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ABSTRACT

High-throughput experimental technologies often

identify dozens to hundreds of genes related to, or

changed in, a biological or pathological process.

From these genes one wants to identify biological

pathways that may be involved and diseases that

may be implicated. Here, we report a web server,

KOBAS 2.0, which annotates an input set of genes

with putative pathways and disease relationships

based on mapping to genes with known annota-

tions. It allows for both ID mapping and cross-

species sequence similarity mapping. It then

performs statistical tests to identify statistically sig-

nificantly enriched pathways and diseases. KOBAS

2.0 incorporates knowledge across 1327 species

from 5 pathway databases (KEGG PATHWAY, PID,

BioCyc, Reactome and Panther) and 5 human dis-

ease databases (OMIM, KEGG DISEASE, FunDO,

GAD and NHGRI GWAS Catalog). KOBAS 2.0 can

be accessed at http://kobas.cbi.pku.edu.cn.

INTRODUCTION

High-throughput experimental technologies such as next
generation sequencing, microarray profiling and prote-
omics profiling are widely used in current biological
research and often identify dozens to hundreds of genes
related to a biological or pathological process. Given such
a set of genes, one wants to ask which metabolic and sig-
naling pathways may be involved and which diseases may
be implicated. As the number of genes is often large, it is
desirable to have a computational tool to provide initial
answers to these questions. However, ab initio prediction
of pathways and diseases is challenging. One feasible

approach is to use existing databases of known metabolic
and signaling pathways and databases of known
disease-associated genes as the starting point for annota-
tion of a new set of genes.

We have previously reported a standalone software and
a web server KOBAS 1.0 (1,2) that annotates an input set
of genes or proteins by mapping to genes with known
pathways in the KEGG PATHWAY database (3).
KOBAS 1.0 was the first software to identify statistically
significantly enriched pathways using a hypergeometric
test. It has been successfully used in pathway analysis in
plants, animals and bacteria [for instance, (4–6)].

During the past decade, many other functional enrich-
ment analysis tools have become available. Most of them
focus on identification of enriched functional categories
based on Gene Ontology (GO) (7), such as
FuncAssociate (8), Ontologizer (9), BiNGO (10),
FatiGO (11), GOToolBox (11) and GFinder (12).
Although tremendously useful, functional categories are
not as informative and intuitive as metabolic and signaling
pathways and human diseases. A growing number of tools
have been developed for pathway and disease identifica-
tion, including, but not limited to, MAPPFinder (13),
EASE (14), DAVID (15,16), ArrayXPath (17),
WebGestalt (18), FuncCluster (19), PageMan (20),
GENECODIS (21,22), GeneTrail (23), g:Profiler (24),
FunNet (25) and PaLS (26). Except for DAVID, all
these tools integrate limited pathway and disease data-
bases (for a comparison, see Supplementary Table S1).
Furthermore, none of these tools support sequence simi-
larity mapping, an important feature that allows the user
to take advantage of data from other species. It is neces-
sary and important to develop a web server tool which
incorporates comprehensive pathway and disease data-
bases and supports both ID mapping and sequence simi-
larity mapping.
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Here, we report a significantly expanded new version,
KOBAS 2.0, which incorporates 5 pathway databases
[KEGG PATHWAY, PID (27), BioCyc (28), Reactome
(29,30) and Panther (31)] and 5 human disease databases
[OMIM (http://www.ncbi.nlm.nih.gov/omim/), KEGG
DISEASE (32), FunDO (33,34), GAD (35) and NHGRI
GWAS Catalog (NHGRI) (36)]. Similar to version 1.0,
KOBAS 2.0 supports not only ID mapping, but also
sequence similarity mapping. KOBAS 2.0 consists of a
standalone command line program written in Python
which runs on most Linux systems as well as a user friendly
web server developed using Java. Both command line
program and web server are freely available at http://
kobas.cbi.pku.edu.cn. KOBAS 2.0 flowchart is
summarized in Figure 1 and detailed below.

MATERIALS AND METHODS

KOBAS 2.0 parses 10 pathway and disease databases and
stores the data in a SQL relational database

Table 1 summarizes information about the pathway
and disease databases that KOBAS 2.0 incorporates.
Specifically, KEGG PATHWAY (3) and Reactome
(29,30) are general pathway databases, whereas PID (27)
and Panther (31) focus on signaling pathways and BioCyc
(28) focuses on metabolic pathways. PID has only human
data, whereas the others are multispecies databases.
OMIM (http://www.ncbi.nlm.nih.gov/omim/) contains in-
formation on all known mendelian disorders and genes.
KEGG DISEASE (32) collects knowledge on genetic and
environmental factors of diseases. FunDO (33,34) is
generated from GeneRIF using Disease Ontology Lite
that is a condensed version of Disease Ontology. GAD
(35) and NHGRI GWAS Catalog (36) both collect data
from genetic association studies: GAD includes data from
both candidate genes and GWAS studies, whereas
NHGRI GWAS Catalog is a catalog of only GWAS
studies.

KOBAS 2.0 downloaded the raw data files from each
database. As shown in Table 1, the file formats include

plain text, XML and table. We have written parsers for
all the data files. For each pathway or disease database, we
retrieve the gene-term mapping by parsing the raw data
files. We retrieve the gene annotation and gene-ID rela-
tions from KEGG Genes and BioMart (37). To integrate
across different databases, we mapped the genes in
all databases to KEGG GENES and KEGG
ORTHOLOGY (KO). The gene-pathway and gene-
disease data is stored in our backend SQL relational
database. The FASTA protein sequence files were prepro-
cessed for BLAST. KOBAS 2.0 backend data is updated
every 3 months.

KOBAS 2.0 annotates input genes with pathways and
diseases and identifies enriched pathways and diseases

KOBAS 2.0 has two consecutive programs ‘annotate’ and
‘identify’, which is similar to KOBAS 1.0 (1,2). The first
program ‘annotates’ each input gene with putative path-
ways and diseases by mapping the gene to genes in KEGG
GENES or terms in KO which are linked to pathway and
disease terms in backend databases. For ID mapping,
input IDs are mapped directly to genes using the cross-
links we parsed from KEGG GENES. Then, if necessary,
IDs are mapped to KO terms. For sequence similarity
mapping, each input sequence is BLASTed against all se-
quences in KEGG GENES. The default cutoffs are
BLAST E-value <10�5 and rank �5. They mean that an
input sequence is assigned KO term(s) of the first BLAST
hit that (i) has known KO assignments; (ii) has BLAST
E-value <10�5; and (iii) has less than five other hits with a
lower E-value that do not have KO assignments (1).
A new option in KOBAS 2.0 is that users can map
against genes in user-specified species instead of all genes
by BLASTing against only sequences of the user-specified
species. In order to reduce possible false positives due to
multidomain proteins, we added a new option to allow
users to set a cutoff of BLAST subject coverage.
Another new option allows users to restrict sequence
mapping to only orthologs as defined by Ensembl
Compara (38).

Figure 1. KOBAS 2.0 workflow. The types of input can be ID, FASTA sequence, or tabular BLAST output. KOBAS 2.0 has two programs
‘annotate’ and ‘identify’. The first program annotates input genes with pathways and diseases by ID mapping or sequence similarity mapping. The
second program identifies statistically significantly enriched pathways and diseases.
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The second program ‘identifies’ statistically significantly
enriched pathways and diseases by comparing results from
the first program against the background (usually genes
from the whole genome, or all probe sets on a micro-
array). Users can define their own background distribu-
tion in KOBAS 2.0 (for example, result from the first
program to ‘annotate’ all probe sets on a microarray). If
users do not upload a background file, KOBAS 2.0 uses
the genes from whole genome as the default background
distribution. Here, we consider only pathways and
diseases for which there are at least two genes mapped
in the input. Users can choose to perform statistical test
using one of the following four methods: binomial test,
chi-square test, Fisher’s exact test and hypergeometric
test, and perform FDR correction. The purpose of per-
forming FDR correction is to reduce the Type-1 errors.
When a large number of pathway and disease terms are
considered, multiple hypotheses tests are performed,
which leads to a high overall Type-1 error even for a rela-
tively stringent P-value cutoff. KOBAS 1.0 supports the
FDR correction method QVALUE (39). In KOBAS 2.0,
we add two more popular FDR correction methods:
Benjamini-Hochberg (40) and Benjamini-Yekutieli (41).

INPUT AND OUTPUT

Input

The input to ‘annotate’ can be a list of IDs, a FASTA
sequence file or a tabular BLAST output. KOBAS 2.0
currently can accept three kinds of IDs: Entrez Gene ID,
UniProtKB AC and GI. FASTA sequences can be protein
or nucleotide sequences. Because BLAST is computation-
ally intensive, the number of sequences that can be run on
the online web server is limited to 500 per run. A new
feature in KOBAS 2.0 is that, if users want to annotate

more sequences online, they can run BLAST locally and
upload the tabular BLAST output as the input to KOBAS
2.0. Or they can always run the standalone version of
KOBAS 2.0 which has no limit. If users want to get the
pathway and disease annotations of their genes, they only
need to run ‘annotate’. If they want to find enriched
pathways and diseases, they can feed the output of
‘annotate’ directly into ‘identify’ as input.

Output

The example of the output of ‘annotate’ is shown in
Figure 2. Each row corresponds to one input gene. The
first column contains the input gene IDs. The second and
third columns contain the mapped KEGG GENE IDs,
hyperlinked to detailed descriptions in KEGG and the
mapped KEGG GENE names. A user can click on
‘details’ next to the input gene ID to see details about
the query and related pathways and diseases.

The examples of the output of ‘identify’ is shown in
Figure 3. KOBAS 2.0 separates the results of pathways
and diseases into two tables. In the pathway identification
result, the first three columns show the pathway name,
pathway database and pathway ID, hyperlinked to
detailed description in the corresponding database. The
fourth column lists two numbers of the input: the first
one is the number of input genes mapped to the particular
pathway and the second one is the total number of input
genes mapped to any pathway in the pathway database.
Users can click on the first number in the fourth column to
see the list of input genes mapped to the particular
pathway. The fifth column lists two numbers of the back-
ground: the first one is the number of background genes
mapped to the particular pathway and the second one is
the total number of background genes mapped to any
pathway in the pathway database. The last two columns

Table 1. Pathway and disease databases supported by KOBAS 2.0a

Database name Data
content

File
format

Number
of species

Number
of pathways
or diseases
in human

Number
of genes
mapped to
KEGG
GENES/all
genes in
human

URL

KEGG PATHWAY Pathway Text 1327 220 5595/5595 http://www.genome.jp/kegg/pathway.html
PID Curated Pathway XML 1 192 2782/3315 http://pid.nci.nih.gov/
PID BioCarta Pathway XML 1 254 1907/2391 http://pid.nci.nih.gov/
PID Reactome Pathway XML 1 996 3783/4405 http://pid.nci.nih.gov/
BioCyc Pathway Text and

Table
6 277 1087/1120 http://biocyc.org/

Reactome Pathway Table 22 68 4366/4534 http://www.reactome.org/ReactomeGWT/entrypoint.html
Panther Pathway Table 43 154 2170/2207 http://www.pantherdb.org/
OMIM Disease Table 1 4990 3792/3792 http://www.ncbi.nlm.nih.gov/omim
KEGG DISEASE Disease Text 1 323 798/798 http://www.genome.jp/kegg/disease/
FunDO Disease Table 1 561 3888/4029 http://django.nubic.northwestern.edu/fundo/
GAD Disease Table 1 3770 3164/3238 http://geneticassociationdb.nih.gov/
NHGRI Disease Table 1 369 1975/2191 http://www.genome.gov/gwastudies/

aThe numbers in this table are summarized from KOBAS 2.0 backend database updated in November 23rd, 2010. And all the analyses using KOBAS
2.0 in this article are based on this data version.
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list the P-value and corrected P-value of the statistical test.
In the disease identification result, the seven columns show
the disease name, disease database, disease ID, numbers of
the input, numbers of the background, P-value and cor-
rected P-value similar to the pathway identification result.
KOBAS 2.0 merges redundant pathway and disease terms
from different databases.

BENEFIT OF CROSS-SPECIES SEQUENCE
SIMILARITY MAPPING OVER ID MAPPING

Other existing pathway analysis tools accept only gene
IDs as input and use only ID mapping to annotate their
pathways. A benefit of KOBAS 2.0 is that it can use
sequence similarity mapping to annotate input genes
from species that are not yet well-represented in existing
pathway databases. It can also map the genes from other
species to human diseases to predict whether these genes
may be good candidates to study any human diseases, an
important question in the model organism research. To
illustrate, we analyzed the microarray expression profiles
in rhesus monkeys in two major hippocampal subdivisions
critical for memory/cognitive function: cornu ammonis
(CA) and dentate gyrus (DG) using data from Blalock
et al. (42). We reanalyzed their raw data on six samples

from CA and six samples from DG of young rhesus
monkeys and identified 371 upregulated probe sets in
CA using standard protocol [gcrma and limma through
R and Bioconductor (43)]. We then used both DAVID
(15,16) and KOBAS 2.0 to annotate these probe sets
and identify enriched pathways and diseases by using the
entire probe sets on the chip as background. DAVID can
perform only ID mapping to rhesus genes in its two
pathway databases (KEGG PATHWAY and Panther)
and as a result, identified no statistically significantly
enriched pathways or diseases (with default options and
corrected P� 0.05). On the other hand, KOBAS 2.0
supports sequence similarity mapping by BLAST to anno-
tate the rhesus gene set and can thus take full advantage of
the abundant data on human pathways and diseases. We
used ‘annotate’ to map sequences of upregulated probe
sets in CA as well as the entire probe sets to KEGG
human genes with default cutoffs and then used ‘identify’
to perform hypergeometric test and Benjamini-Hochberg
FDR correction to find significantly enriched pathways
and diseases by using the two results of ‘annotate’ as
input and background, respectively. Figure 3 shows sig-
nificantly enriched pathways and diseases identified by
KOBAS 2.0. The results are consistent with known func-
tional differences between the two regions. For example,

Figure 2. Screenshot of the output of ‘annotate’. 371 upregulated probe sets in CA are assigned to KEGG human genes by sequence similarity
mapping. Users can view the result in table format (by default) or raw format (which can be downloaded to local disks). Users can also directly use
the result as the input of ‘identify’ to do further analysis.
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‘respiratory electron transport, ATP synthesis by chemio-
smotic coupling and heat production by uncoupling
proteins’ pathway and ‘glutaricaciduria, type IIB’ and
‘Glutaric academia’ diseases are consistent with the
known knowledge that the CA region showed greater ex-
pression than DG for genes associated with mitochondrial
activity (42); while ‘no2-dependent il-12 pathway in nk
cells’, ‘il12 and stat4 dependent signaling pathway in th1
development’ and ‘autoimmune disease’ are consistent
with the known knowledge that CA region showed
greater expression than DG for genes associated with
inflammatory responses (42).
We also compared KOBAS 2.0 with popular GO en-

richment analysis tools, FuncAssociate 2.0 (8),
Ontologizer 2.0 (9), BiNGO (10) and EASE (14) using
the same data set. Because these other tools can only
take IDs as input, we first mapped the rhesus probe sets
to human genes using sequence similarity. Then we ran the
four GO enrichment analysis tools, the results of which

are shown in Supplementary Table S2. The list of enriched
pathways identified by KOBAS 2.0 is more specific and
informative than the lists of functional categories
identified by the GO enrichment analysis tools, and
offers more insights into the biological processes.

CONCLUSIONS

KOBAS 2.0 has an expanded reservoir of underlying
pathway databases and statistical tests, and the addition
of disease databases. In future research, we aim to
improve the graphical representation of the output
pathways. We will continue to update KOBAS 2.0 with
new pathway and disease data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 3. Screenshot of the output of ‘identify’. Statistically significantly enriched pathways and diseases of 371 upregulated probe sets in CA
identified are sorted by increasing corrected P-value. Only those with corrected P� 0.05 are shown. Similar to the output of ‘annotate’, users can
view the result in table format (by default) or raw format (which can be downloaded to local disks).
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