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Abstract. With cloud computing and storage services, data is not only
stored in the cloud, but routinely shared among a large number of users
in a group. It remains elusive, however, to design an efficient mechanism
to audit the integrity of such shared data, while still preserving identity
privacy. In this paper, we propose Knox, a privacy-preserving auditing
mechanism for data stored in the cloud and shared among a large number
of users in a group. In particular, we utilize group signatures to construct
homomorphic authenticators, so that a third party auditor (TPA) is
able to verify the integrity of shared data for users without retrieving
the entire data. Meanwhile, the identity of the signer on each block in
shared data is kept private from the TPA. With Knox, the amount of
information used for verification, as well as the time it takes to audit with
it, are not affected by the number of users in the group. In addition,
Knox exploits homomorphic MACs to reduce the space used to store
such verification information. Our experimental results show that Knox
is able to efficiently audit the correctness of data, shared among a large
number of users.

Keywords: Privacy-Preserving, Auditing, Shared Data, Cloud
Computing.

1 Introduction

With cloud computing and storage, users are able to access and to share resources
offered by cloud service providers at a lower marginal cost. With Dropbox, for
example, data is stored in the cloud (operated by Amazon), and shared among a
group of users in a collaborative manner. It is natural for users to wonder whether
their data remain intact over a prolonged period of time: due to hardware failures
and human errors in an untrusted cloud environment [2], the integrity of data
stored in the cloud can become compromised. To protect the integrity of data
in the cloud and to offer “peace of mind” to users, it is best to introduce a third
party auditor (TPA) to perform auditing tasks on behalf of users. Such a third
party auditor enjoys amply computation/communication resources that users
may not possess.
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Provable data possession (PDP) [3], first proposed by Ateniese et al., allows
a verifier to perform public auditing on the integrity of data stored in an un-
trusted server without retrieving the entire data. Subsequent work focused on
how dynamic data [5, 11, 20, 24] and data privacy [19] can be supported during
the public auditing process. However, most of previous work only focus on au-
diting the integrity of personal data. Recently, Wang et al. [16] first design a
privacy-preserving public auditing mechanism (named Oruta) for shared data in
an untrusted cloud, so that the identity of the signer on each block in shared data
is not disclosed to the third party auditor (TPA) during an auditing task. With-
out knowing the identities of signers, the TPA cannot learn which user in the
group or which block in shared data is a higher valuable target than others [16].

Unfortunately, Oruta [16] fails to scale well to a large number of users sharing
data in a group. In Oruta, information used for verification are computed with
ring signatures [8]; as a result, the size of verification information, as well as the
time it takes to audit with it, are linearly increasing with the number of users
in a group. To make matters worse, when adding new users to a group, all the
existing verification information will need to be re-computed if ring signatures
are used, introducing a significant computation burden to all users. In addition,
the identities of signers are unconditional [8] protected by ring signatures, which
prevent the group manager to trace the identity when someone in the group is
misbehaved.

In this paper, we propose Knox, a new privacy-preserving mechanism to audit
data stored in an untrusted cloud and shared among a large number of users
in a group. In Knox, we take advantage of group signatures [6, 12] to construct
homomorphic authenticators [3, 15], so that the third party auditor is able to
verify the integrity of shared data without retrieving the entire data, but cannot
reveal the identities of signers on all blocks in shared data. Meanwhile, the size
of verification information, as well as the time it takes to audit with it, are
not affected when the number of users sharing the data increases. The original
user, who creates and shares the data in the cloud, is able to add new users
into a group without re-computing any verification information. In addition,
the original user (acts as the group manager) can trace group signatures on
shared data, and reveal the identities of signers when it is necessary. We also
utilize homomorphic MACs [1] to effectively reduce the amount of storage space
needed to store verification information. As a necessary trade-off, we allow the
third party auditor to share a secret key pair with users, which we refer to
as authorized auditing. Although we allow an authorized TPA to possess the
secret key pair, the TPA cannot compute valid group signatures as group users
because this secret key pair is only a part of a group user’s private key. To
our best knowledge, we present the first mechanism designed with scalability
in mind when it comes to support auditing data shared among a large number
of users in a privacy-preserving fashion. A high-level comparison between Knox
and previous work [16] is shown in Table 1.

The remainder of this paper is organized as follows. In Section 2, we briefly
discuss related work. Then, we present the system model, threat model and
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Table 1. Comparison between Previous Work [16] and Knox

Previous work [16] Knox

Public Auditing Yes No

Identity Privacy Yes Yes

Support for Large Groups No Yes

Traceability No Yes

design goals in Section 3. In Section 4, we introduce complexity assumptions and
cryptographic primitives used in Knox. Detailed design and security analysis of
Knox are presented in Section 5 and 6. Finally, we evaluate the performance of
Knox in Section 7, and conclude this paper in Section 8.

2 Related Work

Ateniese et al. [3] first proposed provable data possession (PDP), which allows
a client to verify the integrity of her data stored at an untrusted server without
retrieving the entire file. However, this mechanism is only suitable for static data.
To improve the efficiency of verification, Ateniese et al. [5] constructed scalable
and efficient PDP using symmetric keys. Unfortunately, it cannot support public
verifiability, and only offers each user a limited number of verification requests.

Juels and Kaliski [14] defined another similar model called proofs of retriev-
ability (POR), which is also able to check the correctness of data on an untrusted
server. The original file is added with a set of randomly-valued check blocks called
sentinels. The verifier challenges the untrusted server by specifying the positions
of a collection of sentinels, and by asking the untrusted server to return the as-
sociated sentinel values. Shacham and Waters [15] designed two improved POR
mechanisms, which are built on BLS signatures and pseudo-random functions.

Wang et al. [20] leveraged the Merkle Hash Tree to construct a public auditing
mechanism with fully dynamic data. Hao et al. [13] also designed a dynamic
public auditing mechanism based on RSA. Erway et al. [11] presented a dynamic
PDP based on the rank-based authenticated dictionary. Zhu et al. [24] exploited
index hash tables to support fully dynamic data. To ensure the correctness of
users’ data stored on multiple servers, Wang et al. [18] utilized homomorphic
tokens and erasure codes in the auditing process. An excellent survey of previous
work about data auditing can be found in [21].

Wang et al. [19] considered data privacy with public auditing in the cloud.
In their mechanism, the TPA is able to check the integrity of cloud data but
cannot obtain any private data. Zhu et al. [23] also designed a mechanism to
preserve data privacy from the TPA. Recent work [16], Oruta, represents the
first privacy-preserving public auditing mechanism for shared data in the cloud.
In this mechanism, the TPA can verify the integrity of shared data, but is not
able to reveal the identity of the signer on each block. Unfortunately, it is not
readily scalable to auditing the integrity of data shared among a large number
of users in the group.
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3 Problem Statement

3.1 System Model

In this paper, we consider data storage and sharing services in the cloud with
three entities: the cloud, the third party auditor (TPA), and users who partici-
pate as a group (as shown in Fig. 1). Users in a group include one original user
and a number of group users. The original user is the original owner of data, and
shares data in the cloud with other users. Based on access control policies [22],
other users in the group are able to access, download and modify shared data.
The cloud provides data storage and sharing services for users, and has ample
storage space. The third party auditor is able to verify the integrity of shared
data based on requests from users, without downloading the entire data.

Users Cloud 

Third Party Auditor (TPA)

Shared Data Flow
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Fig. 1. The system model includes the cloud, the third party auditor and users

When a user (either the original user or a group user) wishes to check the
integrity of shared data, she first sends an auditing request to the TPA. After
receiving the auditing request, the TPA generates an auditing message to the
cloud, and retrieves an auditing proof of shared data from the cloud. Then the
TPA verifies the correctness of the auditing proof. Finally, the TPA sends an
auditing report to the user based on the result of the verification.

3.2 Threat Model

Integrity Threats. In general, two kinds of threats related to the integrity of
shared data are possible. First, an external adversary may try to pollute shared
data in the cloud, and prevent users from using shared data correctly. Second,
the cloud service provider may inadvertently corrupt or even remove shared data
in the cloud due to hardware failures and human errors. To make matters worse,
in order to avoid jeopardizing its reputation, the cloud service provider may be
reluctant to inform users about such corruption of data.
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Privacy Threats. During an auditing task, a semi-trusted TPA, who is only
responsible for verifying the integrity of shared data, may try to reveal the iden-
tity of the signer on each block in shared data based on verification information
(i.e. signatures). The identity of the signer on each block is private and sensitive
information, which users do not wish to be revealed to any third party.

3.3 Design Goals

To make it efficient and secure for the TPA to verify shared data with a large
number of users in a group, Knox should be designed to achieve the following
properties: (1) Correctness: The TPA is able to correctly audit the integrity
of shared data. (2) Efficiency: The TPA is able to verify the integrity of shared
data without retrieving the entire data from the cloud. (3) Identity privacy:
During an auditing task, the TPA cannot distinguish the identity of the signer
on each block. (4) Support for large groups: The TPA is able to efficiently
audit data that are shared among a large number of users. In particular, the
size of verification information, as well as the time it takes to audit with it, are
not affected by the number of users in the group; the original user can add new
users to the group without re-computing existing verification information. (5)
Traceability: The original user is able to trace a signature on a block and reveal
the identity of the signer.

4 Preliminaries

4.1 Bilinear Maps

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p, g1 be
a generator of G1, and g2 be a generator of G2. A bilinear map e is a map e:
G1 ×G2 → GT with the following properties: 1) Computability: there exists
an efficiently computable algorithm for computing map e. 2) Bilinearity: for
all u ∈ G1, v ∈ G2 and a, b ∈ Zp, e(u

a, vb) = e(u, v)ab. 3) Non-degeneracy:
e(g1, g2) �= 1. For ease of exposition, we assume G1 = G2 in the rest of this
paper.

4.2 Complexity Assumptions

Definition 1. Computational Diffie-Hellman (CDH) Problem. For (a, b)
∈ Z2

p , given (g1, g
a
1 , g

b
1) ∈ G3

1 as input, output gab1 ∈ G1.

The CDH assumption holds in G1 if no t-time algorithm has advantage at least
ε in solving the CDH problem in G1, which means it is computational infeasible
to solve the CDH problem in G1.

Definition 2. q-Strong Diffie-Hellman (q-SDH) Problem. For γ ∈ Zp,

given a (q+2)-tuple (g1, g2, g
γ
2 , g

γ2

2 , ..., gγ
q

2 ) ∈ G1 ×Gq+1
2 as input, output a pair

(g
1/(γ+x)
1 , x) ∈ G1 × Zp.
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The q-SDH assumption holds in (G1, G2) if no t-time algorithm has advantage
at least ε in solving the q-SDH problem in (G1, G2).

Definition 3. Decision Linear (DL) Problem. For (a, b, c) ∈ Z3
p , given

(u, v, h, ua, vb, hc) ∈ G6
1 as input, output yes if a+ b = c and no otherwise.

The DL assumption holds in G1 if no t-time algorithm has advantage at least ε
in solving the DL problem in G1.

4.3 Group Signatures

Group signatures, first introduced by Chaum and van Heyst [10], aim to provide
anonymity of signers, who are from a same group. A verifier is convinced that
messages are correct and signed by one of the group members, but cannot reveal
the identity of the signer. Meanwhile, only the group manager is able to trace
these group signatures and reveal the identity of the signer. Boneh et al. [6]
(denoted as BBS) proposed a short group signature scheme based on the q-SDH
assumption. In their scheme, the length of each group signature is independent
from the number of group members.

4.4 Homomorphic MACs

Homomorphic MACs, introduced by Agrawal and Boneh [1], provide data in-
tegrity for network coding. Using homomorphic MACs, an intermediate node
can construct a valid MAC of an output block based on the MACs of in-
put blocks without knowing the secret keys. More specifically, given a block
mmmj = (mj,1, ...,mj,n) ∈ Zn

p , the homomorphic MAC of this block can be com-
puted as tj =

∑n
i=1 δimj,i + bj ∈ Zp, where δδδ = (δ1, ..., δn) is generated by a

pseudo-random generator and a secret key kprg, and bj is calculated by a pseudo-
random function and a secret key kprf . Given t1 and t2, an intermediate node
can compute a valid MAC of a new blockmmm′ =mmm1+mmm2 by calculating t′ = t1+t2
without knowing the secret key pair (kprg, kprf ).

4.5 Homomorphic Authenticators

Homomorphic authenticators (also denoted as homomorphic verifiable tags) are
basic tools to construct data auditing mechanisms [3,13,15,16,19,23,24]. Besides
unforgeability (only a user with a private key can generate valid signatures), a
homomorphic authenticable signature scheme, which denotes a homomorphic
authenticator based on signatures, should also satisfy the following properties:

Let (pk, sk) denote the signer’s public/private key pair, σ1 denote the signa-
ture on message m1 ∈ Zp, σ2 denote the signature on message m2 ∈ Zp.

– Blockless verification: Given σ1 and σ2, two random values α1, α2 ∈ Zp

and a message m′ = α1m1 + α2m2 ∈ Zp, a verifier is able to check the
correctness of message m′ without knowing message m1 and m2.
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– Non-malleability: Given σ1 and σ2, two random values α1, α2 ∈ Zp and
a message m′ = α1m1 + α2m2 ∈ Zp, a user who does not have private key
sk, is not able to generate a valid signature σ′ for message m′ by combining
signature α1 and α2.

The first property allows a verifier to check the correctness of data in the cloud
with a linear combination of all the blocks, while the entire data does not need
to be downloaded to the verifier. The second property prevents an attacker
from generating signatures for invalid messages by combining existing signa-
tures. Other cryptographic techniques related to homomorphic authenticable
signatures includes aggregate signatures [8], homomorphic signatures [7] and
batch-verification signatures [12]. If a signature scheme is blockless verifiable
and malleable, it is a homomorphic signature scheme. In the construction of
data auditing mechanisms, we should use homomorphic authenticable signatures,
not homomorphic signatures. Otherwise, based on malleability of homomorphic
signatures, an adversary can successfully corrupt data in the cloud by linearly
combining existing blocks and corresponding signatures.

5 Homomorphic Authenticable Group Signatures

5.1 Overview

As introduced at the beginning of this paper, we expect to utilize group signa-
tures for computing verification information, so that the identity of the signer
on each block can be kept private from the TPA. However, traditional group
signatures [4,6,10] cannot be directly used in Knox, since they are not blockless
verifiable. Without blockless verification, a verifier has to download the entire
data to check the integrity of shared data, which consumes excessive bandwidth
and takes long verification times. Therefore, we first build a homomorphic au-
thenticable group signature (HAGS) scheme in this section. Then we will present
the full construction of our privacy-preserving auditing mechanism for shared
data among a large number of users based on HAGS in the next section.

In HAGS, we extend BBS group signatures [6] to achieve blockless verifica-
tion. Meanwhile, to keep unforgeability (nobody outside the group can produce
valid signatures) of HAGS, we leverage BLS signatures [9] as a part of our group
signatures. BLS signatures, which are based on bilinear maps, are used in previ-
ous work [15,19] to audit data integrity of personal users. In addition, we exploit
batch verification methods of group signatures in [12] to improve the efficiency
of HAGS for verifying multiple group signatures. Note that if only using BLS
signatures among a group of users, which means that all the users in the group
generate signatures on messages only with a common private key, it is also pos-
sible to achieve identity privacy on messages. Unfortunately, traceability of the
group manager on signatures generated by group members will be immediately
lost.
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5.2 Construction of HAGS

Following general constructions of group signatures in [4,6], HAGS contains five
algorithms: KeyGen, Join, Sign, Verify and Open. In KeyGen, the group
manager generates her private key and a group public key. In Join, the group
manager is able to compute a private key for a new group user and add this user
to the group user list. A group user signs messages using her private key and the
group public key in Sign. In Verify, a verifier is able to check the correctness of
a message using the group public key, but she cannot reveal the identity of the
signer. The group manager can reveal the identity of the signer on a message in
Open.

Scheme Details: Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of G1 and G2 respectively, G1×G2 → GT be a bilinear
map. There are two hash functions, H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G1.
The total number of group users is d.

KeyGen. The group manager randomly selects h ∈ G1\{1G1} and ξ1, ξ2 ∈
Z∗
p , and sets u, v ∈ G1 such that uξ1 = vξ2 = h. Then, she randomly selects

γ, π, η ∈ Z∗
p , and sets w = gγ2 , ρ = gπ2 ∈ G2.

The group public key is gpk = (g1, g2, h, u, v, w, ρ, η), the group manager’s
private key is gmsk = (ξ1, ξ2). The group manager keeps γ private. And π will
be a part of a group user’s private key, which is issued to group users later.

Join. For user i, 1 ≤ i ≤ d, the group manager randomly selects xi ∈ Z∗
p

with xi + γ �= 0, and sets Ai = g
1/(γ+xi)
1 ∈ G1. The private key of user i is

gsk[i] = (Ai, xi, π). The group manager secretly issues gsk[i] to user i, and
adds this user into the group user list.

Sign. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a private key
gsk[i] = (Ai, xi, π), a message m ∈ Zp and this message’s identifier id, user i
computes the signature σ as follows:

1. Randomly select α, β, rα, rβ , rx, rγ1 , rγ2 ← Zp.
2. Compute T1, T2 and T3 as T1 = uα, T2 = vβ , T3 = Ai · hα+β .
3. Compute γ1 = xi · α and γ2 = xi · β.
4. Compute R1, R2, R3, R4 and R5 as

R1 = urα , R2 = vrβ , R4 = T rx
1 · u−rγ1 , R5 = T rx

2 · v−rγ2 ,

R3 = e(T3, g2)
rx · e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 .

5. Compute a challenge c ∈ Zp as c = ηmH1(T1, T2, T3, R1, R2, R3, R4, R5). For
ease of exposition, we use H1(T1, ..., R5) instead of H1(T1, T2, T3, R1, R2,
R3, R4, R5) in the remainder of this paper.

6. Compute sα, sβ , sx, sγ1 , sγ2 ∈ Zp as:

sα = rα + c · α, sβ = rβ + c · β, sx = rx + c · xi,

sγ1 = rγ1 + c · γ1, sγ2 = rγ2 + c · γ2.
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7. Compute a tag θ as θ = [H2(id)g
m
1 ]π ∈ G1.

8. Output the signature of this message m as σ = (T1, T2, T3, θ, R3, c, sα, sβ,
sx, sγ1 , sγ2) ∈ G4

1 ×GT × Z6
p .

Verify. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a message m, an
identifier id and a group signature σ = (T1, T2, T3, θ, R3, c, sα, sβ , sx, sγ1 , sγ2), a
verifier checks the integrity of this message as follows:

1. Re-compute values R1, R2, R4 and R5 from σ as:

R̃1 = usα · T−c
1 , R̃2 = vsβ · T−c

2 , R̃4 = T sx
1 · u−sγ1 , R̃5 = T sx

2 · v−sγ2

2. Check the following equations as:

R3
?
= e(T3, g2)

sxe(h,w)−sα−sβe(h, g2)
−sγ1−sγ2 ·(e(T3, w) · e(g1, g2)−1

)c
, (1)

c
?
= ηm ·H1(T1, T2, T3, R̃1, R̃2, R3, R̃4, R̃5), (2)

e(θ, g2)
?
= e(H2(id) · gm1 , ρ). (3)

If all the three equations hold, the verifier accepts message m. Otherwise,
she rejects this message.

Open. Only the group manager can trace a group signature and reveal the
identity of the signer. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η),
the group manager’s private key gmsk = (ξ1, ξ2), a message m and a signature
σ, the group manager reveals the identity of the signer as follows:

1. Verify that the signature σ is a valid signature on message m.
2. Decrypt user i’s Ai as Ai = T3/(T

ξ1
1 · T ξ2

2 ).
3. Given Ai, which is a part of user i’s private key, the group manager is able

to reveal the identity of the signer on message m.

5.3 Security Analysis of HAGS

Theorem 1. Given a message m and its group signature σ, a verifier is able
to correctly check the integrity of message m under HAGS.

Proof. Equation (1) is correct because e(T3, g2)
rx ·e(h,w)−rα−rβ ·e(h, g2)−rγ1−rγ2

= e(T3, g2)
sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 · (e(T3, w) · e(g1, g2)−1

)c
. Because

R1, R2, R4, R5 can be successfully recomputed [6], Equation (2) is correct.
Equation (3) is correct since e(θ, g2) = e([H2(id)g

m
1 ]π, g2) = e(H2(id)g

m
1 , ρ).

Further explanations about correctness can be found in [6, 12].

Theorem 2. Suppose F is a (t′, ε′)-algorithm that can generate a forgery of
a group signature under HAGS. Then there exists a (t, ε)-algorithm A that can
solve the CDH problem with t ≤ t′ + (qH + qS + 1)cG1 and ε ≥ ε′/(e + qSe),
where F issues at most qH hash queries and at most qS signing queries, e =
limqS→∞(1 + 1/qS)

qS , exponentiation and inversion on G1 take time cG1 .
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Proof. Details of this proof can be found in our technical report [17].

Theorem 3. HAGS is a homomorphic authenticable group signature scheme.

Proof. We first prove that HAGS has the property of blockless verification. Then
we show HAGS is also non-malleable.

Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), two signatures σ1 =
(T1,1, T1,2, T1,3, θ1, R1,3, c1, s1,α, s1,β, s1,x, s1,γ1 , s1,γ2), σ2 = (T2,1, T2,2, T2,3, θ2,

R2,3, c2, s2,α, s2,β, s2,x, s2,γ1 , s2,γ2), and a message m′ =
∑2

j=1 yjmj ∈ Zp, where
yj ∈ Z∗

p , a verifier is able to check the correctness of messagem′ without knowing
message m1 and m2. More specifically, she first recomputes Rj,1, Rj,2, Rj,4 and
Rj,5 as in Verify. Then she checks:

2∏

j=1

R
yj

j,3
?
= e(

2∏

j=1

(T
sj,x
j,3 · h−sj,γ1−sj,γ2 · g−cj

1 )yj , g2)e(

2∏

j=1

(h−sj,α−sj,β · T cj
j,3)

yj , w),

(4)

2∏

j=1

c
yj

j
?
= ηm

′ ·
2∏

j=1

H1(Tj,1, ..., R̃j,5)
yj , (5)

e(

2∏

j=1

θ
yj

j , g2)
?
= e(

2∏

j=1

H2(idj)
yj · gm′

1 , ρ). (6)

Only if all the three equations hold, then the verifier accepts message m′.
Note that only Equation (5) and (6) are related to messagem′, while Equation

(4) is independent from the content of message m′. The correctness of Equation
(4) can be proved using batch verification methods of group signatures [12].
Based on Theorem 1, the correctness of Equation (5) and (6) can be proved as:

2∏

j=1

c
yj

j =
2∏

j=1

(
ηmj ·H1(Tj,1, ..., R̃j,5)

)yj

= ηy1m1+y2m2 ·
2∏

j=1

H1(Tj,1, ..., R̃j,5)
yj = ηm

′ ·
2∏

j=1

H1(Tj,1, ..., R̃j,5)
yj .

e(

2∏

j=1

θ
yj

j , g2) = e(

2∏

j=1

(H2(idj) · gmj

1 )π·yj , g2)

= e(

2∏

j=1

H2(idj)
yj · gy1m1+y2m2

1 , gπ2 ) = e(

2∏

j=1

H2(idj)
yj · gm′

1 , ρ).

Because all the three equations are correct, HAGS is blockless verifiable.
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Meanwhile, an attacker, who does not have a private key, cannot generate a
valid signature σ′ for message m′ by combining existing signatures. More specif-
ically, this user cannot construct a tag θ′ by linearly combining θ1 and θ2 with
y1 and y2. Because θy1

1 θy2

2 = [H2(id1)
yjH2(id2)

y2gm
′

1 ]π , θ′ = [H2(id
′)gm

′
1 ]π and

H2(id
′) �= H2(id1)

yjH2(id2)
y2 , then we have θy1

1 · θy2

2 �= θ′. Therefore, HAGS is
non-malleable.

Theorem 4. Given a message m and its group signature σ, only the group
manager can reveal the identity of the signer on this message. For a verifier, it
is computational infeasible to reveal the identity of the signer on message m.

Proof. For the group manager, she can always successfully recover the identity of
the signer on messagem using her manager private key gmsk = (ξ1, ξ2). Because

T3/(T
ξ1
1 ·T ξ2

2 ) = Ai ·hα+β/(uα·ξ1 ·vβ·ξ2) = Ai ·hα+β/hα+β = Ai. For a verifier, if
she can successfully choose a value c with c = α+β, then she is able to decrypt Ai

and reveal the identity of the signer by computing T3/h
c = Ai·ha+b/hc. However,

given u, v, h, T1 = uα, T2 = vβ , hc ∈ G1, deciding whether c = α + β is as hard
as solving Decision Linear problem in G1. Further proofs about anonymity and
traceability of group signatures can be found in [6].

6 Privacy-Preserving Auditing for Shared Data

6.1 Overview

We now present Knox, a privacy-preserving auditing mechanism for shared data
among a large number of users. Using HAGS, we can preserve the identity of
the signer on each block from the TPA. Meanwhile, the original user, who is the
group manager and shares data with other group users, can reveal an identity
of a signer when it is necessary. Moreover, the length of each group signature is
independent from the number of group users, which is a desirable property for
large groups to share their data in the cloud. If users wish to protect the privacy
of shared data during an auditing task, users can encrypt data using encryption
techniques, such as the combination of symmetric encryption and attribute-based
encryption [22], before outsourcing data to the cloud server. The main objective
of designing Knox is to provide identity privacy for users.

To reduce the storage space of group signatures on shared data, we utilize
homomorphic MACs [1] to compress each block into a small value, and then
sign this small value instead of signing the entire block. As a necessary trade-off,
Knox does not support public auditing, since the TPA in our mechanism needs
to share a secret key pair with all group users, referred to as authorized auditing.
This secret key pair is used to compute homomorphic MACs. Although we allow
an authorized TPA to possess this secret key pair, the TPA cannot compute
valid group signatures as group users because this secret key pair is only a part
of a group user’s private key.

Because the computation of a signature includes an identifier of a block (as
we described in HAGS), conventional methods, which only use the index of a
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block as its identifier, are not suitable for dynamic data. The reason is that
when a user modifies shared data by performing an insert or delete operation on
a single block, the indices of blocks that after the modified block are all changed,
and the change of these indices requires users to re-compute the signatures of
these blocks, even though the content of these blocks are not modified [16].
To avoid this type of re-computation and support dynamic data for users, we
take advantage of index hash tables [16, 24] as identifiers of blocks. Further
explanations about index hash tables can be found in [16, 24].

In addition, we continue to use sampling strategies as previous work [3] to de-
tect any corrupted block in shared data with a high probability, by only choosing
a subset of all blocks in each auditing task. For example, if 1% of all the blocks
are corrupted, the TPA can detect this misbehavior with a probability greater
than 99% by choosing only 460 random selected blocks, where the number of
selected blocks is independently with the total number of blocks in shared data
if the percentage of corrupted blocks is fixed [3]. To improve the detection prob-
ability, the TPA can increase the number of selected blocks in each auditing
task [3, 23]. In some emerging applications, the auditor may need to achieve a
100% detection probability if only one corrupted block exists, then all the blocks
in shared data should be selected during an auditing task. As a trade-off, the
computation and communication cost are significantly increased.

6.2 Construction of Knox

Knox includes six algorithms: KeyGen, Join, Sign, ProofGen, ProofVerify
and Open. In KeyGen, the original user of shared data generates a group
public key and a group manager private key. In Join, the original user, who
acts as the group manager, is able to issue private keys to users. A user (either
the original user or a group user) is able to sign blocks using her private key
and the group public key in Sign. In ProofGen, the cloud generates a proof of
possession of shared data to the TPA. ProofVerify is operated by the TPA to
verify the correctness of the proof. The original user can reveal the identity of
the signer on each block in Open.

Scheme Details: Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of G1 and G2 respectively, G1×G2 → GT be a bilinear
map. There are two hash functions, H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G1.
The total number of group users is d. Data M , which is going to be shared by
users, is divided into n blocks. Each block is further divided into k elements of
Zp. Therefore, shared data M can be presented as:

M =

⎛

⎜
⎝

mmm1

...
mmmn

⎞

⎟
⎠ =

⎛

⎜
⎝

m1,1 . . . m1,k

...
. . .

...
mn,1 . . . mn,k

⎞

⎟
⎠ ∈ Zn×k

p .

There are also a pseudo-random generator PRG: Kprg → Zk
p and a pseudo-random

function PRF: Kprf ×I → Zp, where Kprg and Kprf denote the set of secret keys
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for PRG and PRF respectively, and I is the set of all identifiers in the index hash
table of data M .

KeyGen. The original user, who acts as the group manager, first selects
system parameters as in HAGS. Meanwhile, she also randomly computes a secret
key pair skp = (skprg, skprf ), where skprg ∈ Kprg and skprf ∈ Kprf . The group
public key is gpk = (g1, g2, h, u, v, w, ρ, η), the group manager’s private key is
gmsk = (ξ1, ξ2). The original user keeps γ private. Both π and skp will be a part
of a group user’s private key, which is issued to group users later. The original
user also privately shares skp = (skprg, skprf ) with an authorized TPA.

Join. For user i, 1 ≤ i ≤ d, the original user randomly selects xi ∈ Z∗
p

with xi + γ �= 0, and sets Ai = g
1/(γ+xi)
1 ∈ G1. The private key of user i is

gsk[i] = (Ai, xi, π, skp). The original user secretly issues gsk[i] to user i, and
adds this user into the group user list.

Sign. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a private key
gsk[i] = (Ai, xi, π, skp), a block mmmj ∈ Zk

p and this block’s identifier idj ∈ I,
user i computes the signature σj as follows:

1. Select αj , βj , rj,α, rj,β , rj,x, rj,γ1 , rj,γ2 as in HAGS.
2. Compute Tj,1, Tj,2, Tj,3, γj,1, γj,2, Rj,1, Rj,2, Rj,3, Rj,4 and Rj,5 as in HAGS.

3. Compute δδδ = (δ1, ..., δk)← PRG(skprg) ∈ Zk
p and bj ← PRF(skprf , idj) ∈ Zp,

then calculate the homomorphic MAC of block mmmj = (mj,1, ...,mj,k) as tj =∑k
l=1 δl ·mj,l + bj ∈ Zp.

4. Compute a challenge cj for block mmmj as cj = ηtj ·H1(Tj,1, ..., Rj,5) ∈ Zp.

5. Compute sj,α, sj,β, sj,x, sj,γ1 , sj,γ2 as in HAGS.

6. Compute a tag θj as θj = [H2(idj)g
tj
1 ]π ∈ G1.

7. Output a signature σj of this blockmmmj as σj = (Tj,1, Tj,2, Tj,3, θj , Rj,3, cj , sj,α,
sj,β , sj,x, sj,γ1 , sj,γ2).

ProofGen. To audit the integrity of shared data, a user first sends an auditing
request to the TPA. After receiving an auditing request, the TPA generates an
auditing message as follows:

1. Randomly pick a q-element subset J of set [1, n] to locate the q selected
blocks in this auditing task.

2. Generate a random yj ∈ Zp, for j ∈ J .
3. Output an auditing message {(j, yj)}j∈J , and send it to the cloud.

After receiving an auditing message, the cloud generates a proof of possession
of selected blocks in shared data as follows:

1. Compute μl =
∑

j∈J yjmj,l ∈ Zp, for l ∈ [1, k], and aggregate the selected

tags as Θ =
∏

j∈J θ
yj

j ∈ G1.

2. Output Φ and φj = (Tj,1, Tj,2, Tj,3, Rj,3, cj , sj,α, sj,β , sj,x, sj,γ1 , sj,γ2) based
on σj , where j ∈ J and Φ is the set of all φj .

3. Generate an auditing proof {μμμ,Θ, Φ, {idj}j∈J }, and send it to the TPA,
where μμμ = (μ1, ..., μk).
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ProofVerify. Given an auditing proof {μμμ,Θ, Φ, {idj}j∈J }, an auditing mes-
sage {(j, yj)}j∈J , a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a secret key
pair skp = (skprg, skprf ), the TPA verifies this proof as follows:

1. Generate δδδ = (δ1, ..., δk)← PRG(skprg) ∈ Zk
p and bj ← PRF(skprf , idj) ∈ Zp,

where j ∈ J .
2. Re-compute Rj,1, Rj,2, Rj,4, Rj,5 as in HAGS.

3. Compute λ =
∑k

l=1 δlμl +
∑

j∈J yjbj ∈ Zp.
4. Check the following equations

∏

j∈J
R

yj
j,3

?
= e(

∏

j∈J
(T

sj,x
j,3 · h−sj,γ1−sj,γ2 · g−cj

1 )yj , g2) · e(
∏

j∈J
(h−sj,α−sj,β · T cj

j,3)
yj , w),

(7)

∏

j∈J
c
yj

j
?
= ηλ ·

∏

j∈J
H1(Tj,1, ..., R̃j,5)

yj , (8)

e(Θ, g2)
?
= e(

∏

j∈J
H2(idj)

yj · gλ1 , ρ). (9)

If all three equations hold, the proof is valid. Otherwise, it is not.
5. If the proof is valid, the TPA sends a positive report to the user. Otherwise,

she sends a negative report.

Open. Given a block mmmj and a signature σj , the original user can reveal the
identity of the signer on this block using her group manager private key gmsk =
{ξ1, ξ2} as in HAGS.

Discussions. In Knox, the TPA is able to verify the integrity of shared data
without retrieving the entire data. The original user can add new users to the
group without re-computing any signature. Using the group manager’s private
key, the original user can reveal the identity of the signer on each block. While
in previous work [16], the original user cannot disclose the identity of the signer
because the identity is unconditional protected by ring signatures [8]. In addition,
if the original user in previous work [16] wishes to add new users to the group,
all signatures on shared data has to be recomputed, because the generation and
verification of a ring signature require all the current group members’ public
keys.

User Revocation. Once a group user is misbehaved and her identity is revealed
by the group manager, it is necessary to revoke this misbehaved user from the
group. In our current mechanism, to revoke a group user from the group, the
group manager needs to re-generate and re-distribute some parts of the private
key for existing users, then all existing users need to re-sign their blocks in
shared data with new private keys. The blocks previously signed by the revoked
user should be re-signed by the group manager. Specifically, the group manager
generates and distributes a new pair (π′, skp′) for existing users, then user i can
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compute group signatures with her new private key gsk′[i] = (Ai, xi, π
′, skp′);

while the revoked user cannot compute valid group signatures anymore because
she has no knowledge of (π′, skp′). The TPA will audit shared data with the
new corresponding public key gpk′ = (g1, g2, h, u, v, w, ρ

′, η), where ρ′ = gπ
′

2 .
In some special cases, the group manager herself may need to leave the group.
Then the new group manager should compute new private keys for users and a
new public key for the new group, and all the users in the new group need to
re-sign blocks in shared data with their new private keys.

6.3 Security Analysis of Knox

Theorem 5. Given shared data M and its group signatures, a verifier is able
to correctly check the integrity of shared data M .

Proof. To prove the correctness of Knox is equivalent of proving Equation (7), (8)
and (9) are all correct. Because Equation (1) is correct, it is clear that Equation
(7) is also correct. Equation (8) can be expanded as follows:

∏

j∈J
c
yj

j =
∏

j∈J

(
ηtj ·H1(Tj,1, ..., R̃j,5)

)yj

=
∏

j∈J
ηtjyj ·

∏

j∈J
H1(Tj,1, ..., R̃j,5)

yj

= η
∑

j∈J yj(
∑k

l=1 δlmj,l+bj) ·
∏

j∈J
H1(Tj,1, ..., R̃j,5)

yj

= η
∑k

l=1 δlμl+
∑

j∈J yjbj ·
∏

j∈J
H1(Tj,1, ..., R̃j,5)

yj

= ηλ ·
∏

j∈J
H1(Tj,1, ..., R̃j,5)

yj .

Similar to the proof of Equation (8), the correctness of Equation (9) can be
presented as

e(Θ, g2) = e(
∏

j∈J

(
H2(idj) · gtj1

)yj

, gπ2 )

= e(
∏

j∈J
H2(idj)

yj ·
∏

j∈J
g
tjyj

1 , ρ)

= e(
∏

j∈J
H2(idj)

yj · gλ1 , ρ).

All three equations are correct, therefore, a verifier in Knox is able to correctly
check the integrity of shared data M .

Theorem 6. Given shared data M and its group signatures, it is computational
infeasible for an untrusted cloud or adversary to generate an auditing proof based
on corrupted data M ′, where this auditing proof can pass the verification under
Knox.
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Proof. Details of this proof can be found in our technical report [17].

Theorem 7. Given shared data M and its group signatures, only the original
user (the group manager) can reveal the identity of the signer on each block. For
the TPA, it is computational infeasible to reveal the identity of the signer on
each block during the auditing process.

Proof. According to Theorem 4, for the TPA, who does not possess group man-
ager’s private key gmsk = (ξ1, ξ2), revealing the identity of the signer on each
block during the auditing process is as hard as solving Decision Linear problem
in G1. The original user, who acts as the group manager, is able to trace the
identity of the signer on each block using her group manager’s private key.

7 Experimental Results

We now compare the performance of Knox with previous work, Oruta [16]. Due
to space limitations, we only provide some experimental results in this section.
Detailed analysis of computation and communication cost of Knox can be found
in [17]. In our experiments, we utilize GMP and PBC libraries to implement
cryptographic operations in Knox. All our experiments are tested on a 2.26 GHz
Linux system over 1, 000 times. The security level is |p| = 160 bits. We also
assume the total number of blocks in shared data is n = 1, 000, 000, each block
contains k = 100 elements, the size of each block is 2KB and total size of shared
data is 2GB. In the following experiments, we assume the number of selected
blocks is q = 300, which allows the TPA to keep the detection probability greater
than 95% if 1% of all the blocks are corrupted [3].
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As shown in Fig. 2, the signature size of Knox is independent from the number
of users in a group. On the contrary, the signature size of Oruta is linearly
increasing with the size of the group. Specifically, when d = k in Oruta, the size
of a signature is even the same as the size of a block.

In Fig. 3, we compare the auditing time of Knox and Oruta. In Knox, the
auditing time is independent from the group size, while the auditing time in
Oruta linearly increases with the size of the group. When the data in the cloud
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are shared by a large group, Knox requires less auditing time than Oruta. More
specifically, when the group size is 100, Knox is able to finish an auditing task
in less than 4 seconds while Oruta requires nearly 12 seconds to finish the same
auditing task.

A detailed comparison of the auditing performance between Knox and Oruta
is illustrated in Table 2, where d = 100 and k = 100. Although Knox requires less
auditing time than Oruta, the communication cost of Knox is higher. However,
it is still a small percentage of the entire size of shared data, which means the
TPA can efficiently audit shared data without downloading the entire data. Our
experimental results show that Knox has a better performance when auditing
data shared among a large number of users.

Table 2. Comparison of Auditing Performance

Oruta [16] Knox

Data Storage Usage (GB) 2

Signature Storage Usage (GB) 2 0.33

Communication Cost (KB) 18 106.4

Auditing Time (seconds) 11.49 3.44

8 Conclusion

In this paper, we propose Knox, a privacy-preserving auditing scheme for shared
data with large groups in the cloud. We utilize group signatures to compute
verification information on shared data, so that the TPA is able to audit the
correctness of shared data, but cannot reveal the identity of the signer on each
block. With the group manager’s private key, the original user can efficiently
add new users to the group and disclose the identities of signers on all blocks.
The efficiency of Knox is not affected by the number of users in the group.
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