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Abstract We introduce a learning framework that combines elements of the well-known

PAC and mistake-bound models. The KWIK (knows what it knows) framework was de-

signed particularly for its utility in learning settings where active exploration can impact the

training examples the learner is exposed to, as is true in reinforcement-learning and active-

learning problems. We catalog several KWIK-learnable classes as well as open problems,

and demonstrate their applications in experience-efficient reinforcement learning.

Keywords Reinforcement learning · Knows What It Knows (KWIK) · Probably

Approximately Correct (PAC) · Mistake bound · Computational learning theory ·
Exploration · Active learning

1 Motivation

At the core of recent reinforcement-learning (RL) algorithms that enjoy polynomial sample

complexity guarantees (Kearns and Singh 2002; Kearns and Koller 1999; Brafman and Ten-
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nenholtz 2002; Kakade et al. 2003; Strehl et al. 2006a, 2007) lies the idea of distinguishing

between instances that have been learned with sufficient accuracy and those whose outputs

are still unknown.

The Rmax algorithm (Brafman and Tennenholtz 2002), for example, estimates transi-

tion probabilities for each state–action–next-state triple of a Markov decision process. The

estimates are made separately, as licensed by the Markov property, and the accuracy of

the estimate is bounded using Hoeffding bounds. The algorithm explicitly distinguishes be-

tween probabilities that have been estimated accurately (known) and those for which more

experience will be needed (unknown). By encouraging the agent to gather more experience

in the unknown states, Rmax can guarantee a polynomial bound on the number of timesteps

in which it has a non-near-optimal policy (Kakade 2003).

In this paper, we make explicit the properties that are sufficient for a learning algorithm

to be used in efficient exploration algorithms like Rmax. Roughly, the learning algorithm

needs to make only accurate predictions, although it can opt out of predictions by saying

“I don’t know” (⊥). However, there must be a (polynomial) bound on the number of times

the algorithm can respond ⊥. We call such a learning algorithm KWIK (“know what it

knows”).

Section 2 provides a motivating example and sketches possible uses for KWIK algo-

rithms. Section 3 defines the KWIK conditions more precisely and relates them to estab-

lished models from computational learning theory. Sections 4–6 survey a set of hypothesis

classes for which KWIK algorithms can be created. Section 7 describes a number of appli-

cations of KWIK in reinforcement learning, focusing on unifying existing results as well

as providing a new algorithm for factored-state Markov decision processes. Section 8 con-

cludes the paper and lists a few important open problems.

The research described in this paper builds upon and extends the work presented at the

Twenty-Fifth International Conference on Machine Learning (Li et al. 2008) and in Ad-

vances in Neural Information Processing Systems 20 (Strehl and Littman 2008).

2 A KWIK example

Consider the simple navigation task in Fig. 1. There is a set of nodes connected by edges,

with the node on the left as the source and the dark one on the right as the sink. Each edge

in the graph is associated with a binary cost vector of dimension n = 3, indicated in the

figure. The cost of traversing an edge is the dot product of its cost vector with a fixed weight

vector θ = [1,2,0]. Assume that θ is not known to the agent, but the graph topology and

all cost vectors are. In each episode, the agent starts from the source and moves along some

path to the sink. Each time it crosses an edge, the agent observes its true cost. The cost of

a path from the source to the sink is the sum of edge costs along the path. Once the sink is

reached, the next episode begins. Through navigating in the graph, the agent tries to identify

an optimal path with minimum cost while taking a suboptimal path in as few episodes as

Fig. 1 A cost-vector navigation

graph
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possible. There are 3 distinct paths in this example. Given the θ value above, the top has a

cost of 12, the middle 13, and the bottom 15.

A simple approach for this task is for the agent to assume edge costs are uniform and

walk the shortest (middle) path to collect data. It would gather 4 examples of [1,1,1] → 3

and one of [1,0,0] → 1. Standard regression algorithms could use this dataset to find a θ̂

that fits this data perfectly. However, there may be several θ̂s supported by the available data.

Here, the least-squares solution, θ̂ = [1,1,1], is a natural choice. The learned weight vector

could then be used to estimate costs for the three paths: 14 for the top, 13 for the middle,

14 for the bottom. Using these estimates, an agent would continue to take the middle path

forever, never realizing it is not optimal.

In contrast, consider a learning algorithm that “knows what it knows”. Instead of creating

an approximate weight vector θ̂ , it reasons about whether the costs for each edge can be ob-

tained from the available data. The middle path, since all its edge costs have been observed,

is definitely 13. The last edge of the bottom path has cost vector [0,0,0], so its cost must

be zero, but the penultimate edge of this path has cost vector [0,1,1]. This vector is a linear

combination of the two observed cost vectors, so, regardless of θ , its cost is

θ · [0,1,1] = θ · ([1,1,1] − [1,0,0]) = θ · [1,1,1] − θ · [1,0,0],

which is just 3 − 1 = 2. Thus, the agent knows the bottom path’s cost is 14—worse than the

middle path.

The vector [0,0,1] on the top path is linearly independent of the observed cost vectors,

so its cost is undecided. We know we don’t know. A safe thing to assume provisionally is

that the cost is zero—the smallest possible cost, encouraging the agent to try the top path in

the second episode. Now, it observes [0,0,1] → 0, allowing it to solve for θ exactly (θ =
[1,2,0]) and accurately predict the cost for any vector (since the training data spans ℜn). It

now knows that it knows all the costs, and can confidently take the optimal (top) path.

In general, any algorithm that guesses a weight vector may never find the optimal path.

An algorithm that uses linear algebra to distinguish known from unknown costs will either

take an optimal route or discover the cost of a linearly independent cost vector on each

episode. Thus, it can never choose suboptimal paths more than n times. Formal discussions

of learning noise-free linear functions are provided in Sect. 4.2.

In contrast, an agent that does not generalize, but visits every edge to learn its cost, will

require m episodes to learn optimal behavior, in the worst case, where m is the number of

edges in the graph. This example shows how combining generalization with explicitly dis-

tinguished known and unknown areas can lead to efficient and optimal decision algorithms.

The motivation for studying KWIK learning grew out of its use in sequential decision

making problems like this one. However, other machine-learning problems could benefit

from this perspective and from the development of efficient algorithms. For instance, action

selection in bandit problems (Fong 1995a) and associative bandit problems (Strehl et al.

2006c) (bandit problems with inputs) can both be addressed in the KWIK setting by choos-

ing the better arm when both payoffs are known and an unknown arm otherwise. KWIK

could also be a useful framework for studying active learning (Cohn et al. 1994) and anom-

aly detection (Lane and Brodley 2003), both of which are machine-learning problems that

require some degree of reasoning about whether a recently presented input is predictable

from previous examples. When mistakes are costly, as in utility-based data mining (Weiss

and Tian 2006) or learning robust control (Bagnell et al. 2001), having explicit predictions

of certainty can be very useful for decision making.
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3 Formal definition and related frameworks

This section provides a formal definition of KWIK learning and its relationship to exist-

ing frameworks. Particular attention is paid to the popular Probably Approximately Correct

(PAC) and Mistake Bound (MB) frameworks.

3.1 KWIK definition

KWIK is an objective for supervised-learning algorithms. In particular, we begin with an

input set X and output set Y . The hypothesis class H consists of a set of functions from X

to Y : H ⊆ (X → Y). The target function h∗ : X → Y is the source of training examples and

is unknown to the learner.

Two parties are involved in a KWIK learning protocol. The learner runs a learning al-

gorithm and makes predictions; while the environment, which represents an instance of a

KWIK learning problem, provides the learner with inputs and observations. The protocol

for a KWIK “run” is as follows:

– The hypothesis class H, accuracy parameter ǫ, and confidence parameter δ are known to

both the learner and the environment.

– The environment selects a target function h∗ adversarially.

– For timestep t = 1,2,3, . . . ,

– The environment selects an input xt ∈ X adversarially and informs the learner. The

target value yt = h∗(xt ) is unknown to the learner.

– The learner predicts an output ŷt ∈ Y ∪ {⊥}. We call ŷt valid if ŷ 	= ⊥.

– If ŷt = ⊥, the learner makes an observation zt ∈ Z of the output. In the deterministic

case, zt = yt , but generally the relation between zt and yt is problem specific. For

example, zt = 1 with probability yt and 0 with probability 1 − yt in the Bernoulli case,

and zt = yt + ηt for a zero-mean random variable ηt in the additive noise case.

Definition 1 Let H ⊆ (X → Y) be a hypothesis class. We say that H is KWIK-learnable if

there exists an algorithm A with the following property: for any 0 < ǫ, δ < 1, the following

two requirements are satisfied with probability at least 1 − δ in a whole run of A according

to the KWIK protocol above:

1. (Accuracy Requirement) If h∗ ∈ H, then all non-⊥ predictions must be ǫ-accurate; that

is, |ŷt − yt | < ǫ whenever ŷt 	= ⊥;1

2. (Sample Complexity Requirement) The total number of ⊥s predicted during the whole

run, denoted B(ǫ, δ,dim(H)), is bounded by a function polynomial in 1/ǫ, 1/δ, and

dim(H), where dim(H) is a pre-defined nonnegative-valued function measuring the di-

mension or complexity of H.

We call A a KWIK algorithm and B(ǫ, δ,dim(H)) a KWIK bound of A. We will also use

B(ǫ, δ) for simplicity, if there is no ambiguity. Furthermore, H is efficiently KWIK-learnable

if the per-timestep time complexity of A is polynomial in 1/ǫ, 1/δ, and dim(H).

1Here, |ŷ − y| may be any nonnegative-valued function that measures the discrepancy or distance between

ŷ and y. To simplify notation, we have used the operator “−” in a broad sense and it is not restricted to

algebraic subtraction. For instance: (i) in the special situation of Y ⊆ ℜ, as is considered in many cases of

this paper, | · | is understood as the absolute value; (ii) when Y ⊆ ℜk , | · | may mean vector norm; and (iii)

when y and ŷ are probability distributions, | · | may be used for total variation.
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Fig. 2 Relationship of KWIK to a variant of the PAC and the MB frameworks in terms of how labels are

provided for inputs

A few notes are in order. First, the accuracy requirement in Definition 1 considers the

“realizable” case only; namely, the target function is assumed to be in the hypothesis class.

In contrast, the sample-complexity requirement has to hold even in the “unrealizable” case

where h∗ /∈ H.

Second, all KWIK algorithms provided in this paper enjoy polynomial time complex-

ity and thus are efficient. We note that a KWIK algorithm can be randomized, and so the

confidence parameter, δ, may be necessary even in deterministic problems.

Third, the definition above allows the hypothesis class H to be infinite. In this case, we

must require the KWIK bound to be polynomial in the complexity measure, dim(H), rather

than in the size of H. While in some situations (such as in Sect. 5) dim(H) is straightforward

to define, it remains an open question what measure would be appropriate for KWIK in

general. More discussions are in Sect. 5.

3.2 Connection to PAC and MB

Figure 2 illustrates the relationship of KWIK to the similar PAC (Probably Approximately

Correct) (Valiant 1984) and MB (Mistake Bound) (Littlestone 1987) frameworks. In all three

cases, a series of inputs (instances) is presented to the learner. Each input is depicted in the

figure by a rectangular box.

In the PAC model, inputs are drawn from a fixed distribution, and the learner is provided

with labels (correct outputs) for an initial sequence of i.i.d. inputs, depicted by shaded rec-

tangles. After that point, the learner is required to produce a hypothesis that, with probability

at least 1 − δ, makes accurate predictions for 1 − ǫ fraction of inputs. For the purpose of

the present paper, it is natural to consider a variant of PAC, where the learner is required

to produce an ǫ-accurate outputs (empty boxes) for all new inputs with probability at least

1 − δ.

In the MB model, the learner is expected to produce an output for every input. Labels

are provided to the learner whenever it makes a mistake (filled boxes). Inputs are selected

adversarially, so there is no bound on when the last mistake might be made. However, MB

algorithms guarantee that the total number of mistakes is small, so the ratio of incorrect to

correct outputs must go to zero asymptotically. In the most widely studied concept learning

problem, any MB algorithm for a hypothesis class can be used to provide a PAC algorithm

for the same class (Littlestone 1989),2 but the reverse is not necessarily true (Blum 1994).

The KWIK model has elements of both PAC and MB. Like PAC, a KWIK algorithm

has tolerance parameters allowing for some failures. Like MB, inputs to a KWIK algorithm

2An extension from concept learning to real-valued function learning is given by Klasner and Simon (1995).
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may be selected adversarially. Instead of bounding mistakes, a KWIK algorithm must have

a bound on the number of label requests (⊥) it can make. By requiring performance to be

independent of how inputs are selected, a KWIK algorithm can be used in cases in which

the input distribution is dependent in complex ways on the KWIK algorithm’s behavior, as

can happen in on-line or active learning settings.

Any KWIK algorithm can be turned into a MB algorithm with the same bound by simply

having the algorithm guess an output each time it is not certain; the KWIK bound is auto-

matically an upper bound of the number of mistakes. However, some hypothesis classes are

exponentially harder to learn in the KWIK setting than in the MB setting. An example is

conjunctions of n Boolean variables, in which MB algorithms can guess “false” when un-

certain and learn with n + 1 mistakes, but a KWIK algorithm may need �(2n) many ⊥s to

acquire the negative examples required to capture the target hypothesis: a concrete sequence

of adversarial input is given in Li (2009), and a related lower bound is obtained by Angluin

(1988) for the “double sunflower” lemma in the query-based learning model.

The separation is not only theoretically important, but illustrates an important differences

in the allowable behavior and cost of information for MB and KWIK. In both MB and

KWIK, we can consider the learning process as a two-player game where at even depth

nodes of the game tree the adversary picks a new input and a label for the last input that

must be consistent with the nodes above it. At the odd nodes, the learner gets to make a

prediction. The game terminates when the odd player has formed the correct hypothesis and

the payout is determined as follows. For MB, the payout is the negative of the number of

mistakes predictions along the trajectory. For KWIK, the payout is −B(ǫ, δ,dim(H)), based

on the number of ⊥s on the chosen trajectory in the game tree, plus −∞ for any trajectory

that contains a mistaken (with probability at least δ) prediction.

Notice that structurally the MB tree and the KWIK tree are virtually identical (except

for the ⊥ action), but that their payout structures will induce very different behavior. For

instance, in the case of learning a conjunction, if the adversary chooses a positive example,

future trajectories (assuming the adversary plays rationally) in both the MB and KWIK

tree will be exponentially smaller than under the corresponding negative example, which

provides very little information. However, an optimal agent in the MB tree can mitigate

cost on these long (negative) trajectories by always selecting “false” when it does not have

evidence that the chosen input is true. This will either cost it a single mistake but put it on a

very short branch (getting a highly informative positive example), or cost it nothing but put

it on a very long (but not costly) path. On the other hand, the optimal agent in the KWIK

game tree does not have the option of hedging its bets. Where mistakes were made in the

MB tree with only a local unit cost, in the KWIK tree the payout structure makes them

infinitely expensive. The only guaranteed finite payout available to the agent comes from

choosing ⊥ on every input with uncertain output, and there are exponentially many of these

as the adversary can force the agent down one of the longer (negative example only) paths.

Intuitively, the MB agent can declare its intentions after the adversary announces the

label. If it correctly predicted a negative example, MB “knew it all the time”. If it was

wrong, it made a highly informative mistake. In contrast, the KWIK agent cannot engage

in such self deception. To avoid the −∞ payout, it must only make valid predictions when

it is absolutely certain of the outcome. The benefit of this restriction, is that unlike the

MB agent, the KWIK agent is intrinsically “self aware”: before it makes a prediction, it

can always categorize the step as “exploration” (⊥) or “exploitation” (label), while the MB

algorithm inherently relies on making such distinctions after the fact. While such devotion

to certainty may seem too restrictive, we argue in Sect. 7.3 that the lack of assumptions and

self awareness in KWIK is a better fit than either MB or PAC for creating sample-efficient

reinforcement learning algorithms.
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3.3 Other online-learning models

The notion of allowing the learner to opt out of some inputs by returning ⊥ is not unique to

KWIK. Several other authors have considered related models:

– Sleeping Experts (Freund et al. 1997a) can respond ⊥ for some inputs, although they

need not learn from these experiences and the number of ⊥s in the whole run may be

unbounded;

– Learners in the settings of Selective Sampling (Cesa-Bianchi et al. 2006) and Label Ef-

ficient Prediction (Cesa-Bianchi et al. 2005) request labels randomly with a changing

probability and achieve bounds on the expected number of mistakes and the expected

number of label requests for a finite number of interactions. These algorithms cannot be

used unmodified in the KWIK setting because, with high probability, KWIK algorithms

must not make mistakes at any time;

– In the MB-like Apple-Tasting setting (Helmbold et al. 2000), the learner receives feedback

asymmetrically only when it predicts a particular label (a positive example, say), which

conflates the request for a sample with the prediction of a particular outcome.

– Query-by-committee algorithms (Seung et al. 1992; Freund et al. 1997b) determine the

confidence level of their predictions for an example based on the degree of disagreements

in the predictions of sub-algorithms in the committee. Similarly to selective sampling

algorithms, query-by-committee algorithms were proposed for active learning and may

not possess the same accuracy requirement as KWIK.

– Finally, the Averaged Classifier by Freund et al. (2004) may return ⊥ if the averaged

prediction for an example is close to the classification boundary. However, it is assumed

that examples are i.i.d. and a non-⊥ prediction may not be accurate.

Conformal Prediction (Shafer and Vovk 2008) is an online learning paradigm in which

the learner has to predict a region, rather than a point prediction, for the present input based

on previously observed input–output pairs. It is required that these prediction regions con-

tain the correct output with high probability. It is straightforward to decide whether the

output is known within sufficient accuracy based on the “size” of the region. For example,

in regression problems, if the region is an interval of length smaller than ǫ, then any point

prediction in this region will be ǫ-accurate with high probability. However, existing confor-

mal prediction methods make statistical assumptions about inputs such as independence or

exchangeability, and thus are rendered inapplicable in the KWIK setting.

Another framework similar to KWIK is the regret framework as applied to the Asso-

ciative Bandit Problem (Strehl et al. 2006c): at every timestep t in this model, the learner

receives input xt ∈ X , selects an action at from a possibly infinite set A, and then receives

a randomized payoff rt ∈ ℜ, whose expectation depends on xt and at . The goal is to mini-

mize the regret, defined as the difference between the largest total payoff by following the

best action-selection rule π in some given rule set � and the total payoff received by the

learner. No-regret algorithms have been found for variants of associative bandit problems

in the sense that their regrets are sublinear in the number of timesteps (e.g., Auer 2002).

Consequently, the average per-timestep regret converges to 0 in the limit. However, these

algorithms do not satisfy the KWIK requirements for exactly the same reason that MB algo-

rithms are not KWIK: the learner does not know for certain when the last mistake is made,

even if the overall probability of mistaken predictions is tiny.
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4 Some KWIK-learnable classes

This section describes some hypothesis classes for which KWIK algorithms are available.

It is not meant to be an exhaustive survey, but simply to provide a flavor for the properties

of hypothesis classes KWIK algorithms can exploit. The complexity of many learning prob-

lems has been characterized by defining the dimensionality of hypothesis classes (Angluin

2004). No such definition has been found for the KWIK model, so we resort to enumerating

examples of learnable classes.

4.1 Memorization and enumeration

We begin by describing the simplest and most general KWIK algorithms.

Problem 1 The memorization algorithm can learn any hypothesis class with input set

X with a KWIK bound of |X |. This algorithm can be used when the input set X is finite and

observations are noise free.

To achieve this bound, the algorithm simply keeps a mapping ĥ initialized to ĥ(x) = ⊥
for all x ∈ X . When the environment chooses an input x, the algorithm reports ĥ(x). If

ĥ(x) = ⊥, the environment will provide a label y and the algorithm will assign ĥ(x) := y.

It will only report ⊥ once for each input, so the KWIK bound is |X |.

Problem 2 The enumeration algorithm can learn any hypothesis class H with a KWIK

bound of |H| − 1. This algorithm can be used when the hypothesis class H is finite and

observations are noise free.

The algorithm keeps track of Ĥ, the version space, and initially Ĥ = H. Each time the

environment provides input x ∈ X , the algorithm computes L̂ = {h(x) | h ∈ Ĥ}. That is,

it builds the set of all outputs for x for all hypotheses that have not yet been ruled out.

If |L̂| = 0, the version space has been exhausted and the target hypothesis is not in the

hypothesis class (h∗ 	∈ H).

If |L̂| = 1, it means that all hypotheses left in Ĥ agree on the output for this input, and

therefore the algorithm knows what the proper output must be. It returns ŷ ∈ L̂. On the other

hand, if |L̂| > 1, two hypotheses in the version space disagree. In this case, the algorithm

returns ⊥ and receives the true label y. It then computes an updated version space

Ĥ′ = {h | h ∈ Ĥ ∧ h(x) = y}.

Because |L̂| > 1, there must be some h ∈ Ĥ such that h(x) 	= y. Therefore, the new version

space must be smaller: |Ĥ′| ≤ |Ĥ| − 1. Before the next input is received, the version space

is updated Ĥ := Ĥ′.
If |Ĥ| = 1 at any point, |L̂| = 1, and the algorithm will no longer return ⊥. Therefore,

|H| − 1 is the maximum number of ⊥s the algorithm can return.

Example 1 You own a bar that is frequented by a group of n patrons P . There is one patron

f ∈ P who is an instigator—whenever a group of patrons is in the bar G ⊆ P , if f ∈ G, a

fight will break out. However, there is another patron p ∈ P , who is a peacemaker. If p is in

the group, it will prevent a fight, even if f is present.
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You want to predict whether a fight will break out among a subset of patrons, initially

without knowing the identities of f and p. The input set is X = 2P and the output set is

Y = {fight, no fight}.
The memorization algorithm achieves a KWIK bound of 2n for this problem, since it

may have to see each possible subset of patrons. However, the enumeration algorithm can

KWIK-learn this hypothesis class with a bound of n(n−1)−1 since there is one hypothesis

for each possible assignment of a patron to f and p. Each time it reports ⊥, it is able to rule

out at least one possible instigator–peacemaker combination.

4.2 Real-valued functions

The previous two algorithms exploited the finiteness of the hypothesis class and input set.

KWIK bounds can also be achieved when these sets are infinite.

Problem 3 Define X = ℜn, Y = ℜ, and

H = {f | f (x) = θ · x, θ ∈ ℜn}.

That is, H is a set of linear functions on n variables for some unknown weight vector θ . In

the deterministic case where zt = yt , H can be KWIK-learned by the algorithm deter-

ministic linear regression with a KWIK bound of B(ǫ, δ) = n.

The algorithm maintains a training set T of training examples, which is initialized to the

empty set ∅ prior to learning. On the t th input xt , let T = {(v1, f (v1)), (v2, f (v2)), . . . ,

(vk, f (vk))} be the current set of training examples. The algorithm first detects if xt is

linearly independent of the previous inputs stored in T . This can be done efficiently by,

say, Gaussian elimination (Golub and Van Loan 1989). If xt is linearly independent, then

the algorithm predicts ⊥, observes the output yt = f (xt ), and then expands the training

set: T ← T ∪ {(xt , yt )}. Otherwise, there exist k real numbers, a1, a2, . . . , ak , such that

xt = a1v1 + a2v2 + · · · + akvk . In this case, we can accurately predict the value of f (xt )

using linear algebra:

f (xt ) = θ · xt

= θ · (a1v1 + a2v2 + · · · + akvk)

= a1θ · v1 + a2θ · v2 + · · · + akθ · vk

= a1f (v1) + a2f (v2) + · · · + akf (vk).

By operation of the algorithm, the inputs in T (that is, v1, v2, . . . , vk) must be linearly

independent at all times. Hence, T contains at most n training pairs, so the algorithm will

predict ⊥ at most n times. Any case where the inputs contain n such linearly independent

vectors shows this KWIK bound is tight.

The deterministic linear regression algorithm above may be used by the

distance learning below to learn the ℓ2-distance between two points.

Problem 4 Define X = ℜn, Y = ℜ, and

H = {f | f (x) = ‖x − c‖, c ∈ ℜn},
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where ‖x‖ =
√

xTx denotes the ℓ2 norm of vector x ∈ ℜn. That is, there is an unknown point

and the target function maps input points to the Euclidean distance from the unknown point.

The distance learning algorithm can learn in this hypothesis class with a KWIK

bound of n + 1.

Although this problem can be solved using a geometric argument (Li et al. 2008), it

is easier to describe the solution via a reduction to deterministic linear re-

gression.3 We start with the squared ℓ2-distance of an input x to the unknown point

c: ‖x − c‖2 = ‖c‖2 − 2cTx + ‖x‖2, and rewrite it into ‖x − c‖2 − ‖x‖2 = ‖c‖2 − 2cTx. The

right-hand side may be viewed as a linear function, c̄Tx̄, where x̄ and c̄ are the augmented

input and weight vectors, respectively:

x̄ :=
[

x

1

]

, c̄ :=
[

−2c

‖c‖2

]

.

Therefore, we may use deterministic linear regression to KWIK-learn the

function, ‖x − c‖2 − ‖x‖2, with a KWIK bound of n + 1. If we can make an accurate

prediction for this function, we can easily compute the distance ‖x − c‖.

4.3 Noisy observations

Up to this point, observations have been noise free. In this subsection, we consider a couple

of noisy KWIK learning problems. We start with the simplest Bernoulli case and note that

the same algorithm can actually be applied to KWIK-learn the expectation of a bounded,

real-valued random variable.

Problem 5 The coin learning algorithm can accurately predict the probability that a

biased coin will come up heads given Bernoulli observations with a KWIK bound of

B(ǫ, δ) = 1

2ǫ2
ln

2

δ
= O

(

1

ǫ2
ln

1

δ

)

.

We have a biased coin whose unknown probability of heads is p. In the notation of this

paper, X is a singleton containing an arbitrarily chosen element (meaning that we have a

single coin with a fixed but unknown head probability), Y = [0,1], and Z = {0,1} with 0

for tail and 1 for head. We want to learn an estimate p̂ that is accurate (|p̂ − p| ≤ ǫ) with

high probability (1 − δ).

If we could observe p, then this problem would be trivial: Say ⊥ once, observe p, and

let p̂ = p. The KWIK bound is thus 1. Now, however, observations are noisy. Instead of

observing p, we see either 1 (with probability p) or 0 (with probability 1 − p).

Each time the algorithm says ⊥, it gets an independent trial that it can use to compute the

empirical probability: p̂ = 1
T

∑T

t=1 zt , where zt ∈ Z is the t th observation in T trials. The

number of trials needed before we are 1 − δ certain our estimate is within ǫ-accuracy can be

computed using a Hoeffding (1963) bound:

T = 1

2ǫ2
ln

2

δ
= O

(

1

ǫ2
ln

1

δ

)

.

3This approach was suggested by Robert Schapire.
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The coin-learning problem above can be regarded as a special case of the dice-learning

problem. Here, the agent is to KWIK-learn a multinomial distribution over n elements,

where each distribution is specified by n non-negative numbers that sum up to unity. The

prediction error is defined as the total variance between the true distribution and the learner’s

prediction; given two discrete distributions, y and ŷ, over the same discrete sample space, �,

their total variation is defined as half of their ℓ1 distance: |y − ŷ| := 1
2

∑

ω∈� |y(ω) − ŷ(ω)|.

Problem 6 The dice learning algorithm can accurately predict a multinomial distri-

bution over n elements within ǫ total variation given multinomial observations with a KWIK

bound of

B(ǫ, δ) = n

8ǫ2
ln

2n

δ
= O

( n

ǫ2
ln

n

δ

)

.

The algorithm is almost identical to coin learning. It first draws T samples from

the multinomial distribution and then uses the empirical distribution for prediction.

To derive a KWIK bound for dice learning, we may use coin learning to

KWIK-learn each probability in the multinomial distribution h = (h(ω1), h(ω2), . . . , h(ωn))

to ensure ǫ/n accuracy with probability at least 1 − δ/n. Then, an application of the union

bound yields the following KWIK bound for dice learning

O

(

n2

ǫ2
ln

n

δ

)

,

which is asymptotically worse than the stated bound. However, a more careful analysis using

the multiplicative form of Chernoff’s bound can prove the stated KWIK bound. A proof is

given by Kakade (2003).

The dice learning algorithm will serve as an important building block in many of

our applications to reinforcement learning. The important case of noisy linear functions is

studied in Sect. 5.

5 Learning noisy linear functions

This section extends the deterministic linear regression algorithm (Prob-

lem 3) to the noisy case where the observations are target outputs corrupted by additive,

white noise. The algorithm we present here is based on previous work by Strehl and Littman

(2008), who first formulated and solved this problem.

Recently, two related algorithms were developed. Walsh et al. (2009) considered a

slightly different setting than the one defined in Sect. 3. Specifically, their algorithm can

always see the label even if it makes a valid prediction, although a later refinement of this

work (available as a technical report) performed the analysis under the same conditions as

the algorithm above. The sample complexity results for this algorithm were on par with

those reported here, but because it employed regularization, the computation and storage

requirements were both polynomial in the number of dimensions, rather than growing with

the number of samples as an naive implementation of the algorithm above would. In that

light, this later work can be viewed as a practical version of the one presented here, but with

slightly different mechanics.

Cesa-Bianchi et al. (2009) studied selective sampling for binary classification with lin-

ear classifiers. Under a weaker assumption that the environment is an oblivious adversary
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(namely, the sequence of inputs is fixed beforehand), their Parametric BBQ algorithm

achieves a significantly better KWIK bound of Õ(d/ǫ2), where Õ(·) suppresses logarithmic

factors. The KWIK bound we present in this section, however, remains valid even when the

environment is adaptive, that is, when the environment has the ability to decide the next

input based on previous interaction history with the learner. Furthermore, their bound has a

logarithmic dependence on the total number of timesteps. In contrast, our KWIK bound here

(as well as the one by Walsh et al. 2009) does not have this dependence—a property that is

necessary for the KWIK algorithm’s application to reinforcement learning in Sect. 7.2.

5.1 Problem formulation

In the noisy linear regression problem, certain regularity assumptions are necessary to make

it feasible. Recall that for a vector x ∈ ℜn, we denote its ℓ2 norm by ‖x‖.

Problem 7 Define X = {x ∈ ℜn | ‖x‖ ≤ 1}, Y = Z = [−1,1], and

H = {f | f (x) = θTx, θ ∈ ℜn,‖θ‖ ≤ 1}.

That is, H is the set of linear functions in n variables with bounded weight vectors. The

target output is corrupted by additive, bounded, white noise: zt = yt + ηt , where ηt is a

bounded random variable with zero expectation. Note that no further assumption is made

on the distribution of ηt . The noisy linear regression algorithm (Algorithm 1)

can learn in H with a KWIK bound of B(ǫ, δ) = Õ(n3/ǫ4).

The deterministic case was described in Sect. 4.2 with a KWIK bound of n. Here, the al-

gorithm must be cautious to average over the noisy samples to make predictions accurately.

The algorithm uses the least-squares estimate of the weight vector for inputs with high cer-

tainty. Certainty is measured by two terms representing (1) the number and proximity of

previous samples to the current input and (2) the appropriateness of the previous samples

for making a least-squares estimate. When certainty is low for either measure, the algorithm

reports ⊥ and observes a noisy sample of the linear function.

5.2 Solution

Let X ∈ ℜm×n denote an m × n matrix whose rows we interpret as transposed input vectors.

We let X(i) denote the transpose of the ith row of X. Let z ∈ ℜm denote an m-dimensional

vector whose ith component, denoted z(i), is interpreted as the corresponding noisy obser-

vation.

Since XTX is symmetric and positive semi-definite, it can be written as the following

form of singular value decomposition (Golub and Van Loan 1989):

XTX = U�UT, (1)

where U = [u1, . . . , un] ∈ ℜn×n, with u1, . . . , un being a set of orthonormal singular vectors

of XTX, and � = diag(λ1, . . . , λn), with corresponding singular values λ1 ≥ λ2 ≥ · · · ≥
λk ≥ 1 > λk+1 ≥ · · · ≥ λn ≥ 0. Note that � is diagonal but not necessarily invertible. Now,

define Ū = [u1, . . . , uk] ∈ ℜn×k and �̄ = diag(λ1, . . . , λk) ∈ ℜk×k . For a fixed input xt (a

new input provided to the algorithm at time t ), define

q̄ := XŪ�̄−1ŪTxt ∈ ℜm, (2)

ū :=
[

0, . . . ,0, uT
k+1xt , . . . , u

T
nxt

]T ∈ ℜn. (3)
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Our algorithm uses these quantities and is provided in pseudocode by Algorithm 1. The

main result about this algorithm is the following theorem.

Theorem 1 With appropriate parameter settings, Algorithm 1 is an efficient KWIK algo-

rithm with a KWIK bound of Õ(n3/ǫ4).

Although the analysis of Algorithm 1 is somewhat complicated, the algorithm itself has

a natural interpretation. Given a new input xt , the algorithm considers making a prediction

of the output yt using the norm-constrained least-squares estimator (specifically, θ̂ defined

in line 6 of Algorithm 1). The norms of the vectors q̄ and ū provide a quantitative measure

of uncertainty about this estimate. When both norms are small, the estimate is trusted and

a valid prediction is made. When either norm is large, the estimate is not trusted and the

algorithm produces an output of ⊥.

The quantities q̄ and ū provide a measure of uncertainty for the least-squares estimate

(Auer 2002). Consider the case when all eigenvalues of XTX are greater than 1. In this

case, note that x = XTX(XTX)−1x = XTq̄ . Thus, x can be written as a linear combination,

whose coefficients make up q̄ , of the rows of X, which are previously experienced inputs.

Intuitively, if the norm of q̄ is small, then there are many previous training samples (actually,

combinations of inputs) “similar” to x, hence their noises cancel each other, and our least-

squares estimate is likely to be accurate for x. For the case of ill-conditioned XTX (when

XTX has singular values close to 0), X(XTX)−1x may be undefined or have a large norm. In

this case, we must consider the directions corresponding to small singular values separately

via ū: if ‖ū‖ is sufficiently small, this direction can be ignored without significantly affecting

the prediction; otherwise, the algorithm predicts ⊥.

5.3 Analysis

Our analysis of Algorithm 1 hinges on two key lemmas that we now present. They together

show that the cumulative squared error of a predictor can be used to bound its prediction

error on a new input, a critical insight used to prove Theorem 1. The complete proofs are

given in Appendix A.

Algorithm 1 Noisy Linear Regression

0: Inputs: α1, α2

1: Initialize X = [ ] and z = [ ].
2: for t = 1,2,3, . . . do

3: Let xt denote the input at timestep t .

4: Compute q̄ and ū using Equations 2 and 3.

5: if ‖q̄‖ ≤ α1 and ‖ū‖ ≤ α2 then

6: Choose θ̂ ∈ ℜn that minimizes
∑

i (z(i) − θ̄TX(i))2 subject to ‖θ̄‖ ≤ 1.

7: Predict ŷt = θ̂Txt .

8: else

9: Predict ŷt = ⊥.

10: Receive observation zt .

11: Append xT
t as a new row to the matrix X.

12: Append zt as a new element to the vector z.

13: end if

14: end for
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The first lemma analyzes the behavior of the squared error of predictions based on an

incorrect estimate θ̂ ( 	= θ ) versus the squared error obtained by using the true parameter

vector θ . Specifically, we show that the squared error of the former is very likely to be larger

than the latter when the predictions based on θ̂ (of the form θ̂Tx for input x) are highly

inaccurate. The proof makes use of Hoeffding (1963)’s bound.

Lemma 1 Let θ ∈ ℜn and θ̂ ∈ ℜn be two fixed parameter vectors satisfying ‖θ‖ ≤ 1 and

‖θ̂‖ ≤ 1. Suppose that (x1, z1), . . . , (xm, zm) is any sequence of samples satisfying xi ∈ ℜn,

‖xi‖ ≤ 1, zi ∈ [−1,1], E[zi | xi] = θTxi , and Var[zi | xi] = σ 2
i . For any 0 < δ < 1 and fixed

positive constant w, if

m
∑

i=1

(

(θ − θ̂ )Txi

)2 ≥ 2
√

8m ln(2/δ) + w,

then

m
∑

i=1

(

zi − θ̂Txi

)2
>

m
∑

i=1

(

zi − θTxi

)2 + w

with probability at least 1 − 2δ.

The next lemma relates the error of an estimate θ̂Tx for a fixed input x based on an in-

correct estimate θ̂ to the quantities ‖q̄‖, ‖ū‖, and �E(θ̂) :=
√

∑m

i=1 ((θ − θ̂ )TX(i))2. Recall

that when ‖q̄‖ and ‖ū‖ are both small, our algorithm becomes confident of the least-squares

estimate. In precisely this case, the lemma shows that |(θ − θ̂ )Tx| is bounded by a quantity

proportional to �E(θ̂). This result justifies the condition used by Algorithm 1 to predict ⊥.

Lemma 2 Let θ ∈ ℜn and θ̂ ∈ ℜn be two fixed parameter vectors satisfying ‖θ‖ ≤ 1 and

‖θ̂‖ ≤ 1. Suppose that (x1, z1), . . . , (xm, zm) is any sequence of samples satisfying xi ∈ ℜn,

‖xi‖ ≤ 1, and zi ∈ [−1,1]. Let x ∈ ℜn be any vector. Let q̄ and ū be defined as above. Let

�E(θ̂) denote the error term

√

∑m

i=1 ((θ − θ̂ )Txi)2. We have that

|(θ − θ̂ )Tx| ≤ ‖q̄‖�E(θ̂) + 2‖ū‖.

6 Combining KWIK learners

This section provides examples of how KWIK learners can be combined to provide learning

guarantees for more complex hypothesis classes. Their applications in reinforcement learn-

ing are the topic of the next section. We first consider a variant of Problem 1 that combines

learners across disjoint input sets.

Problem 8 Let X1, . . . , Xk be a set of disjoint input sets (Xi ∩ Xj = ∅ if i 	= j ) and Y be

an output set. Let H1, . . . , Hk be a set of KWIK-learnable hypothesis classes with bounds

of B1(ǫ, δ), . . . ,Bk(ǫ, δ) where Hi ⊆ (Xi → Y). The input partition algorithm can

learn the hypothesis class H ⊆ (X1 ∪ · · · ∪ Xk → Y) with a KWIK bound of B(ǫ, δ) =
∑

i Bi(ǫ, δ/k).
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The input partition algorithm runs the learning algorithm, denoted Ai , for each

subclass Hi using parameters ǫ and δ/k. When it receives an input x ∈ Xi , it queries Ai

and returns its response ŷ. If ŷ = ⊥, an observation is obtained and input partition

informs Ai of ŷ to allow it to learn. Otherwise, ŷ is ǫ-accurate with high probability, as

guaranteed by individual subalgorithms. The total number of ⊥s is the sum of the number

of ⊥s returned by all subalgorithms Ai . To achieve 1 − δ certainty, it insists on 1 − δ/k

certainty from each of the subalgorithms. By a union bound, the overall failure probability

must be less than the sum of the failure probabilities for the subalgorithms, which is at

most δ.

Example 2 Let X = Y = ℜ. Define H to be a set of piecewise linear functions:

H = {f | f (x) = px if x ≥ 0, f (x) = mx otherwise,p ∈ ℜ,m ∈ ℜ}.

Using deterministic linear regression (Problem 3), we can KWIK-learn the

class of linear functions over two input sets, X− = (−∞,0) and X+ = [0,∞), each requiring

a KWIK bound of 1. Note that {X−, X+} is a partition of the entire input set: X− ∪ X+ = X

and X− ∩ X+ = ∅. We can use input partition to KWIK-learn H with a KWIK bound

of 1 + 1 = 2. The two KWIK learners are called A− and A+, respectively.

Assume the first input is x1 = 2, which is in X+. The input partition algorithm

queries A+ with input x1. Since A+ has no idea about y1, it returns ⊥. Hence, input

partition reports ŷ1 = ⊥, and y1 = 4 is observed. Learner A+ can now infer with cer-

tainty that p = y1/x1 = 2, and we can now predict f (x) for all x ∈ X+. The next input is

x2 = 0.5 ∈ X+, which is again presented to A+, resulting in ŷ2 = px2 = 1. The third input is

x3 = −1 ∈ X−. The algorithm queries A− with input x3 and receives ⊥ since A− does not

have enough information to predict y3. The algorithm then predicts ⊥ for the second time

and sees y3 = 3. Learner A− can now determine m = y3/x3 = −3, and the target function is

completely identified:

f (x) =
{

2x if x ≥ 0,

−3x otherwise.

A similar approach applies to the output set Y when it is a cross product of k sets:

Y = Y1 × · · · × Yk . Since the accuracy requirement in Definition 1 depends on the output

set as well as the interpretation of the discrepancy metric | · |, it is necessary to make certain

assumptions to relate the discrepancy metric of Y to those of Yi . A natural choice, which

we will use in Sect. 7, is to assume the existence of some α ∈ (0,1] such that for any

ǫ ∈ (0,1) and any yi, ŷi ∈ Yi , if |ŷi − yi | < αǫ for all i = 1,2, . . . , k, then |ŷ − y| < ǫ,

where y = (y1, . . . , yk) and ŷ = (ŷ1, . . . , ŷk). For example, if we use the ℓ1, ℓ2, or ℓ∞ norms

in the output spaces Y and Yi , then α can be 1/k, 1/
√

k, and 1, respectively.

Problem 9 Let X be an input set and Y1, . . . , Yk be a collection of output sets. Let

H1, . . . , Hk be a set of KWIK-learnable hypothesis classes with bounds of B1(ǫ, δ), . . . ,

Bk(ǫ, δ) where Hi ⊆ (X → Yi). The output combination algorithm can KWIK-

learn the hypothesis class H ⊆ (X → Y1 × · · · × Yk) with a KWIK bound of B(ǫ, δ) =
∑

i Bi(αǫ, δ/k).

The next algorithm generalizes the previous algorithm by combining both the input and

output sets.
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Problem 10 Let X1, . . . , Xk and Y1, . . . , Yk be a set of input and output sets and H1, . . . , Hk

be a collection of KWIK-learnable hypothesis classes with bounds of B1(ǫ, δ), . . . ,Bk(ǫ, δ)

on these sets. That is, Hi ⊆ (Xi → Yi). The cross product algorithm can learn the

hypothesis class H ⊆ ((X1 ×· · ·× Xk) → (Y1 ×· · ·× Yk)) with a KWIK bound of B(ǫ, δ) =
∑

i Bi(αǫ, δ/k).

Here, each input consists of a vector of inputs from each of the sets X1, . . . , Xk and

outputs are vectors of outputs from Y1, . . . , Yk . Like Problem 9, each component of this

vector can be learned independently via the corresponding algorithm. Each is learned to

within an accuracy of αǫ and confidence 1 − δ/k. Any time any component returns ⊥,

the cross product algorithm returns ⊥. Since each ⊥ returned can be traced to one

of the subalgorithms, the total is bounded as described above. By the union bound, total

failure probability is no more than k × δ/k = δ. We note that Problem 9 is a degenerate

case in which Xi = Xj for all i, j and each input vector contains the same element in its

components.

Example 3 You own a chain of k bars, each of which is frequented by a set of n patrons,

Pi , and once again each bar has an instigator fi ∈ Pi and a peacemaker pi ∈ Pi . The patron

sets do not overlap. On any given night, with some subset of each Pi at each bar, you need

to predict whether, for each bar, there will be a fight. Notice that input partition

cannot solve this problem because a prediction must be made for each bar, and output

combination is similarly insufficient because there are k disjoint input sets. But using

cross product with enumeration (Problem 2) for each bar achieves a KWIK bound

of k(n(n − 1) − 1). We note that generally cross product can be wrapped around sev-

eral different learners (e.g. enumeration for one sub-problem and memorization for

another).

The previous two algorithms concern combinations of input or output sets and apply to

both deterministic and noisy observations. We next provide an intuitive algorithm for the

deterministic case that combines hypothesis classes.

Problem 11 Let F ⊆ (X → Y) be the set of functions mapping input set X to output

set Y . Let H1, . . . , Hk be a set of KWIK-learnable hypothesis classes with bounds of

B1(ǫ, δ), . . . ,Bk(ǫ, δ) where Hi ⊆ F for all 1 ≤ i ≤ k. That is, all the hypothesis classes

share the same input/output sets. The union algorithm can learn the joint hypothesis class

H =
⋃

i Hi with a KWIK bound of B(ǫ, δ) = (k − 1) +
∑

i Bi(ǫ/2, δ/k).

The union algorithm is like a higher-level version of enumeration (Problem 2) and

applies in the deterministic setting. It maintains a set of active algorithms Â, one for each

hypothesis class: Â = {1, . . . , k}. Given an input x, the union algorithm queries each al-

gorithm i ∈ Â to obtain a prediction ŷi from each active algorithm. Let L̂ = {ŷi | i ∈ Â}.
Furthermore, a union bound implies that, with probability at least 1 − δ, all predictions of

Ai must be ǫ/2-accurate whenever h∗ ∈ Hi .

If ⊥ ∈ L̂, the union algorithm reports ⊥ and obtains the correct output y. Any algorithm

i for which ŷ = ⊥ is then sent the correct output y to allow it to learn. When ⊥ /∈ L̂, we

consider two cases as follows.

If L̂ is consistent, meaning that there exists ỹ ∈ Y such that maxȳ∈L̂ |ȳ − ỹ| < ǫ/2, then

we claim ỹ is ǫ-accurate with high probability: by assumption, one of the predictions in L̂,
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denoted ȳ∗, must be ǫ/2-accurate, and thus

|ỹ − y| ≤ |ỹ − ȳ∗| + |ȳ∗ − y| ≤ ǫ/2 + ǫ/2 = ǫ.

If, on the other hand, L̂ is not consistent, meaning that there is no ỹ ∈ Y such that

maxȳ∈L̂ |ȳ − ỹ| < ǫ/2, then union returns ⊥ and obtains the correct output y. Any algo-

rithm that makes a prediction error greater than ǫ/2 is eliminated for future consideration.

That is,

Â′ = {i | i ∈ Â ∧ (ŷi = ⊥ ∨ |ŷi − y| > ǫ/2)}.

Clearly, at least one algorithm will be eliminated because any y ∈ Y must differ from at least

one element in L̂ by at least ǫ/2.

On each input for which the union algorithm reports ⊥, either one of the subalgorithms

reported ⊥ (at most
∑

i Bi(ǫ/2, δ/k) times) or two algorithms disagreed and at least one

was removed from Â (at most k − 1 times). The KWIK bound follows from these facts.

Example 4 Let X = Y = ℜ. Now, define H1 = {f | f (x) = |x − c|, c ∈ ℜ}. That is, each

function in H1 maps x to its distance from some unknown point c. We can learn H1 with a

KWIK bound of 2 using a 1-dimensional version of distance learning. Next, define

H2 = {f | f (x) = mx + b,m ∈ ℜ, b ∈ ℜ}. That is, H2 is the set of lines. We can learn

H2 with a KWIK bound of 2 using deterministic linear regression. Finally,

define H = H1 ∪ H2, the union of these two classes. We can use union to KWIK-learn H.

Assume the first input is x1 = 2. The union algorithm queries the learners for H1 and H2

with x1 as input and neither has any idea, so it returns ⊥ and receives the feedback y1 = 2,

which it passes to the subalgorithms. The next input is x2 = 8. The learners for H1 and

H2 still don’t have enough information, so it returns ⊥ and sees y2 = 4, which it passes to

the subalgorithms. Next, x3 = 1. Now, the learner for H1 unambiguously computes c = 4,

because that’s the only interpretation consistent with the first two examples (|2 − 4| = 2,

|8 − 4| = 4), so it returns |1 − 4| = 3. On the other hand, the learner for H2 unambiguously

computes m = 1/3 and b = 4/3, because that’s the only interpretation consistent with the

first two examples (2×1/3+4/3 = 2, 8×1/3+4/3 = 4), so it returns 1×1/3+4/3 = 5/3.

Since the two subalgorithms disagree, the union algorithm returns ⊥ one last time and

finds out that y3 = 3. It makes all future predictions (accurately) using the algorithm for H1.

Finally, we provide a powerful algorithm that generalizes the union algorithm to work

with noisy observations as well. The basic idea is similar to the method for hypothesis testing

of Kearns and Schapire (1994), who consider a PAC-style learning model for probabilistic

concepts.

Problem 12 Let F ⊆ (X → Y) be the set of functions mapping input set X to output set

Y = [0,1]. Let Z = {0,1} be a binary observation set. Let H1, . . . , Hk be a set of KWIK-

learnable hypothesis classes with bounds of B1(ǫ, δ), . . . ,Bk(ǫ, δ) where Hi ⊆ F for all

1 ≤ i ≤ k. That is, all the hypothesis classes share the same input/output sets. The noisy

union algorithm can learn the joint hypothesis class H =
⋃

i Hi with a KWIK bound of

B(ǫ, δ) = O

(

k

ǫ2
ln

k

δ

)

+
k

∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

.
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We first sketch the special case of k = 2 to explain the intuition of noisy union,

and then extend the analysis to the general case. This algorithm is similar to the union

algorithm (Problem 11), except that it has to deal with noisy observations. The algorithm

proceeds by running the KWIK algorithms, denoted A1 and A2, using parameters (ǫ0, δ0),

as subalgorithms for each of the Hi hypothesis classes, where ǫ0 = ǫ/4 and δ0 = δ/3. Given

an input xt in trial t , it queries each algorithm i to obtain a prediction ŷt i . Let L̂t be the set

of responses.

If ⊥ ∈ L̂t , the noisy union algorithm reports ⊥, obtains an observation zt ∈ Z , and

sends it to subalgorithms i with ŷt i = ⊥ to allow them to learn. In the following, we focus

on the remaining cases where ⊥ /∈ L̂t .

If |ŷt1 − ŷt2| ≤ 4ǫ0, then these two predictions are sufficiently consistent, with high prob-

ability the prediction p̂t = (ŷt1 + ŷt2)/2 is ǫ-close to yt = Pr(zt = 1). This is the case

because one of the predictions, say ŷt1, deviates from yt by at most ǫ0 with probability

at least 1 − δ/3, and hence |p̂t − yt | = |p̂t − ŷt1 + ŷt1 − yt | ≤ |p̂t − ŷt1| + |ŷt1 − ŷt | =
|ŷt1 − ŷt2|/2 + |ŷt1 − ŷt | ≤ 2ǫ0 + ǫ0 < ǫ.

If |ŷt1 − ŷt2| > 4ǫ0, then the individual predictions are not sufficiently consistent for

noisy union to make an ǫ-accurate prediction. Thus, it reports ⊥ and needs to know

which subalgorithm provided an inaccurate response. But, since the observations are noisy

in this problem, it cannot eliminate hi on the basis of a single observation. Instead, it main-

tains the total squared prediction error for every subalgorithm i: ei =
∑

t∈T
(ŷt i −zt )

2, where

T = {t | |ŷt1 − ŷt2| > 4ǫ0} is the set of trials in which the subalgorithms gave inconsistent

predictions. Our last step is to show that ei is a robust measure for eliminating invalid pre-

dictors when |T | is sufficiently large.

Applying the Hoeffding bound and some algebra, we find

Pr (e1 > e2) ≤ exp

(

−
∑

t∈T
|ŷt1 − ŷt2|2

8

)

≤ exp
(

−2ǫ2
0 |T |

)

.

Setting the righthand side to be δ/3 and solving for |T |, we have

|T | = 1

2ǫ2
0

ln
3

δ
= O

(

1

ǫ2
ln

1

δ

)

.

Since each Ai succeeds with probability 1 − δ/3, and the comparison of e1 and e2 also

succeeds with probability 1−δ/3, a union bound implies that the noisy union algorithm

succeeds with probability at least 1 − δ. All ⊥s are either from a subalgorithm (at most
∑

i Bi(ǫ0, δ0)) or from the noisy union algorithm (O(1/ǫ2 ln(1/δ))).

The general case where k > 2 can be reduced to the k = 2 case by pairing the k learners

and running the noisy union algorithm described above on each pair. Here, each sub-

algorithm is run with parameters ǫ/8 and δ/(k + 1). The algorithm is formally described

in Algorithm 2. Although there are
(

k

2

)

= O(k2) pairs, a more careful analysis can reduce

the dependence of the KWIK bound on k from quadratic to linearithmic,4 leading to The-

orem 2, whose proof is given in Appendix B. Note we have not attempted to optimize the

constant factor in parameter m, but the resulting KWIK bound is the best possible up to a

constant (Diuk et al. 2009).

4A function f (n) is called linearithmic if f (n) = O(n lnn).
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Algorithm 2 Noisy Union

0: Inputs: A1, . . . ,Ak , ǫ, δ, m.

1: Run each subalgorithm Ai with parameters ǫ/8 and δ/(k + 1).

2: R ← {1,2, . . . , k}
3: for all 1 ≤ i < j ≤ k do

4: cij ← 0

5: �ij ← 0

6: end for

7: for timestep t = 1,2, . . . do

8: Observe xt ∈ X

9: Run each Ai to obtain their predictions, ŷt i

10: if ŷt i = ⊥ for some i ∈ R then

11: Predict ŷt = ⊥ and observe zt ∈ Z

12: Send zt to all subalgorithms Ai with ŷt i = ⊥
13: else

14: if |ŷt i − ŷtj | < ǫ for all i, j ∈ R then

15: Predict the midpoint of the set of predictions: ŷt = (maxi∈R ŷt i + mini∈R ŷt i)/2

16: else

17: Predict ŷt = ⊥ and observe zt ∈ Z

18: for all i, j ∈ R such that i < j and |ŷt i − ŷtj | ≥ ǫ/2 do

19: cij ← cij + 1

20: �ij ← �ij + (ŷt i − zt )
2 − (ŷtj − zt )

2

21: if cij = m then

22: R ← R \ {I } where I = i if �ij > 0 and I = j otherwise.

23: end if

24: end for

25: end if

26: end if

27: end for

Theorem 2 The noisy union algorithm is a KWIK algorithm with a KWIK bound of

O

(

k

ǫ2
ln

k

δ

)

+
k

∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

,

when the parameter m is set appropriately:

m =
⌈

128

ǫ2
ln

k2

δ

⌉

= O

(

1

ǫ2
ln

k

δ

)

.

7 Case studies in reinforcement learning

This section identifies a number of KWIK-learnable environments for reinforcement-

learning (RL), each of which results in a sample-efficient algorithm for the corresponding

class of environments. We first introduce the basic notation, define the way we measure sam-

ple complexity in online RL, and then examines several prominent cases from the literature.
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7.1 Markov decision processes and reinforcement learning

In reinforcement learning (Sutton and Barto 1998), a learner tries to learn to maximize the

total reward it receives from an unknown environment through interaction. In the RL liter-

ature, the environment is often modeled as a Markov decision process or MDP (Puterman

1994), which is defined as a tuple: M = 〈S, A, T ,R,γ 〉, where: S is the state space, A

is the action space, T : S × A → P S is the unknown transition function, R : S × A → ℜ
is the unknown reward function, and γ ∈ (0,1) is the discount factor. Here, PS denotes

the set of probability distributions over S . If S is countable, we may define T (· | s, a) for

any (s, a) ∈ S × A as a probability mass function, so that T (s ′ | s, a) is understood to be

the probability of reaching the next state s ′ if action a is executed in state s. If S is un-

countable, T (· | s, a) is understood to be a probability density function. In most practical

situations, we may assume, without loss of generality, that R is a bounded function; namely,

R(s, a) ∈ [0,1] for all (s, a) ∈ S × A. An MDP is called finite if both the state and action

spaces are finite sets.

A stationary policy is a mapping from states to actions: π : S → A. Given a policy

π , we define the state-value function,5 V π (s), as the expected cumulative discounted re-

ward received by executing π starting from state s: V π (s) = E[
∑∞

t=1 γ t−1rt ], where rt is

the t -th reward obtained when following π from s. Similarly, the state–action value func-

tion, Qπ (s, a), is the expected cumulative reward received by taking action a in state s and

following π thereafter. To maximize the total rewards received from the environment, the

agent desires an optimal policy π∗ whose value functions, denoted by V ∗(s) and Q∗(s, a),

respectively, satisfy the conditions: V ∗ = maxπ V π and Q∗ = maxπ Qπ .

Given the full model of an MDP (i.e., the five-tuple M), a set of standard algorithms

exists for finding the optimal value function as well as the optimal policy, including linear

programming, value iteration, and policy iteration (Puterman 1994). However, if the transi-

tion and/or reward functions are unknown, the decision maker has to gather information by

interacting with the environment.

In a general reinforcement-learning setting which we call online RL, the agent chooses

actions in discrete timesteps t = 1,2,3, . . . . At every timestep t , the agent occupies a single

state, denoted st , and has to choose an action at ∈ A according to some policy, and ob-

serves a sampled transition: the next state it occupies is drawn from the transition function,

st+1 ∼ T (· | st , at ), and the immediate reward it receives is rt = R(st , at ). It is straightfor-

ward to generalize our results to the case where rewards are stochastic. We call the tuple

〈st , at , rt , st+1〉 a transition, which can be used as a training example for learning the reward

and transition functions of the MDP. The learning agent may update its policy upon ob-

serving this transition. Therefore, an online RL algorithm can be viewed as a nonstationary

policy that maps the sequence of transitions it observes so far to an action-selection rule. In

contrast to stationary policies, nonstationary policies choose actions not just based on the

current state, but also on previously experienced states, actions, and rewards.

In the rest of this section, we focus on a class of RL algorithms known as model-based

approaches (see, e.g., Moore and Atkeson 1993). These algorithms essentially learn the tran-

sition and reward functions of the underlying MDP, based on observed transitions, and then

5For MDPs with infinite (e.g., continuous) state or action spaces, certain measure-theoretic assumptions are

needed to guarantee the quantities we use, such as value functions and the Bellman operator (defined in

Appendix C), are well-defined. This is beyond the scope of our paper, and interested readers are referred to

Bertsekas and Shreve (1978) for details. Such assumptions are made implicitly in the rest of our paper.
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use MDP solutions such as dynamic programming to compute an optimal policy of the ap-

proximate MDP M̂ . It is known that (through the various simulation lemmas in the literature

such as Kearns and Singh (2002) as well as Lemma 9 in Appendix C) if the transition and

reward functions of M̂ are close to those of M , the optimal policy of M̂ will be near-optimal

in M . In model-based RL algorithms, therefore, the main challenge in learning is often that

of learning the true MDP’s transition and reward functions.

7.2 Model-based PAC-MDP reinforcement learning

Building on Kakade (2003)’s definition of sample complexity of exploration, Strehl et al.

(2006a) formalizes the notion of PAC-MDP that can be viewed as an RL analogue to the

PAC framework for supervised learning. Here, an RL algorithm is viewed as a non-stationary

policy that takes actions based on history (including previously visited states and received

rewards) and the current state. The number of timesteps during which this non-stationary

policy is not near-optimal in the whole execution is called the algorithm’s sample complexity

of exploration (Kakade 2003). An algorithm is called PAC-MDP if its sample complexity

is polynomial in relevant quantities, including the parameters that define the description

complexity of the MDP, with high probability.

At the core of all existing model-based PAC-MDP algorithms such as Rmax (Brafman

and Tennenholtz 2002; Kakade 2003) lies the idea of distinguishing between known states—

states where the transition distribution and rewards can be accurately inferred from observed

transitions—and unknown states. An important observation is that, if a class of MDPs can be

KWIK-learned, then there exists an Rmax-style algorithm that is PAC-MDP for this class of

MDPs. Theorem 3 formalizes this observation. The proof (in Appendix C) is through con-

struction of a PAC-MDP algorithm called KWIK-Rmax that generalizes Rmax from finite

MDPs to arbitrary MDPs. The proof relies on a form of the simulation lemma (Lemma 9),

which relates value function approximation error to model approximation error, and on a

generic PAC-MDP theorem given by Strehl et al. (2006a).6

Definition 2 Fix the state space S , action space A, and discount factor γ .

1. Define X = S × A, YT = P S , and ZT = S . Let HT ⊆ (X → YT ) be a set of transition

functions of an MDP. HT is (efficiently) KWIK-learnable if in the accuracy requirement

of Definition 1, |T̂ (· | s, a) − T (· | s, a)| is interpreted as the ℓ1 distance:

|T̂ (· | s, a) − T (· | s, a)| :=
{

∑

s′∈S
|T̂ (s ′ | s, a) − T (s ′ | s, a)| if S is countable,

∫

s′∈S
|T̂ (s ′ | s, a) − T (s ′ | s, a)|ds ′ otherwise.

2. Define X = S × A and YR = ZR = [0,1]. Let HR ⊆ (X → YR) be a set of reward

functions of an MDP. HR is (efficiently) KWIK-learnable if in the accuracy requirement

of Definition 1, |R̂(s, a) − R(s, a)| is interpreted as the absolute value.

3. Let M = {M = 〈S, A, T ,R,γ 〉 | T ∈ HT ,R ∈ HR} be a class of MDPs. M is (effi-

ciently) KWIK-learnable if both HT and HR are (efficiently) KWIK-learnable.

Theorem 3 Let M be a class of MDPs with state space S and action space A. If M can be

(efficiently) KWIK-learned by algorithms AT (for transition functions) and AR (for reward

6A slightly improved version is given in Theorem 21 of Li (2009), where the term ln 1/δ is additive instead

of multiplicative (as in Theorem 3).
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functions) with respective KWIK bounds BT and BR , then the KWIK-Rmax algorithm is

PAC-MDP. In particular, if the following parameters are used,

ǫT = ǫ(1 − γ )2

16
, ǫR = ǫ(1 − γ )

16
, ǫP = ǫ(1 − γ )

24
, δT = δR = δ

4
,

then the sample complexity of exploration of KWIK-Rmax is

O

(

BT (ǫ(1 − γ )2, δ) + BR(ǫ(1 − γ ), δ)

ǫ(1 − γ )2
ln

1

δ
ln

1

ǫ(1 − γ )

)

.

The algorithm KWIK-Rmax (Algorithm 3) relies on two KWIK algorithms, AT (using

parameters ǫT , δT ) and AR (using parameters ǫR, δR), for KWIK-learning the MDP’s tran-

sition and reward functions, respectively, and maintains an estimate of the MDP called the

empirical known state–action MDP (Strehl et al. 2006a). The estimate distinguishes two

types of state–actions: for state–actions where both AT and AR can make valid predictions,

the predictions must be accurate with high probability (the accuracy requirement for KWIK

algorithms) and thus their dynamics are known; for other state–actions, their transition and

reward functions cannot be accurately estimated and thus they are unknown. By assigning

the largest possible reward (which is 1) to all unknown state–actions and let them self-loop,

the agent is encouraged to explore these state–actions unless the probability of reaching

them is too small. When the probability of reaching unknown states is small, we can show

near-optimality of the greedy policy. Since the number of visits to an unknown state–action

is polynomial in relevant quantities (the sample complexity requirement for KWIK algo-

rithms), the number of timesteps the algorithm does not behave near-optimally is also a

Algorithm 3 KWIK-Rmax

0: Inputs: S , A, γ , AT (with parameters ǫT , δT ), AR (with parameters ǫR, δR), ǫP

1: for all timesteps t = 1,2,3, . . . do

2: // Update the empirical known state–action MDP M̂ = 〈S, A, T̂ , R̂, γ 〉
3: for all (s, a) ∈ S × A do

4: if AT (s, a) = ⊥ or AR(s, a) = ⊥ then

5: T̂ (s ′|s, a) =
{

1 if s ′ = s

0 otherwise
and R̂(s, a) = 1.

6: else

7: T̂ (·|s, a) = AT (s, a) and R̂(s, a) = AR(s, a).

8: end if

9: end for

10: Compute a near-optimal value function Qt of M̂ such that |Qt (s, a)−Q∗
M̂

(s, a)| ≤ ǫP

for all (s, a), where Q∗
M̂

is the optimal state–action value function of M̂ .

11: Observe the current state st , take action at = arg maxa∈A Qt (st , a), receive reward rt ,

and transition to the next state st+1.

12: if AT (st , at ) = ⊥ then

13: Inform AT of the sample (st , at ) → st+1.

14: end if

15: if AR(st , at ) = ⊥ then

16: Inform AR of the sample st → rt .

17: end if

18: end for
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polynomial. This intuition is originally from Rmax (Brafman and Tennenholtz 2002) and

the sample-complexity proof of Kakade (2003), and is also the basic idea of our PAC-MDP

proof in Appendix C.

A few caveats are in order regarding practical issues when implementing Algorithm 3:

1. The definitions of T̂ and R̂ are conceptual rather than operational. For finite MDPs, one

may represent T̂ by a matrix of size O(|S|2|A|) and R̂ by a vector of size O(|S||A|).
For structured MDPs, more compact representations are possible. For instance, MDPs

for some linear dynamical systems can be represented by matrices of finite dimension

(Sects. 7.5 and 7.6), and factored MDPs can be represented by a dynamic Bayes net

(Sect. 7.7).

2. It is unnecessary to update T̂ and R̂ and recompute Qt for every timestep t . The known

state–action MDP M̂ (and thus Q∗
M̂

and Qt ) remains unchanged unless some unknown

state–action becomes known. Therefore, one may update M̂ and Qt only when AT or AR

obtain new samples in lines 13 or 16.

3. It is unnecessary to compute Qt for all (s, a). In fact, it suffices to guarantee that Qt is

ǫP -accurate in state st : |Qt (st , a) − Q∗
M̂

(st , a)| < ǫP for all a ∈ A. This kind of local

planning often requires less computation than global planning.

4. Given the approximate MDP M̂ and the current state st , the algorithm computes a near-

optimal action for st . This step can be done efficiently using dynamic programming for

finite MDPs. In general, however, doing so is computationally expensive (Chow and

Tsitsiklis 1989). Fortunately, recent advances in approximate local planning have made

it possible for large-scale problems (Kearns et al. 2002; Kocsis and Szepesvári 2006).

After explaining why existing computational learning models, PAC and MB, are not ad-

equate for sample-efficient reinforcement learning in Sect. 7.3, the remaining subsections

consider various subclasses of MDPs and unify most existing PAC-MDP algorithms using

the KWIK framework developed in previous sections. Section 7.4 considers finite MDPs

without considering generalization across states, while Sects. 7.5–7.7 show how generaliza-

tion can be combined with KWIK to make use of structural assumptions of corresponding

MDP classes to obtain more efficient RL algorithms. Finally, Sect. 7.8 shows how we may

obtain a PAC-MDP algorithm for factored-state MDPs with unknown factorization struc-

tures by streamlining four KWIK algorithms we have developed, resulting in a novel algo-

rithm that is significantly better than the state-of-the-art result. In all these cases, we focus on

learning the transition function and assume the reward function is known. The extension to

KWIK-learning reward functions is straightforward. The results are summarized in Table 1.

To simplify exposition and focus on application of KWIK in MDP learning, we avoid

direct analysis of how to KWIK-learn the transition functions in terms of the ℓ1 distance in

Sects. 7.5 and 7.6, as required by Theorem 3. However, the discrepancy functions we use in

those cases are both polynomially equivalent to the ℓ1 distance. More details are found in

the original papers (Strehl and Littman 2008; Brunskill et al. 2009).

7.3 The inadequacies of PAC and MB for RL

Given the relation between KWIK and PAC-MDP RL in the previous subsection, a natural

question is whether the existing computational learning models such as PAC and MB are

sufficient for MDP learning in reinforcement learning. We show that in general they are

not. The argument against PAC stems from its distributional assumption: PAC assumes in-

dependently, identically distributed samples, which is clearly not true in online RL except

quite restricted cases. Instead, the agent’s shifting policy determines the samples it sees.
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Table 1 KWIK bounds and the component KWIK algorithms for a number of prominent MDP classes. Refer

to the text for definitions of the quantities in the KWIK bounds

Case Subalgorithms KWIK Bound

Finite input partition O( n2m

ǫ2 ln nm
δ

)

← dice learning

Linear output combination Õ(
n2
S
n

ǫ4 )

Dynamics ← noisy linear regression

Normal Offset input partition O(
n2
τ m2n8

ǫ4δ
ln

nτ mn
δ

)

← output combination

← coin learning

Factored with cross product O( n3mDND+1

ǫ2 ln nmN
δ

)

Known P ← input partition

← dice learning

Factored with output combination O( nD+3mDND+1

ǫ2 ln nmN
δ

)

Unknown P ← noisy union

← input partition

← dice learning

This policy-driven sampling of state–actions is most conveniently viewed in the adversarial

setting, which is outside the scope of PAC, but within the realm of MB.

MB algorithms, however, are not necessarily capable of on-demand labeling of state–

actions as known or unknown, a pivotal requirement for existing PAC-MDP algorithms. For

instance, consider an exponentially large MDP where each state corresponds to a config-

uration of n Boolean variables and rewards are determined by a single conjunction over

the current variable configuration. More specifically, there are two actions a1, which flips

the rightmost bit, and a2, which shifts the bits left. If the state’s configuration satisfies the

unknown conjunction, either action produces a reward of 1, otherwise the reward is −1.

Assume, for the sake of argument, the transition function is known. One can learn about the

reward function by visiting all 2n states, but an MB algorithm that defaults to “false” (c.f.,

Sect. 3.2) can learn conjunctions with only n + 1 mistakes, so it is tempting to adopt an

MB perspective in learning the rewards. But this will not translate directly to a PAC-MDP

algorithm because there is no basis for guiding exploration. At any time, states that have

actually been experienced as “false” (−1 reward) and those that have never been explored

(unknown reward) cannot be distinguished. They are both simply labeled “false”. Thus, the

agent could end up revisiting (“exploring”) the same “false” state over and over, expecting

a different reward. One could start labeling the states that have been explored, but this is by

definition a KWIK algorithm!

In contrast to MB and PAC, KWIK embodies the conditions sufficient for the model

learning component of a model-based PAC-MDP algorithm. The KWIK framework harbors

no distributional assumptions, and explicitly designates the known and unknown regions of

the state/action space. As we saw in Sect. 3.2, this limits the models that can be efficiently

learned to a proper subset of those that can be learned by MB, but we will show in the

remaining subsections that this set still covers a large number of natural and interesting

domain types from the reinforcement-learning literature.
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7.4 KWIK-learning finite MDPs

Finite MDPs have received the bulk of the attention in the RL literature because of their

mathematical simplicity. A finite MDP M = 〈S, A, T ,R,γ 〉 consists of n = |S| states and

m = |A| actions. For each combination of state (s) and action (a) and next state (s ′), the

transition function returns a probability, denoted T (s ′ | s, a). As the reinforcement-learning

agent moves around in the state space, it observes state–action–next-state transitions and

must predict the probabilities for transitions it has not yet observed. In the model-based

setting, an algorithm learns a mapping from the size nm input set of state–action combina-

tions to multinomial distributions over the next states via multinomial observations. Thus,

the problem can be solved via input partition over a set of individual probabilities

learned via dice learning. The resulting KWIK bound is

B(ǫ, δ) = O

(

n2m

ǫ2
ln

nm

δ

)

.

This approach is precisely what is found in most sample-efficient RL algorithms in the

literature (Kearns and Singh 2002; Brafman and Tennenholtz 2002; Kakade 2003; Strehl

et al. 2006a). More recently, Szita and Szepesvári (2010) propose a variant of Rmax and a

refined analysis that results in a linearithmic dependence on n, matching the best previous

bound (c.f., Sect. 7.9).

We note that a similar idea can be applied to MDPs with infinite state and action spaces,

provided that the MDPs satisfy the local modeling assumption (Kakade et al. 2003). Intu-

itively, the dependence on sampling each state–action m times in the finite case is replaced

by a requirement of gathering some m samples for each action in each partition of the space

induced by the local modeling assumption. The KWIK bound for learning this type of MDPs

is in general dependent on the smallest number of partitions (a.k.a. the covering number),

rather than |S|.

7.5 KWIK-learning continuous MDPs with linear dynamics

In many robotics and control applications, the systems being manipulated possess infinite

state spaces and action spaces, but their dynamics are governed by a system of linear equa-

tions (see, e.g., Sontag 1998). Our model formulation is based on Strehl and Littman (2008),

and is slightly different from Abbeel and Ng (2005). Here, S ⊆ ℜnS and A ⊆ ℜnA are the

state and action spaces, respectively. The transition function T is a multivariate normal dis-

tribution:

T (· | s, a) = N
(

Fφ(s, a), σ 2I
)

,

where φ : ℜnS+nA → ℜn is a basis function satisfying ‖φ(·, ·)‖ ≤ 1, F ∈ ℜnS×n is a matrix,

σ 2 is some positive number, and I ∈ ℜnS×nS is the identity matrix. We assume φ and σ 2 are

given, but F is unknown.

For such linearly parameterized transition functions, the expectation of each component

of the next state is linear in the feature of the current state–action, and the coefficients corre-

spond to the numbers in the corresponding rows in F . If we define the discrepancy metric in

ℜnS as the ℓ2 norm, then the transition function of the class of linearly parameterized MDPs

can be KWIK-learned via output combination over the nS state components using

α = 1/
√

nS , each of which can be KWIK-learned by noisy linear regression.
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The resulting KWIK bound is

B(ǫ, δ) = Õ

(

n2
Sn

ǫ4

)

.

7.6 KWIK-learning typed MDPs with normal offset dynamics

The linear transition model above is a class of parameterized transition functions for con-

tinuous MDPs. A related class is called type-conditional dynamics (see, e.g., Leffler et al.

2007), where the transition functions are determined by a type τ(s) assigned to each state s

and action a.

Here, we consider a specific subset of this class, adopted from Brunskill et al. (2008),

where S ⊆ ℜn and the next-state distribution is given by the following multivariate normal

distribution:

T (· | s, a) ∼ N
(

s + μτ(s)a,�τ(s)a

)

,

where μτ(s)a ∈ ℜn and �τ(s)a ∈ ℜn×n are the mean and covariance matrix of the normal

distribution for the type–action pair (τ (s), a). In other words, the offset of states is normally

distributed. We assume the number of actions, denoted m = |A|, and the number of types,

denoted nτ = |{τ(s) | s ∈ S}|, are both finite.

An example domain where such dynamics may arise is robot navigation across varying

terrain. The distribution of the offset of the robot’s position after taking an action (such as

turn-left or go-forward) depends on the this action as well as the type of the terrain (such as

sand, wood, or ice, etc.). In many real-world applications, the number of types is often small

although the number of states can be astronomically large or even infinite. Typed offset

dynamics, therefore, provide a compact way to represent the MDP. More motivations are

found in Brunskill et al. (2009).

For each type–action (τ, a), the components in μτa and �τa can be interpreted as means

of observations. For instance, assume that we have acquired a sample transition, (s, a, r, s ′),
then by definition

μτ(s)a[i] = Es′∼T (·|s,a)

[

s ′[i] − s[i]
]

for all i = 1,2, . . . , n. Therefore, we may decompose the problem of KWIK-learning the

offset means using input partition over all type–actions. For each (τ, a) pair, learn-

ing μτa is turned into one of KWIK-learning the mean of n random variables via output

combination using α = 1, each of which can be solved by coin learning.7 A sim-

ilar reduction can be applied to KWIK-learn the covariance matrix �τa . To ensure the total

variance between the true Gaussian distribution, N (μτa,�τa), and the estimated distribu-

tion, N (μ̂τ,a, �̂τ,a), is at most ǫ, the KWIK bound is

B(ǫ, δ) = Õ

(

n2
τm

2n8

λ2
minǫ

4δ

)

,

where λmin is the smallest singular value of the covariance matrix, �τ,a . A full derivation of

this KWIK bound is provided in Li (2009).

7Since a normally distributed random variable is unbounded, some tricks are necessary. Details are found in

Brunskill et al. (2009).
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7.7 KWIK-learning factored-state MDPs with known structure

In many applications, the MDP’s state space is most naturally represented as the cross prod-

uct of subspaces, each of which corresponds to a state variable. Under such conditions,

dynamic programming and reinforcement learning often face the “curse of dimensional-

ity” (Bellman 1957), which says that the number of states in the MDP is exponential in

the number of state variables, rendering most finite MDP-based learning/optimization al-

gorithms intractable. Factored-state representations (Boutilier et al. 1999) are compact rep-

resentations of MDPs that avoid explicitly enumerating all states when defining an MDP.

Although planning in factored-state MDPs remains hard in the worst case, their compact

structure can reduce the sample complexity of learning significantly since the number of

parameters needed to specify a factored-state MDP can be exponentially smaller than in the

unstructured case.

In a factored-state MDP, let m = |A| be the number of actions; every state is a vector con-

sisting of n components: s = (s[1], s[2], . . . , s[n]) ∈ S . Each component s[i] is called a state

variable and can take values in a finite set Si . The whole state space S is thus S1 × · · · × Sn.

Without loss of generality, assume N = |Si | for all i and thus |S| = Nn. The transition

function is factored into the product of n transition functions, one for each state variable:

T (s ′ | s, a) =
n

∏

i=1

Ti(s
′[i] | s, a).

In other words, the values of all the next-state variables are independent of each other, con-

ditioned on the current state–action (s, a). Note that one can also define a DBN with “syn-

chronous” edges, denoting a dependency between factor values at the same timestep. For

simplicity, we do not consider such dependencies in our analysis, but the results are easily

extended to this case by (at most) doubling the number of factors being considered as possi-

ble parents (though not the actual number of parents for any given node). Furthermore, we

assume that the distribution Ti(· | s, a) depends on a small subset of {s[1], s[2], . . . , s[n]},
denoted P(i). This assumption is valid in many real-life applications. Let D be the largest

size of Pi : D = maxi |Pi |. Although we treat D as a constant, we include D explicitly in the

KWIK bounds to show how D affects learning efficiency.

Using the quantities defined above, the transition function can be rewritten as

T (s ′ | s, a) =
n

∏

i=1

Ti(s
′[i] | P(i), a).

An advantage of this succinct representation is that, instead of representing the complete

conditional probability table, Ti(· | s, a), which has Nnm entries, we only need to use the

smaller Ti(· | P(i), a), which has at most NDm entries. If D ≪ n, we are able to achieve

an exponentially more compact representation. This kind of transition functions can be rep-

resented as dynamic Bayesian networks or DBNs (Dean and Kanazawa 1989). Here, we

consider the case where the structure (P(i)) is known a priori and show how to relax this

assumption in Sect. 7.8.

The reward function can be represented in a similar way as the sum of local reward

functions. We assume, for simplicity, that R(s, a) is known and focus on KWIK-learning

the transition functions. Our algorithm and insights still apply when the reward function is

unknown.
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Transitions in a factored-state MDP can be thought of as mappings from vectors

(s[1], s[2], . . . , s[n], a) to vectors (s ′[1], s ′[2], . . . , s ′[n]). Given known dependencies,

cross product with α = 1/n can be used to learn each component of the transition

function.8 Each component is, itself, an instance of input partition applied to dice

learning. This three-level KWIK algorithm provides an approach to learn the transition

function of a factored-state MDP with the following KWIK bound:

B(ǫ, δ) = O

(

n3mDND+1

ǫ2
ln

nmN

δ

)

.

This insight can be used to derive the factored-state-MDP learning algorithm used by Kearns

and Koller (1999).

7.8 KWIK-learning factored-state MDPs with unknown structures

Without known structural dependencies of the DBN, learning a factored-state MDP is more

challenging. Strehl et al. (2007) showed that each possible dependence structure can be

viewed as a separate hypothesis and provided an algorithm for learning the dependencies in

a factored-state MDP while learning the transition probabilities. The resulting KWIK bound

is super-quadratic in k = �(2D), where D, as before, is the maximum in-degree of the true

DBN. We can construct a conceptually simpler algorithm for this problem using components

introduced throughout this paper. As a whole, the algorithm can be viewed as a four-level

KWIK algorithm with a cross product at the top to decompose the transitions for the

separate components of the factored-state representation. Each of these n individual factor

transitions is learned using a separate copy of the noisy union algorithm. Within each

of these, a union is performed over the
(

n

D

)

possible parent configurations for the given

state component. As in the “known structure” case, an input partition algorithm is

used for each of those possible configurations to handle the different combinations of parent

values and action, and finally dice learning is used to learn the individual transition

probabilities themselves. The resulting KWIK bound is

B(ǫ, δ) = O

(

nD+3mDND+1

ǫ2
ln

nmN

δ

)

.

Note that our noisy union component is conceptually simpler, significantly more

efficient (k lnk vs. k2 lnk dependence on k =
(

n

D

)

), and more generally applicable than the

similar procedure employed by Strehl et al. (2007). Thus, our improvement is exponential in

D and polynomial in n. Preliminary studies show that the new algorithm works much better

in practice (Diuk et al. 2009).

7.9 Model-free PAC-MDP reinforcement learning

The previous subsections discuss how to create model-based PAC-MDP RL algorithms with

help of KWIK algorithms for various MDP subclasses. While model-based algorithms often

have better sample complexity in practice, they usually maintain an implicit model of the

unknown MDP and have to repeatedly solve this approximate MDP (such as in KWIK-

Rmax) to obtain a value function or policy for taking actions.9 Despite recent advances

8Here, this value of α suffices to guarantee that the combined transition distribution differs from the true

transition distribution by ǫ in terms of ℓ1-distance; see Li (2009) for a proof.

9For finite MDPs, it is possible to replace exact planning by incremental planning (Strehl et al. 2006a), which

is much more efficient.
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in approximate planning in MDPs (see, e.g., Kocsis and Szepesvári 2006), solving MDPs

remains challenging in general.

In contrast, model-free algorithms directly learn optimal value functions, from which

a greedy policy can be easily computed. These algorithms are therefore much more effi-

cient in terms of both time and space. The first model-free PAC-MDP algorithm for fi-

nite MDPs, known as delayed Q-learning (Strehl et al. 2006b, 2009), is a variant of

Q-learning that carefully maintains an optimistic value function and takes greedy ac-

tions in all timesteps. The algorithm requires only �(nm) space complexity and O(lnm)

per-step time complexity to achieve a sample complexity of Õ(nm/ǫ4(1 − γ )8), where n

and m are the numbers of states and actions. Recently, it was shown that the dependence

on n is optimal (Li 2009; Strehl et al. 2009). In contrast, the best existing computational

complexity is O(n lnm) (Strehl et al. 2006a).

Despite the nice computational advantages of model-free algorithms, these algorithms

are unfortunately harder to analyze. In a recent work by Li and Littman (2010), a finite-

horizon reinforcement learning problem is reduced to a series of KWIK regression problems

so that we can obtain a PAC-MDP model-free RL algorithm as long as the individual KWIK

regression problems are solvable. However, it remains unclear how to devise a KWIK-based

model-free RL algorithm in discounted problems without first converting it into a finite-

horizon one.

8 Conclusion and future work

We described the KWIK (“knows what it knows”) model of supervised learning, which

identifies and generalizes a key model learning component common to a class of algorithms

for efficient exploration. We provided algorithms for a set of basic hypothesis classes given

deterministic and noisy observations as well as methods for composing hypothesis classes

to create more complex algorithms. One example algorithm consisted of a four-level decom-

position of an existing learning algorithm from the reinforcement-learning literature.

By providing a set of example algorithms and composition rules, we hope to encourage

the use of KWIK algorithms as a component in machine-learning applications as well as spur

the development of novel algorithms. Such a direction has seen promising results. Brunskill

et al. (2009) successfully applied the algorithm in Sect. 7.6 to a robot navigation problem.

More recently, an associative reinforcement learning algorithm motivated by the KWIK

algorithm of Walsh et al. (2009) has showed encouraging results in a challenging online

news article recommendation problem on Yahoo! Frontpage (Li et al. 2010).

The study in the present paper raises several important theoretical directions. We list

seven of them to conclude the paper. First, we would like to extend the KWIK framework to

the “unrealizable” case by removing the assumption that the hypothesis class H contains the

true hypothesis h∗. This is sometimes called agnostic learning (Kearns et al. 1994). We are

able to provide a general-purpose KWIK algorithm when H is finite, resulting in a KWIK

bound of O(|H|),10 but it remains open how to handle unrealizable target functions with

infinite-size hypothesis classes.

Second, it is not clear how to characterize the dimension, dim(H), of a hypothesis class

H in a way that can be used to derive KWIK bounds. For finite hypothesis classes, the

10This bound can be achieved by a variation of enumeration. In this variant, Ĥ is the set of hypotheses

that have been within ǫ-accuracy of the observed outputs, and the algorithm returns ⊥ if the range of L̂ is

larger than 2ǫ and otherwise it returns the midpoint of this set.
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cardinality of H is a reasonable choice, as is used in enumeration, but a more general

definition is needed for infinite hypothesis classes. Similar efforts in the concept-learning

literature (Angluin 2004) may provide useful insights for this problem.

Third, it is important to find a general scheme for taking a KWIK algorithm for a deter-

ministic class and updating it to work in the presence of noise. In the n-dimensional linear

functions learning problem, we have seen that the KWIK bound grows from O(n) to Õ(n3)

by the algorithms of Strehl and Littman (2008) and Walsh et al. (2009). In general, we ex-

pect the KWIK bound to increase significantly when noise is present unless the environment

is oblivious (Cesa-Bianchi et al. 2009).

Fourth, we would like to explore the relationship between KWIK and other online learn-

ing models. For instance, the selective sampling and label efficient prediction models share

some similarity with KWIK and we might be able to modify algorithms in these frameworks

to satisfy the KWIK criteria.

Fifth, this paper only considers linear approximation architectures. It is possible that

nonlinear architectures may be preferred in some cases given their greater representational

power. A common approach to introducing nonlinearity in practice is to use a function that

is linear in nonlinear features, but a direct analysis of nonlinear architectures in KWIK could

be useful.

Finally, it is of theoretical as well as practical interest to utilize prior information in

KWIK. Prior information may be, for instance, a prior distribution of h∗ ∈ H. Ideally, a

KWIK algorithm that makes use of such prior information should still satisfy the require-

ments in Definition 1, but may enjoy a significantly smaller KWIK bound by leveraging an

informative prior.
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Appendix A: Proof of Theorem 1

A.1 Proof of Lemma 1

We define the random variables Yi = (zi − θ̂Txi)
2 for i = 1, . . . ,m. Let Y =

∑m

i=1 Yi . Note

that E[Yi | xi] = Var[zi − θ̂Txi | xi] + E[zi − θ̂Txi | xi]2 = σ 2
i + [(θ − θ̂ )Txi]2. In the first

step we used the identity E[X2] = Var[X]+ E[X]2 for random variable X. The second step

follows from the assumption that E[zi | xi] = θTxi . We have shown that

E[Yi | xi] = σ 2 +
(

(θ − θ̂ )Txi

)2
. (4)

To bound the absolute value of Yi , we use the identity (consequence of the Cauchy-

Schwartz inequality) |aTb| ≤ ‖a‖ · ‖b‖ for any two vectors a, b and our assumptions that

|zi | ≤ 1, ‖xi‖ ≤ 1, and ‖θ̂‖ ≤ 1 for all i = 1, . . . ,m. We have that |Yi | = (zi − θ̂Txi)
2 ≤
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(1 + ‖θ̂‖‖xi‖)2 ≤ 4. We then apply Hoeffding (1963)’s inequality11 to yield:

Pr (|Y − E[Y ]| ≥ α) ≤ 2 exp

(

− α2

8m

)

.

Here we use E[Y ] to denote
∑m

i=1 E[Yi | xi]. Setting the right-hand side of the above equa-

tion to be at most δ yields α ≥
√

8m ln(2/δ). We have shown that

Pr
(

|Y − E[Y ]| ≥
√

8m ln(2/δ)
)

≤ δ.

Now, by (4),

|Y − E[Y ]| =
∣

∣

∣

∣

∣

Y −
m

∑

i=1

E[Yi | xi]
∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

Y −
m

∑

i=1

σ 2
i −

m
∑

i=1

(

(θ − θ̂ )Txi

)2

∣

∣

∣

∣

∣

.

Combining these equations shows that

∣

∣

∣

∣

∣

Y −
m

∑

i=1

σ 2
i −

m
∑

i=1

(

(θ − θ̂ )Txi

)2

∣

∣

∣

∣

∣

<
√

8m ln(2/δ)

holds with high probability. This equation gives

−
√

8m ln(2/δ) < Y −
m

∑

i=1

σ 2
i −

m
∑

i=1

(

(θ − θ̂ )Txi

)2
.

The random variables Yi model the squared errors for predictions of zi given xi using pa-

rameter vector θ̂ . Similarly, we define random variables Zi = (zi − θTxi)
2 and Z =

∑m

i=1 Zi

that model the squared errors using the “correct” parameter vector θ . Using the previous

argument we have that, with probability at least 1 − δ,

Z −
m

∑

i=1

σ 2
i ≤

√

8m ln(2/δ).

We can rewrite the two previous equations to yield

Y >

m
∑

i=1

σ 2
i +

m
∑

i=1

(

(θ − θ̂ )Txi

)2 −
√

8m ln(2/δ),

and

Z ≤
m

∑

i=1

σ 2
i +

√

8m ln(2/δ).

11Hoeffding’s bound is often applied to independent random variables. In our case, the random variables Yi

are not independent, however Yi is conditionally independent of Yj for all j < i given xi so the sequence

Yi − E[Yi | xi ] for i = 1, . . . ,m is a martingale difference sequence (with respect to a filtration based on

the xi ) and thus Hoeffding’s bound applies.
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Hence, combining these two inequalities and applying the union bound, we have that

Y − Z >

m
∑

i=1

(

(θ − θ̂ )Txi

)2 − 2
√

8m ln(2/δ),

holds with probability at least 1 − 2δ. Reorganizing terms and using the assumption in the

lemma, we have

Y > Z +
m

∑

i=1

(

(θ − θ̂ )Txi

)2 − 2
√

8m ln(2/δ) > Z + w =
m

∑

i=1

(zi − θTxi)
2 + w.

A.2 Proof of Lemma 2

First, note that since the singular vectors {ui} (defined in Sect. 5) are orthonormal, x can

be written as a linear combination of them by x =
∑n

i=1(u
T
i x)ui . Now claim the following

equality holds:

x = XTq̄ +
(

n
∑

i=k+1

uiu
T
i

)

x, (5)

where q̄ = XŪ�̄−1ŪTx. To see this, we have to show
∑k

i=1(u
T
i x)ui = XTq̄:

XTq̄ = XTXŪ�̄−1ŪTx

= U�UTŪ�̄−1ŪTx

=
n

∑

j=1

(

λjuju
T
j

)

k
∑

i=1

(

λ−1
i uiu

T
i

)

x

=
n

∑

j=1

k
∑

i=1

(

λj

λi

uju
T
juiu

T
i

)

x

=
k

∑

i=1

uiu
T
i x,

where the first step uses the definition of q̄ , the second uses singular value decomposition of

XTX (as defined in Sect. 5), the third uses the fact that � and �̄ are diagonal matrices, the

fourth is just changing the order of two summations, and the last uses the fact that uT
jui is

identity for i = j and zero otherwise. Thus, we have proved (5).

Next, by two applications of the Cauchy-Schwartz inequality, we have that

∣

∣(θ − θ̂ )Tx
∣

∣ =
∣

∣

∣

∣

∣

(θ − θ̂ )T

(

XTq̄ +
(

n
∑

i=k+1

uiu
T
i

)

x

)∣

∣

∣

∣

∣

≤ ‖q̄‖ · ‖X(θ − θ̂ )‖ + ‖θ − θ̂‖ ·
∥

∥

∥

∥

∥

(

n
∑

i=k+1

uiu
T
i

)

x

∥

∥

∥

∥

∥

.
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Since ‖θ‖ ≤ 1 and ‖θ̂‖ ≤ 1, we have ‖θ − θ̂‖ ≤ ‖θ‖ + ‖θ̂‖ ≤ 2. Therefore, we have shown

∣

∣(θ − θ̂ )Tx
∣

∣ ≤ ‖q̄‖ · ‖X(θ − θ̂ )‖ + 2

∥

∥

∥

∥

∥

(

n
∑

i=k+1

uiu
T
i

)

x

∥

∥

∥

∥

∥

.

For any matrix M , let ‖M‖ denote the spectral norm of M (largest singular value

of M). Note that ‖(
∑n

i=k+1 uiu
T
i )x]‖ = ‖[uk+1 · · ·un][uk+1 · · ·un]Tx‖ ≤ ‖[uk+1 · · ·un]‖ ·

‖[uk+1 · · ·un]Tx‖ ≤ ‖[uk+1 · · ·un]Tx‖ = ‖ū‖. The second inequality results from the fact

that the maximum singular value of the matrix [uk+1 · · ·un] is at most 1. Using the fact that

‖X(θ − θ̂ )‖ = �E(θ̂) and combining the previous derivations yields the desired result.

A.3 Proof of Theorem 1

We will need the following lemma:

Lemma 3 Suppose xi ∈ ℜn satisfy ‖xi‖ ≤ 1 and ai ∈ [−1,1] for i = 1, . . . ,m. Let θ1, θ2 ∈
ℜn be two vectors satisfying ‖θ1‖ ≤ 1 and ‖θ2‖ ≤ 1. Then,

∣

∣

∣

∣

∣

m
∑

i=1

(

ai − θT
1 xi

)2 −
m

∑

i=1

(

ai − θT
2 xi

)2

∣

∣

∣

∣

∣

≤ 4m‖θ1 − θ2‖.

Proof

∣

∣

∣

∣

∣

m
∑

i=1

(

ai − θT
1 xi

)2 −
m

∑

i=1

(

ai − θT
2 xi

)2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

m
∑

i=1

(

(

ai − θT
1 xi

)2 −
(

ai − θT
2 xi

)2
)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

m
∑

i=1

(

a2
i − 2(θT

1 xi)ai + (θT
1 xi)

2 − a2
i + 2(θT

2 xi)ai − (θT
2 xi)

2
)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

m
∑

i=1

(

2ai(θ2 − θ1)
Txi + (θT

1 xi)
2 − (θT

2 xi)
2
)

∣

∣

∣

∣

∣

≤
m

∑

i=1

|2ai(θ2 − θ1)
Txi | +

m
∑

i=1

∣

∣(θT
1 xi)

2 − (θT
2 xi)

2
∣

∣

≤
m

∑

i=1

2|ai | · ‖θ2 − θ1‖ · ‖xi‖ +
m

∑

i=1

∣

∣(θT
1 xi)

2 − (θT
1 xi)(θ

T
2 xi) + (θT

2 xi)(θ
T
1 xi) − (θT

2 xi)
2
∣

∣

≤ 2m‖θ2 − θ1‖ +
m

∑

i=1

(

|θT
1 xi | · ‖θ1 − θ2‖ · |xi | + |θT

2 xi | · ‖θ1 − θ2‖ · |xi |
)

≤ 2m‖θ2 − θ1‖ + 2m‖θ2 − θ1‖
≤ 4m‖θ2 − θ1‖. �

The following technical lemma will be used in the proof.
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Lemma 4 Let m be a positive integer, and a and b be positive real numbers.

1. If m > 2a lna, then m > a lnm; and

2. If m ≤ a lnm + b, then m ≤ 2a lna + 2b.

Proof The first part is proved by Fong (1995b). For the second part, the inequality m ≤
a lnm + b can be written as m′ ≤ a′ lnm′, where m′ = meb/a and a′ = aeb/a . Using the con-

trapositive of the first part, we have m′ ≤ 2a′ lna′, which finishes the proof immediately. �

We are now ready to prove the theorem.

Proof of Theorem 1 For any real number τ ∈ [0,1] let �τ denote the set of O((
√

n/τ)n)

representatives θ ∈ [0,1]n chosen by uniform discretization so that for any θ ′ ∈ [0,1]n, there

exists a representative θ ∈ �τ satisfying ‖θ − θ ′‖ ≤ τ .

Our proof has three steps. The first is to bound the maximum number m of times the algo-

rithm makes a prediction of ⊥ in terms of the input parameters α1, α2, and the discretization

rate τ . The second is to choose the parameters α1, α2, and τ . The third is to show that with

high probability every prediction made by the algorithm that is not ⊥ is accurate.

Step 1 Let Xt denote the matrix X during the t th timestep of the algorithm, similarly for zt ,

q̄t , and ūt . Let m denote the number of times that the algorithm makes a prediction of ⊥. Let

T denote the set of timesteps t during which a prediction of ⊥ is made. From Lemma 13 of

Auer (2002)12 we have that
∑

t∈T
‖q̄t‖ ≤ 2

√
5nm ln(m) and

∑

t∈T
‖ūt‖ ≤ 5

√
nm. However,

by the operation of our algorithm, we also have that
∑

t∈T
‖q̄t‖ ≥ mqα1 and

∑

t∈T
‖ūt‖ ≥

muα2, where mq and mu are the number of timesteps during which the conditions ‖q̄‖ ≤ α1

and ‖ū‖ ≤ α2 are violated, respectively. Hence, we have

mqα1 ≤ 2
√

5nm lnm, (6)

and

muα2 ≤ 5
√

nm. (7)

Furthermore, it is clear that mq + mu ≥ m. Combining this inequality with (6) and (7), we

get

m ≤ 2
√

5nm lnm

α1

+ 5
√

nm

α2

,

or, equivalently,

√
m ≤ 2

√
5n lnm

α1

+ 5
√

n

α2

.

Next, applying the elementary inequality x + y ≤
√

2x2 + 2y2 for any reals x, y, we have

m ≤ 40n lnm

α2
1

+ 50n

α2
2

.

12The quantities q̄t , ūt , n, T , and m of our notation denote the same quantities, respectively, as ai(t)(t),

ṽi(t)(t), d , �(T + 1), and |�(T + 1)| using the notation in the paper by Auer (2002).
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Finally, we use Lemma 4 and obtain an upper bound m̄ for m, where

m̄ = O

(

n ln(n/α1)

α2
1

+ n

α2
2

)

. (8)

In fact, as we will specify later, α1 = o(ǫ2/
√

n) ≪ α2 = O(ǫ), so we may safely let m̄ be

m̄ = An ln(n/α1)

α2
1

(9)

for some appropriate constant A.13

Step 2 We now set values for τ , α1, and α2. For the discretization rate τ , we choose

τ = c1ǫ

4m̄
= O

(

ǫ

m̄

)

,

where c1 is a positive constant whose value we will specify later. We then choose α2 = c3ǫ

for some constant c3 whose value is to be specified.

Finding an appropriate value for α1 is trickier. We claim that, if we set

α1 = O

(

ǫ2

√

n ln 1
δ′ ln

n ln(1/δ′)
ǫ

)

(10)

where

δ′ :=
(

δ

2m̄

)(

τ√
n

)n

∝
(

δ

m̄

)(

ǫ

m̄
√

n

)n

= O

(

δǫn

(m̄
√

n)n

)

, (11)

then, for some constant c4 ∈ (0,1) whose value will be specified later, we have

ǫ2

4α2
1

≥ 2
√

8m̄ ln(2/δ′) + c4ǫ. (12)

To see this, note that a sufficient condition for (12) to hold is

ǫ2

α1

≥
√

B ln
1

δ′ n ln
n2

α2
1

for some constant B , where we have used (9) and the fact that
√

m̄ ≫ ǫ (as a consequence

of our choice that α1 ≪ ǫ). By elementary algebra, the above inequality can be rewritten as

n2

α2
1

≥ Bn3

ǫ4
ln

1

δ′ ln
n2

α2
1

. (13)

13It is worth noting that it is not circular reasoning to make use of the relation between α1 and α2 before

specifying their values. Here, our proof is a constructive one; namely, we aim to find values for α1 and α2 so

that (8) is satisfied. Therefore, our “forward” use of the relation between α1 and α2 is correct as long as their

specified values (in Step 2 of the proof) are consistent.
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At this point, we may apply the first part of Lemma 4: using notation from this lemma, if

we choose m = n2

α2
1

and a = Bn3

ǫ4 ln 1
δ′ , then (13) holds as long as m > 2a lna, which can be

converted into the form given by (10).

Step 3 Consider some fixed timestep t during the execution of Algorithm 1 such that

the algorithm makes a valid prediction (i.e., ŷt 	= ⊥). Let θ̂ denote the solution of the

norm-constrained least-squares minimization (line 6 in Algorithm 1). By definition, since

⊥ was not predicted, we have that ‖q̄t‖ ≤ α1 and ‖ūt‖ ≤ α2. We would like to show

that |θ̂Txt − θTxt | ≤ ǫ so that the accuracy requirement of Definition 1 is satisfied. Sup-

pose not, namely that |(θ̂ − θ)Txt | > ǫ. Using Lemma 2, we can lower bound the quantity

�E(θ̂)2 =
∑m

i=1[(θ − θ̂ )TX(i)]2, where m denotes the number of rows of the matrix X.

Applying Lemma 2, we have that ǫ ≤ α1�E(θ̂) + 2α2, which by our choice of α2 = c3ǫ is

equivalent to

�E(θ̂)2 ≥
(

(1 − 2c3)ǫ

α1

)2

. (14)

Suppose we choose c3 = 1/4. Then, by combining (12) with (14) we have that the following

is satisfied (recall that m ≤ m̄ always holds)

�E(θ̂)2 ≥ 2
√

8m ln(2/δ′) + c4ǫ.

We are almost finished. Let Rep(θ̂) denote the representative in �τ that is closest (in ℓ2

distance) to θ̂ . By Lemma 3 applied with our choice of τ , we have that

�E(Rep(θ̂))2 ≥ �E(θ̂)2 − c1ǫ.

Combining the two previous equations we have that �E(Rep(θ̂))2 ≥ 2
√

8m ln(2/δ′)+ (c4 −
c1)ǫ. By Lemma 1 we have that

m
∑

i=1

(

zi − Rep(θ̂)TX(i)
)2

>

m
∑

i=1

(

zi − θTX(i)
)2 + (c4 − c1)ǫ

holds with probability at least 1 − 2δ′. With one more application of Lemma 3, this last

equation implies that

m
∑

i=1

(

zi − θ̂TX(i)
)2

>

m
∑

i=1

(

zi − θTX(i)
)2 + (c4 − 2c1)ǫ. (15)

Using c4 = 1 and c1 = 1/4, (15) becomes

m
∑

i=1

(

zi − θ̂TX(i)
)2

>

m
∑

i=1

(

zi − θTX(i)
)2 + ǫ

2
,

which contradicts the fact that θ̂ was chosen to minimize the term
∑m

i=1(zi − θ̂TX(i))2.

Our application of Lemma 1 is the only result we used that holds only with high probabil-

ity. To ensure that it holds for the entire (infinite) execution of the algorithm we apply the

union bound. Note that Lemma 1 is applied only to representative vectors in �τ . There are

O((
√

n/τ)n) such vectors. Also note that since m ≤ m̄, there are at most m̄ distinct pairs
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(Xt , zt ) of samples used for training θ̂ during the entire execution of the algorithm. Hence,

our proof involves the application of Lemma 1 at most O(m(
√

n/τ)n) times. Our choice of

δ′ in (11) thus guarantees the total failure probability of the algorithm is at most δ. �

Appendix B: Proof of Theorem 2

Without loss of generality, assume h∗ ∈ H1, and so |ŷt1 − yt | ≤ ǫ/8 whenever ŷt1 	= ⊥. The

following lemma says the accuracy requirement of Definition 1 is satisfied.

Lemma 5 If ŷt 	= ⊥, then |ŷt − yt | < ǫ.

Proof By assumption, |ŷt1 − yt | ≤ ǫ/8. Since the midpoint prediction ŷt differs from ŷt1

by at most ǫ/2, the prediction error can be bounded using the triangle inequality |a + b| ≤
|a| + |b|:

|ŷt − yt | ≤ |ŷt − ŷt1| + |ŷt1 − yt | ≤
ǫ

2
+ ǫ

8
< ǫ. �

We next show that the sample complexity requirement of Definition 1 is also satisfied.

Note that the total number of ⊥s returned by noisy union is the number of timesteps lines 11

and 17 are executed. Since line 11 can be executed for at most
∑

i B(ǫ/8, δ/(k + 1)) times,

all that remains is to show that line 17 cannot be executed many times. To do this, we first

prove the following three lemmas.

Lemma 6 Whenever line 17 of Algorithm 2 is executed, c1i and �1i will be updated for at

least one i in {2,3, . . . , k}. Consequently, line 17 is executed for at most m(k − 1) timesteps.

Proof Suppose at timestep t noisy union predicts ŷt = ⊥ because |ŷt i − ŷtj | ≥ ǫ for

some 1 ≤ i < j ≤ k. Then by the triangle inequality |a| + |b| ≥ |a − b|, we have that

|ŷt1 − ŷt i | + |ŷt1 − ŷtj | ≥ |ŷt i − ŷtj | ≥ ǫ, which implies at least one of |ŷt1 − ŷt i | ≥ ǫ/2 or

|ŷt1 − ŷtj | ≥ ǫ/2 is true. Hence, either c1i and �1i , or c1j and �1j , or both, are updated. �

We next turn to decide an appropriate value of m to guarantee that the correct hypothesis

is not ruled out with high probability.

Lemma 7 Let i be the index given in the Lemma 6 such that |ŷt1 − ŷt i | ≥ ǫ/2. On average,

�1i is decremented by at least ǫ2/8.

Proof By definition, the expected increment of �1i is:

Ezt ∼yt

[

(ŷt1 − zt )
2 − (ŷt i − zt )

2
]

= Ezt ∼yt

[

(ŷt1 − ŷt i)(ŷt1 + ŷt i − 2zt )
]

= yt (ŷt1 − ŷt i)(ŷt1 + ŷt i − 2) + (1 − yt )(ŷt1 − ŷt i)(ŷt1 + ŷt i)

= −(ŷt1 − ŷt i)
2 + 2(ŷt1 − ŷt i)(ŷt1 − yt )

≤ −(ŷt1 − ŷt i)
2 + 2|(ŷt1 − ŷt i)(ŷt1 − yt )|

= −(ŷt1 − ŷt i)
2 + 2|ŷt1 − ŷt i ||ŷt1 − yt |
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≤ −(ŷt1 − ŷt i)
2 + ǫ

4
|ŷt1 − ŷt i |

= |ŷt1 − ŷt i |
(

−|ŷt1 − ŷt i | +
ǫ

4

)

≤ ǫ

2

(

−ǫ

2
+ ǫ

4

)

= −ǫ2

8
.

�

Lemma 8 Each change of �1i in line 20 is at most 2|ŷt1 − ŷt i |.

Proof From simple algebra, we have

∣

∣(ŷt1 − zt )
2 − (ŷt i − zt )

2
∣

∣ = |(ŷt1 − ŷt i)(ŷt1 + ŷt i − 2zt )| = |ŷt1 − ŷt i ||ŷt1 + ŷt i − 2zt |.

It can be easily verified that |ŷt1 + ŷt i − 2zt | < 2 for zt ∈ {0,1}, and the lemma follows. �

Based on Lemmas 7 and 8, we can decide the value of m. To simplify notation, assume

without loss of generality that |ŷt1 − ŷt i | ≥ ǫ/2 for the first m timesteps; namely, �1i changes

in every timestep until one of A1 and Ai is eliminated (line 22 in Algorithm 2) at the end of

timestep m. Using Hoeffding (1963)’s inequality applied to the martingale �1i , we have at

the end of timestep m that

Pr
(

�1i ≥ 0
)

≤ Pr

(

�1i − E[�1i] ≥
m

∑

t=1

ǫ2
t

2

)

≤ exp

(

− (
∑m

t=1 ǫ2
t /2)2

2
∑T

t=1(2ǫt )2

)

= exp

(

−
∑m

t=1 ǫ2
t

32

)

≤ exp

(

−mǫ2

128

)

where the first inequality is due to Lemma 7, the second due to Hoeffding’s inequality and

Lemma 8, and the last due to the fact that ǫt ≥ ǫ/2. Setting the last expression to be at most

δ/k2, we can solve for m:

m =
⌈

128

ǫ2
ln

k2

δ

⌉

.

By the union bound, we have that

Pr
(

�1i > 0 for any i ∈ {2,3, . . . , k}
)

≤ (k − 1)
δ

k2
<

δ

k + 1
.

That is, the probability that the noisy union algorithm ends up with an incorrect hy-

pothesis is tiny if every subalgorithm succeeds. Applying the union bound again with the

k subalgorithms, Ai , each failing with probability at most δ/(k + 1), we conclude that the

failure probability of noisy union is at most δ.
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Using the above value for m and Lemma 6, the KWIK bound of noisy union is

m(k − 1) +
m

∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

= (k − 1)

⌈

128

ǫ2
ln

k2

δ

⌉

+
m

∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

.

Appendix C: Proof of Theorem 3

The proof we provide in this section relies on Proposition 1 of Strehl et al. (2006a). For

convenience, we restate that proposition and two supporting definitions that are slightly

modified to match our presentation.

Definition 3 (Strehl et al. 2006a) Let M = 〈S, A, T ,R,γ 〉 be an MDP with a given set of

action values, Q(s, a), for each state–action (s, a), and a set K of state–actions, called the

known state–actions. We define the known state–action MDP MK = 〈S, A, TK ,RK , γ 〉 as

follows: for all (s, a) ∈ K , RK(s, a) = R(s, a) and TK(·|s, a) = T (·|s, a); for all (s, a) /∈ K ,

RK(s, a) = Q(s, a)(1 − γ ) and TK(s|s, a) = 1.

The MDP M̂ used in Algorithm 3 is similar to the known state–action MDP defined

above. In fact, if we define the set K of known state–actions to be the set of state–actions in

which both the transition function learner AT and reward function learner AR make non-⊥
predictions, then M̂ is almost identical to MK , except that the dynamics in M̂ are estimated

from experience. For this reason, M̂ is sometimes called the empirical known state–action

MDP.

Definition 4 (Strehl et al. 2006a) For algorithm A, for each timestep t , let Kt (we drop the

subscript t if t is clear from context) be a set of state–actions defined arbitrarily in a way that

depends only on the history of the agent up to timestep t (before the t -th action). We define

AK to be the event, called the escape event, that some state–action (s, a) /∈ Kt is experienced

by the agent at time t .

Theorem 4 (Strehl et al. 2006a) Let A(ǫ, δ) be an algorithm that acts greedily according to

Q(·, ·), whose value is denoted Qt (·, ·) at timestep t . Define Vt (s) = maxa Qt (s, a). Suppose

that on every timestep t , there exists a set Kt of state–actions that depends only on the

agent’s history up to timestep t . We assume that Kt = Kt+1 unless, during timestep t , an

update to some state–action value occurs or the escape event AK happens. Let MKt be the

known state–action MDP and πt be the current greedy policy, that is, for all states s, πt (s) =
argmaxa Qt (s, a). Suppose that for any inputs ǫ and δ, with probability at least 1 − δ, the

following conditions hold for all states s, actions a, and timesteps t : (1) Vt (s) ≥ V ∗(s) − ǫ

(optimism), (2) Vt (s) − V
πt

MKt
(s) ≤ ǫ (accuracy), and (3) the total number of updates of

action–value estimates plus the number of times the escape event from Kt , AK , can occur is

bounded by ζ(ǫ, δ) (learning complexity). Then, when A(ǫ, δ) is executed on any MDP M ,

it will follow a 4ǫ-optimal policy from its current state on all but

O

(

ζ(ǫ, δ)

ǫ(1 − γ )2
ln

1

δ
ln

1

ǫ(1 − γ )

)

timesteps, with probability at least 1 − 2δ.
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We first provide a version of the simulation lemma (Lemma 9), an inequality of Singh and

Yee (1994) (Lemma 10), and then verify the three conditions in Theorem 4 in Lemmas 11–

13 to show KWIK-Rmax is PAC-MDP.

Lemma 9 (Simulation Lemma) Let M1 = 〈S, A, T1,R1, γ 〉 and M2 = 〈S, A, T2,R2, γ 〉 be

two MDPs with the same state/action spaces and discount factor. Let Q∗
1 and Q∗

2 (V ∗
1 and

V ∗
2 ) be their optimal state–action value (state-value) functions, respectively. Assume the two

transition functions and reward functions are close in the following sense: for every (s, a),

|T1(· | s, a) − T2(· | s, a)| ≤ ǫT ,

|R1(s, a) − R2(s, a)| ≤ ǫR,

where |T1(· | s, a) − T2(· | s, a)| is as defined in Definition 2, then for any s ∈ S and a ∈ A:

|Q∗
1(s, a) − Q∗

2(s, a)| ≤ ǫR(1 − γ ) + ǫT

(1 − γ )2
,

|V ∗
1 (s) − V ∗

2 (s)| ≤ ǫR(1 − γ ) + ǫT

(1 − γ )2
.

Proof We will prove the case where S is uncountable; the other case is similar. Define the

Bellman operators, B1 and B2, for M1 and M2, respectively: for i = 1,2 and any state–action

value function Q : S × A → ℜ,

BiQ(s, a) = Ri(s, a) + γ

∫

s′∈S

T (s ′ | s, a) sup
a′∈A

Q(s ′, a′)ds ′.

It is known that Q∗
i is the fixed point of Bi : BiQ

∗
i = Q∗

i . Define two errors: the ℓ∞ approx-

imation error e = ‖Q∗
1 − Q∗

2‖∞ and the ℓ∞ Bellman backup error b = ‖B1Q
∗
2 − B2Q

∗
2‖∞.

Then,

e = ‖B1Q
∗
1 − B2Q

∗
2‖∞

≤ ‖B1Q
∗
1 − B1Q

∗
2‖∞ + ‖B1Q

∗
2 − B2Q

∗
2‖∞

≤ γ ‖Q∗
1 − Q∗

2‖∞ + ‖B1Q
∗
2 − B2Q

∗
2‖∞

= γ e + b,

where the first step is due to the fixed-point property of Bi , the second due to the triangle

inequality, the third due to the contraction property of Bi in the ℓ∞ norm (Puterman 1994),

and the last due to the definitions of e and b. It follows immediately that (1−γ )e ≤ b, which

leads to

e ≤ b

1 − γ
. (16)

We now give an upper bound for b:

b = sup
s,a

|B1Q
∗
2(s, a) − B2Q

∗
2(s, a)|

= sup
s,a

∣

∣

∣

∣

(

R1(s, a) − R2(s, a)
)

+ γ

∫

S

(

T1(s
′ | s, a) − T2(s

′ | s, a)
)

sup
a′

Q∗
2(s

′, a′)ds ′
∣

∣

∣

∣
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≤ sup
s,a

|R1(s, a) − R2(s, a)| + γ sup
s,a

∣

∣

∣

∣

∫

S

(

T1(s
′ | s, a) − T2(s

′ | s, a)
)

sup
a′

Q∗
2(s

′, a′)ds ′
∣

∣

∣

∣

≤ ǫR + γ sup
s,a

∫

S

∣

∣T1(s
′ | s, a) − T2(s

′ | s, a)
∣

∣ sup
a′

|Q∗
2(s

′, a′)|ds ′

≤ ǫR + γ

1 − γ
sup
s,a

∫

S

∣

∣T1(s
′ | s, a) − T2(s

′ | s, a)
∣

∣ds ′

≤ ǫR + γ

1 − γ
ǫT

≤ ǫR(1 − γ ) + ǫT

1 − γ
,

where the first inequality is due to the triangle inequality and the fact that supx{f1(x) +
f2(x)} ≤ supx f1(x) + supx f2(x) for all real-valued functions f1 and f2, the second due

to the Cauchy-Schwartz inequality, the third due to ‖Q∗
2‖∞ ≤ γ /(1 − γ ) since the reward

function is nonnegative and upper-bounded by 1 and has discount factor γ . Combining this

result with (16), we have for all (s, a) that

|Q∗
1(s, a) − Q∗

2(s, a)| ≤ e ≤ b

1 − γ
≤ ǫR(1 − γ ) + ǫT

(1 − γ )2
.

The second part of the lemma follows immediately from the following relation between

optimal state–action value functions and optimal state-value functions: for any s ∈ S ,

|V ∗
1 (s) − V ∗

2 (s)| =
∣

∣

∣
sup

a

Q∗
1(s, a) − sup

a

Q∗
2(s, a)

∣

∣

∣
≤ sup

a

|Q∗
1(s, a) − Q∗

2(s, a)|.
�

The following lemma, which will be useful in our proof, is due to Singh and Yee (1994).14

Although they consider finite MDPs only, their proof is also valid for arbitrary MDPs as long

as the value functions and state transition probabilities used in their proof are all well-defined

when the MDP under consideration has a continuous state space.

Lemma 10 (Singh and Yee 1994, Corollary 2) Let M = 〈S, A, T ,R,γ 〉 be an MDP, Q

a value function, and πQ the greedy policy with respect to Q. The true value functions of

policy πQ are denoted V πQ and QπQ . If |Q∗(s, a) − Q(s, a)| ≤ ǫ for all s ∈ S and a ∈ A,

then for all s ∈ S ,

V ∗(s) − V πQ(s) = Q∗(s,π∗(s)) − QπQ(x,πQ(s)) ≤ 2ǫ

1 − γ
.

Lemma 11 With probability at least 1 − δ/2, Q(s, a) ≥ Q∗(s, a) − ǫ/4 for all t and (s, a).

Proof Since KWIK-Rmax (Algorithm 3) computes an ǫP -accurate Qt function, we have

Qt (s, a) − Q∗(s, a) ≥ Q∗
M̂

(s, a) − ǫP − Q∗(s, a).

14Note there is a typo in the definition of the loss function L
Q̃

on age 231. Using their notation, the definition

should read: L
Q̃

(x) := Q∗(x,π∗(x)) − Qπ
Q̃

(x,π
Q̃

(x)), where x is a state, π
Q̃

is the greedy policy with

respect to Q̃.
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We next bound Q∗
M̂

(s, a) − Q∗(s, a). Let MK be the known state–action MDP whose tran-

sition and reward functions agree with M̂ in unknown state–actions and with M in known

state–actions. Since the transition and reward functions of M̂ are accurate (with failure prob-

ability at most δR + δT = δ/2), Lemma 9 yields

∣

∣Q∗
M̂

(s, a) − Q∗
MK

(s, a)
∣

∣ ≤ ǫR(1 − γ ) + ǫT

(1 − γ )2
.

On the other hand, since MK is identical to M except in unknown state–actions where the

largest possible rewards are assigned (line 5), its optimal state–action value function must

be optimistic: Q∗
MK

(s, a) ≥ Q∗(s, a) for all (s, a). Combining these inequalities, we have

Qt (s, a) − Q∗(s, a) ≥ Q∗
M̂

(s, a) − ǫP − Q∗(s, a)

≥ Q∗
MK

(s, a) − ǫR(1 − γ ) + ǫT

(1 − γ )2
− ǫP − Q∗(s, a)

≥ −ǫR(1 − γ ) + ǫT

(1 − γ )2
− ǫP .

The lemma follows by using the values of ǫR , ǫT , and ǫP given in the theorem. �

Lemma 12 With probability at least 1 − δ/2, Vt (st ) − V
πt

MK
(st ) ≤ ǫ/4, where Vt (s) =

maxa Qt (s, a), and πt is the policy computed by KWIK-Rmax at timestep t .

Proof If Qt is ǫP -accurate, then Vt is also ǫP -accurate:

∣

∣Vt (s) − V ∗
M̂

(s)
∣

∣ =
∣

∣

∣
sup

a

Qt (s, a) − sup
a

Q∗
M̂

(s, a)

∣

∣

∣
≤ sup

a

∣

∣Qt (s, a) − Q∗
M̂

(s, a)
∣

∣ ≤ ǫP .

Consequently,

Vt (s) − V
πt

MK
(s) ≤ Vt (s) − V

πt

M̂
(s) + ǫR(1 − γ ) + ǫT

(1 − γ )2

≤ V ∗
M̂

(s) + ǫP − V
πt

M̂
(s) + ǫR(1 − γ ) + ǫT

(1 − γ )2

≤ 2ǫP

1 − γ
+ ǫP + ǫR(1 − γ ) + ǫT

(1 − γ )2
≤ ǫ

4
,

where the first step is from Lemma 9, and the second from the ǫP -accuracy of Vt in MDP

M̂ , and the third is due to Lemma 10. The only failure probability is in the use of Lemma 9,

which is at most δT + δR = δ/2. �

Lemma 13 The total number of updates of Qt plus the number of timesteps an unknown

state is visited, denoted by ζ(ǫ, δ), is at most 2(BT (ǫT , δT ) + BR(ǫR, δR)).

Proof Since Qt (and also M̂) is unchanged unless AT or AR acquire new samples, the

number of timesteps Qt changes is at most the total number of samples received by AT
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and AR ,15 which is BT (ǫT , δT ) + BR(ǫR, δR). On the other hand, the number of timesteps

an unknown state is visited is also upper bounded by BT (ǫT , δT ) + BR(ǫR, δR). The lemma

then follows. �

We can now complete the proof. Using the previous lemmas and Proposition 1 from

Strehl et al. (2006a), the sample complexity of exploration of KWIK-Rmax is

O

(

BT (ǫ(1 − γ )2, δ) + BR(ǫ(1 − γ ), δ)

ǫ(1 − γ )2
ln

1

δ
ln

1

ǫ(1 − γ )

)

.

References

Abbeel, P., & Ng, A. Y. (2005). Exploration and apprenticeship learning in reinforcement learning. In Pro-

ceedings of the twenty-second international conference on machine learning (pp. 1–8).

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319–342.

Angluin, D. (2004). Queries revisited. Theoretical Computer Science, 313, 175–194.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learn-

ing Research, 3, 397–422.

Bagnell, J., Ng, A. Y., & Schneider, J. (2001). Solving uncertain Markov decision problems (Technical Report

CMU-RI-TR-01-25). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.

Bertsekas, D., & Shreve, S. (1978). Stochastic optimal control: The discrete time case. New York: Academic

Press.

Blum, A. (1994). Separating distribution-free and mistake-bound learning models over the Boolean domain.

SIAM Journal on Computing, 23, 990–1000.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions and compu-

tational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a general polynomial time algorithm for near-optimal

reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N. (2008). CORL: A continuous-state offset-

dynamics reinforcement learner. In Proceedings of the twenty-fourth conference on uncertainty in arti-

ficial intelligence (UAI-08) (pp. 53–61).

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N. (2009). Provably efficient learning with typed

parametric models. Journal of Machine Learning Research, 10, 1955–1988.

Cesa-Bianchi, N., Lugosi, G., & Stoltz, G. (2005). Minimizing regret with label efficient prediction. IEEE

Transactions on Information Theory, 51, 2152–2162.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Worst-case analysis of selective sampling for linear

classification. Journal of Machine Learning Research, 7, 1205–1230.

Cesa-Bianchi, N., Gentile, C., & Orabona, F. (2009). Robust bounds for classification via selective sampling.

In Proceedings of the twenty-sixth international conference on machine learning (ICML-09) (pp. 121–

128).

Chow, C.-S., & Tsitsiklis, J. N. (1989). The complexity of dynamic programming. Journal of Complexity, 5,

466–488.

Cohn, D. A., Atlas, L., & Ladner, R. E. (1994). Improving generalization with active learning. Machine

Learning, 15, 201–221.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Computational

Intelligence, 5, 142–150.

15For randomized planners such as sparse sampling (Kearns et al. 2002), an additional parameter δP may be

needed to deal with the failure probability in planning (line 10 of Algorithm 3, but our analysis still holds

with the minor changes in δT and δR . For local planners such as sparse sampling (Kearns et al. 2002), we

have made an implicit assumption that once the approximate value of a state is computed, the value is not

re-computed the next time the state is visited, unless the empirical known state–action MDP M̂ changes.



442 Mach Learn (2011) 82: 399–443

Diuk, C., Li, L., & Leffler, B. R. (2009). The adaptive k-meteorologists problem and its application to struc-

ture discovery and feature selection in reinforcement learning. In Proceedings of the twenty-sixth inter-

national conference on machine learning (ICML-09) (pp. 249–256).

Fong, P. W. L. (1995a). A quantitative study of hypothesis selection. In Proceedings of the twelfth interna-

tional conference on machine learning (ICML-95) (pp. 226–234).

Fong, P. W. L. (1995b). A quantitative study of hypothesis selection. Master’s thesis, Department of Computer

Science, University of Waterloo, Ontario, Canada.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997a). Using and combining predictors that spe-

cialize. In STOC’97: Proceedings of the twenty-ninth annual ACM symposium on theory of computing

(pp. 334–343).

Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997b). Selective sampling using the query by committee

algorithm. Machine Learning, 28, 133–168.

Freund, Y., Mansour, Y., & Schapire, R. E. (2004). Generalization bounds for averaged classifiers. The Annals

of Statistics, 32, 1698–1722.

Golub, G. H., & Van Loan, C. F. (1989). Matrix computations (2nd ed.). Baltimore: The Johns Hopkins

University Press.

Helmbold, D. P., Littlestone, N., & Long, P. M. (2000). Apple tasting. Information and Computation, 161,

85–139.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the Ameri-

can Statistical Association, 58, 13–30.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning. Doctoral dissertation, Gatsby

Computational Neuroscience Unit, University College London.

Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in metric state spaces. In Proceedings of the 20th

international conference on machine learning.

Kearns, M. J., & Koller, D. (1999). Efficient reinforcement learning in factored MDPs. In Proceedings of the

16th International joint conference on artificial intelligence (IJCAI) (pp. 740–747).

Kearns, M. J., & Schapire, R. E. (1994). Efficient distribution-free learning of probabilistic concepts. Journal

of Computer and System Sciences, 48, 464–497.

Kearns, M. J., & Singh, S. P. (2002). Near-optimal reinforcement learning in polynomial time. Machine

Learning, 49, 209–232.

Kearns, M. J., Schapire, R. E., & Sellie, L. (1994). Toward efficient agnostic learning. Machine Learning, 17,

115–141.

Kearns, M. J., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning in

large Markov decision processes. Machine Learning, 49, 193–208.

Klasner, N., & Simon, H. U. (1995). From noise-free to noise-tolerant and from on-line to batch learn-

ing. In Proceedings of the eighth annual conference on computational learning theory (COLT-95)

(pp. 250–257).

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the seventeenth

European conference on machine learning (ECML-06) (pp. 282–293).

Lane, T., & Brodley, C. E. (2003). An empirical study of two approaches to sequence learning for anomaly

detection. Machine Learning, 51, 73–107.

Leffler, B. R., Littman, M. L., & Edmunds, T. (2007). Efficient reinforcement learning with relocatable action

models. In Proceedings of the twenty-second conference on artificial intelligence (AAAI-07).

Li, L. (2009). A unifying framework for computational reinforcement learning theory. Doctoral dissertation,

Rutgers University, New Brunswick, NJ.

Li, L., & Littman, M. L. (2010). Reducing reinforcement learning to KWIK online regression. Annals of

Mathematics and Artificial Intelligence. doi:10.1007/s10472-010-9201-2.

Li, L., Littman, M. L., & Walsh, T. J. (2008). Knows what it knows: A framework for self-aware learning. In

Proceedings of the twenty-fifth international conference on machine learning (pp. 568–575).

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news

article recommendation. In Proceedings of the nineteenth international conference on World Wide Web

(WWW-10) (pp. 661–670).

Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.

Machine Learning, 2, 285–318.

Littlestone, N. (1989). From on-line to batch learning. In Proceedings of the second annual workshop on

computational learning theory (COLT-89) (pp. 269–284).

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data and less

real time. Machine Learning, 13, 103–130.

Puterman, M. L. (1994). Markov decision processes—discrete stochastic dynamic programming. New York:

Wiley.

http://dx.doi.org/10.1007/s10472-010-9201-2


Mach Learn (2011) 82: 399–443 443

Seung, H. S., Opper, M., & Tishby, N. (1992). Query by committee. In Proceedings of the fifth annual

workshop on computational learning theory (COLT-92) (pp. 287–294).

Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9,

371–421.

Singh, S. P., & Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value functions.

Machine Learning, 16, 227.

Sontag, E. D. (1998). Texts in Applied Mathematics: Vol. 6. Mathematical control theory: Deterministic finite

dimensional systems (2nd ed.). Berlin: Springer.

Strehl, A. L., & Littman, M. L. (2008). Online linear regression and its application to model-based reinforce-

ment learning. Advances in Neural Information Processing Systems, 20.

Strehl, A. L., Li, L., & Littman, M. L. (2006a). Incremental model-based learners with formal learning-time

guarantees. In Proceedings of the 22nd conference on uncertainty in artificial intelligence (UAI 2006).

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006b). PAC model-free reinforcement

learning. In Proceedings of the twenty-third international conference on machine learning (ICML-06).

Strehl, A. L., Mesterharm, C., Littman, M. L., & Hirsh, H. (2006c). Experience-efficient learning in associa-

tive bandit problems. In Proceedings of the twenty-third international conference on machine learning

(ICML-06).

Strehl, A. L., Diuk, C., & Littman, M. L. (2007). Efficient structure learning in factored-state MDPs. In

Proceedings of the twenty-second national conference on artificial intelligence (AAAI-07)

Strehl, A. L., Li, L., & Littman, M. L. (2009). Reinforcement learning in finite MDPs: PAC analysis. Journal

of Machine Learning Research, 10, 2413–2444.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT Press.

Szita, I., & Szepesvári, C. (2010). Model-based reinforcement learning with nearly tight exploration com-

plexity bounds. In Proceedings of the twenty-seventh international conference on machine learning

(ICML-2010).

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.

Walsh, T. J., Szita, I., Diuk, C., & Littman, M. L. (2009). Exploring compact reinforcement-learning represen-

tations with linear regression. In Proceedings of the twenty-fifth conference on uncertainty in artificial

intelligence (UAI-09) (pp. 591–598). A refined version is available as Technical Report DCS-tr-660,

Department of Computer Science, Rutgers University, December, 2009.

Weiss, G. M., & Tian, Y. (2006). Maximizing classifier utility when training data is costly. SIGKDD Explo-

rations, 8, 31–38.


	Knows what it knows: a framework for self-aware learning
	Abstract
	Motivation
	A KWIK example
	Formal definition and related frameworks
	KWIK definition
	Connection to PAC and MB
	Other online-learning models

	Some KWIK-learnable classes
	Memorization and enumeration
	Real-valued functions
	Noisy observations

	Learning noisy linear functions
	Problem formulation
	Solution
	Analysis

	Combining KWIK learners
	Case studies in reinforcement learning
	Markov decision processes and reinforcement learning
	Model-based PAC-MDP reinforcement learning
	The inadequacies of PAC and MB for RL
	KWIK-learning finite MDPs
	KWIK-learning continuous MDPs with linear dynamics
	KWIK-learning typed MDPs with normal offset dynamics
	KWIK-learning factored-state MDPs with known structure
	KWIK-learning factored-state MDPs with unknown structures
	Model-free PAC-MDP reinforcement learning

	Conclusion and future work
	Acknowledgements
	Appendix A: Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Step 1
	Step 2
	Step 3


	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Theorem 3
	References


