
Lawrence Berkeley National Laboratory
Recent Work

Title
Kokkos 3: Programming Model Extensions for the Exascale Era

Permalink
https://escholarship.org/uc/item/0wz9p9vg

Journal
IEEE Transactions on Parallel and Distributed Systems, 33(4)

ISSN
1045-9219

Authors
Trott, Christian R
Lebrun-Grandie, Damien
Arndt, Daniel
et al.

Publication Date
2022-04-01

DOI
10.1109/tpds.2021.3097283
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wz9p9vg
https://escholarship.org/uc/item/0wz9p9vg#author
https://escholarship.org
http://www.cdlib.org/


Kokkos 3: Programming Model Extensions
for the Exascale Era

Christian R. Trott , Damien Lebrun-Grandi�e, Daniel Arndt , Jan Ciesko, Vinh Dang , Nathan Ellingwood ,

Rahulkumar Gayatri, Evan Harvey , Daisy S. Hollman, Dan Ibanez, Nevin Liber , Jonathan Madsen,

Jeff Miles, David Poliakoff , Amy Powell, Sivasankaran Rajamanickam , Mikael Simberg ,

Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke

Abstract—As the push towards exascale hardware has increased the diversity of system architectures, performance portability has

become a critical aspect for scientific software. We describe the Kokkos Performance Portable Programming Model that allows

developers to write single source applications for diverse high-performance computing architectures. Kokkos provides key abstractions

for both the compute and memory hierarchy of modern hardware. We describe the novel abstractions that have been added to Kokkos

version 3 such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations to prepare for exascale era

architectures. We demonstrate the performance of these new features with reproducible benchmarks on CPUs and GPUs.

Index Terms—Performance portability, programming models, high-performance computing, heterogeneous computing, exascale

Ç

1 INTRODUCTION

OVER the last decade, the High Performance Computing
(HPC) hardware landscape has diversified significantly.

Currently, GPU-based systems make up six of the ten most
powerful HPC systems in the world [24]. However, the top-
ranked system is a CPU-only design, deploying ARM-based
chips with 512-bit vector units, while other top-10 machines
use custom accelerators and even simply Intel CPUs. The
GPU landscape is also getting more diverse. Long dominated
by NVIDIA alone, the first generation of upcoming exascale
platformswill deployAMD and Intel GPUs instead.

All of this means that it is becoming more difficult to write
code which can leverage all of the HPC systems that users
have access to. With the lifetime of the most important HPC
applications measured in decades, and thus far exceeding the
lifetime of any given machine, the demand for performance-

portability solutions has exploded [4], [16], [22]. Application
developers want to write their code in a way that it can lever-
age any of the current and future systems without major
rewrites of the code itself.

The Kokkos Programming Model offers one such solu-
tion for performance portability [9]. Initially developed at
Sandia National Laboratories, it is now an open source com-
munity project largely funded through the DOE Exascale
Computing Project, with a core development team spanning
five US National Laboratories. Since the publication of [9],
the need to support more complex applications has resulted
in significant extensions of the programming model, which
are the focus of the current paper. These additions, devel-
oped as part of the Kokkos version 3 release cycle, are
focused on exposing more parallelism, asynchronicity and
advanced hardware capabilities, which are relevant to fully
leverage the upcoming exascale era architectures. A guiding
principle of the development of these capabilities was to
leverage advanced hardware features where we can, with-
out hurting performance on platforms that do not provide
the same features set.

Furthermore, a comprehensive Kokkos EcoSystem has
been developed on the foundation of the programming
model. This ecosystem provides commonly needed capabil-
ities which go beyond a pure programming model, such as
linear algebra libraries, tools infrastructure, language inter-
operability layers and user support. Descriptions of these
efforts will be provided elsewhere.

The Kokkos Programming Model provides perfor-
mance-portability through a library-based or embedded-lan-
guage approach as opposed to a directive-based approach (e.g.,
OpenMP, OpenACC) or a language-based approach. Among
library-based approaches for performance portability, there
are other performance portable libraries such as SYCL, RAJA
andOCCA. There is some overlap among the features of these
programming models. For example, Hammond et al. [12]

� Christian R. Trott, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Evan Har-
vey, Daisy S. Hollman, Dan Ibanez, Jeff Miles, David Poliakoff, Amy
Powell, Sivasankaran Rajamanickam, Dan Sunderland, and Jeremiah
Wilke are with Sandia National Laboratories, Albuquerque, NM
87185 USA. E-mail: {crtrott, jciesko, vqdang, ndellin, eharvey,
dshollm, daibane, jsmiles, dzpolia, ajpowel, srajama, dsunder, jjwilke}
@sandia.gov.

� Damien Lebrun-Grandi�e, Daniel Arndt, and Bruno Turcksin are with Oak
Ridge National Laboratory, Oak Ridge, TN 37830 USA.
E-mail: {lebrungrandt, arndtd, turcksinbr}@ornl.gov.

� Rahulkumar Gayatri and Jonathan Madsen are with Lawrence Berkeley
National Laboratory, Berkeley, CA 94720 USA. E-mail: {rgayatri,
jrmadsen}@lbl.gov.

� Nevin Liber is with Argonne National Laboratory, Lemont, IL 60439 USA.
E-mail: nliber@anl.gov.

� Mikael Simberg is with Swiss National Supercomputing Centre, 6900
Lugano, Switzerland. E-mail: simbergm@cscs.ch.

Manuscript received 25 Feb. 2021; revised 12 May 2021; accepted 16 June 2021.
Date of publication 14 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Christian R. Trott.)
Recommended for acceptance by S. Alam, L. CurfmanMcInnes, and K.Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3097283

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022 805

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0002-4958-6159
https://orcid.org/0000-0002-4958-6159
https://orcid.org/0000-0002-4958-6159
https://orcid.org/0000-0002-4958-6159
https://orcid.org/0000-0002-4958-6159
https://orcid.org/0000-0002-7622-9667
https://orcid.org/0000-0002-7622-9667
https://orcid.org/0000-0002-7622-9667
https://orcid.org/0000-0002-7622-9667
https://orcid.org/0000-0002-7622-9667
https://orcid.org/0000-0003-2772-8053
https://orcid.org/0000-0003-2772-8053
https://orcid.org/0000-0003-2772-8053
https://orcid.org/0000-0003-2772-8053
https://orcid.org/0000-0003-2772-8053
https://orcid.org/0000-0002-0271-3181
https://orcid.org/0000-0002-0271-3181
https://orcid.org/0000-0002-0271-3181
https://orcid.org/0000-0002-0271-3181
https://orcid.org/0000-0002-0271-3181
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-7238-8935
https://orcid.org/0000-0002-7238-8935
https://orcid.org/0000-0002-7238-8935
https://orcid.org/0000-0002-7238-8935
https://orcid.org/0000-0002-7238-8935
mailto:crtrott@sandia.gov
mailto:jciesko@sandia.gov
mailto:vqdang@sandia.gov
mailto:ndellin@sandia.gov
mailto:eharvey@sandia.gov
mailto:dshollm@sandia.gov
mailto:daibane@sandia.gov
mailto:jsmiles@sandia.gov
mailto:dzpolia@sandia.gov
mailto:ajpowel@sandia.gov
mailto:srajama@sandia.gov
mailto:dsunder@sandia.gov
mailto:jjwilke@sandia.gov
mailto:lebrungrandt@ornl.gov
mailto:arndtd@ornl.gov
mailto:turcksinbr@ornl.gov
mailto:rgayatri@lbl.gov
mailto:jrmadsen@lbl.gov
mailto:nliber@anl.gov
mailto:simbergm@cscs.ch


provide a short comparison of the features of Kokkos and
SYCL. There are a number of functionality and performance
comparisons of Kokkos with other programming models
such as RAJA, CUDA, OpenMP and OpenACC [2], [7], [14].
Detailed comparison of all these approaches for productivity,
performance, and portability is beyond the scope of this
paper.

The primary contributions of this paper are:

� A description of the additions to the Kokkos Core
programming model to support exascale systems.

� Demonstration of the flexibility and the performance
of the programming model through carefully chosen
benchmarks on CPU and GPU architectures.

� Unique functionality such as arbitrary-sized atomic
operations in a portable manner.

� A reproducible set of benchmarks and instructions to
reproduce them.

In the following, we discuss the primary capabilities of
the Kokkos Core Programming Model. First, in Section 3,
we provide a short overview of capabilities introduced in
a previous paper [9] (for more details on these subjects,
please refer to that paper). Then we discuss features added
since the publication of [9]. We describe advanced reduc-
tions in Section 4. In Section 5, Kokkos’ comprehensive
support for atomic operations is presented. We continue
the description of the Kokkos Core Programming Model
with ways of exposing more parallelism in Sections 7 and
8. This is followed by a discussion of execution space
instances (Sections 9) and graph constructs (Section 10),
which enable users to express programs where the rela-
tionships between kernels are more complex than simple
sequential dependencies. We also describe the vectoriza-
tion support via SIMD types in Kokkos in Section 11,
before providing a short overview of existing backend
support in Section 12. Finally, we provide a small insight
into practical performance portability achieved by users
of Kokkos, based on a number of studies these users
published.

2 BENCHMARK REPRODUCIBILITY INFORMATION

Performance benchmarks in this paper were conducted with
Kokkos release candidate version 3.4 (SHA 31ae2ea3) config-
ured as a release build. We used a Intel Skylake based system
with a NVIDIA V100, a Fujitsu ARM A64FX based system, a
IBM Power9 based system and a platform with AMD MI100
GPUs and AMD CPUs. Generally CUDA 11.1, Intel 19.0.5,
GCC 10.2, GCC 7.2, and ROCM 4.1 provided the compilers on
these platforms respectively. Additionally we used the Clang
12 release candidate 3 for OpenMP 5 results on the V100. We
utilized the Kokkos CUDA backend for the V100, the Kokkos
HIP backend for theMI100 and the Kokkos OpenMP backend
(which is OpenMP 3 based) on all CPUs. For OpenMP runs
only a single socket of each system is used, with all hardware
threads and close placement affinity. Hyperthreads were dis-
abled for the Skylake system.

The code examples used to collect data for performance
plots throughout this paper are available at https://github.
com/kokkos/code-examples/ in the papers/kokkos-

core-tpds-2021 directory. The benchmarks were run 20
times, and the average was taken as the performance data

presented here. Detailed configuration, build and run
instructions are provided in the repository given above.

3 FUNDAMENTAL CAPABILITIES

As described in [9] Kokkos is a performance-portable pro-
grammingmodel, implemented as aC++ library, that provides
a number of abstractions to express both parallel execution and
data structures. These abstractions are generic over a variety of
backing hardware-specific execution andmemorymodels.

Kokkos is built around six core abstractions: Execution
Spaces, Execution Patterns, and Execution Policies control par-
allel execution; while Memory Spaces, Memory Layouts, and
Memory Traits control data storage and access.

3.1 Execution Spaces

An Execution Space is a generic abstraction that represents an
execution resource and an associated execution model. Every
parallel operation in Kokkos is enqueued into a first-in, first-
out queue in an instance of an execution space (Execution Space
Instance). The resources that these instances encapsulate are
execution model entities like threads or handles to a device.
For example, each Kokkos::Cuda execution space instance
encapsulates a CUDA stream, and each Kokkos::Threads

instance encapsulates a thread pool [18].
Kokkos creates a default instance for each Execution

Space type, which is used when no specific instance is
associated with an operation. Kokkos also allows users to
provide additional information if two kernels should be
executed by separate instances, but in the absence of that
information, it falls back to the assumption that all ker-
nels are sequenced in program order. The latter of these
is always safe for a programming model that makes no
concurrent forward progress guarantees, but it may lead
to less efficient scheduling. Some kernels can use the
default instance and others can use a custom one allow-
ing incremental migration.

3.2 Execution Patterns

Parallel kernels in Kokkos are expressed through Execution
Patterns. They express the relationship between indepen-
dently executable work items that must not contain internal
inter-dependencies. The original patterns described in [9] are:

� parallel_for: each work item is executed once.
� parallel_reduce: each work item is executed

once with a provided output object. These outputs
are combined according to semantics specified by a
reducer object.

� parallel_scan: calculates the partial reduction of
the output arguments of the work items [15]. Each
work item is potentially executed more than once.
During final execution each work item is provided
its partial reduction result.

The patterns take as arguments function objects, whose call
operator defines the work item for a given kernel index. C++
lambdas are a compact, user-friendly way to provide such a
function object, but Kokkos execution patterns can handle any
instance of a callable type thatmeets the requirements above.

It is important to note that these patterns form a fairly
restricted programming model, particularly with respect

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

https://github.com/kokkos/code-examples/
https://github.com/kokkos/code-examples/


to the forward progress relationships between work
items. This is by design, since it allows for maximum flex-
ibility in the mapping of these patterns to the underlying
execution model. Requiring work items to be indepen-
dent allows any execution model mapping, including
threading, SIMD vector units, and even pipelined execu-
tion of work items.

In contrast to Kokkos, other programming models such
as OpenMP, CUDA, and HIP often provide detailed guar-
antees about how work is mapped to hardware resources—
typically leading to over-constrained application semantics
that lack the information to determine which of these guar-
antees are actually needed when mapping to diverse execu-
tion models [17], [18].

3.3 Execution Policies

Broadly speaking, Execution Policies express the how of the
execution for the pattern. Most importantly, they specify
the set of work item indices and the execution space associated
with the kernel. Execution Policies can also convey auxiliary
information such as the preferred strategy for scheduling
work items, hints about the ideal chunk size to use when
scheduling work items, and what type to use for work item
indices. In [9], only one execution policy was described: the
RangePolicy used to express contiguous, one-dimen-
sional ranges of work item indices. Here, we expand upon
that with execution policies that support multidimensional
ranges and hierarchical parallelism.

3.4 Execution Abstraction Example Usage

Using these three execution abstractions, users can describe
performance-portable, minimally constrained parallel work.
For brevity, this example omits some details that should be
included in typical application usage, such as labels used by
the Kokkos Tools interface (described elsewhere).

3.5 Memory Spaces

Memory Spaces represent abstract memory resources,
abstractions that are analogous to those for Execution
Spaces. Fundamentally, these abstractions generically
encapsulate a mechanism for allocating and managing
memory on a particular hardware resource. Memory Spaces
also abstract away themechanism for moving data between
memory resources, accessed by the user through the
deep_copy function, and provide information on the set
of Execution Spaces that can access the resource they repre-
sent (accessed by the user through the SpaceAccessi-

bility type trait).
Since Memory Spaces abstract both a memory resource

and an allocation mechanism, multiple Kokkos Memory
Spaces can represent different modes of access to the same
physical resource. For example when compiling for NVI-
DIA hardware, Kokkos provides CudaSpace, CudaUVM-
Space, CudaHostPinnedSpace and HostSpace as
implementations of the memory space abstraction. The
latter two actually represent the same physical memory,
but CudaHostPinnedSpace allows GPU access, while
HostSpace does not.

3.6 Memory Layouts

Memory Layouts define the mapping of multidimensional
array indices to storage location. Because memory lay-
outs are a first-class abstraction in Kokkos, domain
experts can write algorithms that are generic over data
layout, allowing the backend to control data access pat-
terns without complicating the algorithmic logic. On
GPUs, workers behave more like vector lanes—generally
performing better when data accesses are coalesced. On
architectures where each worker has its own cache, how-
ever, data accesses need to be grouped by worker to
maximize cache reuse. Sometimes which data layout is
optimal may even change from one generation of a hard-
ware to the next due to changes in cache sizes, and
thread behavior. The primary data layouts provided by
Kokkos are LayoutLeft (i.e., Fortran style Layout),
LayoutRight (i.e., C-Style Layout) and LayoutStride

(i.e., arbitrary regular strides).

3.7 Memory Traits

Another abstraction are Memory Traits which allow one
to convey additional information about desired memory
access behavior. This abstraction can cover semantic
information—such as whether an access to a data struc-
ture should be atomic or is guaranteed to not be aliased
through accesses in another data structure. Additionally,
performance-critical, non-semantic information—such as
that accesses through a specific handle are expected to
hit random memory locations—can be conveyed. Avail-
ability of this information allows Kokkos to leverage spe-
cial data access paths in hardware such as texture
fetches, atomic units, or non-temporal load instructions
when available.

3.8 View

The primary data structure in Kokkos to bring the three
data abstractions together is View. It is intended as the

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 807



lowest level fundamental data structure replacing
pointers and runtime-sized arrays. At its heart, View

behaves like a multi-dimensional shared pointer; i.e., it
algorithmically represents a multi-dimensional array and
has shared ownership semantics with reference counting
and automatic deallocation. Kokkos::View is parameter-
ized on Memory Space, Memory Layout and Memory Traits,
allowing generic code to reason about the properties of
the fundamental data objects. The primary template
parameter is the data type expressing both the scalar val-
ues and the dimensionality, or rank of the View. Both
runtime and compile-time extents for dimensions are
supported.

4 ADVANCED REDUCTIONS

In Edwards et al. [9], the ability to express custom reduction
semantics operated via the use of join and init member
functions of the user-provided work item functor. This
approach poorly orthogonalizes the expression of work
items and the means of combining results. Thus, Kokkos
later introduced the concept of Reducers. A Reducer is an
instance of a (potentially user-defined) type that holds a ref-
erence to the output location, and defines how to initialize
and combine reduction results. Kokkos provides several
implementations of common Reducers, similar to the
reduction operations defined in MPI. In Kokkos, we provide
the following reducers: Sum, Prod, Min, Max, MinMax,
MinLoc (minimum with location), MaxLoc, MinMaxLoc,
LAnd (logical and), LOr, BAnd (bit-wise and), and BOr. A
simple example that uses Reducers to determine the maxi-
mum value of a View a:

Kokkos also allows users to give multiple reductions at the
same time. For example, the following snippet computes
both the maximum value and the sum of the entries in a:

The Reducer concept is flexible enough that the variadic
reduction overload implementation can simply delegate to

the single reducer overload by creating a combined reducer
and a wrapper for the work item functor. Table 1 demon-
strates the performance benefit of performing multiple
reductions in a single parallel operation, as opposed to
doing each reduction individually. We also compare to
equivalent implementations using OpenMP.

Another extension of the reduction interface allows users
to provide a View of data as the result argument, either
directly or via a reducer. If a View is provided instead of a
scalar value, the reduction operation will execute asynchro-
nously and a fence is required to guarantee that the opera-
tion completed.

5 GENERIC ATOMICS

Edwards et al. [9] discussed only basic atomic support. Even
at that point, Kokkos already abstracted over machine-spe-
cific atomic operations. We have since also implemented
arbitrary-sized atomic operations. Previously limited to
types where arbitrary atomic operations could be imple-
mented using atomic compare-and-swap (CAS) operations,
Kokkos now supports atomic operations on distinct objects
of arbitrary size. Depending on the target hardware and the
size of the operands, these operations either map directly to
atomic instructions, are implemented via CAS loops, or use
a sharded lock table.

The sharded lock table takes the address of the atom-
ically-accessed memory location, and then uses a hash to
compute an index into a globally accessible lock table. Par-
ticular care must be taken to avoid deadlocks when imple-
menting this approach on GPUs without a strong forward
progress guarantee for divergent warp lanes (e.g., NVIDIA
GPUs before Volta and AMD GPUs). Specifically, all active
lanes in a warp must participate in the spin lock until each
lane has completed the associated atomic operation. In this
way, no additional warp divergence is introduced by the
lock acquisition—i.e., the successful acquisition of the lock
does not have an else branch—and thus forward progress
is still guaranteed.

TABLE 1
Time in us for Performing amin and a sum Reduction as Two
parallel_reduce Calls (min+sum) and as a Single paral-

lel_reduceWith Two Reducer Arguments (min/sum)

V100 SKX A64FX P9 MI100

KK OMP KK OMP KK OMP KK OMP KK OMP

min 37 141 37 54 66 58 73 87 86 443
sum 33 135 82 10 140 140 84 78 83 248
min+sum 70 276 119 64 205 206 157 165 169 691
min/sum 51 155 83 23 145 145 169 118 98 616

The array is of length 1,000,000 with a scalar type of double.

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022



In summary, the introduction of sharded lock tables for
arbitrary-sized atomics enables users to write less con-
strained generic code that uses atomic semantics. This is
particularly useful for applications that need to use com-

plex<double> on platforms that do not have 128-bit
atomic operations. To the best of our knowledge, ours is the
first implementation of atomic operations for types of arbi-
trary sizes on GPUs.

In Table 2 the performance of a scatter-add algorithm [23]
with atomic operations is shown for int, double, com-
plex<float> and complex<double> operands. The
algorithm mimics a discretization algorithm, where ran-
domly distributed particles contribute some value to a con-
tiguous field. For the experiment, 10 million particles
contribute to the grid cell corresponding to their position in a
20x20x20 grid. On GPUs the int (and on V100 also double)
atomic operations are supportedwith special hardware units
which provide significant higher throughput than the CPUs.
However, even for atomics of complex the GPUs provide
about an order of magnitude higher performance than
CPUs. Of particular note though is the fact that the lock
based approach for complex<double> generally still
achieves about half of the throughput of compare-and-swap
based atomic operations. There are no performance numbers

for the native models provided with complex scalar types,
since none of CUDA, HIP and OpenMP support such atomic
operations.

6 CONTAINERS

View is the only data structure introduced in [9]. How-
ever, applications often develop higher level data struc-
tures based on View. To avoid duplicated effort, the
Kokkos Core Programming Model provides the contain-
ers library that collects optimized implementations of
several common higher-level data structures. As such,
the role of the containers library is analogous to the
role that the C++ standard library fulfills in the C++
standard. In the following, we introduce only the
most commonly used data structure, ScatterView, in
detail.

6.1 ScatterView

ScatterView facilitates implementing performance porta-
ble Scatter Contribute algorithms. A Scatter Contribute
algorithm is an algorithm where one entity contributes
to values owned by multiple other entities [23]. In the
presence of concurrent execution, this may result in
write conflicts. Examples are particle codes where each
particle contributes force to every particle within a cer-
tain distance, matrix assembly routines in finite element
codes where multiple elements contribute to the same
entries in the matrix, or generally stencil operations
where each cell contributes something to every cell
within its stencil.

When parallelizing such algorithms with CPU threads,
it is common practice to resolve the write conflicts
through data replication strategies. However, the data
replication approach is not scalable - on GPUs, where
thread counts exceed 100,000, it would exhaust memory
capacities. For that reason, atomic operations are gener-
ally used to resolve the write conflicts on GPU architec-
tures [1]. While using atomic operations would work on
CPUs as well, they often result in slower algorithms than
the data replication approach. The primary reason is that
on GPUs, atomic operations are resolved in special func-
tion units attached to the common cache, while on CPU
architectures atomic operations require cache lines to
move between cores.

ScatterView abstracts over the two approaches.
Within the computational algorithm one contributes to
ScatterView as if contributing sequentially to an array.
Internally, these contributions will then either map to a per-
thread copy of the data, or use atomic operations. After the
computational kernel is finished, the user can then request
that all values are contributed back into the root copy.
When ScatterView uses atomic operations that final step
is a no-op.

To help amortize the cost of mapping to the correct data
replication, ScatterView requires users to get an accessor
inside the kernel. That accessor is then either the equivalent
of a subview with the Atomic memory trait or a subview to
the thread-private copy of the data.

TABLE 2
Performance for a Scatter-Add Algorithm Using Atomic

Operations With Different Scalar Types

V100 SKX A64FX P9 MI100

KKCUDA KK OMP KK OMP KK OMPKKHIP

int 28 25 0.31 0.30 0.165 0.28 0.86 1.07 26 23
double 27 24 0.29 0.29 0.11 0.11 0.68 0.74 4.7 3.7
c<float> 3.9 X 0.26 X 0.11 X 0.5 X 4.8 X
c<double> 2.2 X 0.09 X 0.1 X 0.35 X 3.5 X

10e6 atomic additions are performed on random cells in a 20x20x20 grid. Num-
bers reported are Giga-Updates per second. c<T> stands for complex<T>.

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 809



Similar to reductions, ScatterView can take a template argu-
ment to allow different types of contributions, such as mini-
mum or maximum. Furthermore, users can explicitly
overwrite whether to use atomic operations or data replica-
tion. The defaults are chosen based on the targeted Execution
Space associatedwith theMemory Space of the ScatterView.

In Table 3, the performance of a scatter-add algorithm
using ScatterView is shown for a int, double, com-
plex<float>, and complex<double>. This is essentially
the same benchmark as in Section 5, except it uses a Scat-

terView for the accumulation instead of atomic operations.
On the V100, the performance is very close to the atomic
operations since ScatterView uses its atomic implementa-
tion path by default for GPUs. On CPUs, performance is sig-
nificant increased, compared to using atomic operations.

7 MDRANGEPOLICY

A common use case not covered by the initial Kokkos
release is iterating over a multi-dimensional space.

A simple example is the initialization ofmulti-dimensional
Kokkos::View. Simply parallelizing over one dimension
and then iterating serially over the others often does not
expose enough parallelism to leverage all architectures [8],
[19]. Consider a 3DViewof extents 200� 200� 200. Paralleliz-
ing over a single dimension would only provide work for 200
threads, which is a small fraction of a GPU’s 10,000s of
threads. A better implementation would recompute the indi-
vidual indices from a global index of a flattened iteration
space, and thus expose 8million-way parallelism:

However, this is both non-intuitive and hard-codes a spe-
cific mapping of 1D indices to 3D space that is hidden from
Kokkos. Depending on the MemoryLayout of my_view this

mapping order could be good or bad. The particular order
hard-coded here corresponds to a LayoutRight iteration
order, and thus would lead to good performance on CPU-
like architectures, and bad performance on GPUs.

To resolve this issue Kokkos introduces the MDRangePo-
licy. It provides the capability of describing a multi
dimensional iteration space, and incorporates support for
different iteration schemes. Furthermore, MDRangePolicy
directly supports tiling strategies to optimize data accesses
for stencil operations [3].

MDRangePolicy takes a template parameter Rank,
which is a struct that is templated on the rank, iteration
order over tiles, and the iteration order within a tile.

This policy will iterate over a 3D space; within the tile, it will
iterate fastest over the left-most index, but it will iterate over
tiles fastest on the right-most index. The iteration order can
be omitted in which case they are chosen based on the archi-
tecture. The default values match the default Layouts for
View. The iteration space is provided via constant size
arrays as begin and end values. Optionally, tile sizes can be
provided. Rewriting the above example with MDRangePo-

licy leads to the following code, which avoids hard-coding
an iteration order and thus will perform well when com-
piled for either CPU or GPU like architectures.

In Table 4 the impact of the MDRangePolicy is demonstrated
for a 3D tensor add (i.e., A ¼ AþB). Using an MDRangePo-

licy is in this case strictly faster than parallelizing just the
outer loop or flattening the index space irrespective of architec-
ture. The tensors are 200� 200� 200 large, and thus have a
total memory size of 128 MB - well outside the cache limit. On
the GPU, parallelizing only over the outer index range is over
60 times slower than using an MDRangePolicy, since not
enough parallelism is exposed. The flattened index space
approach is still significantly slower due to inefficient data
access and the use of costly integer division andmodulo opera-
tions. On CPUs, it is sufficient to parallelize over the outer
dimension, since there are only a few tenths of threads. The

TABLE 3
Performance for a Scatter-Add Algorithm Using
ScatterViewWith Different Scalar Types

V100 SKX A64FX P9 MI100

KK CUDA KK OMP KK OMP KK OMP KK HIP

int 27 25 3.7 3.6 0.65 0.65 2 2.4 22 23
double 26 24 3.3 3.2 0.65 0.65 1.8 2.3 4.5 3.7
c<float> 3.9 X 3.3 3.2 0.65 0.65 1.8 2 4.9 X
c<double> 2.2 X 2.7 2.7 0.64 0.64 1.8 1.9 3.5 X

10e6 updates are performed on random cells in a 20x20x20 grid. Numbers
reported are Giga-Updates per second. c<T> stands for complex<T>.

TABLE 4
Performance Comparison of a 200x200x200 Tensor Add Opera-
tion With Three Different Implementations: Parallelizing Over a
Single Dimension (Outer), Flattening the Index Space (Flat-

tened), and Using an MDRangePolicy (MDRange)

V100 SKX A64FX P9 MI100

KK CUDA KK OMP KK OMP KK OMP KK HIP

Outer 11 11 107 108 360 680 195 242 5.5 5.5
Flattened 43 45 54 60 43 44 60 60 87 87
MDRange 692 678 107 23 411 293 255 277 468 469

Numbers reported correspond to the bandwidth achieved in GB/s.

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022



flattened space is again slower, likely due to the indexing
scheme obscuring the data access pattern for the prefetcher.
Generally the native model implementations provide perfor-
mance similar to the Kokkos variant. The two exceptions are
the native OpenMP MDRange equivalent using the collapse
clause, which provides poor performance with the Intel com-
piler, and the outer loop parallization strategy on ARMwhich
appears to provide significantly higher performance.

8 HIERARCHICAL PARALLELISM

While MDRangePolicy can help in many cases, it only
works for tightly nested loops, i.e., loops that do not have
code in between the loop statements.

One simple example of a non-tightly nested loop is a
(dense) matrix-vector product.

One could rewrite the above code to have two tightly nested
loops by directly summing into y(i) in the inner loop, but
parallelizing that algorithm with an MDRangePolicy would
result in a race condition when two threads working on the
same indexi but different index j access y(i).

8.1 Basic Thread Teams

Kokkos addresses this problem by enabling parallelization
of nested loops through hierarchical parallelism [8], [19]. To
that end, Kokkos introduces two new execution policies:
TeamPolicy and TeamThreadRange. TeamPolicy is
used at the outer parallelization level. When using a Team-

Policy, instead of a single thread handling an iteration,
each iteration will be assigned to a team of threads, which
are then able to parallelize nested loops. In this case, the call
operator of the lambda or functor is passed a handle to the
team rather than an index.

This teamhandle provides access to team level functions, such
as team synchronization and obtaining the index of the team,
the rank of a threadwithin the team, and the team size.

The TeamThreadRange is used as the policy for execu-
tion patterns to parallelize nested loops. The interface for
nested parallel patterns is otherwise the same as those
already introduced, except that labels are not supported.

For the above example of a matrix vector multiply, the
natural mapping is to assign a team to each row of the
matrix, which then computes the nested reduction:

The TeamPolicy takes two arguments: the number of
teams to be launched, and the team size. The number of teams
to be launched represents an iteration range, and is not limited
by the actual concurrency of the targeted hardware.

The team size, on the other hand, is limited by implementa-
tion details. In the above example, the AUTO parameter indi-
cates that the choice of team size is left to the Kokkos runtime.
The actual team size is determined either through heuristics,
or potentially even through auto tuning tools. The tools inte-
gration into Kokkos will be described in a different paper. The
current heuristics in Kokkos can take various properties into
account, such as register utilization, shared memory usage,
number of teams requested, and properties of the hardware.
OnGPUs the heuristic tries tomaximize the number of concur-
rently active threads on the GPU (i.e., the occupancy). If multi-
ple team sizes yield the same occupancy, the smallest is
chosen in order to maximize flexibility for the GPU scheduler,
and providemore opportunities for load balancing.

8.2 Team Synchronization Semantics

It is useful to think of a team as a collection of threads
which share a common cache. In practice, that means that
a team in Kokkos maps on GPUs to a CUDA block or a
HIP group, and to a set of threads running on the same
core or socket on CPUs. We define teams as such to
enable faster coordination within a subset of the larger
threadpool. One example that requires such coordination
is an algorithm in which iterations of a nested loop
depend on the completion of a prior nested loop, necessi-
tating a barrier between the loops.

It is important to recognize that the nested loops are not actu-
ally fork-join loops. All threads in the team are active upon
entry into the outer parallel pattern. Nested loops simply split
the iteration range in some implementation-definedway. This
implies that a thread can enter and exit the nested loop inde-
pendent of other threads in the team. Consequently, without
the barrier, some threads could execute the second loop,
while others are still working on the first.

Another important semantic of Kokkos’ thread teams is that
Kokkos does NOT give a forward progress guarantee. In fact
Kokkos does not even guarantee that threads execute at the
same time.A legal implementation strategy forKokkos’ hierar-
chical parallelism is to split the loop based on synchronization
points, and then express threads throughpipelining each stage.
These semantics provide maximum flexibility for Kokkos to

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 811



map hierarchical parallelism to various architectures. How-
ever, it also means that users can only use Kokkos’ synchroni-
zation mechanisms. They can not legally write their own.
Specifically one can notwrite spinwait loops usingKokkos.

8.3 Vector Level Parallelism

KokkosHierarchical Parallelism exposes a vector level of par-
allelism, in addition to teams and threads. This level of paral-
lelism can be accessed using the ThreadVectorRange

policy with nested patterns. To request vector level parallel-
ism, a third argument is given to the TeamPolicy, that can
be an integer or AUTO. The vector length is bound by hard-
ware resources, and the maximum value can be queried in
the TeamPolicy. On GPUs, this level of parallelism is
mapped to threads within a warp/wavefront. When the vec-
tor length is less than the native warp/wavefront size, multi-
ple Kokkos threads are mapped to a single warp/wavefront.
Parallel patternswith a ThreadVectorRange can be nested
inside execution patterns using the TeamThreadRange.

A third policy for nested patterns is TeamVectorRange.
Patterns using this policy will leverage both thread and vec-
tor parallelism.

Nested patterns can be parallel_for, parallel_re-
duce and parallel_scan. Kokkos does not impose any
limit on the number of loops that can be parallelized with
nested patterns.

8.4 Team Scratch Memory

The TeamPolicy also allows the acquisition of scratch
memory. It can be used to leverage explicit on-die scratch
pads, such as the shared memory on GPUs. Scratch memory
has to be requested at dispatch time, as is the case for HIP
and CUDA shared memory. Kokkos allows scratch memory
to be requested on a per-thread or per-team basis. This con-
trasts with the HIP and CUDA requirements, where such
requests must happen on a per-team basis

Kokkos provides two levels of scratch pad. Level 0 maps
to on-die cache, which is generally not more than a few tens
of kilobytes. Level 1 maps to general memory, and thus
allows much larger scratch allocations.

While Kokkos allows users to utilize scratch memory via
raw pointers, generally scratch memory is used in conjunc-
tion with Views. To that end, each ExecutionSpace has an
associated scratch_space, used as the memory space
argument for scratch views. The amount of scratch memory
necessary to hold a View can be queried through a static
View member function. That function takes alignment
requirements for the data into account. Users can mix and
match both levels of scratch memory, as well as per-team
and per-thread memory. Scratch Views are unmanaged.
Their constructor takes a scratch handle argument obtained
with the scratch_space member functions team_-

scratch and thread_scratch. The number of Views a
user can create is not limited.

Actual memory allocations and deallocations, even
through a memory pool, would be too costly within a
parallel kernel. Instead, two functions team_scratch

and thread_scratch, are used with a special View

constructor. These functions strictly advance an internal
pointer into the team’s scratch allocation every time they
are used to create a new scratch View. If a View creation
would advance the scratch pointer beyond the preallo-
cated size, the allocation - and with it the kernel execu-
tion - will fail. However, creating a scratch view requires
only a few integer operations with this approach. The
following code illustrates the failure due to advancing
the scratch pointer too far. In the first iteration the
scratch pointer already reached the end, in the second it
will fail.

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022



8.5 CGSolve Benchmark

An example demonstrating the versatility of Kokkos’s hier-
archical parallelism is a Sparse Matrix Vector Multiplication
(SPMV) operation. SPMV is a critical component of sparse
linear solvers. A commonly used Kokkos SPMV implemen-
tation assigns a workset of rows to each team and distrib-
utes the rows of the workset across the threads of that team.
Vector-level parallelism is used to perform the nested
reduction, which returns the dot product of a matrix row
with the vector.

This kernel has three tuning parameters: rows_per_team,
team_size and vector_length. These three tuning
parameters allow the kernel to adapt to a range of different
sparse matrices and hardware platforms. In Table 5 the per-
formance of a Kokkos-based Conjugate Gradient Solver, as
used in miniFE, is shown. One version uses the above SPMV
kernel. The TPL versions differ only by calling an optimized
vendor library for the SPMV kernel. For this particularmatrix,
the Kokkos SPMV kernel with optimized values for the three
tuning parameters outperforms the vendor libraries, resulting
in higher aggregate performance. This Kokkos SPMV algo-
rithm might not perform as well for matrices with different
sparsity structure. There is no expectation that this simple
Kokkos algorithm generally outperforms the vendor libraries.
It is worth noting that the aggregate achieved bandwidth can
exceed themainmemory bandwidth due to caching effects.

9 EXECUTION SPACE INSTANCES

While both MDRangePolicy and TeamPolicy are helping
developers to expose more fine grained parallelism, sometimes
the need arises to express parallelism on coarser levels. Often
that parallelism is functional parallelism. In CUDA, HIP,

OpenCL and SYCL this type of parallelism can be exploited
by using multiple streams or command queues [18]. For Kokkos,
the corresponding concept is calledExecution Space Instances.

When parallel patterns are dispatched in Kokkos, they are
enqueued into the execution queue of an Execution Space
Instance. Kokkos provides default instances via singletons.
If no specific Execution Space Instance is passed to the Execu-
tion Policy, an operation is enqueued into the default
instance of the Execution Space type the kernel is compiled
for. Execution Space Instances have reference semantics; inter-
nal resources, such as scratch buffers, are not duplicated
and are released after the last reference goes out of scope.
To make sure work dispatched to an instance is finished, a
user can call its fence member function. The global non-
member function fence will block on all outstanding work
on all active Execution Space Instances.

As with streams in CUDA and HIP, work dispatched to
two distinct Execution Space Instances have parallel forward
progress semantics; e.g., kernels submitted to two different
instances may overlap in execution. This allows application
developers to expose functional parallelism, such as com-
puting long range and short range forces in parallel in
Molecular Dynamics applications [6].

Note that the Execution Space Instance does not express
any dependencies between kernels, other than those the
user defines explicitly through the use of fence.

10 KOKKOS GRAPHS

Once other factors like kernel implementation and data
movement have been optimized, kernel latency is often a
remaining bottleneck. Particularly, in scenarios where
strong scaling of computational cost with respect to avail-
able resources is desired, latency costs can become domi-
nant. With less work per parallel region, the latency
associated with kernel submission—which includes costs
like driver overhead and on-device work scheduling—
becomes signifcant. Other factors, such as software com-
plexity, modularity, and increased kernel diversity can also
lead to decreased kernel size and thus an increase in the
contribution of latency to the computational cost.

To estimate the potential scope of computational chal-
lenges around increasingly complex physics, consider a
simple sparse conjugate gradient (CG) solver. It consists of
three kernels: sparse matrix vector multiply (spmv), dot
product (dot) and vector add (axpby). It is an iterative solver;
iterative applications are an excellent example of a typical
case where the need for strong scaling can be particularly
acute.

TABLE 5
Bandwidth Comparison of a CG Solve of 100x100x100 Heat

Conduction Problem Matrix

V100 SKX A64FX P9 MI100

KK CuSparse KK MKL KK KK KK rocSparse

965 835 161 152 145 148 805 758

For the TPL versions, the SPMV is executed via CuSparse and MKL respec-
tively. The native Kokkos SPMV algorithm uses 3-level hierarchical parallel-
ism. Numbers reported are in GB/s.

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 813



Each iteration calls axpby three times, dot twice, and spmv a
single time. Now consider the performance characteristics
of this solver for a matrix derived from a regular 3D heat
conduction problem, such as the one used for miniFE [13].
Since the problem in miniFE is derived from a regular grid,
the matrix A contains 27 entries per row, with the number
of rows in A and the vector length being equal to the num-
ber of grid cells. Using 204,800 grid cells, the operations
have the following memory accesses requirements:

� AXPBY: 204,800 * 3 * sizeof(double) = 4,800kB
� DOT: 204,800 * 2 * sizeof(double) = 3,200kB
� SPMV: 204,800 * 1 * 27 * (sizeof(double) + sizeof(int))

= 64,800kB
Given the specifications of the latest NVIDIA A100

GPU, which provides 2TB/s memory bandwidth in the
80GB capacity version, these kernels should take 2.4ms,
1.6ms and 32.4ms respectively. Thus, excluding launch
latencies, a single iteration of the solver should take less
than 43ms at peak bandwidth. However, on X86 systems
with NVIDIA GPUs, our experience has been that kernel
launch latencies are about 3.5ms. With AMD GPUs, we
have observed kernel launch latencies on the order of
8ms. With six kernel launches in each iteration of CG
Solve, the kernel launch latency will add around 50 to 100
percent to the runtime.

To address latency issues in repeated sets of dependent
kernels like the CG solver, CUDA introduced a feature called
CUDA Graphs [18]. CUDA Graphs allow the lazy expression
of a set of dependent kernels. While the creation of the graph
has an upfront cost, the graph can then be dispatched repeat-
edly through a single operation. Evenwhen dispatching a ker-
nel with a CUDA graph, both dispatch and device latencies
persist, however the overall average latency will be reduced,
relative to launching each kernel individually.

Kokkos Graphs was designed in part to surface this func-
tionality in a performance portable way. As with CUDA, an
object is created lazily that represents a directed acyclic graph
of kernels. Once constructed, the graph can be resubmitted
any number of times with reduced latency per kernel. Kokkos
Graphs provides an explicit creation phase, delimited by the
scope of an immediately evaluated function that clearly indi-
cates the portion of the program where the graph is modifi-
able but not executable. Graphs are created through a
create_graph function with a function object argument,

which is passed the root node of the graph. Graph nodes are
then connected with a typical async-future model, using
member functions like then_parallel_for, then_par-
allel_reduce, and then_parallel_scan which gener-
ate a new node with a dependency on the preceding node.
Each of these calls has the same function signature as the nor-
mal, eager dispatch versions of Kokkos’s parallel patterns.
Another new API function is when_all, which creates a join
point across multiple kernels that can serve as a dependency
for subsequent graph kernels.

The following snippet uses Kokkos Graphs to express a
diamond shaped dependency between kernels and execute
it repeatedly:

11 SIMD SUPPORT

While Kokkos’s parallel patterns are semantically vectoriz-
able, and the ThreadVectorRange-based loops in Hierar-

chical Parallelism express additional parallelism to the

compiler, there are often situations where Kokkos is unable

to sufficiently convey the vectorizability of the work items

to the compiler, and an explicit expression of SIMD vector

semantics is required. One such scenario is algorithms

where vectorization of the innermost loop is inefficient, and

in the absence to this vectorization, results in utilization of

scalar instructions by the compiler. Generally, this situation

is referred to as outer loop vectorization.

In these scenarios, one commonly used solution is to use
explicit SIMD types. In [21], a more detailed explanation for
the desired capabilities is given. Here, we introduce a capa-
bility incorporating those design ideas into the an API based
on what is proposed for the C++ standard in the ISO C++
Parallelism TS v2.

The main distinguishing feature of the C++ standard
proposal is the use of an ABI template parameter, which
determines the actual implementation of a SIMD type.
We utilize this template parameter to extend the inter-
face to provide an associated storage ABI type for each
compute ABI type. For CPUs the storage and the compute
SIMD types are actually the same. But on GPU systems
the storage needs to happen as dense arrays, while the
compute types create only a single scalar variable per
GPU warp lane in order to use warp level parallelism to
do the SIMD operations.

The following code example illustrates this concept of
using distinct storage and compute SIMD types:

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022



Besides the usual arithmetic and math functions provided
for the SIMD types, the Kokkos implementation also pro-
vides mask types for masked operations.

12 BACKENDS

Kokkos currently features the Serial, OpenMP, Cuda, HIP,
OpenMPTarget, HPX, Threads and SYCL backends. These
backends provide coverage for all major existing super com-
puter architectures, including the announced exascale
machines. As ofwriting the newSYCL,HIP andOpenMPTar-

get backends are almost feature complete, and are missing
primarily the Tasking support, which currently is not widely
used in applications. We expect that these backends will be
optimized and fully ready for the upcoming ExaScale
machines by the end of 2021.

Generally, the Kokkos Programming Model is easily map-
pable to any of the native models mentioned above. That said,
not all of them can exploit the full semantics of Kokkos. For
example, with the CPU OpenMP backend, every parallel oper-
ation we dispatch is synchronous, since OpenMP parallel
regions are synchronous. Similarly HIP doesn’t have the
equivalent to CUDA Graphs yet, which means that Kokkos
Graphs will simply dispatch kernels one by one, and will not
provide the latency benefits seen with the Cuda backend. Our
philosophy is to generally expose advanced capabilities of
native programming models, and then providing fallback
implementations for others. In particular, that means that
Kokkos strives to find the common subset of models, and
aims to expose powerful capabilities wherever possible.

13 PERFORMANCE PORTABILITY IN PRACTICE

While a comprehensive study of practical performance porta-
bility in applications is out of scope for this paper, many such
studies have been conducted in the past, and we will summa-
rize some results here. These studies generally fall into one of
three categories (i) comprehensive comparison of program-
ming models with mini-apps, (ii) comparison of a real appli-
cation ported to Kokkos with its non-Kokkos version, and (iii)
comparison of Kokkos-based application on a range of hard-
ware. Deakin et al. for example used the performance portabil-
ity metric developed by Pennycook et al. [20] to compare
OpenMP, Kokkos, CUDA, OpenACC and OpenCL [7]. Kok-
kos achieved the highest scorewith 68 percentwhile OpenMP
got 28 percent. No overall scores for the other models were

produced, since they didn’t support enough systems. It is
worthwhile to note that Kokkos achieves that higher perfor-
mance portability score with less lines of code than OpenMP
in the study. Grete et al. report on the astrophysics code K-
Athena and compare it to the legacy non-Kokkos Athena++
as well as another similar code called GAMER [10]. GAMER
supports CPUs as well as NVIDIA GPUs via CUDA. On
CPUs K-Athena achieves 93 percent of the Athena++ perfor-
mance and is 1.5 times faster than GAMER. K-Athena is also
1.3 times faster than GAMER on a GPU. Bertagna et al. report
on performance results of porting the climate code HOMME
toKokkos, now calledHOMMEXX [5]. They first demonstrate
that in large scale runs the new Kokkos code is actually up to
60 percent faster on CPU systems, before comparing seven
different node architectures. Scaling the maximum achieved
performance of each node type by its theoretical peak band-
width normalized to the Skylake result gives values of 0.56 to
1, roughly in line with the range observed by Deakin et al.
Halver et al. implemented a long range coulomb solver and
reported fraction of achieved peak performance [11].With the
exception of the Intel Haswell node, which achieved 40 per-
cent, every other architecture fell into a narrow band of 28 to
33 percent. Results such as these demonstrate that Kokkos
based code can achieve practical performance portability in
realworld settings and thus provides an excellent basis to pre-
pare for the upcoming exascale era platforms.

ACKNOWLEDGMENTS

The authors would like to thank the contributions of one par-
ticular person, H. Carter Edwards. He led the Kokkos project
through its youth phase, and laid the foundation for what it
has become. Without him, Kokkos wouldn’t be what it is
today. Sandia National Laboratories is a multimission labora-
tory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under Grant DE-NA-0003525. This research used resources of
the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Grant DE-
AC02-06CH11357. Thismanuscript has been authored by UT-
Battelle, LLC, under Grant DE-AC05-00OR22725 with the
U.S. Department of Energy (DOE). This work was supported
by Exascale Computing Project 17-SC-20-SC, a joint project of
the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the
nation’s exascale computing imperative.

REFERENCES

[1] V. Alessandrini, “Atomic types and operations,” in Shared Memory
Application Program. Concepts and Strategies in Multicore Application
Program., V. Alessandrini, ed. Waltham, MA, USA: Morgan Kauf-
mann, 2016, ch. 8, pp. 167–190.

[2] Y. Asahi, G. Latu, V. Grandgirard, and J. Bigot, “Performance
portable implementation of a kinetic plasma simulation mini-
app,” in Proc. Int. Workshop Accel. Prog. Using Directives, 2019,
pp. 117–139.

[3] B. Bastem and D. Unat, “Tiling-based programming model for
structured grids on GPU clusters,” in Proc. Int. Conf. High Perform.
Comput. Asia-Pac. Region, 2020, pp. 43–51.

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 815



[4] D. A. Beckingsale et al., “RAJA: Portable performance for large-
scale scientific applications,” in Proc. IEEE/ACM Int. Workshop Per-
form., Portability Productiv. HPC, 2019, pp. 71–81.

[5] L. Bertagna et al., “HOMMEXX 1.0: A performance-portable atmo-
spheric dynamical core for the energy exascale earth system mod-
el,” Geoscientific Model Develop., vol. 12, no. 4, pp. 1423–1441, 2019.

[6] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharring-
ton, “Implementing molecular dynamics on hybrid high perfor-
mance computers-Particle-particle particle-mesh,” Comput. Phys.
Commun., vol. 183, no. 3, pp. 449–459, 2012.

[7] T. Deakin et al., “Performance portability across diverse computer
architectures,” in Proc. IEEE/ACM Int. Workshop Perform., Portabil-
ity Productiv. HPC, 2019, pp. 1–13.

[8] V.Devadas andM.Curtis-Maury, “Scalable coordinationof hierarchi-
cal parallelism,” inProc. 49th Int. Conf. Parallel Process., 2020, pp. 1–11.

[9] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,” J. Parallel Distrib. Comput., vol. 74, pp. 3202–3216,
2014.

[10] P. Grete, F. W. Glines, and B. W. O’Shea, “K-Athena: A perfor-
mance portable structured grid finite volume magnetohydrody-
namics code,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1,
pp. 85–97, Jan. 2021.

[11] R. Halver, J. H. Meinke, and G. Sutmann, “Kokkos implementa-
tion of an Ewald Coulomb solver and analysis of performance
portability,” J. Parallel Distrib. Comput., vol. 138, pp. 48–54, 2020.

[12] J. R. Hammond, M. Kinsner, and J. Brodman, “A comparative
analysis of Kokkos and SYCL as heterogeneous, parallel program-
ming models for C++ applications,” in Proc. Int. Workshop OpenCL,
2019, pp. 1–2.

[13] Mantevo, “minife,” Accessed: Feb. 24, 2021. [Online]. Available:
https://github.com/Mantevo/miniFE

[14] M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Assessing the
performance portability of modern parallel programming models
using TeaLeaf,” Concurrency Comput.: Pract. Experience, vol. 29,
no. 15, 2017, Art. no. e4117.

[15] M. McCool, J. Reinders, and A. Robison, Structured Parallel Pro-
gram. Patterns for Efficient Computation, 1st ed. Waltham, MA,
USA: Morgan Kaufmann Publishers Inc., 2012.

[16] D. S. Medina, A. St-Cyr, and T. Warburton, “OCCA: A unified
approach to multi-threading languages,” 2014, arXiv:1403.0968.

[17] R. Menon and L. Dagum, “OpenMP: An industry-standard API
for shared-memory programming,” Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan.–Mar. 1998.

[18] NVIDIA, “Cuda runtime API,” Accessed: Feb. 23, 2021. [Online].
Available: https://docs.nvidia.com/cuda/cuda-runtime-api/
group__CUDART__STREAM.html

[19] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasahara,
“Hierarchical parallelism control for multigrain parallel proc-
essing,” in Proc. Int. Workshop Lang. Compilers Parallel Comput.,
2005, pp. 31–44.

[20] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A metric for perfor-
mance portability,” in Proc. Program. Models Benchmarking Simul.
Workshop SC, 2016, pp. 1–7.

[21] D. Sahasrabudhe, E. T. Phipps, S. Rajamanickam, and M. Berzins,
“A portable simd primitive using kokkos for heterogeneous
architectures,” in Proc. Int. Workshop Accel. Program. Using Direc-
tives, 2020, pp. 140–163.

[22] C. Tanis, K. Sreenivas, J. C. Newman, and R. Webster,
“Performance portability of a multiphysics finite element code,”
in Proc. Aviation Technol., Integration, Operations Conf., 2018.

[23] J. L. Traff, “Hierarchical gather/scatter algorithms with graceful
degradation,” in Proc. 18th Int. Parallel Distrib. Process. Symp., 2004.

[24] P. P. M. T. and Services GmbH, “Top500,” Accessed: Feb. 18, 2021.
[Online]. Available: https://www.top500.org/

Christian R. Trott received the PhD degree in theoretical physics
from TU Ilmenau, Germany. He is currently a principal member of
Technical Staff and Sandia National Laboratories, where he has been
working since acquiring his PhD degree. He leads the Kokkos Core
Project and represents Sandia at the ISO C++ committee.

Damien Lebrun-Grandi�e is currently a computational scientist with
Oak Ridge National Laboratory. He coleads the Kokkos Core Project
and represents ORNL at the ISO C++ standards committee.

Daniel Arndt is currently a computational scientist with Oak Ridge
National Laboratory, working on various ECP projects. He is also a
mathematician by training specializing on finite element simulations.
His research focuses on supporting new backends in Kokkos.

Jan Ciesko received the PhD degree in computer science from the
Universitat Polit�ecnica de Catalunya, Spain. He is currently a postdoc-
toral researcher with Sandia National Laboratories. His research inter-
ests include user-level threading in Open MPI and PGAS support in
the Kokkos programming model.

Vinh Dang received the PhD degree in electrical engineering from the
Catholic University of America in 2015. He is currently a senior mem-
ber of Technical Staff with Sandia National Laboratories. His research
interests include high-performance computing and parallel dense lin-
ear algebra or solvers.

Nathan Ellingwood received the PhD degree in applied mathematics
and computational sciences from the University of Iowa. He is cur-
rently a senior member of Technical Staff with Sandia National Labora-
tories, where he contributes to the Kokkos Core and Kokkos Kernels
projects, with a focus on testing and release infrastructure.

Rahulkumar Gayatri received the PhD degree in computer science
from the Universitat Polit�ecnica de Catalunya, Spain. He is currently
an application performance specialist with NERSC, Lawrence Berke-
ley National Laboratory.

Evan Harvey received the BS degree in computer science from the
NewMexico Institute of Mining and Technology in 2016. He is currently
a limited term employee with Sandia National Laboratories. He con-
tributes to the Kokkos Core and Kokkos Kernels Projects, with a focus
on parallel dense linear algebra, software engineering, and continuous
integration testing.

Daisy S. Hollman received the PhD degree in quantum chemistry
from the University of Georgia. She is currently researching program-
ming model design and programming languages with Sandia National
Labs, where she has been working since acquiring her PhD degree.
She represents Sandia on the ISO C++ standards committee, where
she is involved in proposals ranging from multidimensional arrays to
generic execution abstractions.

Dan Ibanez received the BS and PhD degrees in computer science
from Rensselear Polytechnic Institute. Since 2016, he has been work-
ing with Sandia National Laboratories. His research interests include
computational hydrodynamics, adaptive mesh algorithms, and contri-
butions to Kokkos, such as ScatterView and SIMD vectorization.

Nevin Liber is currently a computer scientist with Argonne National Lab-
oratory, working on the SYCL backend for Kokkos. He is also a C++ com-
mittee officer (Vice Chair, Library Evolution Working Group Incubator),
and represents Argonne in SYCL related standardization efforts.

Jonathan Madsen is currently an application performance specialist
with the National Energy Research Scientific Computing Center, Law-
rence Berkeley National Laboratory. He is a developer of the Kokkos
Core project, leads the development of a modular toolkit for software
monitoring at LBNL (timemory), and represents LBNL at the ISO C++
standards committee.

Jeff Miles received the PhD degree in mechanical engineering from
North Carolina State University, after developing software at Toshiba
in an industrial setting. He then joined Sandia National Laboratories,
where he worked on Kokkos and helped application with its adoption.

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

https://github.com/Mantevo/miniFE
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://www.top500.org/


David Poliakoff currently leads the Kokkos Tools effort. He has spent
seven years with various DOE National Laboratories, working on tools
in multiphysics applications.

Amy Powell is currently a senior member of the Technical Staff, San-
dia National Laboratories. She is also a Kokkos and Kokkos Kernels
developer, focusing on performance testing. She is trained as an evo-
lutionary biologist and active in climate R&D.

Sivasankaran Rajamanickam received the PhD degree in computer
science and engineering from the University of Florida in 2009. He is
currently a principal member of Technical Staff, Sandia National Labo-
ratories. His research interests include high-performance computing
and sparse linear algebra or solvers.

Mikael Simberg received the master’s degree in operations research
and computer science from Aalto University, Finland. He is currently a
scientific software developer with Swiss National Supercomputing
Centre. His research interests include contributions to parallel pro-
gramming models, in particular HPX.

Dan Sunderland is currently an expert in C++ and high-performance
computing. He worked on programming models, including Kokkos and
OpenMP at Sandia and helped represent the laboratory at the ISO C++
committee.

Bruno Turcksin received the PhD degree in nuclear engineering from
Texas A&M University. He is currently a computational scientist with
Oak Ridge National Laboratory. He worked on multiple ECP projects,
including Kokkos where he focuses on the development of HIP
backend.

Jeremiah Wilke received the PhD degree in computational chemistry
from the University of Georgia. He is currently a scientist with Sandia
National Laboratories. His research interests include high-perfor-
mance computing, which include distributed computing and network
simulations.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TROTT ETAL.: KOKKOS 3: PROGRAMMING MODEL EXTENSIONS FOR THE EXASCALE ERA 817


