
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 363, Number 10, October 2011, Pages 5465–5480
S 0002-9947(2011)05306-7
Article electronically published on April 27, 2011

KOLMOGOROV COMPLEXITY

AND THE RECURSION THEOREM

BJØRN KJOS-HANSSEN, WOLFGANG MERKLE, AND FRANK STEPHAN

Abstract. Several classes of diagonally nonrecursive (DNR) functions are
characterized in terms of Kolmogorov complexity. In particular, a set of nat-
ural numbers A can wtt-compute a DNR function iff there is a nontrivial
recursive lower bound on the Kolmogorov complexity of the initial segments of
A. Furthermore, A can Turing compute a DNR function iff there is a nontrivial
A-recursive lower bound on the Kolmogorov complexity of the initial segments
of A. A is PA-complete, that is, A can compute a {0, 1}-valued DNR function,
iff A can compute a function F such that F (n) is a string of length n and max-
imal C-complexity among the strings of length n. A ≥T K iff A can compute
a function F such that F (n) is a string of length n and maximal H-complexity
among the strings of length n. Further characterizations for these classes are
given. The existence of a DNR function in a Turing degree is equivalent to
the failure of the Recursion Theorem for this degree; thus the provided results
characterize those Turing degrees in terms of Kolmogorov complexity which

no longer permit the usage of the Recursion Theorem.

1. Introduction

The Recursion Theorem can be stated in two ways: First one can say that
every recursive function f has a fixed point with respect to any given acceptable
numbering of all r.e. sets: ∃e [We = Wf(e)]. Second one can say that every total
recursive function f coincides at some places with the diagonal function: ∃e [ϕe(e)↓
= f(e)]. Jockusch [5] showed that these two variants of the Recursion Theorem are
also equivalent relative to any oracle A: Every function f ≤T A admits a fixed point
iff every function g ≤T A coincides with the diagonal function somewhere. Special
attention has been given to the oracles A which permit us to avoid the Recursion
Theorem, and the topic of the present work is to relate these oracles to notions
of Kolmogorov complexity, namely to the classes of complex and autocomplex sets
introduced below where one can give a nontrivial lower bound on the complexity of
the initial segments of the set observed. The formal definitions of fixed-point free
and diagonally nonrecursive functions are as follows.

Definition 1.1. A function f is called fixed-point free if Wx �= Wf(x) for all x,
where Wx is the xth recursively enumerable set. The partial recursive function
mapping x to ϕx(x) whenever defined is called the diagonal function, where ϕx is
the xth partial recursive function. A function g is called diagonally nonrecursive
(DNR) iff it is total and differs from the diagonal function on its domain.

Received by the editors December 23, 2009 and, in revised form, February 2, 2010.
2010 Mathematics Subject Classification. Primary 03D28, 03D32, 68Q30.
The first author was partially supported by NSF-USA grants DMS-0652669 and DMS-0901020.

c©2011 American Mathematical Society

5465

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5466 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

We also relate complexity to sparseness: Suppose sets A and B are given such
that A ≤wtt B and B is hyperimmune. Then A is computed by querying rather
few bits from B, and B has very long intervals consisting of zeroes only. So when
computing A(x) for many inputs x, the oracle B will answer “0” on all questions
that have not been asked before; hence B will not be of much use. We show that
this can happen for some B just in case A has low Kolmogorov complexity in a
certain sense. This is again equivalent to the statement that the Recursion Theorem
applies to recursively bounded functions wtt-reducible to A.

A further topic investigated is to determine how difficult it is to compute for each
n a string of maximal Kolmogorov complexity within {0, 1}n. While for the case of
plain Kolmogorov complexity the answer to this problem depends on the universal
machine under consideration, in the case of prefix-free Kolmogorov complexity the
answer is that the problem to compute such strings is as difficult to solve as the
halting problem.

Besides this we study related questions and are able to characterize the oracles
which are high or autocomplex; furthermore, related characterizations are obtained
for the oracles which are high or PA-complete. In the last section we study the no-
tion of r.e. traceable sets which are, roughly speaking, some type of notion opposite
the notion of autocomplex sets.

2. Complex sets

A set will be called complex if the prefixes of its characteristic function have
a nontrivial lower bound computed by some recursive function; this notion is a
weakening of the corresponding characterization for randomness where this lower
bound is just the length of the prefix minus some constant. Recall that C is the
plain and H the prefix-free Kolmogorov complexity.

Recall that a function g : ω → ω is called an order function if it is recursive,
nondecreasing, and unbounded. For a set A, we say that the function g : ω → ω is
an A-order function if it is recursive in A, nondecreasing, and unbounded.

Definition 2.1. A set A is complex if there is an order function g such that
C(A � y) ≥ g(y) for all y.

A set A is autocomplex if there is an A-order function g such that C(A � y) ≥ g(y)
for all y.

Here A � x is the finite binary sequence A(0) . . . A(x− 1).

Proposition 2.2. For any set A, the following conditions are equivalent.

(1) The set A is autocomplex.
(2) There is an A-recursive function h such that for all n, C(A � h(n)) ≥ n.
(3) There is an A-recursive function f such that for all n, C(f(n)) ≥ n.

Proof. We show (1) ⇒ (2) ⇒ (3) ⇒ (1). Given an autocomplex set A, choose an
A-recursive order g, where C(A � n) ≥ g(n), and in order to obtain a function h as
required by (2), let

h(n) = min{l : g(l) ≥ n}.
Given a function h as in (2), in order to obtain a function f as required by (3), simply
let f(n) be equal to (an appropriate encoding of) the prefix of A of length h(n).
Finally, given an A-recursive function f as in (3), let u(n) be an A-recursive order
such that some fixed oracle Turing machine M computes f with oracle A such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5467

that M queries on input n only bits A(m) of A where m ≤ u(n). Then for any l ≥
u(n), the value of f(n) can be computed from n and A � l; hence

n ≤ C(f(n)) ≤+ C(A � l) + 2 logn,

and thus for almost all n and all l ≥ u(n), we have n/2 ≤ C(A � l). As a
consequence, a finite variation of the A-recursive order

g : n 	→ max{l : u(l) ≤ n}/2
witnesses that A is autocomplex. �

The next result shows that the notions of complex and autocomplex sets can
be characterized in terms of the degrees of DNR functions. In the case of complex
sets, one can recast this notion in terms of the degrees of recursively bounded
DNR functions, because a complex set can tt-compute only functions which are
recursively bounded. There are Turing degrees which contain DNR functions but no
recursively bounded functions [1]; hence some Turing degrees consist of autocomplex
sets without containing any complex set.

Theorem 2.3. Let A be any set.

1. A is autocomplex iff A computes a DNR function.
2. A is complex iff A tt-computes a DNR function iff A wtt-computes a DNR

function.

Proof. 1. Suppose A is not autocomplex, but computes a DNR function ϕA
r . There

is a recursive function e(·) such that for any x and y, if the universal machine U on x

converges, and additionally ϕ
U(x)
r (y) converges, then ϕe(x)(y) = ϕ

U(x)
r (y). For each

n, let g(n) be the maximum of the use of all computations ϕA
r (e(x)) with |x| ≤ n.

Clearly g is recursive in A. Since A is not autocomplex, there must be some n such
that C(A � g(n)) ≤ n. If xn is a witnessing code, i.e. U(xn) = A � g(n), |xn| ≤ n,
then ϕA

r (e(xn)) = ϕe(xn)(e(xn)). Thus ϕ
A
r is not DNR.

Now suppose A is autocomplex. Let g be an A-order function such that for all
n, C(A � n) ≥ g(n). Let γ be an A-recursive function such that g(γ(n)) ≥ n for
all n. Let f(n) = A � γ(n); f is recursive in A. If f(n) is infinitely often equal to
ϕn(n), then for such an n, C(A � γ(n)) ≤ log n + c for some constant c. Letting
m = γ(n),

C(A � m) ≤ log n+ c ≤ log g(m) + c < g(m)

for sufficiently large m, which is a contradiction. Thus, we conclude that f(n) �=
ϕn(n) for all but finitely many n, so f computes a DNR function.

2. This is obtained by the same proof; if A wtt-computes ϕA
r , then the function

g is recursive, and if g is recursive, then f is tt-computable from A. �

Theorem 2.6 below gives a variety of useful characterizations of the complex sets.
These characterizations are mainly based on the following definition and result of
Jockusch.

Definition 2.4 (Jockusch [5]). A function h : ω → ω is called strongly DNR
(SDNR) if for all x, h(x) �= ϕy(y) for all y ≤ x.

Theorem 2.5 (Jockusch [5]). Every DNR function computes an SDNR function.

The characterizations of complex sets and Jockusch’s result can be extended to
the following comprehensive characterization of complex sets.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5468 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

Theorem 2.6. For a set A the following conditions are equivalent.

(1) There is an SDNR function f1 ≤wtt A.
(2) For every recursive function g there is a function f2 ≤wtt A such that for

all recursive h with ∀n [|Wh(n)| < g(n)] it holds that ∀∞n [f2(n) /∈ Wh(n)].
(3) There is f3 ≤wtt A such that for all partial-recursive V with domain {0, 1}∗

and almost all n, f3(n) /∈ {V (p) : p ∈ {0, 1}∗ ∧ |p| < n}.
(4) There is f4 ≤wtt A with C(f4(n)) ≥ n for all n.
(5) There is a DNR function f5 ≤wtt A.
(6) A is complex.

One can also write fk ≤tt A in place of fk ≤wtt A in these conditions.

Proof. (1) implies (2): Let a recursive function g be given; without loss of generality
g is increasing. Furthermore there is a recursive function a such that ϕa(e,n,m)(x)
is the m-th element enumerated into Wϕe(n) whenever |Wϕe(n)| ≥ m. There is a
recursive function b such that b(k) > a(e, n,m) for all e,m, n ≤ g(k). Now let
f2(n) = f1(b(n)). It follows from the definition of SDNR functions that for every
total function h = ϕe and all n > e, f1(b(n)) differs from the first g(n) elements of
Wh(n); in the case that |Wh(n)| < g(n) it follows that f2(n) /∈ Wh(n). Furthermore,
as f1 ≤wtt A and f2 is many-one reducible to f1, f2 ≤wtt A as well. Hence f2
satisfies the requirements asked for.

(2) implies (3): Here one can choose g such that g(n) = 2n and consider the
corresponding f2. Then one takes f3 = f2 and

Wh(n) = {V (p) : p ∈ {0, 1}∗ ∧ |p| < n}.

By assumption f2(n) /∈ Wh(n) for almost all n; the same then also holds for f3.
(3) implies (4): Let f3 be given as in (3) and let U be the universal machine on

which C is based. Then there is a constant c such that for all n ≥ c and all p in the
domain of U with |p| < n, f3(n) �= U(p). Thus C(f3(n)) ≥ n for all n ≥ c. Now let
f4(n) = f3(n+ c) in order to meet condition (4).

(4) implies (5): There is a constant c with C(ϕn(n)) < n+ c for all n such that
ϕn(n) converges. Taking f4 as in (4), the function f5 given as f5(n) = f4(n + c)
satisfies that C(ϕn(n)) < n+ c ≤ C(f5(n)) for all n where ϕn(n) is defined. Hence
(5) is satisfied.

(5) implies (6): This follows from Theorem 2.3.
(6) implies (1): This is similar to the proof in Theorem 2.3. Just choose a

constant c again such that C(ϕn(n)) ≤ n+ c whenever defined. It follows from the
definition of a complex set that there is a recursive function f6 with C(A � f6(n)) >
n+ c for all n and hence f1(n) = (A � f6(n)) is an SDNR function.

This completes the equivalences. As all steps from (k) to (k+1) for k = 1, 2, 3, 4
make a many-one reduction from one function to another and as f1 ≤tt A, these
functions are all tt-reducible to A along the lines of the proof. Hence all conditions
hold with fk ≤tt A in place of fk ≤wtt A. �

One can easily see that the above characterizations hold with Turing reducibility
in place of weak truth-table reducibility for autocomplex sets. Hence one obtains
the following theorem as well.

Theorem 2.7. For a set A the following conditions are equivalent.

(1) There is an SDNR function f1 ≤T A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5469

(2) For every recursive function g there is a function f2 ≤T A such that for all
recursive h with ∀n [|Wh(n)| < g(n)] it holds that ∀∞n [f2(n) /∈ Wh(n)].

(3) There is f3 ≤T A such that for all partial-recursive V with domain {0, 1}∗
and almost all n, f3(n) /∈ {V (p) : p ∈ {0, 1}∗ ∧ |p| < n}.

(4) There is f4 ≤T A with C(f4(n)) ≥ n for all n.
(5) There is a DNR function f5 ≤T A.
(6) A is autocomplex.

Remark 2.8. In the two preceding theorems, condition (2) says that one can com-
pute for each order a function avoiding all r.e. traces of given cardinality almost
everywhere; the DNR Turing degrees can also be characterized as those where there
is for each given r.e. trace a function avoiding this trace everywhere. Condition (3)
is the r.e. counterpart of Theorem 5.1 (5) below. Condition (4) says that one can
compute a function which takes on all inputs a value of sufficiently high Kolmogorov
complexity. Condition (6) is already known to be equivalent to the other ones, but
it was convenient to construct the proof from (5) to (1) through (6) in Theorem 2.6.

Remark 2.9. Instead of computing a lower bound h for the complexity of A from
A as an oracle, one can also formulate the same result by making a function h
mapping strings to lower bounds; this function then only needs to be correct on
strings stemming from the characteristic function of A. The characterization is the
following:

A is complex iff there is a recursive function h such that

• for all σ, τ ∈ {0, 1}∗, h(στ) ≥ h(σ) and
• for all y, h(A � y) ≤ C(A � y) and
• for every n, the set of strings σ ∈ {0, 1}∗ with h(σ) ≤ n is finite.

Similarly A is autocomplex iff there is a function h ≤T A with these same properties.

Remark 2.10. M.I. Kanovič [6, 7] (see Li and Vitányi [10], Exercise 2.7.12, p. 184)
states a result to the effect that the notions of being complex and autocomplex,
defined in terms of monotonic complexity, are the same as being wtt-complete and
T-complete in the special case of recursively enumerable sets.

3. Hyperavoidable and effectively immune sets

Miller [11] introduced the notion of a hyperavoidable set. A set A is hyperavoid-
able iff it differs from all characteristic functions of recursive sets within a length
computable from a program of that recursive set. For random sets, this length is
at most the length of the program plus a constant. So hyperavoidable sets are a
generalization of random sets, and Theorem 3.3 shows that one can characterize
that A is hyperavoidable similarly to the way one characterizes that A is random
in terms of prefix-free Kolmogorov complexity: A is hyperavoidable iff there is an
order function g such that ∀x (C(A � x) ≥ g(x)).

Definition 3.1. A set of nonnegative integers A is called hyperavoidable if there
is an order function h such that for all x with

{0, 1, . . . , h(x)− 1} ⊆ {y : ϕx(y)↓∈ {0, 1}},
we have A � h(x) �= ϕx � h(x). In other words,

∀x ∃y < h(x) A(y) �= ϕx(y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5470 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

Note that if A is hyperavoidable via h and h̃ is a further order function with
h̃(x) ≥ h(x) for all x, then A is also hyperavoidable via h̃.

The original reason for the interest in hyperavoidability is the following result.

Theorem 3.2 ([11, Theorem 4.6.4]). A set is hyperavoidable iff it is not wtt-
reducible to any hyperimmune set.

Theorem 3.3. For a set A the following statements are equivalent:

(1) A is complex.
(2) A is hyperavoidable.

Proof. (1) implies (2): If A is complex, then as we have seen, ϕA
r is a DNR function

for a wtt-reduction ϕr. Assume that u(x) is the use of the wtt-reduction at input
x, that is, the maximal element queried at the computation of ϕA

r (x); note that
this element is independent of the oracle A. Furthermore, for any n, let Wn =
{z : ϕn(z) ↓= 1}. Now let ϕs(n)(x) = ϕWn

r (x) iff ϕn(z) ↓∈ {0, 1} for all z ≤
u(x) and the computation ϕWn

r (x) terminates; let ϕs(n)(x) be undefined otherwise.

Define h(n) = u(s(n)) + 1. Since ϕA
r is a DNR function there is no n such that

ϕs(n)(s(n))↓= ϕA
r (s(n)). Thus for every n there is a y ≤ u(s(n)) such that ϕn(y) ↑

or ϕn(y) �= A(y). It follows that for every n the function ϕn differs from the
characteristic function of A before h(n).

(2) implies (1): Suppose A is not complex. Let U be the universal function on
which C is based. Let f be a total recursive function such that, for all σ ∈ {0, 1}∗
where U(σ) is defined, ϕf(σ) is the characteristic function of the set {x : U(σ)(x)↓
= 1}. Furthermore, let f̃(n) = max{f(σ) : σ ∈ {0, 1}∗ ∧ |σ| ≤ n}.

Let h be any order function. Let h̃(n) be the maximal m with m = 0∨h(f̃(m)) ≤
n. Then h̃ is also an order function. Thus there is a y such that C(A � y) < h̃(y).
Then there is a program σ for the universal machine U with U(σ) = A � y and

|σ| < h̃(y). It follows that h(f(σ)) < y. Thus the characteristic functions of
A and {x : U(σ)(x) ↓= 1} both coincide with ϕf(σ) on the first y inputs and
so A is not hyperavoidable via h. Since the choice of h was arbitrary, A is not
hyperavoidable. �

Miller [11] investigated the relation between hyperavoidable sets and effectively
immune sets. A set A is immune if it has no infinite recursive subset and effectively
immune if there is a partial recursive function ψ such that for all e, if We ⊆ A,
then e is in the domain of ψ and |We| ≤ ψ(e). If there is no recursive function f
with ∀n (|A ∩ {0, 1, 2, . . . , f(n)}| ≥ n), then A is called hyperimmune.

Theorem 3.4 ([11, Theorem 4.5.3]). Any effectively immune, nonhyperimmune
set is hyperavoidable.

The converse is false; if A is a complex set, then A ⊕ ω is still complex, hence
hyperavoidable, but not immune, hence certainly not effectively immune. However,
up to truth-table degree, we shall see that the converse does hold.

Theorem 3.5. If A is hyperavoidable, then there is a set B ≡tt A which is effec-
tively immune but not hyperimmune. This set can be viewed as a set of strings and
is given as B = {A(0)A(1) . . .A(n) : n ∈ ω}.
Proof. Obviously B ≡tt A. Furthermore, B is not hyperimmune as B contains a
binary string of every length. Furthermore, it is effectively immune: As A is com-
plex there is a recursive function ψ such that the complexity of all initial segments

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5471

of A which are longer than ψ(n) is above 2n. Hence, whenever |We| > ψ(e) and
We ⊆ B, one can find effectively in e a string θ(e) ∈ We which has at least the
length ψ(e). Now C(θ(e)) ≤ e + c for some constant c and all e in the domain of
θ. On the other hand C(θ(e)) ≥ 2e for all e in the domain of θ with We ⊆ B; so it
can only happen for e ≤ c that We ⊆ B ∧ |We| ≥ ψ(e). A finite modification of ψ
makes ψ to be a witness for B being effectively immune. �

Note that the proof actually shows that B is strongly effectively immune. Hence
one gets the following corollary.

Corollary 3.6. A set is complex iff its truth-table degree contains a set which is
strongly effectively immune but not hyperimmune.

Remark 3.7. It is well known that a Turing degree contains a DNR function iff
it contains an effectively immune set. In other words, a set is autocomplex iff its
Turing degree contains an effectively immune set.

4. Completions of Peano arithmetic

Theorem 2.6 (4) shows that DNR is equivalent to the ability to compute a
function F such that C(F (n)) ≥ n for all n. The next result shows that if one
enforces the additional constraint F (n) ∈ {0, 1}n, then one obtains the smaller class
of PA-complete degrees instead of the DNR ones. Recall that A has PA-complete
degree iff A computes a DNR function with a finite range. As Jockusch [5] showed,
one can specify this range to be any given finite set as long as this set has at least
2 elements.

Theorem 4.1. The following is equivalent for every set A.

(1) A computes a lower bound B of the plain complexity C such that for all n
there are at most 2n − 1 many x with B(x) < n.

(2) A computes a function F such that for all n, F (n) has length n and satisfies
C(F (n)) ≥ n.

(3) A computes a DNR function D which has a fixed finite set as range.

Proof. (1) implies (2): F (n) is just the lexicographically first string y of length n
such that B(y) ≥ n. This string exists by the condition that there are at most
2n − 1 strings x with B(x) < n. Since B is a lower bound for C, one has that
C(F (n)) ≥ n for all n. Furthermore, F is computed from B.

(2) implies (3): There is a partial recursive function ψ such that ψ(x) = xϕn(n)
if n is the length of x and ϕn(n) is defined. Furthermore there is a constant c such
that C(ψ(x)) < n + c for all x, n with x ∈ {0, 1}n. Now one defines that D(n)
consists of the last c bits of F (n+ c); this function is computed from F . Let x be
the first n bits of F (n+c) and assume that ϕn(n) is defined. Then C(ψ(x)) < n+c
and xD(n) = F (n+ c) �= ψ(x) = xϕn(n). Thus D is a DNR function and its range
is the finite set {0, 1}c.

(3) implies (1): Since D ≤T A is a DNR function with a finite range, the set
A is PA-complete by a result of Jockusch [5]. Thus there is a set G ≤T A which
extends the graph of the universal function U on which C is based. G satisfies the
following two Π0

1 conditions:

• ∀p, x, s (U(p)↓= x at stage s ⇒ (p, x) ∈ G);
• ∀p, x, y ((p, x) ∈ G ∧ (p, y) ∈ G ⇒ x = y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5472 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

Now one defines B(x) = min{|p| : (p, x) ∈ G}. By standard Kolmogorov complexity
arguments, it follows that B is a lower bound for C and that there are at most 2n−1
many x with B(x) < n for all n. �

One might ask whether one can strengthen condition (2) in Theorem 4.1 and
actually compute a string of maximal plain Kolmogorov complexity for every length
n from any PA-complete oracle. The answer to this question is that it depends on
the universal machine on which the plain complexity is based. That is, for every
r.e. oracle B one can compute a corresponding universal machine which makes this
problem hard not only for PA but also for B.

Theorem 4.2. For every recursively enumerable oracle B there is a universal ma-
chine UB such that the following two conditions are equivalent for every oracle A:

• A has PA-complete degree and A ≥T B.
• There is a function F ≤T A such that for all n and for all x ∈ {0, 1}n,
F (n) ∈ {0, 1}n and CB(F (n)) ≥ CB(x), where CB is the plain Kolmogorov
complexity based on the universal machine UB.

Proof. Given any universal machine U and r.e. set B, the value UB(p) takes the
first case where there is a q satisfying the corresponding condition:

• If p = 0q and U(q) is defined and has output x and |x| > |p| + 2, then
UB(p) = x.

• If p = 10q and q ∈ {0, 1}∗ · {0} and |q| ∈ B, then UB(p) = q.
• If p = 110q and q ∈ {0, 1}∗ · {1}, then UB(p) = q.
• If p = 1110q, then UB(p) = q.
• In all other cases, UB(p) is undefined.

First it is verified that UB is a universal machine. If C(x) ≥ |x| − 3, then CB(x) ≤
C(x) + 7 since UB(1110x) = x and CB(x) ≤ |x| + 4 for all x. If C(x) < |x| − 3,
then there is a program q with U(q) = x ∧ |q| < |x| − 3. Taking p = 0q, one has
|x| > |p|+2 and UB(p) = x. So CB(x) ≤ C(x)+ 1 ≤ C(x)+ 7 again. Thus UB is a
universal machine and CB a legitimate choice for the plain Kolmogorov complexity.

Note that for UB , there are at most 2n−1 − 1 many strings x of length n with
CB(x) < n − 1. Assume that n > 0, x ∈ {0, 1}n and CB(x) ≥ n − 1. There are
three cases:

• If x ∈ {0, 1}n−1 · {1}, then CB(x) = n+ 3.
• If x ∈ {0, 1}n−1 · {0} and n /∈ B, then CB(x) = n+ 4.
• If x ∈ {0, 1}n−1 · {0} and n ∈ B, then CB(x) = n+ 2.

Note that for each length n there are strings ending with 0 and ending with 1 which
satisfy CB(x) ≥ |x| − 1. So given n, let x ∈ {0, 1}n have maximal plain complexity
CB.

• If n ∈ B, then x ∈ {0, 1}n−1 · {1} and CB(x) = n+ 3.
• If n /∈ B, then x ∈ {0, 1}n−1 · {0} and CB(x) = n+ 4.

On one hand, if F ≤T A and F is as defined in the statement of this theorem and
n > 0, then the last bit of F (n) is equal to B(n). Thus B ≤T A. Furthermore, A
is PA-complete since CB(F (n)) ≥ n for all n.

On the other hand, if B ≤T A, then one can compute the maximal plain complex-
ity of a string of length n which is n+4−B(n). Having this number, one can use the
PA-completeness of A to find a string x of length n such that CB(x) ≥ n+4−B(n).
This gives the desired equivalence. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5473

While PA-completeness can be characterized in terms of C, the obvious ana-
logues fail for H. First one cannot replace C-incompressible by H-incompressible
since one can compute relative to any random set A the function mapping n to the
H-incompressible string A(0)...A(n). So one would like to know whether the oracles
A which permit us to compute strings of maximal complexity would characterize
the PA-complete degrees. But, instead, the corresponding notion gives a character-
ization of the halting problem K. Note that the following theorem is independent
of the underlying universal machine.

Theorem 4.3. For any set A, A ≥T K iff there is a function F ≤T A such that
∀n ∀x ∈ {0, 1}n (F (n) ∈ {0, 1}n ∧H(x) ≤ H(F (n))).

Proof. Since H is K-recursive, such an F can obviously be computed if A ≥T K.
For the remaining direction, assume that F is as in the statement of the theorem
and F ≤T A. The proof consists now of three parts:

• First, a sequence of partitions is constructed to be used later.
• Second, it is shown that there is a constant k such that for every n and
every m > n+ k+ 1 the binary number bv(y) consisting of the last 2k bits
y of the string F (2m + n) satisfies that Pm,bv(y) does not contain H(n).

• Third, it is shown how the fact from the second statement can be used to
prove that K ≤T A.

First, let P0, P1, P2, . . . be an enumeration of all primitive recursive permutations
of the integers and let Pm,o be the o-th member of the permutation; here Pm,o = ∅
in the case that the permutation has less than o nonempty members. Note that
every partition has infinitely many indices.

Second, let U be the universal machine on which H is based and let Ũ(p) = n
whenever U(p) = 2m + n for some m > n. It is known [9, Section 4.3] that there is
a constant c1 such that

2−H(n) ≥
∑

p with Ũ(p)=n

2−|p|−c1

for all n. Now, let n be given and p be of length H(n) such that U(p) = n;
that is, let p be a minimal program for n. As the sum of 2−|q|−c1 over q with
∃m > n (U(q) = 2m + n) is bounded by 1, there is, uniformly in p, a prefix-free
machine Vp which is conditionally universal in the following sense: For all m > n
there is a q with |q| = H(2m + n) + c1 − |p| ∧ Vp(q) = 2m + n. If p is not a minimal
program for any n, then nothing is required except that Vp is prefix-free. This
permits us to construct the following machine V : V (r) = Vp(q) iff r = pq, U(p)
is defined and Vp(q) is defined; if r cannot be split in p, q this way, then V (r) is
undefined; note that the splitting of r into p, q is unique whenever it is possible.
The main properties of V are the following:

• V is prefix-free;
• for all n and all m > n there are p, q such that V (pq) = 2m+n, H(n) = |p|,
U(p) = n and |pq| ≤ H(2m + n) + c1.

Based on V one constructs a further prefix-free machine W such that W (r) = z iff
there are x, y,m, n, p, q, k such that the following conditions are satisfied:

• z = xy;
• m > n+ k + 1;
• |xy| = 2m + n and |y| = 2k;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5474 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

• r = pq1k0x;
• U(p) is defined and takes the value n;
• Vp(q) is defined and takes the value 2m + n;
• the binary value bv(y) satisfies that |p| ∈ Pm,bv(y).

Here bv(y) is the binary value of y, for example, bv(000101) = 5. Note that
x, y,m, n, p, q, k depend uniquely on r whenever W (r) can be defined by an ap-
propriate choice of the parameters.

One can see from the definition that W is prefix-free. Hence there is a constant
c2 such that H(W (r)) ≤ |r|+ c2 for all r in the domain of W .

Furthermore, note that H(F (2m + n)) ≥ H(2m + n) + 2m + n − c3 for some
constant c3. To see this, note that the sum of 2−H(u) over all u ∈ {0, 1}� is at most
2c4−H(�) for some constant c4 independent of 	. As there are 2� such u, it holds
that H(u) ≥ H() + 	 − c4 for at least one of these u. Now one can take c3 = c4
and use that F takes a string of maximal prefix-free Kolmogorov complexity to get
the desired statement.

Fix the value of the parameter k from now onward as

k = c1 + c2 + c3 + 2

and note that for all r in the domain of W having this fixed parameter k it holds
that H(W (r)) < H(F (|W (r)|)).

Now the second part is completed by showing that whenever F (2m + n) = xy
with m > n + k + 1 ∧ |y| = 2k, then H(n) /∈ Pm,bv(y). So assume by way of a
contradiction that m > n+ k + 1, F (2m + n) = xy, |y| = 2k and H(n) ∈ Pm,bv(y).

Let p be a program with U(p) = n ∧ |p| = H(n). Let q be such that 2m + n =
V (pq) and |q| ≤ H(2m+n)+c1−|p|; the existence of such a q had been shown above
when constructing the machine Vp. One can verify that for the input r = pq1k0x
and z = xy the computation W (r) converges to z as in the definition of W (r),
the first three search conditions on r, z are satisfied by the choice of the above
parameters, p, q are selected such that the fourth and fifth search conditions are
satisfied and the assumption H(n) ∈ Pm,bv(y) gives that the sixth search condition
is satisfied.

Now a contradiction is derived by showing that the two conditions on H(xy) are
not compatible. On one hand, r = pq1k0x and

|r| = |pq|+ |1k|+ |0|+ |x| ≤ (H(2m + n) + c1) + k + 1 + |x|
= (H(2m + n) + c1) + k + 1 + (2m + n− 2k)

= H(2m + n) + 2m + n+ 1 + c1 − k

≤ H(2m + n) + 2m + n− c2 − c3 − 1;

hence H(xy) = H(W (r)) ≤ |r|+ c2 ≤ H(2m + n) + 2m + n− c3 − 1. On the other
hand, H(xy) = H(F (2m + n)) ≥ H(2m + n) + 2m + n − c3. This contradiction
establishes that it does not happen thatH(n) ∈ Pm,bv(y) for any n and m > n+k+1
with y being the last 2k bits of F (2m + n).

Third, one can run the following A-recursive algorithm to determine for any given
n a set of up to 4k − 1 elements which contains H(n) by the following algorithm.
Here c5 is a constant such that H(n) ≤ n+ c5 for all n.

• Let E = {0, 1, . . . , n+ c5} and m = n+ k + 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5475

• While |E| ≥ 4k Do Begin m = m+ 1,
Determine the string y consisting of the last 2k bits of F (2m + n)
and update E = E − Pm,bv(y) End.

• Output E.

This algorithm terminates since whenever |E| ≥ 4k at some stage m, then there is
o > m such that the first 4k members of Po all intersect E and one of them will
be removed so that E loses an element in one of the stages m+ 1, . . . , o. Thus the
above algorithm computes relative to A for input n a set of up to 4k − 1 elements
containing H(n). By a result of Beigel, Buhrman, Fejer, Fortnow, Grabowski,
Longpré, Muchnik, Stephan and Torenvliet [2], such an A-recursive algorithm can
only exist if K ≤T A. �

Remark 4.4. Calude [3] had circulated the following question: If A is an infinite
set of strings of maximal H-complexity, that is, if A satisfies

∀x ∈ A ∀y [|y| = |x| ⇒ H(y) ≤ H(x)],

is then K ≤T A? The question remains open until today, but the above theorem
gives a partial answer to this question as it shows that K ≤T A is true for all sets
A of maximal H-complexity which contain at least one string of each length.

Nies [12] pointed out to the authors that one might study the analogue of in-
compressible strings in the sense that one looks at functions F producing strings
of length n and approximate complexity n+H(n). More precisely, the proof of the
above theorem also shows the more general result that for any oracle A, A ≥T K
if and only if there is a function F ≤T A and a constant c such that for all n,
F (n) ∈ {0, 1}n and H(F (n)) ≥ n+H(n)− c.

A related question to the one of Calude is whether there is an infinite set B such
that K �≤T {〈n,H(n)〉 : n ∈ B}. If such a set exists, one can consider a constant
c such that there is a set A which contains for each b ∈ B exactly one a ∈ {0, 1}b
with H(a) ≥ H(b)+ b− c. Given B and c, such a set A can be constructed relative
to any oracle which is PA-complete relative to B; note that such oracles need not
be above K. Hence Nies’ version of the question of Calude has a negative answer
in the case that this set B exists.

5. Characterizing high or DNR degrees

In this section various characterizations are obtained for when a Turing degree
is high or DNR, in terms of what are called eventually different functions. The
study of such functions originates in set theory where set theorists had defined that
a function f : ω → ω is eventually different iff for each g : ω → ω in the ground
model, {x : f(x) = g(x)} is finite. A computability-theoretic analogue is obtained
by replacing the ground model by the set of recursive functions. The corresponding
Turing degrees form the union of the high and the DNR degrees and also admit a
characterization in terms of upper bounds on Kolmogorov complexity. Note that
this analogue is a relaxed version of SDNR functions as every SDNR function is
eventually different from every partial-recursive function and every function even-
tually different from all partial-recursive ones is DNR.

Theorem 5.1 has been applied by Stephan and Yu [13], and Greenberg and
Miller [4].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5476 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

Theorem 5.1. The following statements are equivalent:

(1) A computes a function f that is eventually always different from each re-
cursive function.

(2) A computes a function g such that either g dominates each recursive func-
tion or g is eventually always different from each partial recursive function.

(3) A is of high or DNR Turing degree.
(4) A computes an unbounded function f which is dominated by all recursive

upper bounds on C.
(5) A computes a function F such that for every total recursive V with domain

{0, 1}∗ and almost all n, F (n) /∈ {V (p) : p ∈ {0, 1}∗ ∧ |p| < n}.

Proof. (1) implies (2): If A has high degree, then A computes a function g dominat-
ing all recursive functions (we can either take this as our definition of high degree,
or invoke Martin’s Theorem from 1966) and (2) is satisfied. So assume that A does
not have high degree and let f ≤T A be eventually different from all total recursive
functions. For a contradiction suppose ϕd is some partial recursive function and
f(x) = ϕd(x) on infinitely many inputs x in the domain of ϕd. Let p be a function
such that for each n, there are n + 1 many x for which f(x) = ϕd,p(n)(x). (Here
ϕe,s(x) is the value of ϕe(x) after s steps.)

Clearly p ≤T f . Hence as f is not of high degree, there is a recursive nonde-
creasing function q such that for infinitely many n, q(n) ≥ p(n). Now define a total
recursive function ϕe by ϕe(n) = ϕd,q(n)(n) if this computation halts, and ϕe(n) = 0
otherwise. Now suppose q(n) ≥ p(n). Then for some k ≥ n, ϕd,q(n)(k) = f(k). So
ϕd,q(k)(k) = f(k) and hence ϕe(k) = f(k). Since there are infinitely many such n,
there are infinitely many such k, and hence f agrees with a total recursive function
on infinitely many inputs.

(2) implies (3): Let g ≤T A have the desired properties. If f dominates every
recursive function, then A has high Turing degree. If g is eventually different from
all partial recursive functions, then consider any e such that ϕe(x) = ϕx(x) for each
x. Then a finite modification of f is DNR; hence A has DNR degree.

(3) implies (4): First assume the case that A is of high Turing degree. Then
there is a function g ≤T A which grows faster than every recursive function. Taking
U to be the universal machine, then f(x) is the length of the shortest program p

such that U(p) = x within g(x) steps. If C̃ is a recursive upper bound of C, then

let t(x) be the time to compute U(p) for the fastest program p of length up to C̃(x)

with U(p) = x. The function t is recursive and dominated by g; thus f(x) ≤ C̃(x)

for almost all x. So C̃ dominates f .
Second assume the case that A is of DNR Turing degree. Then by Theo-

rem 2.6 (4) there is a function g ≤T A such that C(g(n)) ≥ n for all n. Without
loss of generality, f(n) is a string of length at least n for every n. Now define for
every x ∈ {0, 1} the value f(x) as the maximum of all m ≤ n such that either m = 0
or x = g(m). Clearly f is unbounded as f(g(m)) ≥ m for all m. Furthermore, f is

dominated by C and hence also by all upper bounds C̃ of C.
(4) implies (5): Let f be the given lower bound. Now define F (n) to be the

length-lexicographically first string x with f(x) ≥ 2n which exists by the assump-
tion that f is unbounded.

Let V be recursive with domain {0, 1}∗. There is a constant c such that C(V (p))

≤ |p|+c for all programs p and C(x) ≤ |x|+c for all x. Now let C̃ be the minimum

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5477

of |p| + c for all programs p with either |p| = |x| or V (p) = x. C̃ is a recursive
upper bound for C. Thus, for sufficiently large n and all p of length up to n,
C̃(F (n)) ≥ 2n > n+ c and so V (p) �= F (n).

(5) implies (1): Given any function h, define for all strings p of length n− 1 that
V (p) = h(n). It follows that the function F differs from h almost always and so (1)
is satisfied. �

A similar result can be obtained for the Turing degrees of Peano complete or
high sets.

Theorem 5.2. The following statements are equivalent for any set A:

(1) A has either high or PA-complete Turing degree.
(2) A computes a function B such that ∀n (|{x ∈ {0, 1}∗ : B(x) = n}| ≤ 2n)

and B is dominated by all recursive upper bounds of C.
(3) A computes a function F mapping every n to a string of length n such that

for every recursive upper bound C̃ on C and for almost all n, C̃(F (n)) ≥ n.
(4) A computes a {0, 1}-valued function g such that for all infinite recursive

subsets R of the domain of the diagonal function, ∀∞n ∈ R (g(n) �= ϕn(n)).

Proof. (1) implies (2): If A has PA-complete degree, then B exists by Theorem 4.1.
If A has high degree, then let d ≤T A be a function which dominates all recursive
functions and let B(x) = Cd(|x|)(x). B is an upper bound of C and thus satisfies

the cardinality condition. Furthermore, if C̃ is a recursive upper bound on C, then
the function mapping n to the first s such that Cs(x) ≤ C̃(x) for all x ∈ {0, 1}∗
with |x| ≤ n is recursive and thus dominated by d. It follows that B(x) ≤ C̃(x) for
almost all x and so (2) is satisfied.

(2) implies (3): Take B as specified for (2) and let F (n) be the lexicographic
first string x of length n with B(x) ≥ n. This string exists since there are at most
2n − 1 many strings y with B(y) < n. Note that F ≤T A since B ≤T A. Since

every recursive upper bound C̃ dominates B, condition (3) is satisfied.
(3) implies (1): Assume that A does not have PA-complete Turing degree. Then

by Theorem 4.1, there are infinitely many n with C(F (n)) < n. Then there is
an increasing A-recursive function d such that for all n there is m ≥ n with
Cd(n)(F (m)) < m. In particular, if h is also increasing and h(n) ≥ d(n) infin-
itely often, then Ch(m)(F (m)) < m for infinitely many m. So the mapping from
x to Ch(|x|)(x) cannot be recursive and h cannot be a recursive function. Thus d
dominates every recursive function and A has high Turing degree.

(1) implies (4): If A has PA-complete degree, then it is well known that there is a
{0, 1}-valued DNR function g ≤T A. If A has high degree, then one can again take
an A-recursive function d dominating all recursive ones and consider the function
g with g(n) = 1 ⇔ ϕn,d(n)(n) ↓= 0. If R is a recursive subset of the domain of
the diagonal function, then d dominates the time which ϕn(n) needs to converge
on inputs from R and thus g(n) = ϕn(n) only for finitely many n in R.

(4) implies (1): This is similar to the implication from (3) to (1). Assume that A
does not have PA degree. Let g ≤T A be {0, 1}-valued. There are infinitely many
n in the domain of the diagonal function with g(n) = ϕn(n). There is an increasing
A-recursive function d such that for all n there is m ≥ n with g(m) = ϕm,d(n)(m).
For a given increasing, recursive function h, let R = {n : ϕn,h(n)(n)↓ }. Whenever
h(n) ≥ d(n), then there is m ≥ n with ϕm,d(n)(m)↓= g(m). Furthermore, m ∈ R
since d(n) ≤ h(n) ≤ h(m). Since g is correct on only finitely many elements of R,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5478 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

h(n) < d(n) for almost all n and d dominates every recursive function. Thus A has
high Turing degree. �
Theorem 5.3. If a set A has high Turing degree, then there is a function F ≤T A
mapping every n to a string of length n such that

∀x ∈ {0, 1}n (H(x) ≤ H̃(F (n)))

for every recursive upper bound H̃ of H and almost all n.

Proof. Let A have high degree. There is a function f ≤T A which dominates all
recursive functions. Let F (n) be the lexicographically first x ∈ {0, 1}n for which

Hf(n)(x) is maximal. Now, let H̃ be a recursive upper bound on H. The function

mapping n to the first s such that Hs(x) ≤ H̃(x) for all x ∈ {0, 1}n is recursive and

thus dominated by f . It follows that Hf(n)(F (n)) ≤ H̃(F (n)) for almost all n. On
the other hand, H(x) ≤ Hf(n)(F (n)) for all n, so the statement of the theorem is
satisfied in the case that A has high Turing degree. �

6. R.e. traceable sets

It was shown in [8] that a set A is r.e. traceable if and only if every Martin-Löf
random set is Schnorr random relative toA. We remind the reader of the definitions.
(Recall that Wn is the n-th r.e. set, and Dn the finite set with canonical index n.)

Definition 6.1. A set A is r.e. traceable if there is a recursive function p such that
for all f ≤T A, there is a recursive function g such that for all n, f(n) ∈ Wg(n) and
Wg(n) has at most p(n) elements. Similarly, A is recursively traceable if the same
statement holds with the r.e. set Wg(n) replaced by the canonically finite set Dg(n).

We now characterize r.e. traceable sets as being “uniformly very far from DNR”.
A similar characterization holds for recursively traceable sets, and shows that re-
cursively traceable sets compute no eventually different function.

Theorem 6.2. The following statements are equivalent for any set A:

(1) A is r.e. traceable.
(2) There is a fixed recursive function z(n) such that for each f ≤T A, and

almost every n, the set {x : f(x) = ϕx(x)} has at least n elements below
z(n).

The following statements are equivalent for any set A:

(3) A is recursively traceable.
(4) There is a fixed recursive function g such that for each f ≤T A, there is

a recursive function ϕe such that for almost every n, the set {x : f(x) =
ϕe(x)} has at least n elements below g(n).

Proof. (1) implies (2): Suppose A is r.e. traceable via the recursive function p(n),
and let f ≤T A. Let

q(n) = max{r(i, e, n) | i < p(n), e < n},
where r(i, e, n) is primitive recursive such that

ϕr(i,e,n)(r(i, e, n)) � the i-th member of Wϕe(n) in order of enumeration.

Since f ≤T A and q is recursive, f ◦ q ≤T A, so let g(n) be recursive such that for
all n, f(q(n)) ∈ Wg(n) and |Wg(n)| ≤ p(n). Let e be an index of g, i.e., ϕe(n) = g(n)
for all n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

KOLMOGOROV COMPLEXITY AND THE RECURSION THEOREM 5479

Suppose for all n > e we have f(q(n)) �= ϕr(i,e,n)(r(i, e, n)) � the i-th member
of Wϕe(n) = Wg(n), for all i < p(n). Since |Wg(n)| ≤ p(n), it follows that f(q(n)) /∈
Wg(n), a contradiction. So f(q(n)) must have been equal to ϕr(i,e,n)(r(i, e, n)) for
some i < p(n) and all n > e. But this gives a bounding function z(n) witnessing that
f is not SDNR. This is now easily translated into a bounding function witnessing
that any function recursive in A is not even DNR, via the proof of Theorem 2.5.

(2) implies (1): Given f ≤T A, let f̂(x) = (f(0), . . . , f(x)). By assumption

f̂(x) = ϕx(x) for y+1 many x below z(y+1). Hence there is such an x with x ≥ y,
and so

f(y) ∈ Ty := {(ϕx(x))y : x ≥ y, x < z(y + 1)},
for almost every y. So by modifying the trace finitely, it holds for every y. The
size of Ty is bounded by z(y + 1), since Ty contains at most one number for each
x < z(y + 1).

(3) implies (4): The above argument gives the conclusion that no recursively
traceable set computes a function that agrees with each recursive function only
finitely often. Indeed, if Wg(n) has recursive size, then we can bound the running
time of ϕr(i,e,n) to produce a partial recursive function with recursive domain, which
hence has a total recursive extension.

(4) implies (3): This follows the proof that (2) implies (1). If (f(0), . . . , f(x)) =
ϕe(x), then

f(y) ∈ Ty := {(ϕe(x))y : x ≥ y, x < g(y + 1)},
for almost every y, and the size of Ty is bounded by g(y + 1). �

Acknowledgments

The authors would like to thank Cristian S. Calude and André Nies for corre-
spondence and helpful comments to improve the proof of Theorem 4.3; Stephen
G. Simpson for the idea to use SDNR functions to express the proof of Theo-
rem 6.2; and A. Khodyrev, who pointed out that one can give an easier proof of the
equivalence of complex and autocomplex with DNR by going via SDNR functions.

References

[1] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman, Com-
paring DNR and WWKL, J. Symbolic Logic 69 (2004), no. 4, 1089–1104. MR2135656
(2006c:03061)

[2] Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré,

Andrej Muchnik, Frank Stephan, and Leen Torenvliet, Enumerations of the Kolmogorov
function, J. Symbolic Logic 71 (2006), no. 2, 501–528. MR2225891 (2007b:68086)

[3] Cristian S. Calude, 2005. Private communication.
[4] Noam Greenberg and Joseph S. Miller, Lowness for Kurtz randomness, J. Symbolic Logic 74

(2009), no. 2, 665–678. MR2518817 (2010b:03050)
[5] Carl G. Jockusch Jr., Degrees of functions with no fixed points, Logic, methodology and

philosophy of science, VIII (Moscow, 1987), Stud. Logic Found. Math., vol. 126, North-
Holland, Amsterdam, 1989, pp. 191–201. MR1034562 (91c:03036)

[6] M. I. Kanovič, The complexity of the enumeration and solvability of predicates, Dokl. Akad.
Nauk SSSR 190 (1970), 23–26 (Russian). MR0262084 (41:6694)

[7] , The complexity of the reduction of algorithms, Dokl. Akad. Nauk SSSR 186 (1969),
1008–1009 (Russian). MR0262082 (41:6692)

[8] Bjørn Kjos-Hanssen, André Nies, and Frank Stephan, Lowness for the class of
Schnorr random reals, SIAM J. Comput. 35 (2005), no. 3, 647–657 (electronic), DOI
10.1137/S0097539704446323. MR2201451 (2006j:68051)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2135656
http://www.ams.org/mathscinet-getitem?mr=2135656
http://www.ams.org/mathscinet-getitem?mr=2225891
http://www.ams.org/mathscinet-getitem?mr=2225891
http://www.ams.org/mathscinet-getitem?mr=2518817
http://www.ams.org/mathscinet-getitem?mr=2518817
http://www.ams.org/mathscinet-getitem?mr=1034562
http://www.ams.org/mathscinet-getitem?mr=1034562
http://www.ams.org/mathscinet-getitem?mr=0262084
http://www.ams.org/mathscinet-getitem?mr=0262084
http://www.ams.org/mathscinet-getitem?mr=0262082
http://www.ams.org/mathscinet-getitem?mr=0262082
http://www.ams.org/mathscinet-getitem?mr=2201451
http://www.ams.org/mathscinet-getitem?mr=2201451

5480 B. KJOS-HANSSEN, W. MERKLE, AND F. STEPHAN

[9] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its applications,
2nd ed., Graduate Texts in Computer Science, Springer-Verlag, New York, 1997. MR1438307
(97k:68086)

[10] , An introduction to Kolmogorov complexity and its applications, 3rd ed., Texts in
Computer Science, Springer, New York, 2008. MR2494387 (2010c:68058)

[11] Joseph Stephen Miller, Pi-0-1 classes in computable analysis and topology, 2002. Ph.D. thesis,
Cornell University.

[12] André Nies, 2004. Private communication.
[13] Frank Stephan and Liang Yu, Lowness for weakly 1-generic and Kurtz-random, Theory and

applications of models of computation, Lecture Notes in Comput. Sci., vol. 3959, Springer,
Berlin, 2006, pp. 756–764. MR2279138 (2007h:03073)

Department of Mathematics, University of Hawaii at Mānoa, 2565 McCarthy Mall,

Honolulu, Hawaii 96822

E-mail address: bjoern@math.hawaii.edu

Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer

Feld 294, 69120 Heidelberg, Germany

E-mail address: merkle@math.uni-heidelberg.de

Departments of Computer Science and Mathematics, National University of Singa-

pore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

E-mail address: fstephan@comp.nus.edu.sg

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1438307
http://www.ams.org/mathscinet-getitem?mr=1438307
http://www.ams.org/mathscinet-getitem?mr=2494387
http://www.ams.org/mathscinet-getitem?mr=2494387
http://www.ams.org/mathscinet-getitem?mr=2279138
http://www.ams.org/mathscinet-getitem?mr=2279138

	1. Introduction
	2. Complex sets
	3. Hyperavoidable and effectively immune sets
	4. Completions of Peano arithmetic
	5. Characterizing high or DNR degrees
	6. R.e. traceable sets
	Acknowledgments
	References

