
KNOWROB — Knowledge Processing for Autonomous Personal Robots

Moritz Tenorth and Michael Beetz

Intelligent Autonomous Systems, Technische Universität München

{tenorth, beetz}@cs.tum.edu

Abstract— Knowledge processing is an essential technique
for enabling autonomous robots to do the right thing to the
right object in the right way. Using knowledge processing
the robots can achieve more flexible and general behavior
and better performance. While knowledge representation and
reasoning has been a well-established research field in Artificial
Intelligence for several decades, little work has been done to
design and realize knowledge processing mechanisms for the
use in the context of robotic control.

In this paper, we report on KNOWROB, a knowledge pro-
cessing system particularly designed for autonomous personal
robots. KNOWROB is a first-order knowledge representation
based on description logics that provides specific mechanisms
and tools for action-centered representation, for the automated
acquisition of grounded concepts through observation and
experience, for reasoning about and managing uncertainty, and
for fast inference — knowledge processing features that are
particularly necessary for autonomous robot control.

I. INTRODUCTION

As the complexity of tasks to be accomplished by personal

robots is steadily increasing we cannot afford to explicitly

spell out every detail of every course of action in every

conceivable situation.

Consider, for example, a personal robot that is to set

the table. Obviously, we cannot specify all aspects of the

required actions explicitly: where to stand when reaching

for a cup, which hand to take, which grasp to use, etc —

and these aspects for every object and every context. Rather,

we have to specify general and flexible control routines that

automatically adjust their execution to the particular situation

at hand.

In order to code control routines in such general manners,

the robot has to be capable of inferring the detailed course

of action and the action parameterizations using the required

abstract and symbolic knowledge pieces. That is, knowledge

processing is a resource for doing the right thing to the right

object in the right way. To this end, robots must be equipped

with a comprehensive body of knowledge and dedicated

knowledge processing capabilities that allow for better state

estimation, context assessment, and better informed action

selection and parameterization.

To be applicable to autonomous robot control, knowledge

representation and processing should address the following

aspects, which are typically not sufficiently covered by AI

knowledge representation and processing mechanisms.

• Action-centered knowledge representation. Action-

related concepts like the places where certain manipula-

tions can be performed or the grasp of a bottle for filling

SetTable-1

PickingUpAnObj-3

objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

Reaching-14
objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

TakingSomething-14
objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

PuttingDown-14
objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

Releasing-14

... ...

PuttingDownAnObj-3

PuttingSomethingSomewhere-3 PuttingSomethingSomewhere-4

subEventssubEventssubEventssubEvents

subEvents

......

Moving-27
fromLocation: Place-17
toLocation: Place-4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Human pose vector

(51 DOF)

Motion Segmentation: CRF, GPDM

Fig. 1. Hierarchical action model: The continuous pose sequence (bottom)
is segmented into primitive movements (Reaching, etc) and combined with
additional information from the sensor network and the object recognition
system. The model is automatically constructed by matching definitions of
higher-level concepts against these observations, e.g. that picking something
up subsumes reaching towards and taking it.

a glass are central for a robot performing manipulation

tasks.

• Automated acquisition of grounded concepts through

observation and experience. Symbolic knowledge in the

robot’s knowledge base has to be grounded in data struc-

tures from the perception system and in parametriza-

tions of actions. The knowledge processing system

should thus work directly on the data structures used

for robot control such as 3D environment models, or log

data from plan execution, and should abstract the high-

dimensional data into compact symbolic representations

for efficient reasoning (Figure 1).

• Managing uncertainty. Uncertainty caused by sensor

noise, by limited observability, by hallucinated object

detections, by incomplete knowledge, and by unreliable

and inaccurate actions must be taken into account.

• Fast inference. The knowledge processing system of a

robot must provide answers quickly compared to the

execution times of manipulation tasks.

In this paper we describe key components and mechanisms

for a practical knowledge processing system specifically

designed for autonomous robots that are to perform everyday

manipulation tasks. The main contributions of this paper are:

• We describe a complete, practical knowledge process-

ing system that integrates encyclopedic knowledge, an

environment model, action-based reasoning, and human

observations and allows to access all this information in

a uniform, symbolic way.

• The system allows for symbolic queries of continuous

sensor data observed in a real-world environment.

• We introduce computable classes and properties for

creating instances from observed data and action models

as a powerful means for discovering a class structure

among action-related concepts.

In the remainder of this paper we proceed as follows. We

start with an overview over related work, explain the general

structure of the system and continue with chapters about

the knowledge representation, the inclusion of external data

using computable classes and properties, and the learning of

action models from data. We present the results we obtained

using the presented methods and finish with our conclusions.

II. RELATED WORK

Knowledge representation is a well-researched topic in AI,

and there exist huge knowledge bases covering encyclopedic

knowledge with large breadth and width, one of the most

prominent being Cyc [1]. Unfortunately, they are only of

limited use for autonomous robot control: As mentioned in

the introduction, robots have very specific demands which

are usually not met by these knowledge bases.

One of the main problems is that the abstract concepts

therein are not linked to the perception and actuation system

of the robot. This link between the abstract knowledge repre-

sentation and a particular control system of a robot is called

the (symbol) grounding problem [2]. There are few knowl-

edge representation systems tailored to robotics applications.

The Grounded Situation Models, described by Mavridis [3],

integrate continuous and stochastic data with categorical

information in a grounded fashion, but their “world” is just a

white table with coloured blocks on top. A formal knowledge

representation is missing, as is the complexity inherent in

real-world tasks. The knowledge representation of the PEIS

ecology project [4] focuses mainly on the representation of

objects and the perceptual anchoring, i.e. maintaining the link

between perceptual sensations and symbolic concepts, but

does not deal with action-related knowledge. The probably

most related system is the OMRKF framework by Hong

Suh et al. [5], which is also a Prolog-based knowledge

representation modeling objects and perceptual concepts as

well as actions and situations. Our system differs from

these systems in that it features a robot acting in a real

human environment, observing and reasoning about human

and robot activities, and combines these observations with

encyclopedic and common-sense knowledge. Our system

is based on state-of-the-art semantic web technology that

allows us to re-use existing sources of knowledge whenever

available.

III. KNOWLEDGE PROCESSING FRAMEWORK

We will explain the system using the an example of setting

a table, a typical mobile manipulation task for a household

robot.

Fig. 2. System structure; the block in the center is explained in more detail
in Figure 3. The data produced by the perception (robot log data, human
motion tracking and environment information) can be accessed from within
the knowledge base using computable predicates (displayed in green).

A. System Overview

Figure 2 shows the main modules of the system. Our

robot is acting in a sensor-equipped kitchen environment

[6] which includes laser range finders, cameras, magnetic

sensors for detecting if a cupboard is opened, and radio-

frequency identification (RFID) tag readers for identifying

objects. Further perception modules create 3D environment

maps, track human motions, and record log data of robot

actitivies (Section III-C). These data structures are linked to

the knowledge processing system using computable classes

and properties, which load the data and represent them as

instances in the knowledge base (Section III-D).

Our implementation is based on SWI Prolog and its

Semantic Web library which serves for loading and ac-

cessing ontologies represented in the Web Ontology Lan-

guage (OWL) using Prolog predicates like owl assert() or

owl query(). The knowledge base can either be queried

from within the robot control program, from the command

line or using a graphical user interface. An interface to

the YARP [7] middleware faciliates the integration into the

robot control program. The graphical user interface allows to

manually analyze the data, to send and to visualize queries;

all visualisations shown in this paper were created using this

tool.

In this paper, the term “autonomous system” does not

only refer to the mobile robot, but the integrated hardware-

software system which comprises mobile and fixed compo-

nents like a robot and a sensor network; “autonomous” is

used as “no human interaction during operation”.

B. Knowledge Representation

Figure 3 provides an overview of the represented types of

knowledge and the different modules of the system.

The knowledge is represented in description logics us-

ing OWL. In description logics, there are two main lev-

els of modeling: Classes, sometimes also referred to as

concepts, and instances. The class level contains abstract

terminological knowledge like the types of objects, events

and actions, organized in a taxonomic structure. Instances

Fig. 3. Overview diagram showing the relations between encyclopedic class knowledge (upper grey block), instances of these classes (bottom center),
computable classes and properties which load data into the system (bottom right), and action models which are learned from observations on demand
(bottom left). Computables create instances from data, action models learn classes from a set of instances.

represent concrete, physical objects or actually performed

actions. Properties link classes or instances. All relations are

formulated as (Subject, Property, Object) triples.

The encyclopedic knowledge, depicted in the upper grey

part, models classes of things in the environment and pro-

vides the general categories the robot describes his environ-

ment with. The overall structure and some of the concepts are

inspired by the Cyc ontology [1]. We selected those concepts

that are relevant for a mobile robot and added classes where

the level of detail was not sufficient.

A few instances are shown in the blue block in the bottom

center. In our system, they model either physical objects,

performed actions or observed events. These instances can

be created automatically from observations using computable

classes and properties which are depicted in the green block

in the bottom right and described in detail in Section III-D.

While computables serve for creating instances from ob-

servations, action models generate new classes from the

observed data (depicted in the red block in the bottom

left). Using embedded classifiers, the system searches for

groups of instances that share common properties and could

be put into the same subclass, thereby effectively creating

a subclass of the current concept. In this paper, we use

the example of learning subclasses of “ManipulationPlace”.

However, our approach is more general and can be used for

any kind of action-related concept, i.e. each class that can

be characterized by its role in actions. Action models are

described in Section III-E.

C. Data structures from the Perception System

Data created from the different perception modules are

the basis for many reasoning tasks. Information about fixed

objects in the environment is provided by a semantic environ-

ment map created from 3D laser scans. During the mapping

process, the point clouds created by the laser scanner are

segmented into single objects, which are then classified into

categories like “Cupboard” or “Dishwasher” as described in

[8]. These categories correspond to classes in the knowledge

base, the detected objects are thus represented as instances of

these classes, together with properties like their dimensions

or position.

Mobile objects are detected by the vision system [9] or a

set of radio-frequency ID (RFID) tag readers in the kitchen.

Therefore, the respective instances have a link to the vision

model which can be used to match it in the camera image,

or the ID of the tag attached to them. Binary sensors in

the sensor network [10] like magnetic switches in doors

and drawers directly produce events of a specified type like

“OpeningADrawer”.

Observations of human actions are obtained from a mark-

erless full-body pose tracking system that estimates human

motions in 51 degrees of freedom based on images from

fixed cameras [11]. Robot actions are recorded using hybrid

automata that are specified in the Robot Learning Language

(RoLL, [12]). These accepting automata allow for recording

detailed log files of performed tasks in an action-centric way,

including internal and external events and the robot’s belief

about the world.

Links from action concepts in the knowledge representa-

tion to plans in the planning system tell the robot how to

execute these actions. Properties of the action concept like

the object to be manipulated become parameters of the plan,

so that the robot handles a cup different from a plate.

D. Computable Classes and Properties

Interfacing the observation system and loading observa-

tions into the knowledge representation is one main purpose

of computables. As depicted by the green arrows in Figure 3,

computables create either instances or relations between

instances as specified in their target property.

By linking computables to the respective properties using

the target relation, we keep the representation of the knowl-

edge itself separate from technical issues like the automatic

creation of instances. Moreover, this setup allows to define

several computables for one property (e.g. one that reads

object information from a vision system and another one

that uses RFID tag readers).

The definition of a computable property specifies the

commands for reading the object or the subject in an OWL

triple:

owl asser t (computeObjX , type , SqlProper ty)
ow l asse r t (computeObjX , ta rge t , objX)
ow l asse r t (computeObjX , se lec tOb jec t ,

”SELECT objx FROM ob jec ts WHERE ac t i on = ’?SUBJECT ’ ”)
ow l asse r t (computeObjX , se lec tSub jec t ,

”SELECT ac t i on FROM ob jec ts WHERE objx = ’?OBJECT ’ ”)

For implementing computables, we modified the functions

for accessing the knowledge base so that they include com-

putables with a matching target into the reasoning process.

The result of computable properties is thereby equivalent to

instances that have been created manually in the knowledge

representation.

In addition to loading observations into the system, com-

putable properties can also be used for calculating new

relations from the existing knowledge. For example, spa-

tial relations between objects, like on, in or below, are

completely determined by the positions of these objects.

Storing both their positions and all possible relations would

cause much overhead, calculating the relations on demand

is much more elegant. For such applications, we are using

JythonComputables, which execute a Jython script instead

of sending an SQL query, but otherwise work like SqlCom-

putables.

E. Action Model Learning

Action models seek for a class structure among a set

of entities, for example all observed ManipulationPlaces,

by grouping those that are similar with respect to certain

properties. The goal is to discover subclasses like a “Put-

down-objects-place” or a “Pick-up-cups-place”. Technically,

this is done by learning a classifier on a set of observations,

the resulting rules then describe the different classes.

The specification of an action model (called the intensional

model) describes its general structure. It comprises a set of

observable features and the class whose subclasses are to be

found. This specification is independent of the environment

and just depends on the relation to be modeled.

An environment-specific instance of the intensional model,

an extensional model consisting of classifier rules, is learned

on demand based on the available data. The intensional

model is specified once by a human expert, all extensional

models are learned autonomously from this specification. In

the observed training data, both the observables and the class

values are known, the process can thus be regarded as a kind

of self-supervised learning.

The definition of an intensional action model is shown

in the following listing and comprises a specification of

the training set of actions (in this case all observed actions

of type ActionOnObject), the observable features and the

predictable class. The associated extensional model consists

of a set of classifier rules mapping from (a subset of) the

observables to the predictable class.

owl asser t (manipActions , onProperty , act ionType)
ow l asse r t (manipActions , hasValue , ’ Act ionOnObject ’)
ow l asse r t (manipActions , type , ’ R e s t r i c t i o n ’)

ow l asse r t (manipPosModel , type , ’ ActionModel ’)

Fig. 4. Observed positions of manipulation actions (left), the positions
clustered into places (center), and the result that has been learned as the
”place for picking up pieces of tableware” (right). The pictures are visualized
results of queries to the knowledge processing system.

owl asser t (manipPosModel , f o rAc t i on , manipActions)

ow l asse r t (manipPosModel , observable , act ionType)
ow l asse r t (manipPosModel , observable , ob jec tC lass)
ow l asse r t (manipPosModel , observable , objX)
ow l asse r t (manipPosModel , observable , objY)
ow l asse r t (manipPosModel , observable , objZ)

ow l asse r t (manipPosModel , p red i c tab le , robotPlace)

When learning an extensional model, the first reasoning

step is to load the training data into the knowledge processing

system, usually via computable properties (Figure 4 left).

Afterwards, the data are abstracted using data mining tech-

niques; in particular, the position are aggregated to clusters

with respect to the Euclidean distance. The resulting clusters

are depicted as ellipses in Figure 4 (center) and each cluster

is given a name: P1 (green cluster), P2 (black cluster),...

Clusters of positions are abstractly represented as places.

actionType objectClass objX objY objZ robotPlace

PickingUpAnObject DinnerPlate 0.48 1.77 0.91 P1

PickingUpAnObject TableKnife 0.32 2.04 0.90 P2

PickingUpAnObject DinnerPlate 0.18 1.78 0.92 P1

PuttingDownAnObject DinnerPlate 2.90 1.99 0.73 P3

PuttingDownAnObject TableKnife 3.07 2.12 0.71 P3

PuttingDownAnObject DinnerPlate 3.21 1.51 0.72 P4

TABLE I

EXCERPT OF DATA OBSERVED WHILE THE ROBOT SET A TABLE.

The system then reads the data of the observable properties

in the training set (Table I) and uses decision tree learning to

extract rules which map from the actions performed and the

types and positions of objects to the place where the robot

was standing. In this small example, the rules are:

actionType = PickingUpAnObject ∧ objectClass = DinnerP late

−→ P1 (prob : 1.00)

actionType = PickingUpAnObject ∧ objectClass = TableKnife

−→ P2 (prob : 1.00)

actionType = PuttingDownAnObject ∧ objX < 3.15

−→ P3 (prob : 1.00)

actionType = PuttingDownAnObject ∧ objX >= 3.15

−→ P4 (prob : 1.00)

The decision tree learning algorithm further outputs a

confidence value which describes the amount of training

examples that support a given rule.This value can be useful

in real settings where the classification is usually not as

perfect as in this little example. While this value yields the

confidence in a single inference step, the description logics-

based framework does not further propagate this uncertainty.

We are currently investigating the use of probabilistic logical

models like Markov Logic Networks, but due to their limited

scalability, we will probably use them only for certain

inference tasks that require full uncertainty propagation.

As can be seen from the rules above, the pick-up places

are mainly determined by the object manipulated; objects of

different kinds are stored at different places in a kitchen.

The put-down places, in contrast, can best be distinguished

based on the seating location, while the types of manipulated

objects provide no clear separation in this case. These rules

are equivalent to concept definitions in description logics and

thus extend the class hierarchy:

PickP lateP lace ⊑ actionType.P ickingUpAnObject

⊓ objectClass.DinnerP late

In the remainder of the paper, we will use a shorter

notation for action models that just includes the sets of

observable and predictable properties:

act ionmodel (
observables (act ionType , objectClass , objX , objY , objZ)
p r e d i c t a b l e s (robotPlace , r o b o t O r i e n t a t i o n))

IV. RESULTS

Measuring the performance of a knowledge processing

system is difficult since many of its advantages, like greater

flexibility or generality, are hard to capture in numbers. In

our opinion, the two most important aspects are the variety

of queries that become possible having such a system, and

the speed at which the answers are generated.

A. Realtime Performance

We measured the time for different queries on a standard

dual-core laptop running Debian Linux. The queries on the

environment model presented in the next sections all take less

than 10ms. Since much of the knowledge is directly avail-

able, not much inference is needed and the system achieves

database-like performance. Learning an action model is more

complex, as the training data has to be loaded from the

database, the classifier has to be built and applied to the

observation at hand. For the above example of learning

manipulation places, the whole process needed 1,472,382

inference steps in Prolog and took 1.01s for a dataset of 140

observed manipulation actions. Since the model is cached

afterwards, subsequent queries only need 17,565 inferences

and 0.04s. The high performance is achieved by using

direct computation instead of complex inferences whenever

possible, by caching results, and by modeling in a way that

supports the most common inferences.

B. Locating Objects based on their Function

When a robot is looking for objects, it usually needs them

for a task it is about to perform. By combining the enviro-

ment map with encyclopedic and common sense knowledge,

the robot can query for objects by their functionality. The

required knowledge about actions an object can be used for

is partly already available from Cyc, partly imported from the

OpenMind Indoor Common Sense (OMICS) database [13].

OMICS contains, amongst other things, detailed information

about possible uses of objects that we imported into the

knowledge base.

Fig. 5. Results of queries for objects that can be used for cooking food
(left), for parts of the oven that cause a Boiling event (center) and for
objects that contain drinking vessels (right), visualized by the graphical
user interface of the knowledge processing system.

The left picture in Figure 5 is the result of a query for an

object the robot can use for CookingFood:

o w l r e s t r i c t i o n o n (’ CookingFood ’ , usesDevice , some(?T)) ,
owl query (?S, type , ?T) .

The encyclopedic knowledge base returns the concept

Oven as binding for the variable ?T and the semantic map

locates an oven as displayed in the image. In order to operate

the oven, the robot has to know which part to manipulate to

cause a heating process. The query is shown below, its result

is visualized in the center image in Figure 5.

owl query (?OVEN, properPhysicalPartTypes , ?KNOB) ,
owl query (?OVEN, type , ’Oven ’) ,
owl query (?KNOB, causes - Underspeci f ied , ?HEATING) ,
owl query (?HEATING, postEvents , ?BOILING) ,
owl query (?BOILING , type , ’ B o i l i n g ’) .

The robot can also query the current state of objects, like

cupboards that currently contain cups. The positions of cups

are provided by RFID tag readers inside the cupboards.

owl query (?O, in - ContGeneric , ?S) ,
owl query (?O, type , ?T) ,
owl query (?T , subClassOf , ’ Dr ink ingVesse l ’) .

C. Reasoning about Actions

In Figure 1 we already introduced the hierarchical action

model. The raw input sequence of human pose vectors is first

segmented using Conditional Random Fields, which shall

not be described further in this paper. The resulting motion

segments are the basis for more complex actions, which are

generated autonomously by matching action specifications

against the track of observed motions.

Using the model, the system can perform inference on

higher levels of abstraction, e.g. for selecting all actions

with a certain purpose or all actions performed on the same

kind of object. The results are all linked to the low-level

datastructures describing the human poses while performing

these actions. For instance, a query for all poses during

a table setting episode is shown below and visualized in

Figure 6 (left).

owl query (?A, type , ’ SetTable ’) ,
pos tureForAct ion (?A, ?Posture)

By combining the queries with other information, like the

objects involved, it is possible to select in a more fine-grained

way, for instance the motion for taking a plate out of the

cupboard (Figure 6 right).

owl query (?A, type , ’ TakingSomething ’) ,
owl query (?A, objectActedOn , ?O) ,
owl query (?O, type , ’ D innerPla te ’) ,
pos tureForAct ion (?A, ?Posture)

Fig. 6. Human pose sequences for setting a table (left) and taking a plate
out of the cupboard (right).

D. Completing Underspecified Instructions

Instructions given by humans rarely contain enough in-

formation to be executed directly, but rather require a large

amount of common-sense knowledge to be understood by

a robot. Examples of missing pieces of information are the

exact position and orientation of the knife in a command

like “put the knife left of the plate” or the fact that “in

front of the chair” in a table-setting context actually means

“in front of the chair and on the table”. Much of this

information can be inferred by combining action models with

the environment map. The correct orientation of objects can

be learned depending on the object type and the position in

the environment, for example on a table or inside a cutlery

tray:

act ionmodel (
observables (objectClass , objX , objY , objZ)
p r e d i c t a b l e s (o r i e n t a t i o n))

The fact that items are to be placed on top of the table can

be inferred using the concept of supporting entities: When

the robot knows that each object has to rest on another entity,

it can query the environment model and learn a relation

between the region, the upper object and the most probable

supporting entity:

act ionmodel (
observables (objectClass , objX , objY)
p r e d i c t a b l e s (s u p p o r t i n g E n t i t y))

Being able to understand and generate qualitative descrip-

tions like “on the table” or “inside a cupboard” is crucial

when interacting with humans. For resolving them to metric

values, the system uses computable Jython properties that

implement spatial heuristics. Relations like on or inside are

calculated based on the positions and dimensions of the

objects they relate. For instance, if the outer coordinates of

the inner object are completely contained by the outer object,

the inside relation holds.

V. CONCLUSIONS

In this paper, we present a practical knowledge processing

system for mobile robots and sensor-equipped environments.

It combines formal, encyclopedic knowledge with observa-

tions from several perception modules (a 3D environment

map, human pose tracking, object recognition, and a rich

sensor network) and directly works on the data structures

produced by these perception modules.

We introduce the concept of computable classes and prop-

erties which serve for loading observations into the system

and thus provide the link between the continuous sensor data

and the symbolic concepts.

The action models described in this paper are learned

based on abstract specifications and allow for discovering

a class structure in observed data. They effectively extend

the class taxonomy with learned, action-related concepts. We

demonstrate this approach with learning specializations of

ManipulationPlace.

In contrast to many toy-world knowledge representations,

this system works on real observations of household tasks

performed by humans or robots in a real environment.

Most of the requirements we introduced in the beginning

are met by the system: The knowledge is organized in an

action-centric way so that the robot can easily access the

concepts it needs for its tasks. It is grounded in the perception

and action system, and the knowledge grows and adapts

as more observations are made. Since action models are

learned on demand when needed, they automatically adapt

to changes in the world. Inference tasks are performed very

fast compared to the time usually required for manipulation.

VI. ACKNOWLEDGMENTS

This work is supported in part within the DFG excellence

initiative research cluster Cognition for Technical Systems –

CoTeSys, see also www.cotesys.org.

REFERENCES

[1] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of Cyc,” AAAI Spring Symposium

on Formalizing and Compiling Background Knowledge and Its Ap-

plications to Knowledge Representation and Question Answering, pp.
44–49, 2006.

[2] S. Harnad, “The symbol grounding problem.” Physica D, vol. 42, pp.
335–346, 1990.

[3] N. Mavridis and D. Roy, “Grounded Situation Models for Robots:
Where words and percepts meet,” in IROS, 2006, pp. 4690–4697.

[4] A. Saffiotti et al., “The PEIS-Ecology project: Vision and results,” in
IROS, 2008, pp. 2329–2335.

[5] I. H. Suh et al., “Ontology-based Multi-Layered Robot Knowledge
Framework (OMRKF) for Robot Intelligence,” in IROS, 2007, pp.
429–436.

[6] M. Beetz et al., “The Assistive Kitchen — A Demonstration Scenario
for Cognitive Technical Systems,” in RO-MAN, 2008.

[7] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[8] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue

on Semantic Knowledge), 2008.
[9] U. Klank, M. Z. Zia, and M. Beetz, “3D Model Selection from an

Internet Database for Robotic Vision,” in International Conference on

Robotics and Automation (ICRA), 2009.
[10] R. B. Rusu, B. Gerkey, and M. Beetz, “Robots in the kitchen: Ex-

ploiting ubiquitous sensing and actuation,” Robotics and Autonomous

Systems Journal (Special Issue on Network Robot Systems), 2008.
[11] J. Bandouch, F. Engstler, and M. Beetz, “Accurate human motion

capture using an ergonomics-based anthropometric human model,” in
Fifth International Conference on Articulated Motion and Deformable

Objects (AMDO), 2008.
[12] A. Kirsch, “Integration of programming and learning in a control

language for autonomous robots performing everyday activities,”
Ph.D. dissertation, Technische Universität München, 2008. [Online].
Available: http://mediatum2.ub.tum.de/node?id=625553

[13] R. Gupta and M. J. Kochenderfer, “Common sense data acquisition
for indoor mobile robots,” in National Conference on Artificial Intel-

ligence (AAAI-04, 2004, pp. 605–610.

