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ABSTRACT

Gene set enrichment (GSE) analysis plays an essen-

tial role in extracting biological insight from genome-

scale experiments. ORA (overrepresentation analy-

sis), FCS (functional class scoring), and PT (path-

way topology) approaches are three generations of

GSE methods along the timeline of development. Pre-

vious versions of KOBAS provided services based

on just the ORA method. Here we presented ver-

sion 3.0 of KOBAS, which is named KOBAS-i (short

for KOBAS intelligent version). It introduced a novel

machine learning-based method we published ear-

lier, CGPS, which incorporates seven FCS tools and

two PT tools into a single ensemble score and in-

telligently prioritizes the relevant biological path-

ways. In addition, KOBAS has expanded the down-

stream exploratory visualization for selecting and

understanding the enriched results. The tool con-

structs a novel view of cirFunMap, which presents

different enriched terms and their correlations in a

landscape. Finally, based on the previous version’s

framework, KOBAS increased the number of sup-

ported species from 1327 to 5944. For an easier lo-

cal run, it also provides a prebuilt Docker image that

requires no installation, as a supplementary to the

source code version. KOBAS can be freely accessed

at http://kobas.cbi.pku.edu.cn, and a mirror site is

available at http://bioinfo.org/kobas.

GRAPHICAL ABSTRACT

INTRODUCTION

Gene set enrichment (GSE) is the optimal approach to un-
derstanding the underlying biological functions of differ-
ent genes or proteins. It reduces the complexity of molecu-
lar data and improves the interpretability of biological in-
sights. Generally, existing GES methods are divided into
three types (1). Among them, overrepresentation analysis
(ORA), the �rst-generation GSE method, is the most com-
monly used method. The representative tools of the ORA
method are KOBAS (2), DAVID (3), clusterPro�ler (4),
g:Pro�ler (5), Enrichr (6), modEnrichr (7), agriGo (8), Gen-
eTrail (9), GOrilla (10), ToppGene (11) and GOstat (12).
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These tools use various statistical analyses such as Hyper-
geometric test and Fisher’s exact test, to evaluate whether
the user-input gene list is overrepresented in a speci�c func-
tional gene set. KOBAS is one of the �rst widely used ORA-
based tools to perform GSE in its former versions 1.0 (2)
and 2.0 (13).
The second-generation method is the functional class

scoring (FCS) method. The massive pooling of microarray
and RNA-seq data has increased the prevalence of the FCS
method. This method calculates the functional score using
the expression of all genes within a speci�c gene set rather
than setting particular thresholds to select up- or downreg-
ulated differential genes, which is unavoidable in the ORA
method. The representative tools of the FCS method are
GSEA (14), GSVA (15), GSA (16), PADOG (17), PLAGE
(18), GAGE (19), GLOBALTEST (20) and SAFE (21).
The third-generation analysis method is the pathway

topology (PT)-based method. It has been developed to uti-
lize the additional topology information in a given network
of pathway, which is ignored by the ORA and FCSmethods
(1). The common tools for the PT-based GSE method con-
sist of SPIA (22), GANPA (23) and CEPA (24). Although
it has been demonstrated to have a better performance in
some investigations (25), one obvious problem of the PT-
based method is that true pathway topology is dependent
on the type of cell due to cell-speci�c gene expression, which
is rarely available and is fragmented in knowledge bases (1).
Hence, this approach is still not widely used and has a long
way to go before becoming mainstream.
Although the ORA method is more straightforward and

faster, it has certain limitations for interpreting microar-
ray and RNA-seq data. To better meet the enormous de-
mands of analyzing expression data, KOBAS introduces a
novel machine learning-based approach we published ear-
lier, named Combined Gene set analysis incorporating Pri-
oritization and Sensitivity (CGPS) (26). It is an ensemble
method that integrates the results from seven widely used
FCS and two prominent PT tools into a single ensemble
score (R score), to optimize the prioritization of biologically
relevant pathways from expression data.
It should also be recognized that genes are involved in

complex biological functions (27). As a result, a few differ-
entially expressed genes may cause abnormalities in mul-
tiple pathways (28). Therefore, the enriched terms in GSE
analysis may still be too numerous, usually more than 100.
Even though they can be sorted accurately, these redundant
terms constrainGSE analysis results to be explanatory (29).
Therefore, several tools have provided downstream visual-
ization of these enriched terms, including WebGestalt (29),
Metascape (30), Enrichment map (31), WEGO (32) and
GOPlot (33), in selecting and understanding the enriched
results. KOBAS has constructed a novel view of cirFunMap
(circular function map), which presents different enriched
terms and their correlations in a landscape, expanding the
downstream exploratory visualization.
Despite increasing research concerns arising to the non-

model species from omics studies, only a few tools, such
as DAVID (3) and g:Pro�ler(5) support nonmodel species.
Taking advantage of the KEGG Orthology Based Annota-
tion System (KOBAS) framework (34) and sequence simi-
larity mapping, the current KOBAS could expand its sup-

ported species from 1327 to 5944. It provides curated se-
quences and KEGG pathway knowledge for 5944 species,
and Gene Ontology annotations for 71 popular research
species.

RESULTS

Framework of KOBAS

Overall, the current KOBAS consists of two parts called the
‘annotation module’ and the ‘enrichment module’ (called
‘identify module’ in the previous version) (Figure 1). The
annotation module accepts the gene list as input, includ-
ing IDs or sequences, and generates annotations for each
gene based onmultiple databases of pathways, diseases, and
GO information. The enrichment module gives an answer
about which pathways andGO terms are statistically signi�-
cantly associated with the input gene list or expression. Two
different enrichment analyses are available, named gene-list
enrichment and exp-data enrichment. The former follows
the ORA method of KOBAS 1.0 and 2.0, and takes the
gene list as input. The latter represents the newly added ma-
chine learning-based approach CGPS, which is dedicated
to grouped expression data (Figure 2). The output of the
enrichment module could be visualized downstream by a
novel landscape view of cirFunMap.

Intelligent prioritization of biological functions from the ex-
pression data

The former ORA-based KOBAS versions 1.0 and 2.0
are not able to deal with the expression data. Current
KOBAS innovatively introduced the FCS/PT-based ensem-
ble method to support expressing data as input. The newly
added approach CGPS, which our team published earlier
(26), is the �rst GSE ensemble method built based on a pri-
ori knowledge of pathways and phenotypes using amachine
learning approach. It integrates seven widely used FCS
methods: GSEA (14), GSA (16), PADOG (17), PLAGE
(18), GAGE (19), GLOBALTEST (20) and SAFE (21) and
two prominent PT methods: GANPA (23), and CEPA (24),
into a single ensemble score (R score). This score is a mea-
sure of relevance for a gene set to an experimental condition.
A large positive R score value usually denotes the high rel-
evance.
CGPS is not only a statistical ensemble model but also is

a biological learning model that has the capacity to intel-
ligently learn from the relationship between known target
pathways and treated samples. Compared with ten widely
used individual methods and two ensemble methods, the
ensemble score (R score) in CGPS can better prioritize rele-
vant pathways for a comprehensive evaluation of 120 simu-
lated datasets and 45 real datasets (26). This may bene�t the
discovery of essential biologically relevant functions missed
by other GSE methods.

Exploratory visualization of the enriched results

Although the results of enriched terms are sorted, the com-
plexity of cellular biological processes may cause messy or-
ganization (35). Here, KOBAS brought a novel view form
named cirFunMap, which can present different enriched
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Figure 1. Framework ofKOBAS.KOBAS consists of two parts called the ‘annotationmodule’ and the ‘enrichmentmodule’. TheGSE analysis is performed
on a gene-list or expression input, and the output enrichment results can be viewed by visualization.

terms and their correlations in a landscape. This view is gen-
erated in three steps: First, the correlation between two gene
sets is calculated using the Jaccard index (36). It is ameasure
of similarity for the enriched terms, ranging from 0 to 1, to
compare members for two sets to see how much proportion
is shared. Second, all the enriched terms are connected to
each other to construct a network by the user-de�ned cor-
relation threshold. Finally, the network nodes are painted
with different colors according to the module partition by
the Infomap algorithm (37), which divides a network into
clusters with possible overlaps to reduce the entire system’s
information entropy.
Then, we ranked all of these clusters in cirFunMap by

their median P-value or R score calculated for all of the en-
riched termswithin this speci�c cluster. Each cluster has one
distinct color, and the user can choose the top N clusters to
be colored. The terms are laid out in a circular net with mu-
tually exclusive gravity forces. Terms in the same color (also
cluster) can be hidden or displayed by switching on/off the

color button on the right. The node size is determined by
different signi�cance levels or R scores in the original en-
riched list. It is clear that cirFunMap can explore the data
from different perspectives to create a fresh view in an inter-
active way, which may stimulate the expert’s visual thinking
and should support novel insights extracting.

Quantity expansion of total species

Stepped by the data collection protocol built in KOBAS
2.0, the gene sequences and pathway/GO annotations were
greatly improved. Initially, we retrieved the protein se-
quences in the target species from the KEGG GENES
database (38), and built the BLAST database using the
‘makeblastdb’ command. Subsequently, we downloaded
the raw data �les frompathway databases, includingKEGG
(28), PANTHER (39), Reactome (40), BioCyc (41), and
GO databases (42) (Table 1). For each pathway or disease
database, we retrieved the gene-term mappings by pars-
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Figure 2. Online operation �ow for running analysis of exp-data enrichment. Click ‘exp-data enrichment’ on top of the homepage, then upload the expres-
sion pro�le and group information to start an analysis. After obtaining the enrichment results, click the ‘visualization’ button to browse the cirFunMap.

Table 1. Pathway and GO databases supported by KOBAS

Database Data content NO. of species File format URL

KEGG PATHWAY Pathway 5944 Text http://www.genome.jp/kegg/pathway.html
PANTHER Pathway 41 Table http://www.pantherdb.org/
Reactome Pathway 14 Table https://reactome.org/
BioCyc Pathway 18 Table http://biocyc.org/
GO Gene ontology 71 Text http://amigo.geneontology.org/amigo/search/annotation

ing the raw data �les. For GO curation, only the directed
gene to GO termmapping was retained. To integrate across
different databases, we mapped the genes in all databases
to KEGG GENES. These gene-pathway and gene-GO
data are then stored in our backend SQLite3 relational
database. For easy download and use, each species’ data
were stored separately in a distinct database. In total, 5944
species were annotated with KEGG pathways, 41 species
with PANTHER pathways, 14 species with Reactome path-
ways, 18 species with BioCyc pathways and 71 species
with GO annotations (Table 1, Figure 3). The detailed
statistical table is available on the download page of the
website.

Comparison to existing webservers

As reviewed in a recently published GSE benchmark study
(43), there are various existing popular webservers for GSE
analysis. Since different tools have special characteristics
and advantages, we have compared KOBAS to its alterna-
tive tools to assist users in selecting particular GSE tools.
Totally 10 webservers are summarized, including 8 GSE
webservers from the above benchmark study, one another
webserver agriGO, and KOBAS (Table 2). It is illustrated
that the ORA method is the most commonly used analysis
method and is utilized by all the servers investigated, while
FCS or PT methods are utilized by half of the servers, in-
cluding KOBAS and another four servers. Different forms
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Figure 3. Pathway and GO databases supported by KOBAS. (A) Number of supported species in KOBAS 2.0 and current KOBAS. (B) Number of sup-
ported species with pathway and GO annotations in different species classes.

Table 2. Comparison to existing webservers

Tool Year created Citationsa Gene setsc
No. of

speciesc Method Input data Visualization Availability

KOBAS 2006 2566 -GO 5,944 -ORA -gene list -cirFunMap -webserver

-KEGG -ensemble learning -expression -barplot -Python program

- +3 more -bubble plot

WebGestalt 2005 4146 -GO 12 -ORA -gene list -barchart -webserver

-KEGG -FCS -expression -volcano plots -R package

- +20 more -PT -DAG -API

-GSEA plot

-pathway view

g:Pro�ler 2007 2987 -GO 711 -ORA -gene list -Manhattan plot -webserver

-KEGG -heatmap -R package

- +7 more -API

GeneTrail 2007 413 -GO 12 -ORA -gene list -interactive tables -webserver

-KEGG -FCS -expression -API

- +64 more -PT

DAVID 2009 39510 -GO >65,000 -ORA -gene list -GoCharts -webserver

-KEGG -KeggCharts -program

- +38 more -DomainCharts -API

GOrilla 2009 2710 -GO 8 -ORA -gene list -DAG -webserver

ToppGene 2009 1846 -GO 2 -ORA -gene list -barplot -webserver

- +115 more -API

agriGO 2010 2934 -GO 45 -ORA -gene list -barplot -webserver

-FCS -expression -DAG

PANTHER 2003 2368b -GO 142 -ORA -gene list -pie chart -webserver

- +6 more -FCS -expression -bar chart -API

Enrichr 2013 5867 -GO 6 -ORA -gene list -barplot -Webserver

-KEGG -grid view -API

-+167 more -network

-clustergram

-Enrichr Appyter

aGoogle Scholar, April 2021. Citations to papers of server update or usage protocols were taken into statistics.
bCitations to usage protocols of gene function analysis using PANTHER were taken into statistics.
cThis information were summarized based on the online service of the webservers in April 2021.
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of visualizations are adopted by each of these servers. How-
ever, cirFunMap is a distinct form that only available in
KOBAS.

Locally run with Docker image

The source code of KOBAS is available on the download
page. As the source code stand-alone version is trouble-
some to install, especially when using the exp-data enrich-
ment by CGPS, we have prebuilt a Docker image of local
KOBAS. Users could import and enter the Docker environ-
ment which is the same as online KOBAS running without
any need for preinstallation. The required BLAST and an-
notation SQLite3 �les could be downloaded from FTP.

A demo case

To illustrate the new features of KOBAS, especially exp-
data enrichment and exploration visualization, we have an-
alyzed one public microarray dataset of Alzheimer’s disease
(GSE1297) (44), whichwas also tested inKOBAS’s previous
versions and the CGPS algorithm. This dataset included
nine severe Alzheimer’s disease patients and seven healthy
people as controls. The demo input �les are available on the
download page, and the running parameter settings can be
found in Table 3.

We conducted the gene-list enrichment and exp-data
enrichment separately. For the gene-list enrichment, we
screened up- and downregulated signi�cant (P< 0.05) by t-
test. A total of 600 differentially expressed genes were iden-
ti�ed and submitted to the gene-list enrichment using the
KEGG pathway database. The output 286 terms with cal-
culated enrichedP-values (no �lter) were then visualized us-
ing cirFunMap (correlation > 0.35 and top N = 7). Inter-
estingly, the KEGG pathway hsa05010 (Alzheimer disease)
ranked 36 in the total terms whereas it was the top 3 cluster
viewed by cirFunMap (Figure 4A). This suggests that cir-
FunMap may pull biological functions ranked low back to
the user’s attention. Additionally, cluster 4 containing the
most terms was related to the immune functions, which was
consistent with the �nding of strong neuroin�ammation in
Alzheimer’s disease (45).
For exp-data enrichment, the expression matrix and

group information are passed into exp-data enrichment
as two inputs using the KEGG pathway as a concerned
database (Sequencing Technology= ‘ Microarray data’ and
Expression Data Type = ‘ Normalized data’). The output
286 terms with calculated enriched P-value (no �lter) were
then visualized using cirFunMap (correlation > 0.25 and
top N = 7) (Figure 4B). The exp-data enrichment result
was somewhat different from the previous results, show-
ing that hsa05010 (Alzheimer disease) ranked �rst in the
enriched terms. In addition, it was in the top cluster 1
viewed by cirFunMap, together with hsa05010 (Alzheimer
disease), hsa05012 (Parkinson disease), hsa05016 (Hunt-
ington disease), hsa04932 (Non-alcoholic fatty liver dis-
ease), and hsa00190 (Oxidative phosphorylation). Another
top cluster 6 containing the most terms was related to the
synapse, which was consistent with synapse damage or loss
in Alzheimer’s disease (46). T
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Figure 4. cirFunMap visualization of two demo enrichment results. (A) cirFunMap visualization of gene-list enrichment results. Left is the circular network
view; the node color represents different clusters; the node size represents six levels ofP-value, node size from small to large: [0.05,1], [0.01,0.05), [0.001,0.01),
[0.0001,0.001), [1e-10,0.0001), [0,1e-10); the edge represents correlations larger than the user-de�ned threshold (0.35 in the demo). Right is the barplot of
the P-value for terms in different clusters. (B) cirFunMap visualization of exp-data enrichment results. Left is the circular network view; the node color
represents different clusters; the node size is linearly positively correlated with the R score; the edge represents correlations greater than the user-de�ned
threshold (0.25 in the demo). Right is the barplot of the R score for terms in different clusters, while R score is a measure of relevance for a gene set to an
experimental condition.
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DISCUSSION

As one of the common GSE tools, KOBAS has served the
scienti�c community for 15 years and its core ORA-based
algorithm has been online since the �rst version. Generally,
current version of KOBAS has been greatly improved in
enrichment algorithm, visualization function, species num-
bers and platform stability.
Driven by the development of sequencing techniques and

the explosion of omics data, it is very urgent to construct
more intelligent GSE algorithms. Here, KOBAS introduced
a machine learning-based method CGPS for microarray
and RNA-seq data, which we published earlier (26), and
it better prioritizes the relevant biological pathways among
the different datasets. CGPS is a preliminary exploration of
intelligent enrichment analysis. It has also been proven that
introducing arti�cial intelligence methods such as machine
learning into GSE is quite valuable and feasible. As more
a priori pathway knowledge accumulates, PT-based algo-
rithms employing machine learning or deep learning tech-
nology would be a future direction for KOBAS. Thus, we
will continue to develop cutting-edge GES algorithms fur-
ther and integrate them into our server.
Additionally, exploratory visualization was constructed

by cirFunMap to present different enriched terms and their
correlations from different perspectives in a landscape view
in KOBAS. This improvement is an ef�cient downstream
supplement to former GSE algorithms. In addition to the
current partition and coloring scheme from the informa-
tion entropy algorithm Infomap, other schemes designed
for module �nding such as SPICi (47), af�nity propaga-
tion (48), and weighted set cover (49) could also be utilized.
Additionally, a more accurate ensemble score could be cal-
culated for cluster ranking rather than using the median
P-value or R score. In addition, we will make cirFunMap
more public by opening its API in the future. Thus, users
will be allowed to import their GSE results locally and then
explore insights and export publication-level �gures using
cirFunMap.
Moreover, the gene sequences andKEGGpathway anno-

tation were curated for 5944 model or nonmodel species in
KOBAS. Among the 5944 species, only 71 species were cu-
rated with GO ontology annotation. As GO is the world’s
largest information source for functional genes and is
widely used in GSE analysis, we are planning to integrate
moreGO contents in the next version ofKOBAS, such as its
hierarchical structure and different types of relationships.
Beyond KEGG-based visualization, GO-based visualiza-
tion will be further extended.
In addition, the entire code related to the web service has

been rewritten and changed from PHP to the Python Flask
framework under the REST API schema to provide a more
stable online service. Considering the platform’s stability
and queuing speed, we split the previous task queue into
distinguishing the gene-list enrichment task and the exp-
data enrichment task. As the BLAST tasks would cause a
long timeCPUoccupancy and affect other users’ task queu-
ing, datasets greater than 10M are limited for online service.
Furthermore, route monitoring was added to completely
record all users’ API evoking and to report abnormal infor-
mation quickly. To overcome the problem of potential ac-

cess latency to KOBAS in different network environments,
we provide a mirror website (http://bioinfo.org/kobas) as an
alternative to the current primary site. Moreover, our team
will continue to maintain and upgrade KOBAS to provide
more accurate and stable services for its scienti�c users.
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