
Journal of Applied Intelligence 2010, X (Y), Springer

Preprint: The final publication is available at springerlink.com

KnowWE: A Semantic Wiki for Knowledge Engineering

Joachim Baumeister · Jochen Reutelshoefer ·

Frank Puppe

Received: 2009-11-24 / Accepted: 2010-02-25

Abstract Recently, Semantic Wikis showed reasonable success as collaboration platforms

in the context of social semantic applications. In this paper, we present a novel approach, that

interprets the concept of Semantic Wikis as a knowledge engineering environment, that ef-

fectively help to build decision-support systems. We introduce the Semantic Wiki KnowWE,

that provides the possibility to define and maintain ontologies together with strong problem-

solving knowledge. Thus, the wiki can be used to collaboratively build decision-support

systems. These enhancements require extensions of the standard Semantic Wiki architec-

ture by a task ontology for problem-solving and an adapted reasoning process. We discuss

these extensions in detail, and we describe a case study in the field of medical emergency

systems.

Keywords knowledge acquisition · knowledge engineering tools · decision-support

systems

1 Introduction

In the last decades, the application of intelligent decision-support systems showed their ad-

vantages in many domains—examples of successful uses are described in the literature [13,

26,28,33,35]. When building such systems, the most critical challenge is the development

and maintenance of the knowledge bases. In the past, this challenge has been primarily

tackled by the introduction of comprehensive methodologies describing the structured con-

struction and application of the knowledge; examples are CommonKADS [50], the On-To-

Knowledge Methodology [54], DILIGENT [55], and the Agile Methodology [12]. Corre-

sponding tools are often tailored to the specific methodologies, and they usually limit the

developer to a specific knowledge representation to be applied when building the system,

for example Protégé [39,22], OntoEdit [53], and KnowME [2,4].

Today’s knowledge engineering projects, however, often face the challenge that knowl-

edge is present at different levels of formalization. Knowledge appears in different repre-

sentations ranging from technical documents, construction plans, sheets, and experiences

of human experts, but also in the explicit form of rules and models. Moreover, we see that
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the problem of knowledge formalization to one specific representation has not been solved

sufficiently, i.e., the knowledge acquisition bottleneck still exists today.

1.1 Dilemmas of Knowledge Engineering

In our opinion and experience over the last years many projects failed because of conflicting

options, that we call knowledge engineering dilemmas:

1. The Single/Multiple Experts Dilemma. The motivation and sophistication of single do-

main specialists is often the driving force of successful knowledge acquisition and evo-

lution. Although high-quality experts can guarantee the construction of a high-quality

knowledge base, these persons are often short in time and endurance. The distribution

of the workload over a number of specialists would decrease this problem, but would

also increase the risk of reducing the overall quality of the formalized knowledge.

Furthermore, the collaboration among a group of specialists is not supported sufficiently

in many (industrial) systems concerning the distributed development of a knowledge

base. Here, the dilemma exists of favoring a distributed over a monolithic development

process—involving multiple experts instead of a single expert.

2. The Flexibility/Productivity Dilemma. Current state–of–the–art tools are often tailored to

a specific knowledge representation and acquisition interface for developing the know-

ledge base. In consequence, these tools are not sufficiently flexible to map the mental

model of the domain specialists, that are responsible for formalizing the knowledge in

the project. Additionally, knowledge appears in diverse representations, such as textual

and tabular data, but also, for example, as explicit rules.

On the one hand, the mapping of the particular mental model of the specialists to the

provided knowledge representation and interfaces, respectively, often turned out to be

difficult and time-consuming. On the other hand, a tool having the maximal flexibility,

regarding the user interfaces and provided knowledge representations, typically would

increase the complexity of its use and therefore decreases the productivity of the de-

velopers; this principle was also described in general as the Flexibility-Usability Trade-

off [32, p. 86]. In consequence, we face the dilemma of demanding a tool with maximal

flexibility vs. a tool with maximal productivity.

Certainly, these dilemmas cannot be easily solved, but lightened by the introduction of

agile and extensible tools, that adapt to the present situation. We motivate, that an extensible

Semantic Wiki is an appropriate basis for building a new generation of knowledge engineer-

ing environments. It allows for the integration of knowledge at different levels of formality,

and therefore tries to weaken the flexibility/productivity dilemma described above. The use

of a Semantic Wiki additionally helps to target the first dilemma — the single/multiple ex-

perts dilemma. Due to its open and web-based implementation, a Semantic Wiki naturally

allows for the distribution of the development process over a group of domain specialists.

Collaboration is supported by many standard features of wikis, for instance distributed edit-

ing, versioning, rights management, and discussion pages. However, the dilemmas can only

be lightened by providing a technical platform for a collaborative engineering process. Thus,

a Semantic Wiki can be easily used within one of the methodologies mentioned above by

serving as the primary development tool. For instance, in CommonKADS the documentation

of the collected models can be naturally integrated into the system. In collaborative method-

ologies, such as DILIGENT, the Semantic Wiki can be used to support the agreements and

discussions about the development process.
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In this paper, we propose the Semantic Wiki KnowWE as a knowledge engineering en-

vironment for decision-support systems. The wiki is extended by the possibility to capture

and share strong problem-solving methods for the classification task. Thus, it not only pro-

vides interfaces for the engineering of ontologies, but also interfaces for more expressive

knowledge such as rules and fault models.

The rest of the paper is organized as follows: In Section 2, we introduce the wiki

KnowWE in more detail: We show its functional organization, and we motivate how strong

problem-solving knowledge is integrated into the ontological layer of a Semantic Wiki. We

also briefly describe the reasoning architecture of KnowWE. One distinguishing component

of KnowWE (in comparison to other Semantic Wikis) is that it provides textual markups

to describe strong problem-solving knowledge for the classification task. Section 3 shows

useful markups of KnowWE for the definition of rules, decision trees, and set-covering

knowledge in more detail. The system is already used in industrial and scientific projects.

We demonstrate the possible use of KnowWE in Section 5 by showing the development of

a commercial medical decision-support system. The work is concluded with a discussion in

Section 6.

2 Wikis for Knowledge Engineering

In the last years, wiki systems have shown their benefits as simple and versatile web-based

content–management systems; users can add and modify tacit knowledge in form of text

and multimedia in a flexible manner. As the most prominent example, Wikipedia attracts a

large number of users, that are willing to create and maintain informal “world knowledge”

through the wiki system. While wikis demonstrated their benefits for creating and sharing

knowledge in open web environments, they are also successfully used in companies and

universities as general knowledge management tools. The key feature of a wiki is its ability

to change and refine content in a fairly simple way: Every wiki article is presented in a web

browser in the corresponding view mode. The user can easily modify/extend the content of

the article by changing into the edit mode of the article, which is usually possible due to a

mandatory Edit button placed on the page. After saving the modifications, the changes are

directly updated in the view mode.

Due to their simplicity, standard wiki systems show limitations when actually using the

included knowledge. For knowledge retrieval, only a simple full-text search is available, and

knowledge connected across different articles cannot be aggregated in a unified manner. This

motivated the development of Semantic Wikis [48], that provide the possibility to enrich the

wiki content by semantic annotations, thus formulating explicit knowledge. The annotations

correspond to ontological concepts, and knowledge reuse is improved by semantic search

and semantic navigation. At the same time, Semantic Wikis successfully serve as ontology

development tools, that offer a simple and web-based interface to build semantic applica-

tions. Current examples of Semantic Wiki implementations are, for instance, IkeWiki [47],

KnowWE [7], MoKi [20], Semantic MediaWiki [30], and SweetWiki [14].

The knowledge in a Semantic Wiki is typically organized as follows: Every wiki article

represents a concept of the ontology, and the content of the article informally describes the

concept. Properties of the concept are defined by explicit semantic annotations within the ar-

ticle, where the annotations often link to other articles and concepts, respectively. In general,

most Semantic Wiki systems are capable of developing and maintaining ontologies with the

expressiveness of a subset of OWL [1]. Whereas this level of expressiveness is sufficient in

many domains, some applications need the integration of knowledge beyond the power of
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OWL. In our case, the development of (diagnostic) knowledge systems requires the repre-

sentation of strong problem-solving knowledge, such as (production) rules, decision trees,

or fault models. In this section, we introduce the Semantic Wiki KnowWE, that is extended

by markups and interfaces to develop and share strong problem-solving knowledge. In con-

sequence, KnowWE can be used as a web-based knowledge engineering tool for building

(diagnostic) decision-support systems.

With the extension of a Semantic Wiki by strong problem-solving methods a number of

implications arise:

– Concerning the internal layers of the system

– Representation of the problem-solving knowledge in the semantic layer.

– Processing the problem-solving knowledge by extended inference methods.

– Concerning the user interface

– Interfaces for the acquisition and evolution of problem-solving knowledge.

– Appropriate interfaces for using the knowledge.

In the following, we discuss these implications in more detail, and we show how these

issues are mapped to the implementation of the system KnowWE. To the knowledge of

the authors, KnowWE is the first implementation of a Semantic Wiki that integrates strong

problem-solving knowledge into the wiki context.

We first motivate the use of the wiki by a small example, and then we discuss the un-

derlying architecture in more detail. Throughout the rest of the paper, we use a simplified

diagnosis system for car faults as the running example.

2.1 KnowWE by Example

In this section, we introduce the basic features of KnowWE by using a simple example ap-

plication for diagnosing car faults. The basic idea is, that possible causes of a car fault—the

solutions of the problem—are represented by corresponding wiki articles. The wiki contains,

for instance, articles about flat battery, clogged air filter, and bad ignition timing.

In Figure 1, a page of the wiki is shown, describing the solution bad ignition timing.

Besides standard text describing the problem in more detail, also explicit problem-solving

knowledge is included on the page. At Figure 1-(1), two heuristic rules [42] of the rule

base are displayed, that describe derivation knowledge of the solution. The first rule states,

that the solution Bad ignition timing will receive a negative score, if the user enters for

the symptom engine start that it neither does not start nor barely starts. A negative score

decreases the evaluation score of the solution in the given case. The second rule states the

derivation of the solution with respect to observations regarding the engine noises: The

solution will receive a positive score, if the engine noise was observed by the user as ringing

or knocking. In total, the example rule base for the solution Bad ignition timing comprises

11 rules. Besides the representation of rules, we also allow for the inclusion of model-based

knowledge and decision trees; cf. Section 3 for more details.

We see that the derivation knowledge of a solution is locally defined and maintained

together with the corresponding article of the solution; see Figure 9 for an example, where

a rule base is edited in the article. This allows for a simplified update of informal (e.g., text)

and explicit knowledge (e.g., rules) about one entity.

Although the wiki is mainly used as a tool for knowledge engineering, it also provides

interfaces for interactive problem-solving. We give an example of the problem-solving pro-

cess in the following: Some parts of the text are related to concepts of the knowledge base,
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Fig. 1 A wiki article describing the solution bad ignition timing in the context of a car diagnosis application.

and thus have a meaning for the problem-solving process. Specific semantic annotations re-

late these text parts with the concepts. In the view mode of the wiki the user is able to click

on the annotated text and can enter findings based on the corresponding concept. We call

this approach inline answers for problem-solving in wikis. In Figure 1-(2) the text phrase

"engine noises" was annotated by the corresponding concept Engine noises available in the

knowledge base. In the given example, the value knocking for the concept Engine noises

was entered by the user. As we explain in the following sections, the distributed reasoning

process of KnowWE enables, that all registered knowledge bases contained in the wiki are

notified about this new finding, and suitable states of the solutions are derived. In the so-

lutions pane of the wiki—see Figure 1-(3)—we see that the solution Bad ignition timing is

derived with a high certainty, whereas the alternative solution Clogged air filter was also

derived and is considered as a possible solution. Both solutions were derived on the basis of

this finding and previously entered findings. By clicking on the solution Clogged air filter in

the solutions pane, we quickly can navigate to the wiki article describing the corresponding

article. In this example, we see that not only the knowledge of the current article is used for

problem-solving, but all knowledge bases in the wiki contribute to this process.

Alternatively, the user is able to download an executable version of the knowledge base

by clicking the download button, see Figure 1-(4). Then, the knowledge base of the article is

provided as download in the d3web format. The system d3web is a freely available runtime

engine written as open-source toolkit; see SourceForge [4] for more details. This way, the
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knowledge bases can be developed using the wiki and can be exported later to an external

application if required.

In the following sections, we describe the underlying processes of creating and using

knowledge bases within the Semantic Wiki KnowWE. First, we show how parts of the wiki

article are compiled into executable knowledge bases. Second, we discuss the representation

of the knowledge in the ontology layer of the wiki, and we finally sketch the distributed

reasoning process, that enables the derivation of solutions over the entire wiki.

2.2 Transformation of Wiki Articles to Knowledge Bases

Usually, Semantic Wikis formalize one ontology that is distributed over the wiki: Every

concept is represented by one distinct wiki article and properties between the concepts are

usually defined by semantic annotations within the wiki articles.

For the development of problem-solving knowledge we extend this approach by a slightly

more distributed architecture. When saving the currently edited article, the content is saved

as a standard wiki page. Semantic annotations—included in the text—are identified and

the domain ontology is updated accordingly. Additionally, dedicated parsers process the

problem-solving knowledge found in the text into an executable knowledge base. We dis-

cuss specific markups in more detail in Section 3.

With this workflow, every concept of the ontology is represented by a distinct wiki ar-

ticle. However, the problem-solving knowledge related to this concept is externalized to a

compiled knowledge base. In Figure 2, the described workflow is depicted, showing that an

article is stored in the wiki repository in multiple ways: First, the repository saves the raw

Wiki Article
-

     - (Annotated) wiki text 

     - Problem-solving knowledge

1) Store article

3) Compile knowledge base

Wiki Articles

Task Ontology

Application Ontology

Knowledge Bases

Knowledge 

Base 

n

Knowledge 

Base 

1

Knowledge 

Base 

2

2) Update ontology 

    concepts and properties

Fig. 2 After saving a wiki article, the knowledge is transformed and compiled into an executable format. The

wiki repository holds the compiled knowledge bases together with the application ontology, the original wiki

articles, and the general task ontology.

article in the Wiki Articles section of the repository (Fig. 2-1). Second, ontological concepts

and properties, included in the article by semantic annotations, are stored/updated in the

Application Ontology (Fig. 2-2). The compilation of the problem-solving knowledge con-

tained in the article is filed to the Knowledge Bases section of the repository (Fig. 2-3). The

foundational layer of all represented knowledge is the Task Ontology, that is used to connect
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the described concepts and the problem-solving knowledge elements. The functioning of the

task ontology is described in the next section.

We see, that the knowledge is redundantly stored as original text in the article repository,

as ontological concepts in the application ontology repository, and as compiled knowledge

base in the knowledge base repository. That way, we provide the knowledge in all formats

that are required by the particular reasoners. For example, we use OWLIM [29] for OWL

reasoning and the d3web engine [4] for processing the problem-solving knowledge. This

redundant storage of the data and knowledge, respectively, helps to effectively use it for the

later tasks.

2.3 A Task Ontology for Problem-Solving Knowledge

The foundation of all wiki articles is the task ontology: Here, the fundamental concepts

of a Semantic Wiki integrating problem-solving knowledge are represented; examples are

the relations between ontological concepts and text paragraphs in articles, but also princi-

ple concepts of the problem-solving task, such as user input, solution, and the connecting

property derives.

2.3.1 Fundamental Concepts of the Task Ontology

The task ontology of KnowWE is the foundation of the system, since it represents the general

entities of all applications built with the system. For example, it includes the definitions of

findings and solutions, that are the basic elements of a problem-solving task, i.e., findings

are used to derive particular solutions.

Figure 3 shows the most important concepts of the task ontology: As the key concept

Finding holds a Value, that is assigned to an Input. Different inputs are structured into

meaningful groups by the concept Questionnaire. Besides text and date inputs, the two

main subclasses of Input are Choice Input and Numeric Input; they define attributes

with discrete (named) values and numerical value ranges, respectively. An appropriate class

of values for every input is defined by subclassing the concept Value, accordingly. The

concept Solution denotes a special type of Choice Input in the hierarchy of inputs. The

state of a solution is represented by a discrete finite value domain (Solution Value); its

current value is not entered by the user but derived by problem-solving knowledge. The

value range of a solution is restricted to one of the individuals Established, Suggested,

Undefined, and Excluded. Further, the appropriate subclasses of Value are restricted to

the corresponding Input subclasses; for instance, a Solution Value is restricted to be as-

signed only to instances of Solution concepts. Similarly, Numeric Values are assigned to

Numeric Inputs. These and further property restrictions were omitted in Figure 3 in order

to obtain a better overview of the basic concepts. We discuss these restrictions in more detail

in the following.

2.3.2 Interweaving the Task Ontology and the Application Ontology

For a new knowledge engineering project the domain specialist defines the basic concepts

(findings and solutions), that are relevant for the application domain. Ontological knowledge

can be defined by semantic annotations included in the wiki article. When saving an article,

the included concepts (together with corresponding properties) are stored in the application
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Numeric Input
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hasInput hasValue
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ObjectOneOf
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Undefined

Suggested

assignedTo

derives

Article

Block

relatesTo

describes

Fig. 3 Task ontology: Integrating problem-solving knowledge into a Semantic Wiki. Concepts of the task

ontology are depicted in rounded rectangles, whereas instances are given by non-rounded rectangles (green).

ontology or—when already existing—are updated accordingly. For instance, input concepts

of the application ontology are automatically aligned as subclasses of Input and Value, re-

spectively. Analogously, solutions of the domain are described as subclasses of Solution.

Figure 4 shows the task ontology (in orange rounded rectangles) extended by parts of an ap-

plication ontology for the car diagnosis domain (in blue rectangles). We see that the concepts

Clogged air filter and Flat battery are added as children to the concept Technical

problem, which itself is a subclass of Solution. Also, the concept Exhaust fumes is de-

fined as a choice input together with a corresponding concept Exhaust fumes values, that

represent its possible value domain.

As we describe in Section 3, we provide explicit markups to define concepts of the ap-

plication ontology. Thus, we are able to automatically align application concepts, specified

in an article, as subclasses of an concept of the task ontology. For example, the concept

Exhaust fumes is automatically aligned as a subclass of Choice Input. The interweaving

of the task ontology with the application ontology is shown in Figure 5 in more detail. As

described before, the property assignedTo between Value and Input is restricted in sub-

classes of both concepts. Thus, for instances of Choice Value only instances of Choice

Input can be connected by the property assignedTo. During the construction of the appli-

cation ontology, these restrictions are driven even further: For example, an instance of the

concept Exhaust fumes values is limited to be assigned only to instances of the concept

Exhaust fumes. In this manner, the particular values can be only assigned to the appropri-

ate inputs. Further, we limit the alternatives of possible values for Choice Inputs by using

a closed class for the corresponding Value concept: Only black, blue, and invisible are

allowed as instances of the concept Exhaust fumes values. The use of universal quantifi-
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ObjectAllValuesFrom
(assignedTo ExhaustFumesValues)

PSSession

Finding

Input

Numeric Input

Choice Input
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hasInput

subClassOf

subClassOf

Solution

Questionnaire

contains

Observations

Exhaust fumes

Clogged air filter

Technical problem

subClassOf

subClassOf

subClassOf

Flat battery

subClassOf

subClassOf

subClassOf

Fuel

subClassOf
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subClassOf

Average milage

subClassOf

Technical examinations

subClassOf

Battery check
Air filter check

subClassOf subClassOf

Value

hasValue

assignedTo

Choice Value

subClassOf

Exhaust fumes values

subClassOf

ObjectAllValuesFrom
(assignedTo ChoiceInput)

Defect battery cell

Battery problem

subClassOf subClassOf

Fig. 4 Connecting the application ontology with the task ontology by subclassing. Concepts of the task ontol-

ogy are depicted in rounded rectangles (orange), whereas concepts of the application ontology are represented

by non-rounded rectangles (blue).

cation and closed classes guarantees only reasonable instances of a Finding concept during

a problem-solving session.1 It is important to notice, that the described ontological asser-

tions between the task ontology and the application ontology are created/updated by the

parsers when processing a modified wiki article.

2.3.3 Problem-Solving Sessions

The wiki allows for concurrent problem-solving by many users. Then, a distinct instance

of PSSession is assigned to each user. The structure of the problem-solving process is de-

picted in Figure 6 by an example: A concrete problem-solving session (here with the name

user1) is represented by an instance of the concept PSSession. Facts, entered by the user,

are mapped to created instances of Finding (Value instances assigned to Input instances);

derived solutions are represented as instances of solution values assigned to a specific in-

stance of Solution. Currently, the system mostly utilizes external reasoners (rule engines,

model-based systems, etc.) to derive solutions; due to a broker the state of externally derived

1 There exist the corresponding axioms in OWL for closed classes and universal quantification

ObjectOneOf and ObjectAllValuesFrom, respectively.
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Finding

Input Choice Input

hasInput

subClassOf Exhaust fumessubClassOf

Value Choice Value

hasValue

subClassOf Exhaust fumes values

ObjectOneOf

black

blue

invisible

subClassOf

assignedTo
ObjectAllValuesFrom

(assignedTo ChoiceInput)
ObjectAllValuesFrom

(assignedTo ExhaustFumesValues)

Fig. 5 Example: Subclassing the concept Exhaust fumes in the application ontology. Concepts of the task

ontology are depicted in rounded rectangles (orange), concepts of the application ontology are given in non-

rounded rectangles (blue), and instances are represented by green rectangles.

solutions is synchronized with the Solution instances of the corresponding PSSession in-

stance (see Section 2.4 for more details). The reasoning processes of different users are inde-

user1 : PSSession

Exhaust fumes : Choice Input

black : Choice Value

F1@user1 : Finding

stores

hasInput

hasValue

Fuel : Choice Input unleaded ; Choice Value

F2@user1 : Finding

stores

hasInput hasValue

S1@user1 : Finding

stores

Established : Solution Value

hasValue

hasInput

Clogged air 
filter : Solution

Fig. 6 Example: A problem-solving session instantiating two findings entered by the user (Exhaust

fumes=black and Fuel=unleaded) and instance representing a derived solution (Clogged air filter).

pendent from each other, since every user is represented by a distinct instance of PSSession.

In Figure 6 an example is given for the session instance user1: The problem-solving session

instantiated two findings entered by the user (Exhaust fumes=black and Fuel=unleaded).

Also, one solution was derived, that is represented by the instance Clogged air filter =

Established. It is worth noticing, that for each fact a new instance only for the concept

Finding is created; the actual input and value concepts are statically used as singeltons.

Related Approaches The use of different layers for task-specific and domain-specific

knowledge is commonly suggested in the knowledge engineering research. Studer et al. [52]

give an overview of principles and methods, that follow this distinction, for instance the
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Expertise Model of CommonKADS [50] or the ontology layers of Protégé-II [16]. More

recently, Crubezy and Musen [15] propose a similar approach: Here a method ontology

specifies the required inputs/outputs of the problem-solving method and a domain ontology

holds the application-specific knowledge. When compared to our approach, their use of the

method ontology and domain ontology can be mapped to the task ontology and application

ontology, respectively. Their framework, however, provides more flexibility due to the use of

a separate mapping ontology. Whereas our approach automatically connects the concepts of

the task ontology with the application ontology, these links are defined explicitly by a map-

ping ontology in their approach. In consequence, our approach requires less efforts due to

the automatic alignment of the concepts, but limits the knowledge acquisition to diagnostic

reasoning.

In the following section, we describe how new facts are derived by problem-solving

knowledge, and how new derivations are mapped to new instances of Finding.

2.4 Distributed Inference

The distributed inference system of the wiki processes facts between the user and the avail-

able knowledge bases. New facts are added to the application ontology either in the form of

findings entered by the user or due to solutions that are derived by knowledge bases. Every

time, a new finding is entered by the user, the entry is mapped to a newly created instance of

Finding. The new finding instance is stored in the application ontology, and a propagation

of this new fact is started through the alignment service of the wiki. The alignment service

maps the facts to corresponding entities, that are included in the knowledge bases. For ex-

ample, the instance Exhaust fumes = black is mapped to the corresponding knowledge

base object Exhaust fumes, that has the possible value black.

Based on this alignment the new fact is propagated to all registered knowledge bases.

Some knowledge bases are able to use this fact to derive new facts, that are again propa-

gated to the broker for further distribution. In Figure 7 this distributed reasoning process is

depicted.

Broker

propagate

User

Alignment Service

propagate

Wiki Articles

Task Ontology

Application Ontology

Knowledge Bases

Knowledge 

Base 

n

Knowledge 

Base 

1 Knowledge 

Base 

2

Fig. 7 Blackboard architecture of the distributed problem-solving within KnowWE.

That way, entered findings are not only processed by the knowledge base of the cur-

rently open wiki article, but also by all existing knowledge bases of the wiki. Therefore, all
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solutions—that are represented in the wiki—can be derived anytime as it was motivated in

Section 2.1.

Although this reasoning process is simple, its effectiveness depends on the quality of

the alignment service. Currently, we implement a simple alignment of ontology concepts

based on their naming and structure, i.e., concepts of the knowledge bases with the same

name and the same value range are mapped to each other as equivalent classes. In the lit-

erature, however, more powerful approaches are described [17]. These can be added easily

to the KnowWE system when required. Distributed reasoning offers a number of benefits

when compared to a traditional monolithic problem-solving process: Due to the use of a

collection of individual knowledge bases, the addition, modification, and exchange of single

knowledge bases becomes easier. In principle, this architecture also allows for a spatially

distributed reasoning process, i.e., the knowledge bases are situated on different, locally

distributed servers.

However, in the context of knowledge engineering for decision-support systems it is

often reasonable to control the problem-solving behavior of the edited knowledge bases.

Thus, KnowWE provides the possibility to define a specific article as the master of the wiki:

Here, a large coherent knowledge base is defined on the basis of imports of knowledge bases

contained in other wiki articles. This master can be separately tested and exported as a single

knowledge base. Further, we are able to define variants of knowledge bases by defining

different masters importing varying collections of wiki articles. In Figure 8, an example

Article 5

Master 1

Article 6

Master 2

Article 1

Knowledge 

Base 1

Article 2

Knowledge 

Base 2

Article 3

Knowledge 

Base 3

Article 4

Knowledge 

Base 4

includes

includes
includes

includes

includes

Wiki Articles

Fig. 8 Definition of knowledge variants by the specification of masters of the wiki.

of two masters of the wiki is depicted. In total, the wiki contains four wiki articles with

knowledge bases, i.e., Article 1 to Article 4. Additionally, the wiki page Article 5 defines

the master knowledge base Master 1 by including the knowledge bases from the articles

1, 2, and 3. The alternative master Master 2 defined in page Article 6 only includes the

knowledge bases from articles 3 and 4, and thus represents a different view of the entire

knowledge base.
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3 Knowledge Acquisition with Textual Markups

The knowledge acquisition interface always strongly depends on the problem-solving en-

gine and knowledge representation used. KnowWE provides multiple markups to define

problem-solving knowledge inline with the text, a mapping of the entered knowledge to the

application ontology, and an integration of the reasoning results into the ontology and wiki

interface (e.g., for showing derived solutions to the user). We integrated the open-source

reasoning engine d3web [4] into the wiki, since it implements multiple reasoners for diag-

nostic inference and allows for a flexible adaptation of the knowledge engineering process

with respect to the project requirements. As described in Section 2.3, the reasoning engine

takes Finding instances from the application ontology and writes derived solutions/findings

into the ontology again.

Due to the extensible architecture of KnowWE, it is possible to add further engines

besides d3web, such as Prolog or JESS [19]; the architecture of the wiki was described in

more detail in Reutelshoefer et al. [46].

In the following, we introduce markups to define terminological concepts, rules, de-

cision trees, and set-covering models. The syntax of the particular markups should be as

simple as possible in order to allow for an intuitive creation and evolution of the knowledge

together with the standard wiki text. In the best case, motivated wiki users are capable of

understanding and using the markup with only little training. With this ability, we enable an

ad-hoc knowledge engineering process [45].

For an effective use, we propose to seamlessly integrate the acquisition of problem-

solving knowledge into the standard authoring process of the wiki. For this reason, we em-

bed the knowledge formalization into the edit pane of the wiki article, i.e., specialized textual

markup is used to enter explicit knowledge inline with the wiki text. Figure 9 shows an ex-

ample, where a rule base is included in the wiki article: Besides standard wiki markup for

defining the content of text and images (see Figure 9-(1)), also a rule base for deriving the

solution Clogged air filter is included, see Figure 9-(2).

It is possible to structure the wiki by solutions, i.e., each solution or group of related so-

lutions defines a distinct wiki article. Besides standard wiki text and multimedia concerning

the solutions, we also recommend including the corresponding problem-solving knowledge

in the articles. The definition of the terminology is an exceptional case; here, we propose

to define the possible inputs and their structure on a page, that is different from the pages

describing its solution’s derivation knowledge. That way, every article of a new solution can

reuse the terminology for describing the problem-solving knowledge. Additional inputs—

proprietary for a specific solution—can be either added ad-hoc on the solution’s page or

(after consulting the wiki admin) added to the distinct terminology page. Analogously, the

taxonomy of solutions can be defined on a special page. Otherwise, every solution—not

connected into a taxonomy—is added as direct subclass of the concept Solution, as shown

in Figure 4.

3.1 Terminology Definition

In the previous section, we introduced the concept of the application ontology, that describes

the basic entities of the considered domain. As for all other types of knowledge, the appli-

cation ontology is defined within the edit pane of the wiki. We provide two hierarchies to

define the elementary facts of the diagnostic task: (User) inputs and solutions. Both hierar-
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Fig. 9 Inline knowledge markup in KnowWE: (1) Inclusion of multimedia and (2) definition of derivation

rules for the solution Clogged air filter.

chies are defined by so-called dash-trees. A dash-tree is a textual notation of a tree, where

the successors of a node are represented by indenting dashes. This representation is quite

common to textually visualize a tree-like structure.

Observations Technical problem

- Fuel [oc] - Clogged air filter

-- unleaded - Battery problem

-- diesel -- Flat battery

- Exhaust fumes [oc] -- Defect battery cell

-- black

-- blue

-- invisible

- Current fuel consumption [num]

- Average fuel consumption [num]

Above, two hierarchies are depicted as dash trees. In fact, we see that the dash-trees give

an excerpt of the application ontology already shown in Figure 4. The left side shows an
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input-tree, where inputs along with their values are defined. As required in the task ontology,

inputs are grouped into questionnaires, and thus the root of every input tree denotes the name

of the questionnaire the inputs are referring to. In the example, Observations is defined as

a questionnaire containing the inputs Fuel, Exhaust fumes, Current fuel consumption,

and Average fuel consumption. The first input Fuel is defined with the values unleaded

and diesel. The marker [oc] denotes, that this input is defined as a Choice Input, i.e.,

an input with a discrete value range, where only one value can hold at a time. Analogously,

the inputs Current fuel consumption and Average fuel consumption are defined as

Numerical Input by the marker [num].

The right side of the markup example shows the definition of the solution taxonomy.

With Technical problem as the root solution, we define is-a relations to other solutions by

dashes. For instance, the solutions Clogged air filter and Battery problem are sub-

classes of Technical problem, whereas Battery problem has the two subclasses Flat

battery and Defect battery cell. Since Technical problem is not connected as the

child of another solution, it is automatically sub-classed by the concept Solution by de-

fault, see Figure 4. We see, that the dashes have different semantics for the input trees and

the solutions trees; they represent the most common organization property for each hierarchy

(contains vs. subClassOf).

The terminology of inputs and solutions can be defined anywhere in the wiki article,

but both trees have to be wrapped by the tag %%Questions ...% and %%Solutions ...%,

respectively, so that the system can identify the explicit terminology definitions. In the fol-

lowing sections, we introduce markups to define problem-solving knowledge, that is used to

derive solutions based on given values of inputs.

3.2 Semantic Annotations

In KnowWE, semantic annotations are defined inline with the wiki text. The markup for

those annotations was inspired by the syntax of Semantic MediaWiki [30], and ontological

concepts can be simply linked by the definition of ontological properties. The general syntax

of the markup connects a text phrase of the wiki text with a concept using an ontological

property.

[Bad ignition timing is a technical problem

<=> subClassOf:: TechnicalProblem] that can be solved ...

In the example shown above, the text phrase "Bad ignition ... problem" is annotated,

stating, that the concept represented by this article is a subClassOf the concept Techni-

calProblem — the relation is also shown in Figure 4. The annotation itself states, that the

annotated text phrase documents/justifies the given relation.

By this type of annotation many useful ontological relations can be defined inline the

wiki text. All annotations are represented in the application ontology and can be queried

using a SPARQL [57] endpoint. SPARQL queries are embedded into the wiki text, and the

results of the queries are shown in the view mode of the article.

Moreover, inline annotations also are used to define user inputs facilities. When using

the asks annotation, the wiki renders access points to enter facts at the defined place. For

example, the following annotation shows an excerpt of the edit pane corresponding to the

wiki article shown in Figure 1.
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!! Typical Symptoms

Bad ignition timing can have multiple symptoms: For example,

...

or weak acceleration. Furthermore, bad ignition timing

frequently causes [engine noises <=> asks:: Engine noises],

such as ringing or knocking.

In the second-last line, we see that the text phrase "engine noises" is annotated by the

property asks with the concept Engine noises as value. This annotation yields the pop-

up menu shown in Figure 1, where the user can enter a new finding instance related to the

concept Engine noises.

3.3 Rules

KnowWE provides a specialized markup for the definition of rule-based knowledge. Rules

are certainly the most popular knowledge representation for building knowledge bases. A

rule

r = r.c ⇒ r.a

derives facts as defined in its consequent (rule action) r.a, if the specified rule condition r.c

is satisfied. Facts derived by the rule can be interpreted as solutions, or as further inputs, that

are used in conditions of other rules. The rule condition r.c typically consists of a combi-

nation of conjunctions and/or disjunctions constraining the values of inputs. For the sake of

simplicity, we distinguish two basic types of rules, that can be used in the wiki:

1. abstraction rules for deriving new instances of findings, and

2. scoring rules for deriving a new state of a solution instance.

Abstraction rules simply define an input in their rule action, that is assigned by either a

pre-defined value (for choice inputs) or is assigned by a numeric value. The numeric value

can be either a static real value or can be computed by a formula given in the rule action.

In scoring rules we use scores to qualitatively derive solutions with a symbolic confirma-

tion weight. These weights state the degree of confirmation or disconfirmation of a particular

solution. Thus, a symbolic weight expresses the strength, for which the satisfied rule con-

dition will confirm/disconfirm the solution. The definition and semantics of scoring rules

goes back to the INTERNIST/QMR project [34] and the D3 system [41]. Analogous to the

representation of the d3web rule system [2] we distinguish seven positive weights (P1, . . . ,

P7) and seven negative weights (N1, . . . , N7). Here, the weight P7 stands for the categoric

derivation of a solution, the counter–weight N7 yields the categoric exclusion of a solution.

The remaining weights are defined in a way, so that the aggregation of two equal weights

results in the weight of the next higher weight, e.g., N3 + N3 = N4; two equal weights with

opposite sign nullify, e.g., N3 + P3 = 0.

Due to the textual acquisition within wikis, the readability and intuitiveness of the

markup is crucial for the effectivity of its application. Therefore, we decided to not use

an already existing standardized markup for (horn clause) rules like RIF [27,56] or the lan-

guages SWRL/RuleML [25], but to promote a more compact and human–readable notation.

In the following example two rules in the proposed markup are given: The abstraction rule

r1 derives the fuel consumption with respect to the usual fuel consumption in percent. Here,
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the value is computed by a formula including the values for Average fuel consumption

and Current fuel consumption. The scoring rule r2 adds the weight P4 to the score of

the solution Clogged air filter, if the user instance of Fuel Evaluation exceeds the

value 140.

// Abstraction rule r1:

// Fuel consumption in percent to usual consumption

IF Average fuel consumption > 0 AND

Current fuel consumption > 0

THEN Fuel Evaluation = (Current fuel consumption /

Average fuel consumption) * 100.0

// Scoring rule r2

// For an increased fuel consumption we increase the

// possibility of a clogged air filter.

IF Fuel Evaluation > 140

THEN Clogged air filter = P4

Rules can be defined anywhere in the wiki article, but every coherent group of rules has

to be wrapped by %%Rules ...%, so that the system scans this section for rules.

3.4 Decision Trees

The representation of classification knowledge using decision trees is very popular in ma-

chine learning research [43], but is also widely used for the manual definition of decision-

support knowledge. The markup for the decision tree is very similar to the markup of the

input terminology, as introduced in Section 3.1. The paths of the decision tree are repre-

sented by dashes indenting the particular inputs and values. Moreover, a decision tree also

defines successors of input values to express, that the specified inputs are asked in case the

input value was entered into the system.

The following example shows a simplistic decision tree for the derivation of a clogged

air filter. Internally, decision trees are represented by questionnaires, so Check air filter

is the questionnaire corresponding to the decision tree. The first question of the decision

tree is related to the input Fuel, where the next input Exhaust fumes is asked when the

instance Fuel = unleaded is present. If the follow-up input Exhaust pipe color then is

answered with the value black, the solution Clogged air filter is derived with the value

established; the categorical derivation is specified by the (!) annotation. Alternatively,

scores—like introduced for scoring rules—can also be used (Section 3.3). If these scoring

weights are used instead of the categoric derivation, then we call the tree a heuristic decision

tree [42].

It is important to notice, that one decision tree can call other decision trees in its leafs

instead of—or in addition to—deriving a solution. For example, the decision tree Check

diesel problems is called, if the instance Fuel = diesel is present. The activation of

other decision trees allows for the modularization of larger knowledge bases.

Also, decision trees do not only define knowledge for the derivation of knowledge, but

also specify an interview strategy for a dialog with the user: Possible values of an input are

denoted in an extra line of the markup. If such a value is followed by a user input with an
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indent increased by one, then this input is interpreted as a follow–up input to be presented,

when the previous input was answered with the given value.

Check air filter

- Fuel [oc]

-- unleaded

--- Exhaust fumes [oc]

---- black

----- Exhaust pipe color [oc]

------ black

------- Clogged air filter (!)

------ grey

---- blue

---- invisible

-- diesel

--- Check diesel problems

Check diesel problems

- Age of your car (in years) [num]

-- > 10

--- ...

-- <= 10

--- ...

Decision trees with the shown size are very easy to understand and to maintain. For

larger decision trees, however, it is recommended to partition the tree logic into a set of

sub–trees and refer to these sub–trees from a main tree. For example, the two decision

trees from above—Check air filter and Check diesel problems—are refining trees,

that are called from a main tree. The main tree itself is responsible for locating the coarse

problem field and calling appropriate sub-trees.

Decision tree knowledge can be defined on arbitrary places in the wiki article, but they

have to be wrapped by the terminology markup %%Questions ...%.

Since trees can be easily formulated using XML, it would have been an obvious ap-

proach to also represent the decision tree by an XML structure. Although this would yield

a reduced compilation effort due to the existence of well–established XML parsers, the re-

sulting markup appears to be too verbose and complex for standard wiki users. In contrast,

the proposed markup is by far more compact and less vulnerable to syntax errors made by

the user when formulating the decision tree.

3.5 Set-Covering Models

Decision trees and rule-based knowledge—as introduced above—consider the deductive

derivation of solutions, which is common for the definition of classification knowledge.

In some domains, however, it is preferable to use an abductive approach to formalize the

derivation knowledge. Set-covering models [44] are a prominent example of an abductive

knowledge representation. Albeit their basic representation is fairly simple, such models can

be incrementally refined in order to improve the expressiveness of the knowledge [10].
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The definition of the knowledge is very compact: Solutions are described by a group of

findings, that are typically observed when the solution is present. We call these findings the

expected findings of a solution. During the problem-solving process the best-matching solu-

tion is derived, i.e., the solution that computes the largest intersection between its expected

findings and the currently present findings.

For the use of set-covering models in wikis we propose the application of set-covering

lists. For each solution a collection of findings is defined, that are typically observed/entered

when the solution is appropriate; the findings are enclosed in braces. The following example

shows a set-covering list for the solution Clogged air filter:

Clogged air filter {

Exhaust pipe color = black

Exhaust fumes = black AND Fuel = unleaded

Driving = IN (unsteady idle speed, weak acceleration)

Fuel Evaluation > 140

NOT (Exhaust fumes = black) [--]

}

Typical user inputs are listed, that are expected to be observed for the solution Clogged

air filter, e.g., for unleaded gasoline we expect a black exhaust fume and pipe. A special

markup is used with [- -] in the last line of the list: This annotation states, that the solution

is excluded from the derivation, if the given finding is observed, i.e., the color of exhaust

fumes is not black.

The lists can be defined anywhere in the wiki article, but they have to be wrapped by the

tag %%SetCoveringList ...%.

3.6 Design and Evolution of Textual Markups

In the previous sections, we briefly introduced the possibility to define the terminology,

rules, decision trees, and set-covering knowledge. KnowWE provides extended syntax to

refine these types of knowledge, but also offers further markups, e.g., for the definition of

decision tables. We refer the interested reader to the literature [8,45] for a more detailed dis-

cussion of available markups. In general, new markups and corresponding problem-solving

knowledge can be easily added due to the plug-in architecture of KnowWE.

The markups—as presented in this article—underwent a continuous evolution in the

past, where the system was used in case studies with students building toy systems. We

observed typical errors and misunderstandings of the (little trained) users when applying the

markup for building their knowledge bases. According to the identified issues we gradually

refined and simplified the markups to their current state.

4 Management and Evaluation of Knowledge Bases

Up to that point, we described the concept of wiki-based knowledge engineering and we in-

troduced suitable markups to define strong problem-solving knowledge. For the application

of realistic knowledge engineering projects the management and evaluation of knowledge

are critical issues.
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4.1 Management

In the experienced development projects the size of the team was usually very small, ranging

from 2 to 8 persons. Thus, a strict management approach was not necessary. In general,

many projects developing strong problem-solving knowledge do not grow to a size that is

greater than 5 people, and dedicated process models may complicate the overall task. With

a growing team size, however, the implementation of project management rules becomes

important, as they are known in ontology engineering, e.g., DILIGENT [55], in open-source

software engineering [36], and in general design [18].

Independently from the team size, the specification of user roles during the project is

helpful. In recent projects, a typical four–fold classification of roles was natural: Domain

specialists, knowledge engineers, wiki champions, and users. Of course, for some persons

some of the roles overlap. Here, domain specialists create and maintain the knowledge base

together with the knowledge engineers, that provide support regarding its formalization and

structure. The overall structure and evolution of the system is monitored by a wiki champion.

The champion bears responsibility for the definition of the master articles and their quality,

the deletion of pages, and the management of wiki contributors (creation and exclusion of

wiki users). The definition of access rights for the particular user roles is supported by the

built-in rights management of standard wiki software. In KnowWE rights are granted for

read and write on page level.

4.2 Evaluation

Suitable evaluation methods heavily depend on the applied knowledge representation and

the degree of formalization. In general, the characteristics of knowledge—as presented

here—are special as to the following aspects:

1. Knowledge is distributed as fragments over the wiki articles. Different fragments may

be owned by different persons.

2. The formalization degree of knowledge can vary between the particular fragments.

3. Different variants of the knowledge base are assembled by the definition of different

master articles (see Figure 8).

In such a setting, it is not reasonable to jointly evaluate the knowledge of the entire wiki, but

to run separate evaluations on the respective masters defined in the wiki. For each master,

we commonly expect the knowledge to be at a uniform formalization level—an assumption

that we cannot make for other variants of the knowledge.

For the validation of the knowledge, we provide a plugin for empirical test runs, i.e., the

execution of (sequential) test cases [3]. Figure 10 shows a screenshot of the empirical testing

plugin of KnowWE, where 100 test cases of the car diagnosis domain have successfully

passed with a precision/recall of 1. A generated visualization of the test results can be also

downloaded and used for manual inspection (as show on the right top of Figure 10). Test

cases can be defined within the wiki and are executed together with a predefined master

knowledge base. The verification of knowledge checks for inconsistency and other types of

anomalies. Currently, KnowWE does not offer a built-in verification of the specified masters,

but masters can be exported as knowledge bases. These knowledge bases are then verified

using the workbench KnowME [2], that offers a variety of anomaly testing tools and uses the

same file format for knowledge bases. Certainly, the tight integration of verification methods

into the wiki is planned for future work, where also distributed methods are implemented [5].
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Fig. 10 Empirical testing with test cases in KnowWE; the results of the executed test cases can be visualized

by DDTrees.

5 Case Study: The Digitalys CareMate System

The system is currently used in a number of (partly industrial, partly academic) projects,

ranging from simple recommender systems to complex decision-support systems for tech-

nical and medical devices.

For example, KnowWE provides a technical platform to support a biological commu-

nity within the BIOLOG Wissen2 project (formerly LaDy). BIOLOG Wissen [37,6] serves

as a web-based application for the collaborative construction and use of a decision-support

system for landscape diversity. It aims to integrate knowledge on causal dependencies of

stakeholders, relevant statistical data, and multimedia content. In another recent project,

KnowWE is extended by diagnostic workflow knowledge in the context of the CliWE

project3. By this extension, the wiki is used to collaboratively develop clinical guidelines,

that are integrated as compiled knowledge bases into next-generation medical devices. A

first prototype of this extension is reported in Hatko et al. [24].

In this paper, we describe the medical decision-support system Digitalys CareMate, that

is currently maintained using the Semantic Wiki KnowWE.

2 BIOLOG is funded by the German Federal Ministry of Education and Research from 2007-2009 (final

funding phase).
3 CliWE (Clinical Wiki Environment) is funded by Drägerwerk, Germany and runs from 2009-2011.
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5.1 Medical Decision Support with CareMate

The decision support system Digitalys CareMate is commercially sold by the company Dig-

italys4 as part of an equipment kit for medical rescue trucks. It is used as a consultation

system during medical rescue missions, when the problem definition of a particular rescue

service is complex and a second opinion becomes important.

The major goals of the project were the rated derivation of suitable solutions and the

implementation of an efficient interview technique for busy rescue service staff in the emer-

gency car. Thus, the user can be guided through an interview focussing on relevant questions

of the current problem. With more questions answered the current ranking of possible solu-

tions improves in relevance, and the interview strategy targets the presentation of reasonable

follow-up questions. The interview strategy follows official school guidelines for emergency

medical technicians in Germany.

Fig. 11 Main screen of the Digitalys CareMate development environment – a KnowWE implementation

(original screenshot is depicted in german language).

4 http://www.digitalys.de
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5.2 Structure and Engineering of the Knowledge Base

In the context of the CateMate project one of the most prominent assets of a (Semantic)

Wiki was its freedom to structure the knowledge base. Thus, a wiki does not impose any

restrictions on how to organize the knowledge base over the wiki articles. In this spirit,

KnowWE also does not limit the developers with respect to the knowledge structure. For

this reason, it became necessary to decide about the structuring of the CareMate knowledge

at the beginning of the project. In the past, we experienced it to be natural at first to identify

the core entities of the application domain; in a second step we try to structure the knowledge

base according to instances of the identified entities.

For the CareMate project, the core entities are the cardinal symptoms, i.e., coarse find-

ings describing vaguely the problem of the currently examined patient. The organization

according to the cardinal symptoms is motivated by the observation, that in practice the

emergency staff also tries to divide the problem by first identifying the cardinal symptom.

Subsequently, the applicable domain knowledge can be easily partitioned with respect to

the cardinal symptoms. The domain specialist provided the domain knowledge (interview

strategy and solution derivation/rating) for each cardinal symptom in form of MS-Visio di-

agrams.

Each cardinal symptom is represented by a distinct wiki article, where—in the first

step—the MS-Visio diagrams are uploaded as attachments and documentation/explanation

is added as free text in the corresponding wiki articles. In the second step, the knowledge is

formalized stepwise using the knowledge formalization pattern heuristic decision tree [42];

the markup for decision trees was introduced in Section 3.4. The use of heuristic decision

trees was appropriate, since the dialog logic and the derivation behavior—as described in the

MS-Visio diagrams—could be easily transcribed into a decision tree logic. An intermediate

rating of solutions during the interview was possible, since heuristic decision trees allow for

a scoring of solutions not only at the end of a dialog, but also in between the tree paths.

Figure 11 shows a screenshot of the main screen of the CareMate development environ-

ment. We see entry points for the 10 cardinal symptoms ("Leitsymptome"), for instance neu-

rological problems ("Neurologie"), chest pain ("Schmerzen im Brustkorb"), and disturbed

consciousness ("Bewusstseinstrübung und Bewusstlosigkeit"). Each cardinal symtom de-

fines a decision tree that can be branched into subsequent decision trees. In their leafs, some

trees link to other cardinal symptoms, when the interview progression shows, that another

cardinal symptom is more relevant for the diagnostic process. A sophisticated interview

strategy is implemented within the tree, so that an effective diagnosis can be made.

Thus, the wiki article of every cardinal symptom contains free text with documentation

and explanations, the original knowledge source in form of MS-Visio diagrams, and the for-

malized knowledge fragment. For larger cardinal symptoms, there are further pages linked

from the original article, where modular parts of the decision tree are formalized. In Fig-

ure 12 the wiki article of the cardinal symptom stomach pain ("Bauchschmerzen") is shown.

Here, the wiki text describes that the decision tree logic was divided into two decision trees

handling the diagnosis of stomach pain for women and for men, separately. For both deci-

sion trees an image is shown (can be enlarged on click), that gives an overview of the general

structure of the questionnaire and the inference. The lower part of the browser window also

shows an excerpt of the formalized knowledge base, where first the sex ("Geschlecht") of

the patient is asked.

Whereas the semi-formalized specification of the workflows as MS-Visio diagrams took

several weeks, the stepwise formalization as heuristic decision trees was done within some
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Fig. 12 Article of the cardinal symptom stomach pain ("Bauchschmerzen") showing some text explaining

the general structure of the corresponding decision tree and overview images describing the knowledge in a

graphical way. The images can be enlarged on click (original screenshot is depicted in german language).

days. The developed knowledge base was validated and verified using the DDTree visu-

alization approach [3]. The wiki-based validation using test cases and its corresponding

verification using the DDTree visualization is depicted in Figure 10.

At the current state of development, the knowledge base contains about 260 findings

distributed over 33 questionnaires. There are about 145 distinct solutions represented by the

system, where their derivation is logically organized by 10 cardinal symptoms. The com-

piled knowledge base resulted in a (merged) decision tree having 2051 possible diagnostic

paths.

5.3 Export for a Runtime Version

Since, the knowledge base is running in a touch-screen application on a rough-sized notepad,

releases of the knowledge base need to be exported from the wiki into the runtime. There-

fore, we provide a deployment feature in KnowWE, where—on a separate wiki page—a



25

number of paragraphs of other wiki articles can be defined, that should be integrated into

a compile process. More technically, we define paragraphs of wiki articles, that should be

included into this new wiki article. By including the relevant parts of the knowledge defi-

nitions spread over the wiki, we are able to define a view of the entire knowledge base on

this one wiki page. This join of knowledge bases was introduced as masters of the wiki pre-

viously in Section 2.4. The compiled knowledge base of this master article is exported for

external use.

Fig. 13 Screenshot of the runtime application running the CareMate knowledge base. The center shows an

auto-scrolling sequence of suitable inputs to be answered by the user. Current inputs are "Pain in a leg?"

("Schmerzen in einem Bein?") and "Bilateral respiratory sound?" ("Atemgeräusch seitengleich auskultier-

bar?"). The bottom pane shows an incrementally updated list of possible solutions, here with spontaneous

pneumothorax ("Spontanpneumothorax") as the currently most probable solution. Due to the intended use of

a touchscreen tablet the size of the buttons is enlarged (original screenshot depicted in german language).

Figure 13 shows a screenshot of the runtime application running the CareMate knowl-

edge base. The center pane of the screen shows the currently active input to be answered by

the user; previously answered inputs are automatically scrolled on top. In the bottom pane

of the system, an ordered list of possible solutions is displayed. The list is updated incre-

mentally when new findings are entered into the system. Since the application is installed

on touchscreen tablet computers, the size of the buttons is increased appropriately.

5.4 Reflections on the Benefits of Using a Semantic Wiki

Semantic Wikis became prominent because of their support of community-driven knowl-

edge engineering [49,31]. In a community-driven knowledge engineering approach, many

people contribute to the distributed knowledge base. Whereas this approach fits especially

for general domains, for instance travel [23], this may not always work in more specialized

domains such as medical or biological science. Consequently, the presented project was tra-

ditionally developed by a single domain specialist as the principal knowledge contributor
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and another specialist for reviewing the knowledge base. The more specialized a knowledge

base is, the more advantages of a principal contributor exist. Often, the development of med-

ical knowledge bases follows this approach, where a dedicated domain specialist or a small

group of experts formalize their expertise in a particular domain.

Nevertheless, even for traditional development processes the use of Semantic Wikis sup-

porting problem-solving knowledge is superior when compared to classic development en-

vironments. We sketch some of the advantages in the following:

1. Flexible organization of the knowledge: A Semantic Wiki provides articles as logical

organization units. In a particular project the wiki makes no restrictions on how to fill

this logical units and allows for any possible structure as long as it fits a partitioning

into articles. In the presented project, we used the cardinal symptoms of the domain

(neurological problems, chest pain, etc.) as the logical structure. This partitioning was

reasonable with respect to the applied knowledge representation; we defined one or more

heuristic decision trees for each cardinal symptom. In another project, the partitioning

with respect to solutions can be more appropriate, i.e., defining an article for each solu-

tion, where the problem-solving knowledge for this solution is also embedded.

2. Interweaving explicit and tacit knowledge: In comparison to standard development

tools for knowledge systems, a Semantic Wiki offers a simple combination of explicit

knowledge, such as rules or decision trees, with tacit knowledge, for example text and

images. Additional information represented in the wiki article can serve in many ways:

1) as startup document at the beginning of a project to informally collect knowledge

about the domain, 2) as documentation of the knowledge engineering decisions taken,

3) as underlying tacit knowledge expressing the informal counter-part, and 4) as pursu-

ing information for concepts represented by the article. In our project, the knowledge

base was originally defined using MS-Visio documents. After the formalization, the

documents were attached as underlying tacit knowledge explaining the decision tree

representation in an alternative way. The files can be easily attached, and new versions

of the documents do not overwrite older ones, but nicely integrate due to the automatic

version control of the wiki. Thus, older versions can be reviewed and compared to the

current state at any time. Moreover, the articles incorporated an informal documentation

of the development process.

3. Simple administration and rights management: Many development tools require the

installation of proprietary software on the client-side. With the use of a Semantic Wiki

only a standard web-browser and an internet/intranet connection is necessary to start

with the development process. Furthermore, this ability frees the knowledge engineers

from the dependency of a particular computer; the development can be stopped and

continued on any computer with a web-browser and an internet connection.

Also, wikis provide a build-in rights management by default, that allows to restrict the

read/write access of specific articles to a user or user group. Thus, parts of the wiki can

be closed for the public, for example, because the knowledge engineering work is not

finished there. Also, any content—knowledge or data—is held under version control,

and thus changes and revisions can be safely performed.

6 Conclusions

Intelligent systems demonstrated their successful application in many domains. The costs of

building and maintaining such systems, however, are still a critical problem. In this paper,
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we identified two dilemmas, that often prevent successful knowledge engineering projects:

The single/multiple domain specialists dilemma and the flexibility/productivity dilemma.

We claim that a flexible Semantic Wiki tailored to knowledge engineering tasks can

help to relax these dilemmas. The paper introduced the Semantic Wiki KnowWE, which is

an extended interpretation of standard Semantic Wikis by also providing the possibility to

represent and use strong problem-solving knowledge for classification tasks. We showed,

how classification knowledge is integrated into the semantic layer of the wiki, and we de-

scribed the combined reasoning process of the ontology with the problem-solving knowl-

edge. Integral components of KnowWE are the markups to represent variants of classifica-

tion knowledge such as rules, decision trees, and set-covering models. The textual markups

are embedded into the standard wiki text to formalize the problem-solving knowledge. We

provided alternative formats and knowledge representations, respectively, to be able to flex-

ibly adapt to possible project requirements. Technically, KnowWE was built on top of the

wiki clone JSPWiki (http://www.jspwiki.org).

Besides classification problems, further classes of knowledge systems exist addressing,

for instance, configuration and scheduling. When adapting the presented approach to tasks

other than classification, we need to consider customizing the task ontology (Section 2.3)

and the markups for the particular problem-solving knowledge (Section 3.3ff) together with

an appropriate reasoning engine.

The system is used in some industrial and scientific projects; we demonstrated the appli-

cation of the wiki by the engineering process of the Digitalys CareMate system — a medical

decision-support system for emergency units. We discussed the use of a Semantic Wiki with

respect to traditional development processes and we identified a number of advantages in

comparison to classic development environments.

In the future, the evaluation and the evolution of knowledge in Semantic Wikis need to

be considered more thoroughly. The evaluation task is not well-understood in the context of

combining distributed problem-solving knowledge and ontologies. Both parts—expressive

knowledge bases and ontologies—have been investigated in the past, but little research is

available for a combined approach. Recently, the verification of ontologies with rules was

investigated in Baumeister & Seipel [9], but no framework for the combination of general

problem-solving knowledge with ontologies is known at the moment. Besides the verifica-

tion of distributed knowledge, e.g., see Baumeister & Nalepa [5], also the validation of the

knowledge needs to be considered in more detail. In addition, the evaluation of the explicit

parts of the knowledge base in combination with the informal parts (text, multimedia) is also

an open issue, that has not been solved sufficiently. Besides formal evaluation methods, the

integration of socially-inspired evaluation approaches is an interesting issue, for example

the application and the analysis of (advanced) user ratings [40].

Furthermore, experiences show that the maintainability of a knowledge base is critical

for the longterm success of a system. In consequence, the evolution of distributed knowledge

is an important research issue for the future, especially its evolution at different levels of

formality. The current state–of–the–art provides separate works for ontology evolution [51,

38], and for the evolution of more expressive knowledge bases [21,11]. Little work, how-

ever, has been done in the field of the combined evolution of knowledge at different levels of

formality. Semantic Wikis provide the possibility to synchronously represent knowledge at

different levels, for example in textual form and as a rule base. For the evolution of knowl-

edge it appears natural, that also a combined approach for the modification of all existing

knowledge elements can be provided.
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