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We live in an information society. Information 
science is our profession. 

Fundamental Questions:

• What is “information”, mathematically, and 
how to use it to prove theorems?

• What is a computable “random 
number”…what properties does it have ?

• What is an “incompressible string”…what 
properties does it have ?
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Lecture 1. History and Definitions

n History
n Intuition and ideas in the past
n Inventors

n Basic mathematical theory

n For more see book:
Li-Vitanyi: An introduction to 
Kolmogorov complexity and its 
applications. 
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Motivation:
A case of Dr. Samuel Johnson

(1709-1784)

… Dr. Beattie observed, as something     
remarkable which had happened to him, 
that he chanced to see both No.1 and 
No.1000 hackney-coaches. “Why sir,” said 
Johnson “there is an equal chance for 
one’s seeing those two numbers as any 
other two.”

Boswell’s Life of 
Johnson
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Further Motivation: 
Alice goes to the court
n Alice complains: T100 is not random.
n Bob asks Alice to produce a random coin flip 

sequence.
n Alice flipped her coin 100 times and got 

THTTHHTHTHHHTTTTH …
n But Bob claims Alice’s sequence has 

probability 2-100, and so does his.
n How do we define randomness?

5

Further Motivation, Cont
Alice goes to the court

Bob proposes to flip a coin with Alice: 
n Alice wins a dollar if Heads; 
n Bob wins a dollar if Tails

Result: TTTTTT …. 100 Tails in a roll.
n

Alice lost $100. She feels being cheated.

6



Talk at U of Maryland

4

History: What is the Information in 
Individual String?
n What is the information content of an individual string?

n 111 …. 1 (n 1’s)
n π = 3.1415926 …
n n = 21024

n Champernowne’s number: 
0.1234567891011121314 …

is normal in scale 10 (every block has same frequency)
n All these numbers share one commonality: there are 
“small” programs to generate them.

n Popular youtube explanation:
http://www.youtube.com/watch?v=KyB13PD-UME
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History: What is the Information 
in Individual String?
(1) Information Theory: Shannon-Weaver 

theory is on an ensemble. But what is 
information in an individual object? 
Shannon’s information theory does not seem 
to help here.

(2) Inductive inference: Bayesian approach 
using universal prior distribution
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Andrey Nikolaevich Kolmogorov
(1903-1987, Tambov, Russia)

n Measure Theory
n Probability
n Analysis
n Intuitionistic Logic
n Cohomology
n Dynamical Systems
n Hydrodynamics
n Kolmogorov complexity
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Preliminaries and Notations

n Binary Strings: x, y, z. 
n x=x1x2 ... an infinite binary sequence

n Finite subsequence xi:j =xi xi+1 … xj
n |x| is number of bits in x. 

n Sets, A, B, C …
n |A|, number of elements in set A. 

n Fix an effective enumeration of all Turing 
machines (TMs): M1, M2, M3, …

n < Mn> is description of TM Mn 

n Universal Turing machine U:
n U(0n1x) = Mn(x) = gives output of TM Mn with 

input x
10
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3. Kolmogorov Theory
Let U be a universal TM that takes as input the description 

p=<M> of a TM M and produces as output U(p).

Solomonoff (1960)-Kolmogorov (1963)-Chaitin (1965):
The amount of information in a string x is the size of the 

smallest description <M> of any TM M generating x. 

KU(x)= minn { |<Mn>| : U simulates TM Mn with 
no input, which gives output x}

Invariance Theorem: It does not matter 
which universal Turing machine U we 
choose. I.e. all “encoding methods” are ok.
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Proof of the Invariance theorem
n For a fixed effective enumeration of all Turing 

machines (TM’s): M1, M2, …
n U is a universal TM such that with no input to nth TM

Mn produces x
U(0n1) = Mn()= x

n Then for all x: KU(x) < Kn(x) + O(1) 
n Note:  The constant O(1) depends on n, but not x.

n Fixing U, we write K(x) instead of KU(x).      QED

Formal statement of the Invariance Theorem: 
There exists a computable function f0 such that for all 

computable functions f, there is a constant cf such 
that for all strings x ε {0,1}*

Kf0(x) ≤ Kf(x) + cf
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Kolmogorov Theory continued…

Ø Intuitively: K(x)= length of shortest description of x
Ø Define conditional Kolmogorov complexity similarly, 
Ø K(x|y)=length of shortest description of x given y.
n Properties of K(x) and K(x|y):

n K(xx) = K(x) + O(1) since just need TM that generates x
n K(xy) ≤ K(x) + K(y) + O(log(min{K(x), K(y)})
n K(1n ) ≤ O(log n) since can use binary encoding of n
n K(π1:n) ≤ O(log n) since can use binary encoding of n
n For all x, K(x) ≤ |x|+O(1) since can encode x in TM
n K(x|x) = O(1) since just need TM that generates x
n K(x|ε) = K(x) since empty string ε provides no additional 

info on x
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3.1 Basics
n Incompressibility: For constant c>0, a string x ε {0,1}* 

is c-incompressible if K(x) ≥ |x|-c. For constant c, we 
often simply say that x is incompressible. 

n Incompressible strings have properties similar to
random strings.

Lemma. There are at least 2n – 2n-c +1
c-incompressible strings of length n.
Proof. There are only ∑k=0,…,n-c-1 2k = 2n-c -1 programs 

with length less than n-c. Hence only that many 
strings (out of total 2n strings of length n) can have 
shorter programs (descriptions) than n-c.                           
QED.
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Facts
n Recall:  a finite string x is incompressible if K(x) ≥ |x|-c 

for a constant c. 
n If x=uvw is incompressible, then K(v) ≥ |v| - O(log |x|).
n If M is the shortest TM description for x, then

n K(M) ≥ |M| - O(1) and 
K(x|M) = O(1).

n A is recursively enumerable (r.e.) if the elements of A 
can be listed by a Turing machine.

n A is sparse if the set of all length n strings of A is ≤ p(n) 
for some polynomial p. If a subset A of {0,1}* is 
recursively enumerable (r.e.), and A is sparse, then for 
all x in A, |x|=n, 

n K(x) ≤ O(log p(n)) + O(K(n)) = O(log n). 
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3.3 Properties
Theorem (Kolmogorov) K(x) is not partially recursive.
(That is, there is no Turing machine M such that 
M accepts (x,m) if K(x)≥m and undefined otherwise.) 

Proof. If such M exists, then design M’ as follows: 
Choose n >> |M’|=length of description of M’. 
Let M’ simulate M on input (x,n), for all |x|=n in 
“parallel” (one step each), and then output the first x 
such that M says yes. 

Thus we have a contradiction: 
• K(x)≥n by M, 
• but M’ outputs x. 
Hence |M’| ≥ K(x) ≥ n, but by choice |x|=n >> |M’|, a 

contradiction.                                QED 
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3.4 Godel’s Theorem

Theorem. The statement “x is random” (x is 
incompressible) is not provable.

Proof (G. Chaitin). Let F be an axiomatic 
theory. Let K(F)= K be the size of the 
compressed encoding of F. If the theorem is 
false and statement “x is random” is provable 
in F, then we can enumerate all proofs in F to 
find a proof of “x is random” and   |x| >> K, 
output (first) such x. Then K(x) < K +O(1). But 
the proof for “x is random” implies that K(x) ≥ 
|x| >> K, a contradiction.               QED 

17

3.5 Barzdin’s Lemma
n A characteristic sequence of set A is an infinite 

binary sequence χ=χ1χ2 …, where χi=1 iff i ε A.
Theorem. (i) The characteristic sequence χ of an r.e. set 

A satisfies K(χ1:n|n)≤logn+cA for all n. 
(ii) There is an r.e. set, K(χ1:n|n)≥logn for all n.

Proof. 
Proof of (i): Use the number 1’s in the prefix χ1:n as a 

termination condition, implies K(χ1:n|n)≤logn+cA

Proof of (ii): By diagonalization: Let U be the universal 
TM. Define χ=χ1χ2 …, by χi=1 if U(i-th program, i)=0, 
otherwise χi=0. χ defines an r.e. set. And, for each n, 
we have K(χ1:n|n)≥logn since the first n programs of 
length < log n are all different from χ1:n by definition.          
QED
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Kolmogorov Theory Applications 
to Complexity Theory
n Proofs that certain sets are not regular
n Complexity Lower Bounds for 1 Tape TMs
n Communication Lower Bounds: What is the 

distance between two pieces of information 
carrying entities? For example, distance from 
an internet query to an answer.
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Other Kolmogorov Theory 
Applications
n Mathematics --- probability theory, logic.
n Physics --- chaos, thermodynamics.
n Computer Science – average case analysis, inductive inference and 

learning, shared information between documents, data mining and 
clustering, incompressibility method -- examples:
n Lower bounds on Turing machines, formal languages
n Shellsort average case
n Heapsort average case
n Circuit complexity
n Combinatorics: Lovazs local lemma and related proofs.
n Distributed protocols

n Philosophy, biology etc – randomness, inference, complex systems, 
sequence similarity

n Information theory – information in individual objects, information distance
n Classifying objects: documents, genomes
n Query Answering systems
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