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Abstract— Autonomous household robots are supposed to
accomplish complex tasks like cleaning the dishes which involve
both navigation and manipulation within the environment. For
navigation, spatial information is mostly sufficient, but manip-
ulation tasks raise the demand for deeper knowledge about
objects, such as their types, their functions, or the way how
they can be used. We present KNOWROB-MAP, a system for
building environment models for robots by combining spatial
information about objects in the environment with encyclopedic
knowledge about the types and properties of objects, with
common-sense knowledge describing what the objects can be
used for, and with knowledge derived from observations of
human activities by learning statistical relational models. In
this paper, we describe the concept and implementation of
KNOWROB-MAP and present several examples demonstrating
the range of information the system can provide to autonomous
robots.

I. INTRODUCTION

Environment models or maps are resources that robots

are equipped with or that they acquire in order to perform

their tasks more reliably and efficiently. Being equipped with

sub-symbolic maps, including occupancy grid and neurally

implemented maps, the robot can typically infer its position,

determine its destination, and then compute navigation plans

to get there safely and fast. These decisions are based on

the information stored in, or implied by, the map, such as

whether or not the destination is reachable, and taken by

inferring the appropriate action parameterizations from the

map. Topological and object maps structure the environment

model into meaningful pieces, such as distinctive places,

objects, regions, gateways, etc. They thereby enable the robot

to have semantic knowledge such as class labels for the map

entities or for regions depending on the types of objects the

regions contain [1]. Using these types of maps robots can

in addition navigate “semantically” – go into a kitchen or

position themselves relatively to objects in the map.

Even more expressive and powerful are knowledge-linked

semantic object maps. In knowledge-linked semantic object

maps, all object models in the map have a symbolic name

that is visible in the associated knowledge base. Also, the

data structures contained in the map are defined in terms

of a terminological knowledge base – the categories of

entities and their attributes. So, given these definitions robots

can automatically translate the data structure of a semantic

objects map into a set of facts in a symbolic knowledge base.

In this paper, we introduce KNOWROB-MAP, a system

for the acquisition, representation, and use of knowledge-

linked semantic object maps. As an example use case, let

us assume the robot is looking for a device for heating

food. Figure 1 visualizes the result of this query in two

different environments. In the left kitchen, there is a regular

oven, in the right one there is a microwave. However, the

system can infer, based on its common-sense knowledge,

that all specializations of Oven, like a RegularOven or a

MicrowaveOven, can be used, and it can localize a suitable

object in the map.

Fig. 1. Results of a query for a device for heating food. The environment
model inferred that both a RegularOven (left) and a MicrowaveOven (right)
can be used, and returns the respective object depending on the map. The
abstract knowledge about objects is represented separately from the spatial
information and can therefore easily be transferred to a new environment.

This paper makes the following contributions. First, we

explain how we can link a semantic object model to a

terminological knowledge base. Given this link we show how

the robot can be equipped with encyclopedic, commonsense,

and probabilistic knowledge about its environment. The

consequence is that we can specify robot control programs

that are more general in that they can automatically infer the

right action decisions and parameterizations. Thus, the gain

in using KNOWROB-MAP is that the robot can act more

appropriately in more environments with less programming

work. Thus, using KNOWROB-MAP the robot can carry

out actions like turning off all heating devices or bringing

clean glasses by inferring which cupboards they are probably

stored in.

In the following sections, we will first give an overview

of related work and describe the main concepts and impor-

tant components of the system. We will then explain how

the maps are represented and combined with encyclopedic

knowledge, common-sense knowledge, and learned proba-

bilistic models, before we describe the integration into the

robot control program. A detailed scenario description pro-

vides examples of how the knowledge is used to accomplish

a complex, under-specified task.



II. RELATED WORK

Over the last years, several approaches to building “se-

mantic maps” have been developed. Some of them detect

rather coarse entities like the floor, the ceiling and walls

in 3D laser scans [2], or focus on distinguishing different

kinds of rooms based on the objects inside [1] or spatial

relations between them [3]. Other methods, like [4], the one

we are using as input in this system, or [5] detect, identify

and localize objects in the scene and therefore create the basis

for more abstract representations. However, these approaches

only recognize and localize objects, but do not store further

semantic information: Humans immediately associate various

properties to something classified as a “cupboard”, but robots

do not have this knowledge. Without an explicit knowledge

representation, different robots or even different parts of the

same robot may have a very different notion of an object.

Extending maps to provide such kind of knowledge is the

goal of KNOWROB-MAP.

Deeper semantic representations, which also describe ob-

ject properties like the point where to grasp or the opening of

a bottle, are used by [6], but are mainly hand-coded and do

not leverage the power of hierarchical, abstract knowledge

representations. Galindo et al. [7] present a system for

automatically building maps that combine a spatial hierarchy

of local metric and global topological maps with a conceptual

hierarchy that describes some semantic properties of rooms

and objects. In that, their approach is similar to ours, but

the conceptual hierarchy is much simpler and the spatial

description much coarser. Zender et al. [8] present a system

for coupling maps of recognized objects with a knowledge

base, but with several limitations: They use a rather small,

hand-crafted ontology compared to that in KNOWROB-MAP,

and the map is only two-dimensional, which limits its use

for robot manipulation.

III. SYSTEM OVERVIEW

KNOWROB-MAP represents and reasons about semantic

environment models by linking the output of an object

recognition and mapping system to formally represented

knowledge about the detected objects (Figure 2).

The maps are generated by the system described in [4]

and semantically represented as part of the KNOWROB

Fig. 2. Block diagram of the main components of KNOWROB-MAP. We
extend an object detection, segmentation, recognition and mapping system
with encyclopedic, action-related and common-sense knowledge to create
semantic environment models. These can be queried by the robot control
system for planning its actions.

knowledge processing system [9]. KNOWROB provides the

basic knowledge representation and reasoning capabilities,

whereas KNOWROB-MAP adds the integration with the

mapping system and object-related knowledge. The system is

implemented in SWI Prolog using its Semantic Web Library

for representing the robot’s knowledge in the Web Ontology

Language (OWL). OWL is a form of description logics and

as such distinguishes between classes and instances. General

knowledge about types of objects is modeled on the class

level, whereas instances describe the actual objects in the

map. Classes may be hierarchically structured and inherit

the properties of their (potentially multiple) parents. Roles

can link classes or instances and describe their properties.

IV. MAP REPRESENTATION

In KNOWROB-MAP, a knowledge-linked semantic object

map consists of the semantic object map data structure and

a schema that serves for translating this representation into

a set of instances in the knowledge base. It gives the robot

the ability to construct a semantic environment model out of

its map data structures.

We define a schema for constructing knowledge-linked

semantic object maps as a triple SemObjMap = (D,O,R)
consisting of a definition of the data structure produced

by mapping system, an ontology describing the knowledge-

based map representation, and a set of rules that translate

between the two representations. This schema describes a

whole class of knowledge-linked semantic object maps that

can be instantiated once a specific map of an environment has

been built. Applying the schema to the map data structures

generates an ABOX (assertional box), i.e. a set of typed

object instances in the knowledge base. Conceptually, this

approach is similar to creating views in data bases: Views

are a different representation of the same data, which can

simply use different names for some of the fields, but can

also perform complex combinations of multiple values.

Let us assume that the mapping system is able to describe

objects in the environment by a unique identifier and a set

of attribute-value pairs and create a data structure like the

following:

obj-instance: 37 obj-instance: 43

class: cupboard class: oven

width: 0.40 width: 0.60

depth: 0.35 depth: 0.60

height: 0.55 height: 0.74

xPos: 2.75 xPos: 1.29

This information is to be translated into a format compatible

to the robot’s knowledge base (Figure 3), creating a new view

on this data. For this purpose, we define so-called computable

predicates, a feature of KNOWROB for loading external

data into the knowledge representation during run-time. A

computable predicate defines how the semantic properties

(like volumeOfObject) can be calculated, in this case based

on the information in the map:

owl_individual_of(Obj, Cl) :-

class(Obj, Cl).

owl_has(Obj, kb:volumeOfObject, Vol) :-

width(Obj, W), depth(Obj, D), height(Obj, H),

Vol is W*D*H.



Using the computable predicates, the system creates typed

object instances for each detected object and determines their

properties, like the pose, dimensions, or sub-parts such as

door handles. The following listing is an OWL description of

a cupboard including links to its pose matrix (homography)

and the associated door instance. An example of a complete

map file is available on-line at http://ias.cs.tum.edu/

kb/ias_map.owl.

<kb:Cupboard rdf:about="#cupboard31">

<kb:depthOfObject>0.62</kb:depthOfObject>

<kb:widthOfObject>0.3</kb:widthOfObject>

<kb:heightOfObject>0.7</kb:heightOfObject>

<kb:properPhysicalParts rdf:resource="#door7"/>

<kb:pose rdf:resource="#rotmatrix3d_14"/>

</kb:Cupboard>

V. ENCYCLOPEDIC KNOWLEDGE

The map representation is embedded into a hierarchy of

classes and properties which describe and inter-relate these

classes. The lowest level of the hierarchy assigns types to

(parts of) objects in the environment, whereas the higher

levels group these types into more and more abstract classes.

A small excerpt of the knowledge base, which only

contains the taxonomy for some of the objects in our

test environments, is given in Figure 3. The full ontology,

which also describes actions and events, is available on-

line at http://ias.cs.tum.edu/kb/knowrob.owl. The

class structure is inspired by the OpenCyc ontology.

Due to the hierarchical structure, properties can be de-

fined either specifically for e.g. cupboards, or generally for

more abstract classes like containers. Compared to a flat

representation, where such properties are directly assigned

to the object instances in the map, a hierarchical structure

reduces the amount of redundant information that has to

be stored, helps keep the representation consistent, and

facilitates changes.

Each class can have multiple parents, which correspond to

the different semantic aspects of that class. For example, the

class Dishwasher in Figure 3 is derived from BoxTheCon-

tainer, providing information about its shape and the fact that

it can contain objects, from CleaningDevice, which indicates

its main function, and from ElectricalHouseholdAppliance,

which describes where such objects can be found and what

they need to operate.

Since properties of object types are separated from the

environment-specific map, they can easily be transferred to

a new environment. The example in Figure 1 showed how

the system can adapt to different environments, using the

same common-sense knowledge.

VI. COMMON-SENSE KNOWLEDGE

When dealing with an everyday object like a dishwasher,

people have a natural understanding for what and how it

can be used, and which problems might occur during its

usage. To equip robots with similar knowledge, we extended

KNOWROB with common-sense knowledge which has been

collected and made publicly available by the Open Mind In-

door Common Sense project (OMICS) [10], and is especially

Fig. 3. Excerpt of the knowledge base taxonomy, with those concepts
highlighted that are instantiated in the semantic environment map.

intended for the use in indoor mobile robotics. The knowl-

edge was acquired from more than 3,000 voluntary Internet

users and comprises more than 1.1 million statements.

These sources of knowledge complement each other: Cyc

provides a broad categorization of things and dictionary-

like descriptions, OMICS contains detailed action-related

knowledge about everyday objects, e.g. that unloading a

dishwasher will change its state from full to empty, or that

dishes might be wet while unloading it.

The knowledge in OMICS is stored in natural language

and has to be translated into a logic-based description to

be integrated into KNOWROB-MAP. The first step in the

automated procedure is to determine the meanings of a word

using the WordNet [11] database. Afterwards, the system

makes use of pre-existing mappings between WordNet and

concepts in the Cyc ontology [12] to determine the formal

ontological concept for a word. The concepts in Cyc are

identical to those in KNOWROB and can therefore be used

here. Relations expressed in natural language are translated

to predicates linking concepts in the knowledge base. For

example, the parts relation in OMICS is translated to the

properPhysicalParts relation in Cyc:

parts(dishwasher, motor) =>

(( wordnetCyc(dishwasher, Dishwasher),

wordnetCyc(motor, Engine)) =>

properPhysicalParts(Dishwasher,Engine)).

This automated process can also translate more complex

instructions like place dishes onto the dishwasher rack using

the methods described in [13] for translating task descriptions

from websites.

parts: PowerLine, Framework-SupportingStructure, SoapDish, Engine

locations: Kitchen

proximity: CookingRange, Sink, EatingVessel

actions: Loading, Unloading, TurningOnPoweredDevice, TurningOffPoweredDevice,

UsingAnObject, EmptyingAContainer, OpeningSomething, ClosingSomething

states: OpenPortal, ClosedPortal, DeviceOn, DeviceOff, Full, Empty

causes: (Dishwasher,ClosedPortal)→(Dishwasher,DeviceOn)

(Dishwasher,DeviceOn)→(Bowl-Eating,Clean)

desires: (Sink,Full)→(Dishwasher,Empty)

(Dishwasher,DeviceOff)→(Dishwasher,DeviceOn)

state changes:

(Dishwasher,DeviceOff)→TurningOnPoweredDevice(Dishwasher,DeviceOn)

(Dishwasher,Full)→Unloading(Dishwasher,Empty)

responses: (Dishwasher,Full)→(TurningOnPoweredDevice)



(Dishwasher,Full)→(Unloading)

(Dishwasher,Empty)→(Loading)

problems: (Unloading,Dishwasher)→(DinnerPlate,Wet)

(Unloading,Dishwasher)→(EatingVessel,Dirty)

paraphrases: (Dishwasher,Loading)↔(Dishwasher,FillingProcess)

(Dishwasher,Unloading)↔(Dishwasher,EmptyingAContainer)

(Dishwasher,Unloading)↔(EatingVessel,Unloading)

reversibility: (Unloading)⊥(Loading)

(TurningOnPoweredDevice)⊥(TurningOffPoweredDevice)

Figure 4 depicts a small fraction of knowledge associated

with the dishwasher and dishes, together with related actions

and states. These relations were automatically extracted from

OMICS and translated into formal expressions using the

methods explained above.

Fig. 4. Common-sense knowledge about a dishwasher integrated from
OMICS. The diagram shows some relations, actions, states, and objects
that are closely related with the concept Dishwasher. How the relation for
potential problems can be used in robot control and how solutions can be
determined is further explained in Section IX.

VII. PROBABILISTIC ENVIRONMENT MODELS

With encyclopedic knowledge, we can represent that an

object can potentially be or is definitely related to a number

of other objects, but we cannot decide which objects are

most likely to be related. However, there are many aspects

of the environment that are subject to uncertainty, which,

most importantly, concerns all aspects pertaining to humans’

use of the environment. Therefore, we extend the knowledge

representation with statistical relational models [14], which,

in particular, can extend the semantics of description logics

to a probabilistic setting [15].

For example, we are interested in modeling the properties

of containers and appliances – e.g. which containers are

likely to contain which types of objects (given their envi-

ronmental context). Furthermore, since environments are in-

extricably linked to the activities performed within them, we

also consider models that allow us to predict likely locations

and states of objects based on the activities that are currently

being carried out, or, inversely, to draw conclusions about

activities given the locations of objects in the environment.

In KNOWROB-MAP, Bayesian Logic Networks (BLNs,

[16]) are used to represent such models. In a nutshell, A

BLN is a statistical relational model that represents general

principles about a particular domain within a template model,

which can be applied to instantiate a ground model repre-

senting a full-joint probability distribution given a particular

set of entities that we are interested in (e.g. a particular set of

kitchen devices and containers). Due to space constraints we

cannot describe the models in more detail; please see [16]

for more information.

As a concrete example, consider a BLN that models the

probability with which containers in a kitchen environment

contain objects of particular types – given the entire spatial

context of the respective containers, including their proximity

to devices such as the oven. A fragment network for this

model is shown in Figure 5. This model can help the robot

find storage locations for particular objects in a yet unknown

environment.

Fig. 5. Graphical template structure in a Bayesian logic network (left).
This rather small (manually defined) template structure gets instantiated
automatically into the large ground model with hundreds of nodes describing
the actual objects in the environment (right).

VIII. INTEGRATION INTO THE ROBOT CONTROLLER

Integrating knowledge processing into robot control pro-

grams is important for keeping control routines flexible and

general, i.e. independent of the environment. Integration

thereby means both providing methods for communication

between the environment model and the planning system and

actually using the knowledge when taking decisions. The first

aspect is realized by providing a ROS service for language-

independent access to KNOWROB-MAP. The robot plans,

which are written in Lisp, use a wrapper library that allows

to integrate queries to KNOWROB-MAP into the control flow

of a robot:

(query-vars (?handle ?pose)

(and (owl_individual_of ?heatingDevice HeatingDevice)

(owl_has ?heatingDevice properPhysicalParts ?handle)

(owl_individual_of ?handle Handle)

(owl_has ?handle pose ?pose)))

(perceive ?handle ?pose)

(achieve (entity-gripped ?handle))

Here, the planning system queries for the pose of a handle

of a heating device, parametrizes the perception system with

the handle’s estimated pose to restrict the search space, and

finally sends the grasping command to the robot controller.

Note that the binding of the variable ?heatingDevice de-

pends on the environment; Figure 1 shows that the result

can be an instance of any subclass like a RegularOven or

MicrowaveOven. Also, properPhysicalParts is a transitive

relation, that is, it also finds handles attached to parts of

the ?heatingDevice, e.g. its door.

IX. USAGE SCENARIO

KNOWROB-MAP is designed to support the robot in a

large number of everyday household tasks. As such, its

performance can best be measured by the range of queries it

supports. In order to demonstrate its capabilities and to show



Fig. 6. Left: Instance of a table in the kitchen environment. Right: Dishes
and silverware that are on the table.

how it can help a robot take decisions, we will describe one

exemplary scenario that covers many facets of the system:

A mobile household robot is asked to clear the table. There

is no plan for this task in the robot’s plan library, so the

robot has to infer which actions to perform in which order,

which objects to interact with in which way, and what to

watch out for. We assume, however, that the robot has a set

of parameterizable routines for low-level tasks like picking

up an object as described in [17].

The information used in the following example was ob-

tained from pre-existing, public resources, like OMICS and

OpenCyc, in a completely automated way. In the (slightly

simplified) queries, words starting with an uppercase letter

denote variables, instance names begin with a lowercase

letter, class names are written within single quotes, e.g.

’KitchenTable’. The figures are visualizations of the

content of the knowledge base, not simulations. All input

data was acquired on the real robot platform using the

methods described in [4] and [18]. Having received the

command to clear the table, the robot queries its common-

sense knowledge base for a description of the actions it needs

to perform:

?- taskSubTasks(’clear the table’, Task, subTasks).

The OMICS database contains a large number of step-

by-step instructions for common household tasks which we

transformed as described in Section VI. Therefore, the above

query returns the concept ClearTheTable as binding of the

variable Task, and a list of actions bound to subTasks.

Table I shows the natural language instructions obtained from

OMICS and the formal representation in description logic

that has been generated from them.

Since the plan importer directly maps verbs to action

concepts, it often produces rather general concepts like

PuttingSomethingSomewhere as translation of “put”. For suc-

cessfully executing the tasks, however, it is often helpful to

have more specific plan descriptions. Therefore, the system

searches in its action taxonomy for subclasses that have the

properties given in the instruction, like LoadingADishwasher

as a specialization of PuttingSomethingSomewhere with the

toLocation being a Dishwasher, and replaces the general

action class with the specific one.

TABLE I

TASK INSTRUCTIONS FOR: CLEAR THE TABLE

Natural Language Description Logic

remove dirty dishes RemovingSomething ⊓ objActedOn.EatingVessel
remove silverware RemovingSomething ⊓

objActedOn.SilverwarePiece
put dishes into dishwasher PuttingSomethingSomewhere ⊓

objActedOn.EatingVessel ⊓
toLocation.Dishwasher

remove table cloth RemovingSomething ⊓ objActedOn.TableCloth

Fig. 7. Left: Household appliance for washing dishes. Right: Entities and
relations used as evidence for the probabilistic models.

As described in [13], the system also comprises a plan

generator that translates the action concepts in the knowledge

representation into the respective goal statements in the

robot’s plan language. RemovingSomething, for instance, is

mapped to a routine for picking up an object. Before the

action can be executed, necessary action parameters have to

be resolved. Some values, like the objActedOn, are directly

specified in the instructions by the properties printed in bold

in Table I. The following queries retrieve the object instances

referenced by the objActedOn and toLocation properties from

the environment model (Figure 6 and Figure 7 (left)).

?- owl_individual_of(Table, ’KitchenTable’).

Table = kitchentable1.

?- owl_individual_of(Obj, ’EatingVessel’).

Obj = cup3;

Obj = plate1.

?- owl_individual_of(Obj, ’SilverwarePiece’).

Obj = fork1;

Obj = knife1.

?- owl_individual_of(Obj, ’Dishwasher’).

Obj = dishwasher0.

Now the object references are resolved, but the robot is

still missing a description for the LoadingADishwasher task.

Again, the robot queries its common sense knowledge base

to retrieve a sequence of actions to perform (Table II):

?- subTasks(’LoadingADishwasher’, subTasks).

After having resolved the references to the RackOfDish-

washer, the robot has all the information to clear the table

and load the dishwasher. In reality, however, there are lots

of potential problems that can make the plan fail. Therefore,

manually created plans include failure detection and recovery

routines to verify that a task has been performed correctly.

In the automatically created action sequences described here,

such checks can be generated from the problems relation

in OMICS, e.g. by querying for all problems related to a

Dishwasher:

?- actionOnObject(Action,’Dishwasher’),

owl_restriction_on(Action,

restriction(problem,some(Problem))).

Action = ’Loading_Dishwasher’,

Problem = ’Dishwasher_Full’ ;

Action = ’Unloading_Dishwasher’,

Problem = ’DinnerPlate_Wet’ ;

TABLE II

TASK INSTRUCTIONS FOR: LOAD THE DISHWASHER

Natural Language Description Logic

collect dishes Collecting ⊓ objActedOn.EatingVessel
open dishwasher OpeningSomething ⊓ objActedOn.Dishwasher
pull out dishwasher rack PullingAnObject ⊓

objActedOn.RackOfDishwasher
place dishes onto rack PuttingSomethingSomewhere ⊓

objActedOn.EatingVessel ⊓
toLocation.RackOfDishwasher

push in dishwasher rack PushingAnObject ⊓
objActedOn.RackOfDishwasher

close dishwasher ClosingSomething ⊓ objActedOn.Dishwasher



Possible solutions or responses to these problems are also

provided by the common-sense knowledge (Figure 4). The

correct response clearly depends on the situation at hand:

When the dishwasher is full of dirty dishes it should be

turned on, whereas in the case of clean dishes it should

be unloaded. Once the dishwasher has been loaded and

cleaned the dishes, the robot is faced with the new task

of returning the dishes where they belong. Given only the

environment model of the kitchen, the robot has to sensibly

choose locations at which the now clean objects should be

placed. Looking for the storage location of a cup, a pot and

cutlery, it might issue the following query to the probabilistic

model described in Section VII,

P(contains(?c, Cup), contains(?c, Pot), contains(?c, Cutlery) | L)
≈ 〈〈 TopCupboard3: 0.51, TopCupboard1: 0.23, . . . 〉,

〈 BottomCupboard1: 0.65, TopCupboard3: 0.36, . . . 〉
〈 Drawer: 0.75, TopCupboard2: 0.16, . . . 〉〉

where L is the complete environment specification of the

kitchen, involving the types of all containers and appliances

as well as their vertical and horizontal neighborhood relations

(see Figure 7 right). If the result is ambiguous, the robot

can select among the candidate cupboards depending on

other objects they contain. If we assume that similar objects

are usually placed together, the “semantic similarity” of the

concepts in the ontology can be a useful hint. We used the

wup similarity measure [19] that is defined as

sim(C1, C2) =
2 · d(S)

dS(C1) + dS(C2)

where S is the least common superconcept of C1 and C2,

d(C) is the (lowest) depth of concept C in the ontology, and

dS(C) is the (lowest) depth of concept C in the ontology

when taking a path through superconcept S of C. Table III

shows some examples of objects and their similarity to cups,

cooking pots, and cutlery.

X. CONCLUSIONS

In this paper, we described how environment models can

be enriched with knowledge to become more than just maps

of obstacles: By linking recognized objects to encyclopedic

and common-sense knowledge obtained from large, publicly

available knowledge bases, the system can provide a robot

with information about what these objects are, what they can

use used for, and how to use them. We presented methods

for describing the map in a way that it can be related with

different kinds of knowledge, for acquiring general object-

related knowledge as well as probabilistic models of object

locations, and finally demonstrated the usefulness of the

approach in an extensive example scenario.

TABLE III

CONCEPT SIMILARITY BASED ON THE KNOWROB-MAP ONTOLOGY.

glass plate salad bowl platter knife spatula

Cup 0.78 0.67 0.67 0.67 0.52 0.52
Pot 0.67 0.67 0.67 0.67 0.6 0.7
Cutlery 0.58 0.58 0.58 0.58 0.78 0.76

cakepan colander pasta cereals mop detergent

Cup 0.67 0.53 0.5 0.53 0.53 0.53
Pot 0.78 0.7 0.5 0.53 0.6 0.6
Cutlery 0.6 0.6 0.48 0.5 0.6 0.6
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[2] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile
robots,” Journal of Robotics and Autonomous Systems (JRAS), Special

Issue on Semantic Knowledge in Robotics, vol. 56, no. 11, pp. 915–
926, 2008.

[3] R. Triebel, O. Mozos, and W. Burgard, “Relational learning in mobile
robotics: An application to semantic labeling of objects in 2D and
3D environment maps,” in Studies in Classification, Data Analysis,

and Knowledge Organization, C. Preisach, H. Burkhardt, L.Schmidt-
Thieme, and R.Decker, Eds. Springer-Verlag, 2008, pp. 293–300.

[4] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal, 2008.

[5] S. Ekvall, D. Kragic, and P. Jensfelt, “Object detection and mapping
for service robot tasks,” Robotica: International Journal of Informa-

tion, Education and Research in Robotics and Artificial Intelligence,
vol. 25, no. 2, pp. 175–187, March/April 2007.

[6] K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba,
“Multi-cue 3D object recognition in knowledge-based vision-guided
humanoid robot system,” IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), 2007., pp. 3217–3222, 2007.
[7] C. Galindo, J.-A. Fernández-Madrigal, J. González, and A. Saffiotti,
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