Kolmogorov complexity and its applications

Ming Li

University of Waterloo

1

We live in an information society. Information science is our profession.

Fundamental Questions:

- What is "information", mathematically, and how to use it to prove theorems?
- What is a computable "random number"...what properties does it have ?
- What is an "incompressible string"...what properties does it have?

Lecture 1. History and Definitions

History

- Intuition and ideas in the past
- Inventors

Basic mathematical theory

For more see book:
Li-Vitanyi: An introduction to Kolmogorov complexity and its applications.

3

Motivation:

A case of Dr. Samuel Johnson

... Dr. Beattie observed, as something remarkable which had happened to him, that he chanced to see both No. 1 and No. 1000 hackney-coaches. "Why sir," said Johnson "there is an equal chance for one's seeing those two numbers as any other two."

Boswell's Life of Johnson

Further Motivation:

Alice goes to the court
Alice complains: T^{100} is not random.

- Bob asks Alice to produce a random coin flip sequence.
- Alice flipped her coin 100 times and got THTTHHTHTHHHTTTTH ...
But Bob claims Alice's sequence has probability 2^{-100}, and so does his.
How do we define randomness?

5

Further Motivation, Cont Alice goes to the court

Bob proposes to flip a coin with Alice:

- Alice wins a dollar if Heads;
- Bob wins a dollar if Tails

Result: TTTTTT 100 Tails in a roll.

Alice lost $\$ 100$. She feels being cheated.

History: What is the Information in Individual String?

What is the information content of an individual string?

- 111 1 (n 1 's)
- $\quad \pi=3.1415926 \ldots$
- $\mathrm{n}=2^{1024}$
- Champernowne's number:
0.1234567891011121314 ...
is normal in scale 10 (every block has same frequency)
- All these numbers share one commonality: there are "small" programs to generate them.
Popular youtube explanation:
http://www.youtube.com/watch?v=KyB13PD-UME

7

History: What is the Information in Individual String?

(1) Information Theory: Shannon-Weaver theory is on an ensemble. But what is information in an individual object? Shannon's information theory does not seem to help here.
(2) Inductive inference: Bayesian approach using universal prior distribution

8

9

Preliminaries and Notations

Binary Strings: x, y, z.
$x=x_{1} x_{2} \ldots$ an infinite binary sequence
Finite subsequence $x_{i j}=x_{i} x_{i+1} \ldots x_{j}$
$-|x|$ is number of bits in x.

- Sets, A, B, C ...
$|A|$, number of elements in set A.
- Fix an effective enumeration of all Turing machines (TMs): $M_{1}, M_{2}, M_{3}, \ldots$
$<M_{n}>$ is description of TM Mn
Universal Turing machine U:
$\mathrm{U}\left(0^{\mathrm{n} 1 x}\right)=\mathrm{M}_{\mathrm{n}}(\mathrm{x})=$ gives output of $\mathrm{TM} \mathrm{M}_{\mathrm{n}}$ with input x

3. Kolmogorov Theory

Let U be a universal TM that takes as input the description $p=<M>$ of a TM M and produces as output $U(p)$.

Solomonoff (1960)-Kolmogorov (1963)-Chaitin (1965):
The amount of information in a string x is the size of the smallest description <M> of any TM M generating x.
$K_{U}(x)=\min _{n}\left\{\left|<M_{n}>\right|: U\right.$ simulates $T M M_{n}$ with no input, which gives output $x\}$
Invariance Theorem: It does not matter which universal Turing machine U we choose. I.e. all "encoding methods" are ok.

Proof of the Invariance theorem

For a fixed effective enumeration of all Turing machines (TM's): M_{1}, M_{2}, \ldots

- U is a universal TM such that with no input to nth TM M_{n} produces x

$$
U\left(0^{n} 1\right)=M_{n}()=x
$$

Then for all $x: K_{U}(x)<K_{n}(x)+O(1)$
Note: The constant $O(1)$ depends on n, but not x. Fixing U, we write $K(x)$ instead of $K_{U}(x)$. QED

Formal statement of the Invariance Theorem:
There exists a computable function f_{0} such that for all computable functions f, there is a constant c_{f} such that for all strings $x \in\{0,1\}^{*}$

$$
\mathrm{K}_{\mathrm{f}_{0}}(\mathrm{x}) \leq \mathrm{K}_{\mathrm{f}}(\mathrm{x})+\mathrm{c}_{\mathrm{f}}
$$

Kolmogorov Theory continued...

> Intuitively: $K(x)=$ length of shortest description of x
> Define conditional Kolmogorov complexity similarly,
> $K(x \mid y)=$ length of shortest description of x given y.

- Properties of $K(x)$ and $K(x \mid y)$:
$K(x x)=K(x)+O(1)$ since just need TM that generates x
- $K(x y) \leq K(x)+K(y)+O(\log (\min \{K(x), K(y)\})$
- $K\left(1^{n}\right) \leq O(\log n)$ since can use binary encoding of n
$=K\left(\pi_{1: n}\right) \leq O(\log n)$ since can use binary encoding of n
- For all $x, K(x) \leq|x|+O(1)$ since can encode x in TM
- $K(x \mid x)=O(1)$ since just need TM that generates x
$-K(x \mid \varepsilon)=K(x)$ since empty string ε provides no additional info on x

13

3.1 Basics

Incompressibility: For constant $c>0$, a string $x \varepsilon\{0,1\}^{*}$ is c-incompressible if $\mathrm{K}(\mathrm{x}) \geq|\mathrm{x}|-\mathrm{c}$. For constant c , we often simply say that x is incompressible.

- Incompressible strings have properties similar to random strings.

Lemma. There are at least $2^{n}-2^{n-c}+1$
c -incompressible strings of length n .
Proof. There are only $\sum_{k=0, \ldots, n-c-1} 2^{k}=2^{n-c}-1$ programs with length less than $n-c$. Hence only that many strings (out of total 2^{n} strings of length n) can have shorter programs (descriptions) than $\mathrm{n}-\mathrm{c}$. QED.

Facts

Recall: a finite string x is incompressible if $K(x) \geq|x|-c$ for a constant c.
If $x=u v w$ is incompressible, then $K(v) \geq|v|-O(\log |x|)$.

- If M is the shortest TM description for x, then
- $K(M) \geq|M|-O(1)$ and
$K(x \mid M)=O(1)$.
A is recursively enumerable (r.e.) if the elements of A can be listed by a Turing machine.
A is sparse if the set of all length n strings of A is $\leq p(n)$ for some polynomial p. If a subset A of $\{0,1\}^{*}$ is recursively enumerable (r.e.), and A is sparse, then for all x in $A,|x|=n$,

$$
K(x) \leq O(\log p(n))+O(K(n))=O(\log n)
$$

3.3 Properties

Theorem (Kolmogorov) $\mathrm{K}(\mathrm{x})$ is not partially recursive.
(That is, there is no Turing machine M such that M accepts (x, m) if $K(x) \geq m$ and undefined otherwise.)

Proof. If such M exists, then design M^{\prime} as follows:
Choose $\mathrm{n} \gg\left|\mathrm{M}^{\prime}\right|=$ length of description of M^{\prime}.
Let " M ' simulate M on input (x, n), for all $|x|=n$ in
"parallel" (one step each), and then output the first x
such that M says yes.
Thus we have a contradiction:

- $K(x) \geq n$ by M,
- but M' outputs x.

Hence $\left|M^{\prime}\right| \geq K(x) \geq n$, but by choice $|x|=n \gg\left|M^{\prime}\right|$, a contradiction.

3.4 Godel' s Theorem

Theorem. The statement " x is random" (x is incompressible) is not provable.
Proof (G. Chaitin). Let F be an axiomatic theory. Let $K(F)=K$ be the size of the compressed encoding of F. If the theorem is false and statement "x is random" is provable in F, then we can enumerate all proofs in F to find a proof of " x is random" and $|x| \gg K$, output (first) such x. Then $K(x)<K+O(1)$. But the proof for " x is random" implies that $K(x) \geq$ $|x| \gg K$, a contradiction.

3.5 Barzdin' s Lemma

A characteristic sequence of set A is an infinite binary sequence $X=X_{1} X_{2} \ldots$, where $X_{i}=1$ iff $i \varepsilon A$.
Theorem. (i) The characteristic sequence X of an r.e. set A satisfies $K\left(X_{1: n} \mid n\right) \leq \operatorname{logn}+C_{A}$ for all n.
(ii) There is an r.e. set, $K\left(X_{1: n} \mid n\right) \geq \operatorname{logn}$ for all n.

Proof.
Proof of (i): Use the number 1 's in the prefix $X_{1: n}$ as a termination condition, implies $K\left(X_{1: n} \mid n\right) \leq \operatorname{logn}+C_{A}$

Proof of (ii): By diagonalization: Let U be the universal
TM. Define $X=X_{1} X_{2} \ldots$, by $X_{i}=1$ if $U(i-t h$ program, $i)=0$, otherwise $X_{i}=0 . X$ defines an r.e. set. And, for each n, we have $K\left(X_{1: n} \mid n\right) \geq \operatorname{logn}$ since the first n programs of length $<\log n$ are all different from $X_{1: n}$ by definition. QED

Kolmogorov Theory Applications to Complexity Theory

Proofs that certain sets are not regular
Complexity Lower Bounds for 1 Tape TMs
Communication Lower Bounds: What is the distance between two pieces of information carrying entities? For example, distance from an internet query to an answer.

Other Kolmogorov Theory Applications

- Mathematics --- probability theory, logic.
- Physics --- chaos, thermodynamics.
- Computer Science - average case analysis, inductive inference and learning, shared information between documents, data mining and clustering, incompressibility method -- examples:
- Lower bounds on Turing machines, formal languages
- Shellsort average case
- Heapsort average case
- Circuit complexity
- Combinatorics: Lovazs local lemma and related proofs.
- Distributed protocols
- Philosophy, biology etc - randomness, inference, complex systems, sequence similarity
- Information theory - information in individual objects, information distance
- Classifying objects: documents, genomes
- Query Answering systems

