys dentatus	Oriental	rainforest	Philippines	DD
Muridae	Carpomys melanurus	Oriental	rainforest	Philippines	DD
Muridae	Crunomys fallax	Oriental	rainforest	Philippines	DD
Muridae	Crunomys suncoides	Oriental	rainforest	Philippines	DD
Muridae	Dipodillus lowei	Afrotropical	rainforest	Sudan	DD

Known from a handful of specimens: rodents and shrews

Family	Species	Biogeographical region	Habitat	Country	IUCN status
Muridae	Gerbillus burtoni	Afrotropical	unknown	Sudan	DD
Muridae	Gerbillus grobbeni	Afrotropical	desert	Libya	DD
Muridae	Gerbillus principulus	Afrotropical	scrublands	Sudan	DD
Muridae	Haeromys margarettae	Oriental	rainforest	Malaysia	DD
Muridae	Hydromys neobritannicus	Australian	wetlands	Papua New Guinea	DD
Muridae	Lamottemys okuensis	Afrotropical	rainforest	Cameroon	EN
Muridae	Leimacomys buettneri	Afrotropical	rainforest	Тодо	DD
Muridae	Lemniscomys hoogstraali	Afrotropical	rainforest	Sudan	DD
Muridae	Lemniscomys mittendorfi	Afrotropical	rainforest	Cameroon	VU
Muridae	Lemniscomys roseveari	Afrotropical	rainforest	Zambia	DD
Muridae	Lophuromys eisentrauti	Afrotropical	rainforest	Cameroon	EN
Muridae	Melomys fulgens	Oriental	rainforest	Indonesia	DD
Muridae	Melomys matambuai	Australian	rainforest	Papua New Guinea	EN
Muridae	Melomys paveli	Oriental	rainforest	Indonesia	DD
Muridae	Microhydromys musseri	Australian	rainforest	Papua New Guinea	DD
Muridae	Mylomys rex	Afrotropical	unknown	Ethiopia	DD
Muridae	Nilopegamys plumbeus	Afrotropical	wetlands	Ethiopia	CR
Muridae	Palawanomys furvus	Oriental	rainforest	Philippines	DD
Muridae	Paramelomys steini	Australian	rainforest	Papua New Guinea	DD
Muridae	Pithecheir melanurus	Oriental	rainforest	Indonesia	VU
Muridae	Pithecheirops otion	Oriental	rainforest	Malaysia	DD
Muridae	Praomys minor	Afrotropical	rainforest	Congo RD	DD
Muridae	Praomys mutoni	Afrotropical	rainforest	Congo RD	DD
Muridae	Rattus arfakiensis	Australian	rainforest	Papua New Guinea	DD
Muridae	Rattus blangorum	Oriental	rainforest	Indonesia	DD
Muridae	Rattus enganus	Oriental	rainforest	Indonesia	DD
Muridae	Rattus koopmani	Oriental	rainforest	Indonesia	DD
Muridae	Rattus pelurus	Oriental	rainforest	Indonesia	DD
Muridae	Rattus timorensis	Oriental	rainforest	Indonesia	DD
Muridae	Solomys salamonis	Australian	rainforest	Solomon	DD
Muridae	Sommeromys macrorhinos	Oriental	rainforest	Indonesia	DD
Muridae	Stenocephalemys ruppi	Afrotropical	rainforest	Ethiopia	DD
Muridae	Taeromys arcuatus	Oriental	rainforest	Indonesia	DD
Muridae	Taeromys microbullatus	Oriental	rainforest	Indonesia	DD
Muridae	Uromys imperator	Australian	rainforest	Solomon	CR
Muridae	Uromys boeadii	Australian	rainforest	Papua New Guinea	CR
Muridae	Uromys porculus	Australian	rainforest	Solomon	EX?
Nesomyidae	Brachytarsomys villosa	Afrotropical	rainforest	Madagascar	EN
Nesomyidae	Dendromus vernayi	Afrotropical	rainforest	Angola	DD
Nesomyidae	Dendroprionomys rousseloti	Afrotropical	rainforest	Congo DR	DD
Nesomyidae	Eliurus ellermani	Afrotropical	rainforest	Madagascar	DD
Octodontidae	Aconaemys sagei	Neotropical	rainforest	Argentina	DD
Octodontidae	Pipanacoctomys aureus	Neotropical	scrublands	Argentina	CR

Known from a handful of specimens: rodents and shrews

Family	Species	Biogeographical region	Habitat	Country	IUCN status
Octodontidae	Salinoctomys loschalchalerosorum	Neotropical	scrublands	Argentina	CR
Sciuridae	Biswamoyopterus biswasi	Oriental	rainforest	India	CR
Sciuridae	Hylopetes winstoni	Oriental	rainforest	Indonesia	DD
Sciuridae	Prosciurillus abstrusus	Oriental	rainforest	Indonesia	DD
Sciuridae	Sundasciurus davensis	Oriental	rainforest	Philippines	DD
Soricomorpha					
Soricidae	Chodsigoa caovansunga	Oriental	rainforest	Vietnam	DD
Soricidae	Chodsigoa parva	Oriental	grassland	China	DD
Soricidae	Chodsigoa salenskii	Oriental	unknown	China	DD
Soricidae	Congosorex polli	Afrotropical	rainforest	Congo DR	DD
Soricidae	Crocidura dhofarensis	Palearctic	desert	Oman	DD
Soricidae	Crocidura gracilipes	Afrotropical	unknown	Tanzania	DD
Soricidae	Crocidura grandis	Oriental	rainforest	Philippines	DD
Soricidae	Crocidura jenkinsi	Oriental	rainforest	India	CR
Soricidae	Crocidura macowi	Afrotropical	grassland	Kenya	DD
Soricidae	Crocidura musseri	Oriental	rainforest	Indonesia	DD
Soricidae	Crocidura orii	Oriental	temperate forest	Japan	EN
Soricidae	Crocidura polia	Afrotropical	rainforest	Congo DR	DD
Soricidae	Crocidura ultima	Afrotropical	rainforest	Kenya	DD
Soricidae	Cryptotis nelsoni	Neotropical	rainforest	Mexico	DD
Soricidae	Myosorex rumpii	Afrotropical	rainforest	Cameroon	EN
Soricidae	Myosorex schalleri	Afrotropical	rainforest	Congo DR	DD
Soricidae	Paracrocidura graueri	Afrotropical	rainforest	Congo DR	DD
Soricidae	Suncus ater	Oriental	rainforest	Malaysia	DD
Talpidae	Mogera uchidai	Oriental	grassland	Japan	DD

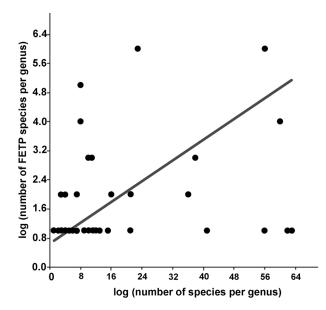
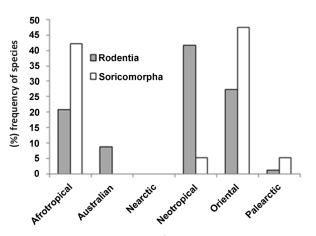



Figure 1. Correlation between number of species per genus and number of FETP species in each genus. For the statistical details, see the text.

Biogeographic region

Figure 2. Percent of occurrence of FETP species of Rodentia and Soricomorpha, by biogeographical region. Percentages are calculated on the total number of species included in our analysis, and not on the total number of species of the two orders worldwide.

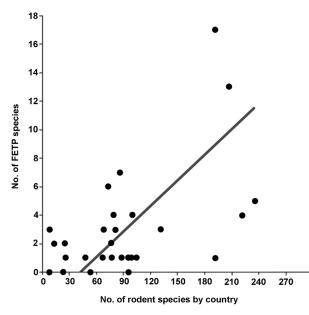


Figure 3. Relationships between rodent species richness per country and number of FETP species. For the statistical details, see the text.

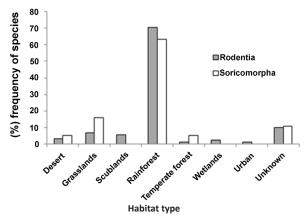


Figure 4. Percent of occurrence of the species of Rodentia and Soricomorpha known from just the type locality, with few individuals, by habitat type.

In terms of habitat type, the FETP species of rodents and soricomorphs showed similar patterns, with most species being found in rainforest (Fig. 4).

In terms of IUCN Red List Status, the great majority of FETP species were Data Deficient (DD) in both Rodentia (71.4%, total n=91) and Soricomorpha (84.2%, total n=19). Critically Endangered (CR) species accounted for 16.5% of Rodentia and 5.3% of Soricomorpha, Endangered (EN) for, respectively, 6.6% and 10.5%, Vulnerable (VU) for 3.3% and 0%. Surprisingly, there was also a case of a Least Concern (LC) species in Rodentia (*Archboldomys musseri*). Based on the frequencies of species belonging

Country	No. of rodents	No. of soricomorphs		
Angola	1			
Cameroon	3	1		
Congo RD	3	4		
Ethiopia	3	0		
Kenya	0	2		
Libya	1	0		
Madagascar	2			
Sudan	4	0		
Tanzania	0	1		
Тодо	1	0		
Zambia	1	0		
Papua New Guinea	6	0		
Solomon Islands	3	0		
Argentina	17			
Bolivia	4			
Brazil	4			
Colombia	1			
Cuba	2			
Equador	1			
Guatemala	1	0		
Mexico	5	1		
Peru	3			
China	1	2		
India	1	1		
Indonesia	13	1		
Japan	0	2		
Malaysia	2	1		
Philippines	7	1		
Vietnam	0	1		
Iran	1	0		
Oman	0	1		
Total	91	19		

Table 2. List of FETP species of Rodentia and Soricomorpha, by

country of origin. Blank space would indicate countries where

to the various IUCN Red List categories, there was a statistically significant difference between Rodentia and Soricomorpha (χ^2 = 14.25, df = 5, P = 0.014), with a statistically higher frequency of CR species in rodents. In Rodentia, the majority of CR species (n = 15) came from the Neotropical region (60%), whereas there was only a single CR species in Soricomorpha, coming from India. Overall, pooling CR, EN, and VU, it resulted that most of the recorded rodents came from the Neotropical region

(62.5%, n = 24), followed by Afrotropical species (20.8%). The monotypic genera known from just the type locality were 11 (all rodents, i.e., Gliridae: Chaetocauda; Muridae: Lamottemys, Leimacomys, Nilopegamys, Palawanomys, Pithecheirops, Sommeromys; Nesomyidae: Dendroprionomys; Octodontidae: Pipanacoctomys, Salinoctomys; Echimyidae: Santamartamys), with four being Oriental, four Afrotropical, and three Neotropical genera. Concerning the monotypic genera, three are classified as CR, 1 EN, and 7 DD.

DISCUSSION

Our study showed that a relatively high number of Rodentia (4%) and Soricomorpha (4.4%) species are FETP. The Neotropical region housed few soricomorphs and many rodents, most likely because the former are not found in South America and only a few live in central America (Churchfield 1990). Other important regions for both rodents and soricomorphs were the Oriental and Afrotropical regions, which also represent the regions with most speciose groups (Churchfield 1990; Ghazoul & Sheil 2010). Rainforests emerged as the most important habitat type for both groups in terms of FETP species, which may be due to (i) the relative inaccessibility of wide rainforest zones in the tropics (Lewis & Berry 2012), and also (ii) overall species richness is higher in this habitat type compared to other habitats (e.g., Ghazoul & Sheil 2010). However, the pattern of occurrence of FETP species may be substantially influenced by possible biases in research efforts in individual geographic areas as well as by current attractiveness of individual taxonomic groups (e.g., dormice and squirrels vs. mice and rats).

Surprisingly, there is a lack of homogeneity in terms of IUCN Red List category (ranging from LC to CR) for FETP species, with the majority being listed as DD. We think that this results from the heterogeneity of assessors and their assumption that when a rodent species is extremely rare it is due to suboptimal research efforts. For instance, the Togo mouse *Leimacomys buettneri*, albeit (i) is known from just two specimens dating back to 1890, and (ii) obtained from a relatively well explored area (Bismarckburg, Adéle area in southwestern Togo), is listed as DD despite it is presumed to be extinct by several authorities (e.g., Schlitter 1999). Therefore, we would urge the IUCN authorities to revise all FETP species and give them precautionary CR status, at least when a reasonable time-span (for instance, we may tentatively suggest > 25 years) has passed since the last records. Currently, 15.8% of rodent species worldwide are DD, and application of machine-learning models to DD species predicted that several DD species should be instead considered to be threatened (Bland et al. 2015). Similarly, Howard & Bickford (2014) showed that DD amphibian species are likely to be more threatened with extinction than their fully assessed counterparts, with some regions (in the Neotropical, Afrotropical and Oriental biogeographic regions) being particularly at risk due to lack of species knowledge and higher extinction risk than currently recognized. The field effort devoted to study a given FETP species is certainly also important in determining its real status, but this variable is difficult to quantify.

In our view, a precautionary re-assessment as CR is especially due to monotypic genera, given that their loss would mean the extinction of a full evolutionary lineage instead of a single species within a lineage. Our plea is urgently needed because, till a FETP species is listed as DD, there will be virtually no way to get funds for exploring their true status, as nearly all the conservation grant sources available tend to focus on presently threatened species, i.e. those that are already listed as CR, EN or VU. Therefore, we suggest to change the paragraph 8.1 of the IUCN Red List guidelines, where it is recommended that '... if a taxon is only known from its type locality and there is no information on its current status or possible threats, the taxon should be listed as DD. If there are no plausible threats, and the area is relatively well known, Least Concern is appropriate, unless criterion A, B or C is met. If people have searched for the taxon, both at the type locality and at a reasonable number of other potential localities, and no more than 50 mature individuals are estimated, then the taxon would be listed as 'Critically Endangered'.

REFERENCES

- Amori, G. & S. Gippoliti (2000). What do mammalogists want to save? Ten years of mammalian conservation biology. *Biodiversity Conservation* 9: 785–793; http://dx.doi.org/10.1023/A:1008971823774
- Amori, G., F. Chiozza, C. Rondinini & L. Luiselli (2011a). Country-based patterns of total species richness, endemicity, and threatened species richness in African rodents and insectivores. *Biodiversity Conservation* 20: 1225–1237; http://dx.doi.org/10.1007/s10531-011-0024-1
- Amori, G., S. Gippoliti & L. Luiselli (2011b). Do biodiversity hotspots match with rodent conservation hotspots? *Biodiversity Conservation* 20(14): 3693–3700; http://dx.doi.org/10.1007/s10531-011-0131-z
- Bland, L.M., B. Collen, C.D.L. Orme & J. Bielby (2015). Predicting the conservation status of data-deficient species. *Conservation Biology* 29: 250–259; http://dx.doi.org/10.1111/cobi.12372

Carpaneto, G.M., A. Mazziotta, R. Pittino & L. Luiselli (2011). Exploring

co-extinction correlates: the effects of habitat, biogeography and anthropogenic factors on ground squirrels–dung beetles associations. *Biodiversity Conservation* 20(13): 3059–3076; http://dx.doi.org/10.1007/s10531-011-0162-5

- Churchfield, S. (1990). The Natural History of Shrews. Christopher Helm, New York, NY.
- Gippoliti, S. & G. Amori (2011). A new species of mole-rat (Rodentia, Bathyergidae) from the Horn of Africa. *Zootaxa* 2918: 39–46.
- Gaston, K.J. (1994). Rarity. Springer, Berlin.
- Ghazoul, J. & D. Sheil (2010). Tropical Rain Forest Ecology, Diversity, and Conservation. Oxford University Press, 536pp.
- Golley, F.B., L. Ryszkowski & J.T. Sokur (1975). The role of mammals in temperate forest, grasslands and coltivated fields, pp. 223–241. In: Golley F.B., K. Petrusewicz, L. Ryszkoski (eds.). *Small Mammals: Their Productivity and Population Dynamics*. Cambridge University.
- Hafner, D.J., E. Yensen & K.L. Gordon Jr. (1998). North American Rodents. Status survey and conservation Action Plan. IUCN/SSC Rodent Specialist Group. IUCN Gland, Switzerland and Cambridge UK, 171pp.
- Howard, S.D. & D. Bickford (2014). Amphibians over the edge: silent extinction risk of Data Deficient species. *Diversity and Distributions* 2014: 1–10; http://dx.doi.org/10.1111/ddi.12218

- Lewis, L.A. & L. Berry (2012). African environments and resources. Routledge, New York, 404pp.
- McCain, C.M., R.M. Timm & M. Weksler (2007). Redescription of the enigmatic Long-tailed Rat Sigmodontomys aphrastus (Cricetidae: Sigmodontinae) with comments on taxonomy and natural history. Proceedings of the Biological Society of Washington 120: 117–136.
- Nowak, R.M. (1999). Walkers's Mammals of The World. Sixth Edition. John Hopkins University Press, Baltimore, 2015pp.
- Řeháková, M., V. Řehák & W.L.R. Oliver (2015). Rediscovery of the Dinagat Bushy-tailed Cloud Rat Crateromys australis (Musser, Heaney & Rabor, 1985) (Mammalia: Rodentia: Muridae) from Dinagat Island, Philippines. Journal of Threatened Taxa 7(8): 7428– 7435; http://dx.doi.org/10.11609/JoTT.04226.7428-35
- Schlitter, D.A. (1999). African rodents of special concern: a preliminary assessment, pp. 33–39. In: Lidicker, W.Z. Jr. (ed.). Rodents - A World Survey of Species of Conservation Concern. Occasional papers of IUCN/SSC.
- Wilson, D.E. & D.R. Reeder (2005). Mammal Species of the World: A Taxonomic and Geographic Reference - 3rd Edition. John Hopkins University Press, Baltimore, 2142pp.

