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ABSTRACT 
 

Atomic vibrations are partially screened by electrons. In a metal this screening 
can change rapidly for vibrations associated to certain points of the Brillouin zone, 
entirely determined by the shape of the Fermi surface. The consequent anomalous 
behaviour of the phonon dispersion is called Kohn anomaly. Graphite is a semimetal. 
Nanotubes can be metals or semiconductors. We demonstrate that two Kohn 
anomalies are present in the phonon dispersion of graphite and that their slope is 
proportional to the square of the electron-phonon coupling. Metallic nanotubes have 
much stronger anomalies than graphite, due to their reduced dimensionality. 
Semiconducting nanotubes have no Kohn anomalies.   
 
INTRODUCTION 

 
The understanding of the physical mechanisms ruling the phonon dispersions 

and the electron-phonon coupling in graphite is a key step to derive the vibrational 
properties and the Raman intensities of carbon nanotubes. A key point to understand 
the phonons of graphite is the semi-metallic character of its electronic structure. In 
general, the atomic vibrations are partially screened by electronic states. In a metal 
this screening can change rapidly for vibrations associated to certain q points of the 
Brillouin zone, entirely determined by the shape of the Fermi surface. The consequent 
anomalous behavior of the phonon dispersion is called Kohn anomaly [1]. Here we 
show that Graphite displays two remarkable Kohn anomalies at the Γ-E2g and K-A’1 
modes [2]. It is also a very remarkable case, since a very simple mathematical 
description of the Kohn anomalies is possible. Due to their reduced dimensionality, 
metallic tubes display much stronger Kohn anomalies than graphite. This results in 
phonon softening, implying that folded graphite cannot reproduce the phonon 
dispersions of metallic tubes. 

We perform ab-initio calculations using density functional perturbation theory 
within the general gradient approximation [2,3,4]. This allows the exact computation 
of  phonon frequencies at any point of the Brillouin zone. The semi-metallic behavior 
of graphite is taken in account using fractional occupancy for the electronic states [5]. 
Calculations are done for both graphite and graphene. We use the experimental lattice 
parameters for graphite, aexp=2.46 Å, c=6.708 Å. For graphene we use both aexp and 
the calculated lattice parameter ath= 2.479 Å.  Using periodic boundary conditions, 
graphene is calculated separating by 7.4 Å the single graphite layers. 
 
KOHN ANOMALIES IN GRAPHITE 
 

 Kohn anomalies are anomalous features in the phonon dispersions of metals, 
due to a sudden change of the electronic screening of the ionic vibrations. Their 
occurrence is entirely determined by the geometry of the Fermi surface. In particular, 
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they can happen only for phonons with a wave-vector q, which can connect 2 
electronic states k1 and k2=k+q, both on the Fermi surface and such that the tangents 
to the Fermi surface at k1 and k2 are parallel [1].   

 

The Fermi surface of graphene consists of the 2 non-equivalent K and K’ 
points, with K’=2K. Kohn Anomalies can then occur for phonons connecting the K or 
K’ points to themselves (q=K-K=0= Γ) or connecting K to K’  (q=K’-K=2K-K=K). 
For a given q there are several phonon branches. In graphite, only the highest optical 
branches show Kohn anomalies, due to their very high electron phonon coupling [2]. 

The upper panel of Fig.2 shows our calculated phonon dispersions of graphite. 
The anomalies appear as two sharp kinks in the highest optical branches at Γ and K, 
corresponding to E2g and A’1 phonons. Our theoretical dispersion is compared with 
the experimental data of ref [6]. The experimental data in the Γ region are best 
reproduced by calculations with the experimental lattice spacing of graphite, while the 
data around K are closer to the dispersion calculated with ath. However, in both cases, 
the difference between the experimental and calculated frequencies is less than 2%, 
which is the typical accuracy of density functional theory.  

The presence of the two kinks in the phonon dispersion of graphene is not an 
artifact of the bi-dimensionality of this system. Indeed, as shown in the lower panels 
of Fig.2, the kinks clearly appear also in the phonon dispersion of three-dimensional 
graphite. In this case, the double number of atoms in the unit cell implies that a single 
phonon branch of graphene splits in two almost degenerate branches in graphite. This 
demonstrates that, for our purposes, graphene is completely equivalent to graphite. 
 The behavior of the anomalies around Γ and K can be described by 

( )2qoqLO
q ++= ΓΓ αωϖ hh  and ( )2

' '' qoqKKq ++= αωϖ hh . These are non-analytical 

functions of q and q’ (q’ being the phonon wavevector measured from K), since their 
first derivatives are discontinuous. Thus the Kohn anomalies cannot be reproduced 
using a force constants approach with a small number of force constants, as often 
done in literature, but would require an infinite set of force constants. However, it is 
possible to derive an exact analytical description of the slope of the two kinks [2]: 

 
122 397/3 −

ΓΓ == cmg
F

LO βπα     (1) 

 

Figure 1. Schematic band structure of graphite.  
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122 973/3 −== cmg
FKK βπα     (2) 

These slopes are strictly related by: 
 

               2=ΓΓ

KKωα
ωα

                                                                         (3) 

 

where 
F

g 2
Γ and

FKg 2  are the square of the electron phonon coupling matrix 

elements averaged on the Fermi surface and β=14.1 eV is the slope of the π and π* 
bands near the Fermi level. 

In our calculations, 22 0405.0 eVg
F

=Γ
r , for the Γ-E2g mode, and zero for all 

the other branches at Γ. Similarly,
FKg 2 is non negligible only for the K-A’1 mode, 

for which 22 0994.0 eVg
FK = . This confirms the attribution of the Raman D peak of 

disordered graphite to the highest optical branch starting from the K-A’1 [7,8,9], for 
two main reasons. First, the A’1 branch has, by far, the biggest electron-phonon 
coupling amongst the K phonons. Second, this branch is linearly dispersive. The 
Kohn anomaly is the physical origin of this dispersion, which is in quantitative 
agreement with the measured D peak dispersion [10,11] 
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Figure 2. Upper panel: lines: phonon dispersion of graphene, calculated at the 
experimental (solid line) and calculated (dashed line) lattice parameter (aexp, ath ). 
Points: experimental data, ref [6]. The red lines are the calculated slopes of the Kohn 
anomalies. The lower panels correspond to the dotted windows in the upper panel. The 
points are frequencies obtained by direct calculations.  
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Equations 1, 2, 3 are of fundamental importance since they allow the direct 
measurements of the electron phonon coupling matrix elements in graphite by fitting 
the slope of the measured phonon dispersions or the experimental Raman D peak 
dispersion. For example, Fig. 3 shows a quadratic fit to the experimental data of 

ref.[6]. This gives αLO
Γ=340 cm-1 and 22 035.0 eVg

F
=Γ , in excellent agreement 

with our calculations. We get similar results by fitting the phonon dispersions data 
measured by other authors by a variety of different techniques, such as electron 
energy loss spectroscopy and neutron scattering [2,12]. The slope at K can also be 
estimated from the well-known dispersion of the Raman D-peak of graphite: 50 cm-

1/eV [11]. The D-peak dispersion corresponds to the ratio between the slope of the 

phonon dispersion around K and β [13]. This gives 22 072.0 eVg
FK = . 

Experimentally, the D peak dispersion is measured for excitation energies higher than 
1 eV, this means that the slope at K is ~30% higher than the measured dispersion, as 
shown in the upper panel of Fig. 2. Taking this into account we get 

22 094.0 eVg
FK = , again in excellent agreement with our calculations. What is most 

impressive is that the experimental electron phonon coupling, albeit fitted to data 
measured with diverse techniques, ranging from neutron scattering to Raman 
spectroscopy, do satisfy equation 3. This is a very stringent relation and could not be 
just accidentally satisfied. 

 
KOHN ANOMALIES IN NANOTUBES 

 
The presence of Kohn anomalies in graphite implies that that they should be 

present in metallic nanotubes. The geometrical condition for the existence of the 
anomalies is the one-dimensional equivalent of Fig. 1. Metallic tubes have much 
stronger anomalies than graphite, due to their reduced dimensionality. Thus, folded 
graphite does not reproduce the phonon dispersions of metallic nor semiconducting 
nanotubes. Direct ab-initio calculations are necessary to properly describe nanotubes 
phonons, but this is practically unfeasible for nanotubes of arbitrary chirality, given 
their huge unit cells. We thus developed a new adaptive k-point sampling approach 
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Figure 3. Fit of the experimental phonon dispersion around Γ of ref. [6] 
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[14], which allow us to efficiently and precisely calculate the phonon dispersions, the 
Kohn anomalies and their temperature dependence for any nanotube, independent of 
the unit cell size, Fig. 4  

The calculated softening for armchair nanotubes depends strongly on the 
electronic temperature of the system. This is a completely different phenomenon from 
the usual temperature induced anharmonicity. Indeed the temperature dependence is 

the opposite of what expected as a consequence of anharmonicity. The softening also 
depends on the diameter of the tubes. In particular the anomalies are more intense for 
tubes with small diameters and for low temperature (Table I). A softening of metallic 
nanotubes phonons corresponding to the graphene Γ-E2g mode was previously 
reported [14]. It is now clear that this is due to the presence of a Kohn anomaly. We 
also calculate a stronger softening for the phonons corresponding to the K-A’

1 mode. 
 
 

 3-3 6-6 11-11 
Temp (K) E2g A’1 E2g A’1 E2g A’1 
3000 1523 1299 1568 1327 1576 1330 
300 1396 1111 1499 1236 1546 1277 
77 1270 987 1454 1180 1522 1247 
4 1031 855 1352 1056 1496 1182 

 
 
 
Our findings together with the ones of ref. 14 nicely account for the 

differences observed in the Raman spectra of metallic and semiconducting nanotubes. 
For metallic nanotubes, the G- component of the G peak is red-shifted, broader and 
more intense than in semiconductining nanotubes [16]. We can interpret the G- peak 
in metallic nanotubes as the signature of the Kohn anomaly and the presence of an 
intense electron phonon coupling rather than a Fano resonance, as usually done 
[16,17]. Indeed the experimental dependence of the G- peak as a function of tube 
diameter [16] agrees with Table I [14,15] and Fig. 4. 

Figure 4.  Highest optical branches for a (6,6) nanotube calculated at room 
temperature. Two strong Kohn anomalies are present for the phonons corresponding to 
the Γ-E2g mode (blue dots) and the K -A’1 (red dots) mode at of graphite. 
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Table I. calculated phonon frequencies for three (n,n) metallic carbon nanotubes 
as a function of electronic temperature. Phonon frequencies are in cm-1 
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Finally, the electron phonon coupling of nanotubes of chiral indexes (n,m) can 
be simply derived from the one of graphite by using [18]: 

 

( )222

)2,2gcd(

mnmn

nmmn
gg graphtube

++

++
=                                                                 (4) 

 
where gcd(2n+m, 2m+n) is the greatest common divisor between 2n+m, 2m+n. 
    
CONCLUSIONS 
 
 We demonstrated two strong Kohn anomalies in the phonon dispersion of 
graphite. We gave an exact analytical description of these anomalies.  The slope of the 
anomalies is proportional to the square of the electron phonon coupling matrix 
elements. This allows us to directly measure the electron phonon coupling of graphite 
from the experimental phonon dispersions. The electron phonon coupling of 
nanotubes can then simply be derived from the one of graphite, by using equation 4. 

Kohn anomalies are present in metallic carbon nanotubes, but absent in 
semiconducting nanotubes. Interatomic force constants approaches with a finite 
number of force constants cannot accurately reproduce the exact shape of the phonon 
dispersions of graphite nor nanotubes.  
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