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We study known-key distinguishing and partial-collision attacks on GFN-2 structures with various block lengths in this paper. For
4-branch GFN-2, we present 15-round known-key distinguishing attack and 11-round partial-collision attack which improve
previous results. We also present 17-round known-key distinguishing attack on 6-branch GFN-2 and 27-round known-key
distinguishing attack on 8-branch GFN-2 and show that several partial-collision attacks are derived from them. Additionally,
some attacks are valid under special conditions for the F-function.

1. Introduction

'e notion of known-key attack was introduced by
Knudsen and Rijmen in 2007 [1]. It uses a known-key
distinguisher which holds with much higher probability
than that under the uniform distribution. In 2011, Sasaki
and Yasuda used the rebound technique [2] to construct
known-key distinguishers for the Feistel network whose F-
function consists of cryptographically strong S-boxes and
an MDS matrix and showed that those distinguishers are
converted into partial-collision attacks on hash modes [3].
Later, their results have been applied to variants of the
Feistel network [4–6].
Feistel network is the encryption structure of well-

known block ciphers such as DES [7], SEED [8], and
Camellia [9]. It has been researched for secure and effi-
cient block cipher design. In [4], Kang et al. presented
known-key attacks on three types of generalized Feistel
network (GFN) proposed by Nyberg [10]. Particularly,
Type-II GFN (GFN-2) is well-balanced like Feistel net-
work and suitable for lightweight designs because the
iteration of the relatively small F-function makes a large-
block-length block cipher. So, it has been researched as an
alternative of Feistel network, more than other types of
GFN. It is often considered as one of design candidates in
developing new block ciphers. In practice, the encryption

structure of CLEFIA [11] is GFN-2, and HIGHT [12]
adopted a slight variant of GFN-2. For this reason, it is
important and useful to study and analyze the security of
GFN-2.
We define GFN-2 with the parameters t, a, and b. t is the

number of branches, a is the number of S-boxes which the F-
function consists of, and b is the length of input and output of
the bijective S-box. In this paper, the byte length and the word
length are defined as b bits and ab bits. 'e block length of
GFN-2 with the parameters t, a, and b is abt bits.We restrict (a,
b) to (4, 4), (4, 8), (8, 4), and (8, 8) and t to 4, 6, and 8, which are
mainly used and considered in block cipher designs.
In [4], Kang et al. analyzed only t� 4 cases of GFNs and

assumed that the last-round function has no shuffle oper-
ation. 'ey presented a 13-round known-key distinguishing
attack on GFN-2 and 9-round 1-word and 2-word partial-
collision attacks on Matyas-Meyer-Oseas and Miyaguchi-
Preneel hash modes of GFN-2. In this paper, we improve the
results for GFN-2 in [4] and also present known-key dis-
tinguishing and partial-collision attacks for the cases of t� 6
and t� 8. Our results are summarized as follows:

(i) For 4-branch GFN-2, we find a new 5-round in-
bound structure and make a 15-round known-key
distinguishing attack. Assuming the last round has
no shuffle operation, we show that a 11-round 3-
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word partial-collision attack is possible and that
when a� 8, 15-round 1-word partial-collision attack
is possible. Assuming the last round has the shuffle
operation, we show that a 10-round 3-word partial-
collision attack is possible and that when a� 8, 14-
round 1-word partial-collision attack is possible.

(ii) For 6-branch GFN-2, we find a 7-round inbound
structure and make a 17-round known-key dis-
tinguishing attack. When a� 8, we show that a 19-
round known-key distinguishing attack, a 17-round
2-word partial-collision attack without the last
shuffle operation, and a 16-round 2-word partial-
collision attack with the last shuffle operation are
possible.

(iii) For 8-branch GFN-2, we find a 11-round inbound
structure and make a 27-round known-key dis-
tinguishing attack which is extended to 29 rounds
when a� 8. We show that a 21-round 5-word
partial-collision attack without the last-round
shuffle operation and a 20-round 5-word partial-
collision attack with the last-round shuffle operation
are possible and that a 21-round 2-word partial-
collision attack with the last-round shuffle operation
is possible when (a, b)≠ (4, 8).

Considering the wide applicability of GFN-2 as a
structure of the cryptographic algorithm, our attacks are
useful and helpful in designing a new block cipher or hash
function based on GFN-2. 'e remainder of this paper is
organized as follows: Section 2 gives a brief description of
GFN-2 structure and Matyas-Meyer-Oseas and Miyaguchi-
Preneel mode and explains the inbound structure of F-
function. Section 3 provides a general explanation of how to
construct an inbound structure for GFN-2. From Section 4
to Section 6, we propose inbound structures, known-key
distinguishers, and partial-collision attacks on GFN-2 for
t� 4, 6, and 8. Finally, Section 7 concludes our work.

2. Preliminaries

2.1.Type-2GeneralizedFeistelNetwork. Let the S-box S: {0, 1}b

⟶ {0, 1}b be a nonlinear permutation on {0, 1}b. 'e notation
Y� S(X) means that the output of the S-box is Y∈ {0, 1}b on the
inputX∈ {0, 1}b. Let the linear functionP: ({0, 1}b)a⟶ ({0, 1}b)a

be the multiplication by a×a MDS matrix over GF (2b). 'e
notation Y� (Y[0], Y[1] , . . . , Y[a − 1])� P(X)�
P(X[0], X[1], . . . , X[a − 1]) means that the output vector of P
is Y� (Y[0], Y[1], . . . , Y[a − 1]) on the input vector
X� (X[0], X[1], . . . , X[a − 1]). For the S-box S and the linear
function P, we define F: {0, 1}ab×{0, 1}ab as follows: for an input
X� (X[0], X[1], . . . , X[a − 1])∈ ({0, 1}b)a and a subkey
RK� (RK[0], RK[1], . . . , RK[a − 1])∈ ({0, 1}b)a, Y� F(X,
RK)� P(S(X[0] +RK[0]), S(X[1] + RK[1])), where + is the
XOR (eXclusive OR) operation. Figure 1 depicts the example of
F-function with a� 4.
Let t≥ 4 be an even integer and r be a positive integer. For

r-round t-branch GFN-2, we define all subkeys RKi,j gener-
ated from a key K as RKi,j� (RKi,j[0], RKi,

j[1], . . . , RKi,j[a − 1])∈ ({0, 1}b)a for 0≤ i< r and 0≤ j< t/2.

We define the shuffle operation σ as σ � (σ(0), σ(1), . . .,
σ(t− 1))� (t– 1, 0, . . ., t− 2). 'en, we can give the fol-
lowing pseudocode which describes how the r-round t-
branch GFN-2 encrypts a plaintext block X0 � (X0,0, X0,1,
. . ., X0,t−1) ∈ ({0, 1}ab)t to Xr � (Xr,0, Xr,1, . . ., Xr,t−1) ∈ ({0,
1}ab)t:

(i) for i� 0, 1, . . ., r− 1 do:

(ii) for j� 0, 1, . . ., t− 1 do:

(iii) if j is even:

(iv) Yj�Xi,j

(v) else:

(vi) Yj�Xi,j + F(Xi,j−1, RKi,(j−1)/2)

(vii) for j� 0, 1, . . ., t− 1 do:

(viii) Xi+1,σ(j)�Yj

'e index i in the above pseudocode means the round
order. Figure 2 depicts the i-th round function of GFN-2
with t� 8. 'roughout this paper, we assume that the key K
and the subkey RKi,j’s are known and fixed. Since subkey-
XORing operations are not important in the description of
our work, we omit the notation and explanation about
subkeys for simplicity. For example, we replace F(Xi,j−1,
RKi,(j−1)/2) with F(Xi,j−1).

2.2. Inbound Structure of F-Function. A difference is the
XOR between two values at the same position, and a dif-
ferential trail is a set of all difference transitions in a block
cipher. An inbound structure is a core part in rebound
attack techniques [2] and is a set of all pairs satisfying a
differential trail for a part of a block cipher. In order to give
an easy explanation about inbound structure of F-function
(ISF), we need to use the following notations of word
difference forms:

(i) 0: every byte in the word has the zero difference.

(ii) Δ1: one byte has a nonzero difference and the other
bytes in the word have zero differences.

(iii) ΔP(1): the word has difference forms which are the
output of P on the input Δ1. 'at is, P(Δ1)�ΔP(1).

We assume that all subkeys are known and fixed and that
the number of zero entries is almost equal to that of nonzero
entries in the difference distribution table (DDT) of the S-
box. We set the input and output difference forms of the F-
function to ΔP(1) and Δ1, respectively. 'en, for all possible
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Figure 1: Structure of F-function with a� 4.
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differences with the form of (ΔP(1), Δ1) ∈ {0, 1}ab×{0, 1}ab,
every S-box in the F-function meets nonzero input and
output differences. For any choice of nonzero difference pair
(α, β) ∈ {0, 1}b×{0, 1}b, we call it valid if there exists any input
pair whose input difference is α and the corresponding S-box
output difference is β. By the assumption of DDT, the ratio
of valid input and output difference pairs is around 0.5. On
average, for a valid input-output difference pair (α, β), the S-
box has a single input pair (x1, x2) ∈ {0, 1}b×{0, 1}b satisfying
x1 + x2� α and S(x1) + S(x2)� β. For any fixed form ΔP(1), the
number of input differences of the F-function satisfyingΔP(1)
is 2b− 1. For any fixed form ΔP(1), the number of input
differences of the F-function satisfying Δ1 is 2b− 1. 'ere-
fore, on average, the inbound structure of the F-function
(ISF) with (ΔP(1), Δ1) contains (2b− 1)2× 2−a

×2a� (2b− 1)
2
� 22b.
We take a look at the example of ISF with a� 4 in

Figure 3. Let the input differences of the four S-boxes be α0,
α1, α2, and α3, and let the corresponding output differences
be β0, β1, β2, and β3. Let x0,0, x0,1, x1,0, x1,1, x2,0, x2,1, x3,0, and
x3,1 be the inputs of the S-box satisfying

xi,0 + xi,1 � αi,

S xi,0( ) + S xi,1( ) � βi, for i ∈ 0, 1, 2, 3{ }.
(1)

'en, all the possible input pairs of the F-function are
{(x0,0, x1,0, x2,0, x3,0), (x0,1, x1,1, x2,1, x3,1)}, {(x0,1, x1,0, x2,0,
x3,0), (x0,0, x1,1, x2,1, x3,1)}, {(x0,0, x1,1, x2,0, x3,0), (x0,1, x1,0, x2,1,
x3,1)}, . . .. 'at is, the number of possible input pairs of the
F-function is 24. 'erefore, the ISF contains about (2b− 1)2

pairs because the F-function has about (2b− 1)2×2−4 possible
input-output difference pairs with the form (ΔP(1), Δ1).
We assume that DDT of the S-box is given in advance

and that DDTcontains all possible input pairs for each input
and output differences. 'en, the complexity of the phase
checking the validity of an input-output difference pair for
the S-box is dominant in the computational complexity
required for constructing the ISF. It is about a×22b table
lookups �22b F-function evaluations because the F-function
consists of a S-boxes.

2.3. Matyas-Meyer-Oseas and Miyaguchi-Preneel Modes.
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP)
modes belong to 12 secure PGV hash modes, [15] which
invoke a single call of the underlying block cipher to build a
compression for a Merkle-Damgård hash function. Note
that a compression function takes a message block and an
input chaining variable value to produce an output chaining
variable value. In both of two hashmodes, the input chaining
variable which cannot be controlled by anyone becomes the

key of the block cipher, the message block which can be
controlled by anyone becomes the plaintext block of the
block cipher, and the output chaining variable is produced
by XORing the ciphertext block with the plaintext block and
the key. See Figure 4. 'roughout this paper, we assume the
hash mode of GFN-2 is MMO or MP whenever we explain
partial-collision attacks.

3. Inbound Structure of GFN-2

We explore the inbound structures of GFN-2 (ISG2) which
minimize nonzero difference words with the form Δ1. Such
ISG2s have relatively long difference propagation in forward
and backward directions and best attacks on hash modes.
We suggest a general methodology to construct differential
trails suitable for good ISG2s as follows:

(1) Set the round number R of ISG2 to an intended
positive integer.

(2) Select the number of ISFs and randomly choose the
application positions of ISFs. For each chosen po-
sition, set the input and output differences of the F-
function to ΔP(1) and Δ1, respectively.

(3) Use only the difference forms 0, Δ1, and ΔP(1) to
propagate and adjust the differences from ISFs in
forward and backward directions such that nonzero
differences are minimized.

(4) Check whether the input and output differences of
ISG2 have the minimum number of nonzero word
differences with the form Δ1. If it is, return the
differential trail; otherwise, go to Step (2).

We assume that the position of nonzero byte in Δ1 is the
same as that in P−1(ΔP(1)) and that all subkeys are known and
fixed. Let “?” be an unknown difference. We use the notation
“0,” “Δ1,” “ΔP(1),” and “?” to represent the difference forms.
We make them correspond to binary codes 002, 012, 102, and
112. 'en, the difference form of two consecutive words can
be represented in hexadecimal digits like Table 1. For ex-
ample, (Δ1, ΔP(1)) and (ΔP(1), Δ1) are 0×6 and 0×9,
respectively.

4. Attacks on 4-Branch GFN-2

4.1. 5-Round Inbound Structure. We make the 5-round in-
bound structure satisfying the differential trail in Figure 5. It
is represented as a hexadecimal vector (0×40, 0×81, 0×46,
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Figure 3: Differences in the inbound structure of F-function with
a� 4.

Xi,0 RKi,0 RKi,1Xi,1 Xi,2 Xi,3

Xi+1,0 Xi+1,1 Xi+1,2 Xi+1,3

F F

Figure 2: Structure of F-function with a� 4.

Security and Communication Networks 3



0×91, 0×06, 0×10) by Table 1. 'e input state of ISG2 is
X0� (X0,0, X0,1, X0,2, X0,3) and the output state of the i-th
round is Xi+1� (Xi+1,0, Xi+1,1, Xi+1,2, Xi+1,3) for i ∈ {0, 1, 2, 3,
4}. Let ΔXi,j be the difference at Xi,j and let ΔF(Xi,j) be the
difference at F(Xi,j). We use two ISFs to find pairs contained
in the 5-round ISG2 according to the following steps:

(1) Apply the ISF to the F-function taking X1,0 as input.
Store about 22b pairs satisfying the input difference
with the form ΔP(1) and the output difference with
the form Δ1 for the F-function, in a table named
ISF-1.

(2) Apply the ISF to the F-function taking X3,0 as input,
independently of Step (1). Store about 22b pairs
satisfying the input difference with the form ΔP(1)
and the output difference with the form Δ1 for the F-
function, in a table named ISF-2.

(3) Choose a random value for X0,2 and compute F(X0,2).
'en, compute X2,0 and F(X2,0) for all values of
F(X1,0) in ISF-1.

(4) Choose a random value for X4,0 (�X5,3) and compute
F(X4,0). 'en, compute X2,2 and F(X2,2) for all values
of F(X3,0) in ISF-2.

(5) For ΔF(X2,0) and ΔX1,0 from a pair (x1, x2) ∈ ISF-1
and for ΔX3,0 and ΔF(X2,2) from a pair (y1, y2) ∈ ISF-
2, combine the pairs to {(x1, y1), (x2, y2)} if
ΔF(X2,0)�ΔX3,0 and ΔX1,0�ΔF(X2,2). For all the
pairs in ISF-1 and all the pairs in ISF-2, store the
combined pairs in a table named ISF-(1, 2). On
average, ISF-(1, 2) contains 22b (combined) pairs.

(6) For all pairs in ISF-(1, 2), compute F(X1,2) and
F(X0,0), and discard the pairs where the difference at
F(X0,0) is not equal to the difference at X1,0. On
average, 2b pairs survive.

(7) For all surviving pairs, compute F(X3,2) and F(X4,2),
and discard the pairs where the difference at F(X4,2)
is not equal to the difference at X3,0. On average, 1
pair survives.

(8) For all surviving pairs, compute X0,1, X0,3, X5,0, and
X5,2, and store the resulting pairs in ISG2.

For fixed values of X0,1 and X5,3, the above 5-round ISG2
has one pair on average. 'e computational complexity
required for constructing a 5-round ISG2 is estimated 9×22b

F-function evaluations. We denote it by T� 9·22bF. 'is
estimation is based on the following:

(i) 'e construction of ISFs for Steps (1) and (2) re-
quires 22bF because essentially, a single set of ISF can
be applied to two positions.

(ii) 'e complexity of Step (3) is 22b+1F because F(X2,0)
is computed for 22b+1 times.

(iii) 'e complexity of Step (4) is 22b+1F because F(X2,2)
is computed for 22b+1 times.

(iv) 'e complexity of Step (6) is 22b+2F because F(X1,2)
is computed for 22b+1 times and F(X0,0) is computed
for 22b+1 times.

(v) 'e complexity of Step (7) is 2b+2F (�2×2×2bF)
because F(X3,2) is computed for 2

b+1 times and
F(X4,2) is computed for 2

b+1 times.

So, if we choose N random values of (X0,1, X5,3), the 5-
round ISG2 contains N pairs and the corresponding com-
plexity is NT.

4.2. Known-Key Distinguisher. We can get a differential trail
in Table 2 by propagating differences from the 5-round ISG2
in forward and backward directions. ΔXi� (ΔXi,0, . . ., ΔXi,3)
is the representation of the difference of the state. ISG2

Table 1: Hexadecimal representation for two consecutive words.

0 Δ1 ΔP(1) ?

0 0x0 0x1 0x2 0x3
Δ1 0x4 0x5 0x6 0x7
ΔP(1) 0x8 0x9 0xA 0xB
? 0xC 0xD 0xE 0xF
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Figure 5: Differential trail for the 5-round inbound structure of 4-
branch GFN-2.
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Figure 4: Matyas-Meyer-Oseas (left) mode andMiyaguchi-Preneel
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covers from ΔX0 to ΔX5, the backward propagation covers
from ΔX−1 to ΔX−5, and the forward propagation covers
from ΔX+1 to ΔX+5. 'e rebound attack framework calls this
propagation, Outbound Phase [2]. In this phase, the tran-
sition between the input and output difference forms under
the F-function is determined by the rule in Table 3.
'e differential trail in Table 2 is represented as 0xFB⟶

0xEF by hexadecimal digits. In Table 2, the difference form at
Xi,j is denoted by ΔXi,j. In the case of ideal cipher with the
block length of abt bits, we explain how to find at least one
pair satisfying 0xFB⟶ 0xEF. Firstly, wemake a set of 2b abt-
bit values such that all possible byte values appear at the
nonzero byte difference, which is indicated by the difference
form ΔP(1), and a randomly chosen constant value is at the
zero byte differences. After applying the linear function P to
the third words of the elements in the set, we get about 22b−1

pairs with the difference form (?, ?, ΔP(1), ?). 'en, the output
difference form is (?, ΔP(1), ?, ?) with the probability 2−(a−1)b,
and we get 2(−a+3)b−1

� 22b−1×2−(a−1)b pairs satisfying 0×FB
⟶ 0×EF. Since a� 4 or a� 8 in the block cipher designs,
(−a+ 3)b− 1 is a negative integer. 'erefore, we expect a pair
satisfying 0xFB⟶ 0xEF by repeating this work 2(a−3)b+1� 1/
2(−a+3)−1 times, and the complexity is 2(a−2)b+1� 2b×2(a−3)b+1.
In the case of 4-branch GFN-2, we can get one pair

satisfying 0xFB⟶ 0xEF with 9×22bF� 9×22b/30 because a
pair contained in the 5-round ISG2 satisfies 0xFB⟶ 0xEF,
the complexity required in the computation of the outbound
phase is negligible, and one evaluation of the 15-round 4-
branch GFN-2 requires 30 evaluations of the F-function.
When a� 4 or a� 8, the complexity in the case of GFN-2 is
lower than that of the ideal cipher and so, 0xFB⟶ 0xEF can
be used as a valid 15-round known-key distinguisher. By the
way, the attack advantage in the case of a� 4 is much smaller
than that of a� 8.
'e summary of the attack complexity can be seen in

Table 4. 'e validity of the distinguishing attack has nothing
to do with the existence of the shuffle operation in the last
round, but we just write the distinguishing attack result in
the case that the shuffle operation exists in the last round.

4.3. Partial-Collision Attacks. 'e partial-collision attacks
derived from Table 2 are summarized in Table 4. 'e “L”
column in Table 4 means the existence of the last shuffle
operation; if the last shuffle operation exists, its entry is “Y”;
otherwise, its entry is “N.” 'e “R” column means the
number of attacked rounds. 'e “KKD” column means the
known-key distinguisher used in each attack; the entry is
written with the forms of input difference and output
difference. 'e “w” column means the number of words
colliding at the output chaining variable in the partial-
collision attack. For the first attack in Table 4, its entry is
written as “−” because it is a just distinguishing attack. 'e
“Comp.” column means the complexity required for the
known-key distinguishing attack or partial-collision attack
on 4-branch GFN-2, and the “Generic” column means the
complexity required for the known-key distinguishing
attack on the ideal cipher with abt-bit block or the birthday
attack on a random function with abt-bit output length.
Finally, the “(a, b)” column means the value of (a, b) which
makes the attack valid; its entry is written as “all” if the
attack is valid for all values of (a, b); its entry is written as
“(8, ∗)” if the attack is valid only for a � 8.
'e second attack in Table 4 uses known-key dis-

tinguishers (?, ?, ΔP(1), ?)⟶ (?, Δ1, ΔP(1), ?) or (Δ1, ΔP(1), ?, ?)
⟶ (?, ΔP(1), ?, ?), and we expect a 1-word partial collision by
trying 2b pairs in ISG2. Since it covers 14 rounds, the
complexity is estimated as 2b×(9×22b)/28� 23b−1.63. 'is
attack is valid only for a� 8 because the complexity is lower
than 2ab/2 when a� 8.
'e third attack in Table 4 uses known-key dis-

tinguishers (ΔP(1), ?, 0, Δ1)⟶ (ΔP(1), 0, 0, Δ1) or (0, 0, Δ1,
ΔP(1))⟶ (?, 0, Δ1, ΔP(1)), and we expect a 3-word partial
collision by 22b pairs in ISG2. Since it covers 10 rounds, the
complexity is estimated as 22b×(9×22b)/20� 23b−1.15. 'is
attack is valid for all values (a, b) ∈ {(4, 4), (4, 8), (8, 4), (8, 8)}.
'e fourth and fifth attacks in Table 4 use known-key

distinguishers (?, ?, ΔP(1), ?)⟶ (?, ?, ΔP(1), ?) and (ΔP(1), ?, 0,
Δ1)⟶ (ΔP(1), 0, 0, Δ1), respectively, under the assumption
that the last round has no shuffle operation. 'e complexity
and validity of them are understood by the similar way to the
second and third attacks.

5. Attacks on 6-Branch GFN-2

We make a 7-round ISG2 for 6-branch GFN-2, and the
corresponding differential trail is represented as a hexa-
decimal vector (0×400, 0×801, 0×406, 0×811, 0×446, 0×991,
0×606, 0×011). We use four ISFs to find the pairs for the 7-
round ISG2 according to the following steps:

Table 2: Difference propagation from the 5-round inbound
structure of 4-branch GFN-2.

i ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3

–5 ? ? ΔP(1) ?
–4 Δ1 ΔP(1) ? ?
–3 ΔP(1) ? 0 Δ1
–2 0 0 Δ1 ΔP(1)
–1 0 Δ1 0 0
0 Δ1 0 0 0
1 ΔP(1) 0 0 Δ1
2 Δ1 0 Δ1 ΔP(1)
3 ΔP(1) 0 0 Δ1
4 0 0 Δ1 ΔP(1)
5 0 Δ1 0 0
+1 Δ1 0 0 0
+2 ΔP(1) 0 0 Δ1
+3 ? 0 Δ1 ΔP(1)
+4 ? Δ1 ΔP(1) ?
+5 ? ΔP(1) ? ?

Table 3: Transition between the input and output difference forms
under the F-function in the outbound phase.

Input difference Output difference

0 0
Δ1 ΔP(1)
ΔP(1) ?
? ?
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(1) Apply ISFs to the F-functions taking X1,0, X3,0, X5,0,
and X5,2 as inputs. Call them ISF-1, ISF-2, ISF-3, and
ISF-4, respectively.

(2) Choose a random value for X0,2 to compute F(X0,2),
and compute F(X2,0) for all values of F(X1,0) in ISF-
1. 'en, for ΔF(X2,0) associated to a pair (x1, x2) ∈
ISF-1 and for ΔX3,0 from a pair (y1, y2) ∈ ISF-2,
combine the pairs to {(x1, y1), (x2, y2)} if
ΔF(X2,0)�ΔX3,0. For all the pairs in ISF-1 and all the
pairs in ISF-2, store the combined pairs in a table
named ISF-(1, 2). On average, ISF-(1, 2) contains
23b� 22b×22b×2−b pairs.

(3) Choose a random value for X7,1 (�X6,2) to compute
F(X6,2), and compute F(X4,4) for all values of F(X5,2)
in ISF-4. 'en, for ΔF(X4,4) associated to a pair (z1,
z2) ∈ ISF-4 and for ΔX3,0 from a pair {(x1, y1), (x2,
y2)} ∈ ISF-(1, 2), combine the pairs to {(x1, y1, z1), (x2,
y2, z2)} ∈ if ΔF(X4,4)�ΔX3,0. For all pairs in ISF-4 and
all pairs in ISF-(1, 2), store the combined pairs in a
table named ISF-(1, 2, 4). On average, ISF-(1, 2, 4)
contains 22b×23b × 2– b� 24b pairs.

(4) For each pair in ISF-(1, 2, 4), discard it if
ΔX3,5≠ΔX4,4. On average, ISF-(1, 2, 4) contains
24b×2−b

� 23b pairs after this filtering.

(5) For each pair in ISF-(1, 2, 4), compute X3,4, X2,4, and
X4,2, and discard the pair if ΔX2,4≠ΔX4,2. On av-
erage, ISF-(1, 2, 4) contains 23b×2−b

� 22b after this
filtering.

(6) For all pairs {(x1, y1, z1), (x2, y2, z2)} in ISF-(1, 2, 4)
and all pairs (v1, v2) in ISF-3, compute X3,2 and X4,0.
'en, combine the pairs to {(x1, y1, z1, v1), (x2, y2, z2,
v2)} if ΔX4,0�ΔF(X3,0), and store the combined pairs
in a table ISG2. On average, ISG2 contains
22b×22b×2−b

� 23b pairs.

(7) For each pair in ISG2, compute X6,0 and F(X6,0) and
then discard the pair if ΔX6,0� 0 or ΔF(X6,0)≠ΔX5,2.
On average, ISG2 contains 23b×2−b

� 22b pairs after
this filtering.

(8) For each pair in ISG2, compute F(X5,4) and F(X6,4),
and then discard the pair if ΔF(X6,4)≠ΔX5,0. On
average, ISG2 contains 22b×2−b

� 2b pairs after this
filtering.

(9) For each surviving pair in ISG2, compute the
remaining parts including F(X0,0), and discard the
pair if ΔF(X0,0)≠ΔX1,0. On average, ISG2 contains
2b×2−b� 1 pair after this filtering.

'at is, for a fixed X0,2 and X7,1, we can find a pair for
the 7-round ISG2 of 6-branch GFN-2. 'e complexity of
the above procedure is about 24b+1F. It is based on the
following and we can see that the complexity of Step (6) is
dominant:

(i) 'e construction of ISFs for Step (1) requires 22bF.

(ii) 'e complexity of Step (2) is 22b+1F because F(X2,0)

is computed for 22b+1 times.

(iii) 'e complexity of Step (3) is 22b+1F because F(X4,4)

is computed for 22b+1 times.

(iv) 'e complexity of Step (5) is 3×23b+1F because
X3,4� F−1(X2,0 + X4,4), X2,4� F−1(X1,0 + X3,4), and
X4,2� F−1 (X3,4 + X5,2) are computed for 2

3b+1

times, where we assume that the evaluation of F−1

requires the same complexity as F.

(v) 'e complexity of Step (6) is 24b+1F because
X3,2� F−1(X2,4 + X4,2) is computed for 2

2b+1 times
and F−1(X3,2 + X5,0) is computed for 2

4b+1 times.

(vi) 'e complexity of Step (7) is 23b+1F because F(X6,0)
is computed for 23b+1 times.

(vii) 'e complexity of Step (8) is 22b+2F because F(X5,4)
and F(X6,4) are computed for 2

2b+1 times.

(viii) 'e complexity of Steps (4) and (9) is negligible
compared to the other steps.

Table 5 summarizes known-key distinguishing and
partial-collision attacks on 6-branch GFN-2, based on the
7-round ISG2. 'e first attack in Table 5 is a 19-round
known-key distinguishing attack. 'e condition that a
known-key distinguisher for 6-branch GFN-2 is valid for
all values of (a, b) is that the distinguisher has more than
two nonzero words in both input and output differences.
'e 17-round known-key distinguisher 0x6FF⟶ 0xBFD
is the longest one which is valid for all values of (a, b).
Table 5 shows that the partial-collision attacks on 6-branch
GFN-2 are valid only for a � 8.

6. Attacks on 8-Branch GFN-2

We make a 11-round ISG2 for 8-branch GFN-2, and the
corresponding differential trail is represented as a hexa-
decimal vector (0× 4000, 0× 8001, 0× 4006, 0× 8011,
0× 4046, 0× 8191, 0× 4606, 0× 9011, 0× 0046, 0× 0190,
0× 0600, 0×1000). 'e procedure finding a pair for the 11-
round ISG2 of 8-branch GFN-2 is described as follows:

Table 4: Known-key distinguishing and w-word partial-collision attacks on 4-branch GFN-2.

L R KKD w Comp. Generic (a, b)

Y
15 (0xFB, 0xEF) — 22b−1.73 2(a−2)b+1 All
14 (0xFB, 0xDB), (0x6F, 0xEF) 1 23b−1.63 2ab/2 (8, ∗)
10 (0xB1, 0x81), (0x06, 0xC6) 3 24b−1.15 23ab/2 All

N
15 (0xFB, 0xB) 1 23b−1.73 2ab/2 (8, ∗)
11 (0xB1, 0x81) 3 24b−1.29 23ab/2 All
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(1) Apply six ISFs to the F-functions taking X1,0, X3,0,
X5,0, X5,4, X7,0, and X9,4 as inputs. Call them ISF-1,
ISF-2, ISF-3, ISF-4, ISF-5, and ISF-6, respectively.

(2) Choose a random value for X0,2 to compute F(X0,2)
for all values of F(X1,0) in ISF-1. 'en, for ΔF(X2,0)
associated to a pair (x1, x2) ∈ ISF-1 and for ΔX3,0
associated to a pair (y1, y2) ∈ ISF-2, combine the
pairs to {(x1, y1), (x2, y2)} if ΔF(X2,0)�ΔX3,0. For all
the pairs in ISF-1 and all the pairs in ISF-2, store the
combined pairs in a table named ISF-(1, 2). On
average, ISF-(1,2) contains 22b×22b×2−b� 23b pairs.

(3) Choose a random value for X11,3 to compute F(X8,6)
for all values of F(X9,4) in ISF-6. 'en, for ΔF(X8,6)
associated to a pair (z1, z2) ∈ ISF-6 and for ΔX7,0
associated to a pair (v1, v2) ∈ ISF-5, combine the
pairs to {(z1, v1), (z2, v2)} if ΔF(X8,6)�ΔX7,0. For all
the pairs in ISF-6 and all the pairs in ISF-5, store the
combined pairs in a table named ISF-(5, 6). On
average, ISF-(5,6) contains 22b×22b×2−b� 23b pairs.

(4) Choose a random value for X8,5 to compute F(X7,6)
and F(X6,0) for all the pairs in ISF-(5, 6). 'en,
discard the pairs from ISF-(5, 6) if ΔF(X6,0)≠ΔX7,0.
On average, ISF-(5, 6) contains 23b×2−b

� 22b pairs
after this filtering.

(5) For ΔF(X5,0) associated to a pair (u1, u2) ∈ ISF-3 and
for ΔX6,0 associated to a pair {(z1, v1), (z2, v2)} ∈ ISF-
(5,6), combine the pairs to {(z1, v1, u1), (z2, v2, u2)} if
ΔF(X5,0)�ΔX6,0. For all the pairs in ISF-3 and all
the pairs in ISF-(5, 6), store the combined pairs in a
table named ISF-(3, 5, 6). On average, ISF-(3, 5, 6)
contains 22b×22b×2−b

� 23b pairs.

(6) For all the pairs in ISF-(3, 5, 6), compute
X6,6� F−1(X7,6 + X5,0) and X8,4� F−1(X7,6 + X9,4).
Discard the pairs from ISF-(3, 5, 6) if ΔX6,6 ≠ ΔX8,4.
On average, ISF-(3, 5, 6) contains 23b×2−b� 22b

pairs.

(7) Choose a random value for X0,4 to compute F(X1,2),
X2,2, and X4,0 for the pairs in ISF-(1, 2). For ΔX4,0
associated to a pair {(x1, y1), (x2, y2)} ∈ ISF-(1, 2) and
for ΔX6,6 associated to a pair {(z1, v1, u1), (z2, v2,
u2)} ∈ ISF-(3, 5, 6), combine the pairs to {(x1, y1, z1,

v1, u1), (x2, y2, z2, v2, u2)} if ΔX4,0�ΔX6,6. For all the
pairs in ISF-(1, 2) and all the pairs in ISF-(3, 5, 6),
store the combined pairs in a table named ISF-(1, 2,
3, 5, 6). On average, ISF-(1, 2, 3, 5, 6) contains
23b×22b×2−b

� 24b pairs.

(8) For all the pairs in ISF-(1, 2, 3, 5, 6), compute
F(X4,0). Discard the pairs from ISF-(1, 2, 3, 5, 6) if
ΔF(X4,0)≠ΔX5,0. On average, ISF-(1, 2, 3, 5, 6)
contains 24b×2−b� 23b pairs after this filtering.

(9) For all the pairs in ISF-(1, 2, 3, 5, 6), compute
X5,6� F−1(X6,6 + X4,0) and X4,6� F−1(X5,6 + X3,0).
Discard the pairs from ISF-(1, 2, 3, 5, 6) if
ΔX4,6≠ΔX2,0. On average, ISF-(1, 2, 3, 5, 6) contains
23b×2−b� 22b.

(10) For ΔF(X5,4) associated to a pair (q1, q2) ∈ ISF-4 and
for ΔX4,6 associated to a pair {(x1, y1, z1, v1, u1), (x2,
y2, z2, v2, u2)} ∈ ISF-(1, 2, 3, 5, 6), combine the pairs
to {(x1, y1, z1, v1, u1, q1), (x2, y2, z2, v2, u2, q2)} if
ΔF(X5,4)�ΔX4,6. For all the pairs in ISF-4 and all
the pairs in ISF-(1, 2, 3, 5, 6), store the combined
pairs in ISG2. On average, ISG2 contains
22b×22b×2−b

� 23b.

(11) Compute the remaining parts. 'ere are four fil-
tering points with the ratio 2−b. 'erefore, after all
computations, on average, ISG2 contains
2−4b×23b� 2−b pairs.

If the above procedure is repeated 2b times, we expect to
find one pair for the 11-round ISG2 of 8-branch GFN-2. And,
the complexity of Step (8) is 24b+1F and much more dominant
than the other steps.'erefore, the complexity of obtaining one
pair for the ISG2 is 25b+1F$. 'e attacks based on the ISG2 are
summarized in Table 6. 'e third attack in Table 6 is valid for
(a, b)� (4, 4), (8, 4), and (8, 8). So, we denote the corresponding
entry of the “(a, b)” column by ¬(4, 8).

7. Conclusion

In this paper, we analyzed the security of GFN-2 in the
known-key setting. We improved the results of 4-branch
GFN-2 presented in \cite{KangHoMoKwSuHo12}. We also

Table 5: Known-key distinguishing and w-word partial-collision attacks on 6-branch GFN-2.

L R KKD w Comp. Generic (a, b)

Y
19 (0xFBF, 0xFFE) — 24b–4.83 2(a−2)b+1 (8, ∗)
17 (0x6FF, 0xBFD) — 24b–4.76 22(a−1)b+1 All
16 (0x6FF, 0x6EC), (0xBF1, 0xBFD) 2 26b–4.59 2ab (8, ∗)

N 17 (0x6FF, 0x6FF) 2 26b–4.67 2ab (8, ∗)

Table 6: Known-key distinguishing and w-word partial-collision attacks on 8-branch GFN-2.

L R KKD w Comp. Generic (a, b)

Y

29 (0xFBFF, 0xEFFF) — 25b−5.86 2(a−2)b+1 (8, ∗)
21 (0x6FFF, 0xDBFF) — 25b−5.76 22(a−1)b+1 All
27 (0xF01B, 0xC06F), (0x006F, 0xC1BF) 2 25b−5.39 2ab ¬(4, 8)
20 (0xF01B, 0xC01B), (0x006F, 0xC06F) 5 27b−5.32 25ab/2 All

N 21 (0xF01B, 0xF01B) 5 27b−5.39 25ab/2 All
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presented the first known-key distinguishing and partial-
collision attacks on 6-branch and 8-branch GFN-2 struc-
tures.We explained each attack such that the complexity and
validity are easily understood. Our attacks do not mean that
any block cipher with GFN-2 structure is insecure but can be
useful and helpful in having an insight about the security of
GFN-2 in known-key settings and in designing a new block
cipher or hash function.
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