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In classical physics, the Kolmogorov
extension theorem lays the foundation
for the theory of stochastic processes.
It has been known for a long time
that, in its original form, this theorem
does not hold in quantum mechanics.
More generally, it does not hold in any
theory of stochastic processes – classical,
quantum or beyond – that does not
just describe passive observations, but
allows for active interventions. Such
processes form the basis of the study
of causal modelling across the sciences,
including in the quantum domain. To
date, these frameworks have lacked a
conceptual underpinning similar to that
provided by Kolmogorov’s theorem for
classical stochastic processes. We prove
a generalized extension theorem that
applies to all theories of stochastic
processes, putting them on equally firm
mathematical ground as their classical
counterpart. Additionally, we show that
quantum causal modelling and quantum
stochastic processes are equivalent. This
provides the correct framework for the
description of experiments involving con-
tinuous control, which play a crucial
role in the development of quantum
technologies. Furthermore, we show that
the original extension theorem follows
from the generalized one in the correct
limit, and elucidate how a comprehensive
understanding of general stochastic pro-
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cesses allows one to unambiguously define
the distinction between those that are
classical and those that are quantum.

1 Introduction

Stochastic processes are ubiquitous in nature.
Their theory is used, among other applications,
to model the stock market, predict the
weather, describe transport processes in cells
and understand the random motion of particles
suspended in a fluid [1, 2]. Intuitively, when we
speak of stochastic processes, we often mean joint
probability distributions of random variables at
a finite set of times: the probability for a
stock to have prices P1, P2 and P3 on three
subsequent days, or the probability to find a
particle undergoing Brownian motion in regions
R1 and R2 when measuring its position at times
t1 and t2.

This finite description of stochastic processes
is motivated by both experimental and math-
ematical considerations. On the experimental
side, temporal resolution is generally limited
and digital instruments always record a finite
amount of data. Hence, the only accessible
information we are left with is encoded in
probability distributions with a finite number of
arguments. On the mathematical side, it is much
less cumbersome to model stochastic processes
on discrete times – for example, by defining
transition probabilities P(Y |X) between random
variables at a fixed set of different times – than
modelling probability densities on the space of all
possible ‘trajectories’ of random variables.
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These motivations notwithstanding, the fun-
damental laws of physics are continuous in
nature and one always implicitly assumes that
there is an underlying process that leads to
the experimentally accessible finite distributions.
Put differently, one assumes that there exists
an infinite joint probability distribution that has
all the finite ones as marginals. For classical
stochastic processes, these two points of view,
the finite and the infinite one, are reconciled
by the Kolmogorov extension theorem (KET),
which lays bare the minimal requirements for
the existence of an underlying process, given a
family of measurement statistics for finite sets
of times [3–6]. It bridges the gap between ex-
perimental reality and mathematically rigorous
theoretical underpinnings and, as such, enables
the definition of stochastic processes as the
limit of finite – and hence observable – objects.
Additionally, the KET enables the modelling of
continuous processes based on finite probability
distributions. As a consequence, in the classical
setting, stochastic processes over a continuous
set of times, and families of finite probability
distributions are two sides of the same coin.

The validity of the KET hinges crucially
on the fact that the statistics of observations
at a time t do not depend on the kind of
measurements that were made at any time t′ <
t. Put differently, just like the Leggett-Garg
inequalities for temporal correlations [7–9], the
KET is based on the assumption of noninvasive
measurements and realism per se. While the
latter property means that any measurement
merely reveals a well-defined pre-existing value,
the former implies that said measurements can
be carried out without disturbing the state of
the measured system. For example, in a classical
stochastic process, measuring the position of a
particle undergoing Brownian motion, reveals
pre-existing information, but does not actively
change the state of the particle. Both of
these conditions together ensure the existence of
compatible measurement statistics for different
sets of times, which form the basis for the
derivation of the KET.

On the other hand, the assumptions of
non-invasiveness or realism per se are not fulfilled
in many experimental scenarios, leading to
a breakdown of the KET, at the cost of a
clear connection between an underlying process

and its finite time manifestations. This is
the case whenever an experimenter chooses to
actively interfere with a process to uncover its
causal structure or to investigate the reaction
to different inputs. For example, instead of
just observing the progress of a disease, a
pharmacologist tries to find out how the course
of a disease changes with the administration
of certain drugs. More generally, agent
based modelling investigates how systems behave
when they can not only be monitored, but
actively influenced [10]. Experimental situations
where interventions are actively used to uncover
causal relations fall within the field of causal
modelling [11].

Interventions appear naturally in quantum me-
chanics, where measurements necessarily perturb
a system’s state; in fact, a complete description
of quantum processes without interventions is
not possible [12]. As in the classical case,
interventions can also be used to actively probe
the causal structure of a quantum process,
and the description of quantum processes with
interventions has been recently used to develop
the field of quantum causal modelling [13–
15]. Importantly, as in the case of classical
processes with interventions, the invasiveness of
measurements means that the KET does not hold
for quantum processes [16]. This is analogous to
the violation of Leggett-Garg inequalities [7, 9]
in quantum mechanics.

The fundamental lack of an extension theorem
in quantum mechanics (or any other theory with
interventions) would be problematic for several
reasons: Firstly, it would suggest a lack of
consistency between descriptions of a process
for different sets of times; for example, the
description of a process for three times t1, t2,
and t3 would not already include the description
of the process for the two times t1 and t3

only. In other words, we would need seven
different independent descriptors for each of the
seven subsets of times to describe all possible
events! This lack of consistency would render the
study of (quantum) causal models in multi-step
experiments impossible; if local interventions
lead to a completely different process, it is not
meaningful to try to deduce causal relations by
means of active manipulations of the system at
hand.

Furthermore, the present situation (without
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an extension theorem) implies an incompati-
bility between existing frameworks to describe
processes with interventions (both classical and
quantum) and the classical theory of stochastic
processes, even though they should converge
to the latter in the correct limit. This then
suggests that the mere act of interacting with
a system over time introduces a fundamental
divide between the continuity of physical laws
and the finite statistics that can be accessed
in reality, thus begging the question: What do
we generally mean by a (quantum) ‘stochastic
process’, and how can we reconcile causal
modelling frameworks with the idea of an
underlying process?

In this Paper, we answer these questions
by generalizing the KET to the framework
of (quantum) causal modelling, thus closing
the apparent divide between the finite and
the continuous point of view. To this end,
in Sec. 2 we reiterate the relation between
classical stochastic processes and classical causal
modelling and show the breakdown of the
KET when we allow for active interventions
in Sec. 3. We analyze the quantum case in
Sec. 4 and find that stochastic processes can
only be defined properly by taking interventions
into account. Consequently, the framework
of quantum stochastic processes is equivalent
to quantum causal modelling. In Sec. 4.2,
we prove our main result, that the KET can
be generalized to quantum stochastic processes,
and this generalized extension theorem (GET)
reduces to the classical one in the correct limit.
The breakdown of the KET is a breakdown of
formalism only, not a fundamental property of
quantum processes. Our generalized extension
theorem provides an overarching theorem that
puts all processes with interventions and, in
particular, quantum processes on an equally
sound footing as their classical counterpart.

We discuss the equivalence of quantum
stochastic processes and quantum causal mod-
elling in Sec. 4.4. As a direct application, in
Sec. 4.5, we use the GET to provide a distinction
between general, i.e., non-Markovian, classical
and quantum processes, as has been recently
introduced in [17] for the restricted case of
processes without memory. While we phrase our
results predominantly in the language of causal
modelling, they apply to a wide range of current

theories of quantum processes and beyond. The
relation of our results to other frameworks, in
particular to the work of Accardi, Frigerio and
Lewis [18], is discussed in Sec. 5. We conclude
the Paper in Sec. 6.

2 Classical stochastic processes and
Causal Modelling

2.1 Classical stochastic processes

A classical stochastic process can be described by
joint probability distributions PΛk

(ik, . . . , i1) :=
PΛk

(iΛk
) of random variables that take values

{iα} at time tα [5], where Λk is a collection of
times with cardinality |Λk| = k. For instance,
for a k step process, the set of times could
be Λk = {tk, . . . , t1}. We will employ the
convention that subscripts signify the time as well
as the particular value of the respective random
variable. For example, iα signifies a value of the
random variable at time tα.

The distribution PΛk
(ik) could express the

probability for a particular length-k sequence
of heads and tails when flipping a coin, or
the probability to find a particle undergoing
Brownian motion at positions ik when measuring
it at times Λk. Importantly, this description of
a stochastic process is sufficient to describe the
behaviour on any subset of the times considered;
for instance, the distribution over all but the
jth time is found by marginalizing the larger
distribution: PΛk\{tj}(ik, . . . , ij+1, ij−1, . . . , i1) =
∑

ij
PΛk

(ik). This property implicitly assumes
that there is only one instrument that is used
to interrogate the system of interest, and this
interrogation does not influence its state. Neither
of these assumption are fulfilled in more general
processes, such as the ones employed in causal
modelling.

2.2 Classical causal modelling

Observing the statistics for measurement out-
comes reveals correlations between events, but no
information about causal relations. For instance,
correlations of two events A and B could stem
from A influencing B, B influencing A, or both
A and B being influenced by an earlier event
C [11, 13, 15] (see Fig. 1). Reiterating an
example from Ref. [15], events A and B could
be the occurrence of sunburns and the sales of
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ice cream, respectively. While these two variables
are highly correlated, this correlation alone would
not fix a causal relation between them. Inferring
the causal structure of a process is the aim of
causal modelling. Here, active interventions are
used to uncover how different events can influence
each other. In the example above, one could
suspend the sale of ice cream to see how it
affects the occurrence of sunburns, and would
find out that ice cream sales have no direct effect
on sunburns (and vice versa, as the correlations
of ice cream sales and sunburns stem from a
common cause, sunny weather, and not from any
direct causal relation).

Mathematically, causal modelling for k
events Ak, . . . , A1 necessitates the collection
of all joint probability distributions
PΓk

(ik, . . . , i1|jk, . . . , j1) := PΓk
(iΓk
|JΓk

) to
measure the outcomes ik, . . . , i1 given that the
interventions jk, . . . , j1 were performed. Here,
Γk is a set of labels for events; a priori, there
is no particular order imposed on the elements
of Γk, and we use a different symbol for the
set of event labels to distinguish it from the
set of times Λk used above. For example, Γk

could contain labels for different laboratories
where experiments are performed. JΓk

are
the instruments that were used at each of the
events; these can be seen as rules for how to
intervene upon seeing a particular outcome
(we will formalize the notion of an instrument
in Sec. 4). For example, when investigating
Brownian motion, an instrument could be a
deterministic replacement rule: upon finding
the particle at ia replace it by a particle at i′a.
It could also be probabilistic: upon finding the
particle at ia, with probability pi′

a
replace it by

a particle at i′a.

One possible instrument is the trivial idle
instrument Ja = ida, the instrument that only
measures the particle but doesn’t change it. For
classical stochastic processes, the corresponding
joint distribution over outcomes can be thought
of as the instrument-independent underlying
distribution of the random variables describing
the process:

PΓk
(iΓk
|idΓk

) = PΓk
(iΓk

) , (1)

where idΓk
denotes the idle instrument at each

of the events in Γk. If we chose Γk to be a set of
times Λk, the right-hand side of Eq. (1) has the

form of a k-step stochastic process. This directly
leads to the following (well-known) observation:

Observation 1. Classical causal modelling
contains classical stochastic processes as a special
case.

As mentioned, this statement follows by
choosing the set of events Γk to be a set Λk

of ordered times and the instruments to be
the idle instrument. We emphasize that causal
modelling does not impose a temporal ordering
per se, but deduces the ordering of events from
the obtained correlation functions (finding this
order, or, more precisely, the underlying directed
acyclic graph (DAG) that defines the causal
relations of the events, is the original aim of
causal modelling [11, 13]). As neither the proof
of the KET, nor the proof of the GET makes use
of the notion of a priori temporal ordering (see
Sec. 4.2 for a discussion), in what follows, we
will drop the distinction between sets of labels
Γk and sets of times Λk. We now show that
the introduction of interventions, that is crucial
for the deduction of causal relations, leads to
a breakdown of fundamental properties that are
satisfied by classical stochastic processes.

3 The Kolmogorov extension theorem
and interventions

3.1 The KET

The KET is concerned with the question of which
properties a family of finite joint probability
distributions have to satisfy in order for an
underlying process to exist. As such, it defines
the classical notion of a stochastic process.
In what follows, we will distinguish between
stochastic processes on a finite number of times
– which are characterized by joint probability
distributions with finitely many arguments – and
the underlying stochastic process that leads to all
of these finite distributions.

As already mentioned, a classical stochastic
process is described by a family of joint
probability distributions PΛk

(iΛk
) for different

finite sets of times Λk. An underlying process
on a set Λ (finite, countably or uncountably
infinite) is a joint probability distribution PΛ,
that has all finite ones as marginals. In detail,

we have PΛk
(iΛk

) =
∑

Λ\Λk
PΛ(iΛ) := P

|Λk

Λ (iΛk
)
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for all Λk ⊆ Λ, where iΛk
is the subset of iΛ

corresponding to the times Λk,
∑

Λ\Λk
denotes a

sum over realizations of the random variables at
all times that are part of Λ\Λk (i.e., all the times

that lie in Λ but not in Λk), and P
|Λk

Λ denotes
the restriction of PΛ to the times Λk. In the case
where the set Λ is infinite, the marginalization
procedure can correspond to an integral over the
times in Λ \ Λk (though, to avoid introducing
too much notation, we will still use

∑

Λ\Λk
to

represent it). For example, if the process we are
interested in is the Brownian motion of a particle,
PΛ would be the probability density of all
possible trajectories that the particle could take
in the time interval Λ, and all finite distributions
could in principle be obtained from PΛ.

If the finite joint probability distributions stem
from an underlying process, it is easy to see
that probability distributions for any two finite
subsets of times Λk ⊆ Λℓ ⊆ Λ fulfill a consistency
condition (or compatibility condition) amongst
each other, i.e., PΛk

is a marginal of PΛℓ
.

Expressed in the notation introduced above, we

have PΛk
= P

|Λk

Λℓ
for all Λk ⊆ Λℓ ⊆ Λ.

Intuitively, this means that PΛℓ
, the descriptor of

the stochastic process on the times Λℓ, contains
all information about subprocesses on fewer
times.

While an underlying process leads to a family
of compatible finite probability distributions,
the KET shows that the converse is also true.
Any family of consistent probability distribu-
tions implies the existence of an underlying
process. Specifically, the Kolmogorov extension
theorem [3–6] defines the minimal properties
finite probability distributions have to satisfy in
order for an underlying process to exist:

Theorem. [Kolmogorov] Let Λ be a set of times.
For each finite Λk ⊆ Λ, let PΛk

be a (sufficiently
regular) k-step joint probability distribution.
There exists an underlying stochastic process PΛ

that satisfies PΛk
= P

|Λk

Λ for all finite Λk ⊆ Λ iff

PΛk
= P

|Λk

Λℓ
for all Λk ⊆ Λℓ ⊆ Λ.

In other words, if a family of joint probability
distributions on finite sets of times satisfies
a consistency condition there is an underlying
stochastic process on Λ that has the distributions
{

PΛk

}

Λk⊂Λ as marginals. More precisely, the
Kolmogorov extension theorem guarantees the
existence of a probability measure on an infinite

product of measurable spaces if the respective
measures on said spaces are compatible with
each other in the above sense, and each of the
measurable spaces is inner regular [6]. That
is, the measure of any set can be approximated
by that of compact subsets. As we will
consider our value spaces (i.e., the spaces of
possible outcomes) to be ❘ or ◆ throughout this
paper, the requirement of inner regularity of the
considered probability distributions will always
be automatically satisfied.1

As stated above, the KET defines the notion
of a classical stochastic process and reconciles
the existence of an underlying process with its
manifestations for finite times. It also enables
the modelling of stochastic processes: Any
mechanism that leads to finite joint probability
distributions that satisfy a consistency condition
is ensured to have an underlying process. For
example, the proof of the existence of Brownian
motion relies on the KET as a fundamental
ingredient [19–22].

We emphasize that, in the (physically relevant)
case where Λ is an infinite set, the probability
distribution PΛ is generally not experimentally
accessible. For example, in the case of Brownian
motion, the set Λ could contain all times in
the interval [0, t] and each realization iΛ would
represent a possible continuous trajectory of a
particle over this time interval. While we assume
the existence of these underlying trajectories
(and hence the existence of PΛ) in experiments
concerning Brownian motion, we often only
access their finite time manifestations, i.e., PΛk

for some Λk. The KET bridges the gap between
the finite experimental reality and the underlying
infinite stochastic process.

Loosely speaking, the KET holds for classical
stochastic processes, because there is no differ-
ence between ‘doing nothing’ and conducting a
measurement but ‘not looking at the outcomes’
(i.e., summing over the outcomes at a time).
Put differently, the validity of the KET is
based on the fundamental assumption that
the interrogation of a system does not, on
average, influence its state. Consequently,
marginalization is the correct way to obtain
the descriptor for fewer times and any classical

1In particular, both ❘ and ◆ equipped with their
standard topology are Borel spaces. A probability measure
on such a space is inner regular [6].
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Figure 1: (Quantum) Causal network. Performing
different interventions allows for the causal relations
between events to be probed. For example, in the
figure the event B1 directly influences the events C3

and A2, while A3 influences only B4. Depending on
the degrees of freedom that can be accessed by the
experimenter, these causal relations can or cannot be
detected. For example, the influence of A3 on B4 could
not be discovered if only the degrees of freedom in the
gray areas were experimentally accessible. Independent
of the accessible degrees of freedom, the generalized
extension theorem (GET) that we derive below holds for
any process. On the other hand, the statistics of events
do in general not satisfy the requirements of the KET.
For example, the events D3, D4, B5 could be successive
(e.g., at times t3, t4 and t5) spin measurements in z-,
x- and z-direction, respectively. Summing over the
results of the spin measurement in x-direction at t4

would not yield the correct probability distribution for
two measurements in z-direction at t3 and t5 only (see
also Sec. 4.1).

stochastic process leads to compatible finite
joint probability distributions; this compatibility
is independent of whether the system was
interrogated or not, and the converse also holds.
This fails to be true in causal modelling scenarios.

3.2 The KET and causal modelling

The compatibility of joint probability distri-
butions for different sets of times hinges on
the fact that observations in classical physics
do not alter the state of the system that
is being observed. In contrast to passive
interrogations, that merely reveal information,
active interventions, like they are used in the
case of causal modelling, on average change the
state of the interrogated system. Thus the
future statistics after an intervention crucially
depends on how the system was manipulated and
the prerequisite of compatible joint probability
distributions is generally not fulfilled anymore.

(a) Without interventions.

(b) With interventions.

Figure 2: (a) A possible three step process without
intervention is the drawing with replacement of colored
balls from an urn. In our example, independent
of the actions of the experimenter, a red ball
drops into the urn at t2 (this could, e.g., represent
the interaction with an uncontrollable environment.)
The experimenter can deduce the joint probability
distribution P{t3,t2,t1}(c3, c2, c1), to draw different
sequences of colors. P{t3,t2,t1} contains all distributions
for fewer times, for example P{t3,t1},P{t3,t2}, and
P{t1}. (b) Instead of putting the same ball back in
the urn, the experimenter could exchange it with a
different color (for example, upon drawing yellow, they
could replace it with green at t1, replace blue with
white at t2 and replace red with blue at t3). The
respective replacement rules are encapsulated in the
instruments J3, J2, and J1. Now, from the proba-
bility distribution P{t3,t2,t1}(c3, c2, c1|J3,J2,J1), it is
generally not possible to deduce probability distributions
for fewer steps, like, e.g., P{t3,t1}(c3, c1|J3,J1), or
P{t3,t2}(c3, c2|J3,J2). This lack of consistency can
not be remedied by simple relabeling of the times due
to the red ball that drops into the urn at t2. Note
that if all instruments are the idle instrument, the
case with interventions coincides with the case without
interventions.

Consider, for example, the case of a
pharmacologist that tries to understand the
effect of different drugs they developed on a
disease. In our simplified example, let the
disease have two different symptoms Sa and
Sb, and denote the absence of symptoms Sc.
Whenever the pharmacologist observes Sa, they
administer drug Da, whenever they observe
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symptom Sb they administer drug Db, and
whenever they observe Sc they do nothing;
this choice of actions defines an instrument
J . Running their trial with sufficiently
many patients, the pharmacologist can deduce
probability distributions for the occurrence of
symptoms over time, given the drugs that were
administered. For example, if the drugs were
administered on three consecutive days, they
would have obtained a probability distribution
of the form PΛ3

(s3, s2, s1|J3 = J ,J2 = J ,J1 =
J ), where sα ∈ {Sa, Sb, Sc}, and the instruments
(i.e., the drug administration rule) are the
same each day. However, this data would
not allow them to find out what would have
happened, had they not administered drugs on
day two, i.e.,

∑

s2
PΛ3

(s3, s2, s1|J3,J2,J1) 6=
PΛ3\{t2}(s3, s1|J3,J1); intermediate interven-
tions change the state of the interrogated
system, and hence the future statistics that are
being observed; for another, more numerically
tangible example, see Fig. 2. Consequently,
probability distributions do generally not satisfy
compatibility conditions when interventions are
allowed.

Compatibility can fail to hold whenever the
system of interest is actively interrogated. In
particular, it fails to hold in quantum mechanics,
where even projective measurements in general
change the state of a system on average, and
interventions are not just an experimental choice
but unavoidable.

4 (Quantum) Stochastic processes
with interventions

4.1 The KET in QM

As hinted at throughout this work, descriptions
of quantum mechanical processes must neces-
sarily account for the fundamental invasiveness
of measurements, which renders the KET
invalid for the same reason that some choices
of intervention do in the case of classical
causal modelling. To see how even projective
measurements in quantum mechanics lead to
families of probability distributions that do
not satisfy the KET, consider the following
concatenated Stern-Gerlach experiment: Let the
initial state of a spin-1

2 particle be |+〉 = 1√
2

(|↑〉+

|↓〉), where |↑〉 and |↓〉 are the spin-up and

spin-down state in the z-direction, respectively.
Now, we measure the state sequentially in the
z-, x- and z-directions at times t1, t2 and t3.
These measurements have the possible outcomes
{↑, ↓} and {→,←} for the measurement in z- and
x-direction, respectively. It is easy to see that the
probability for any possible sequence of outcomes
is equal to 1/8. For example, we have

PΛ3
(↑,→, ↑ |Jz,Jx,Jz)

= PΛ3
(↑,←, ↑ |Jz,Jx,Jz) =

1

8
, (2)

where Jz and Jx represent the instruments
used to measure in the z- and x- direction
respectively, and Λ3 = {t3, t2, t1}. Summing
over the outcomes at time t2, we obtain the

marginal probability P
|{t1,t3}
Λ3

(↑, ↑ |Jz,Jz) = 1/4.
However, by considering the case where the
measurement is not made at t2, it is easy to
see that P{t3,t1}(↑, ↑ |Jz,Jz) = 1/2. The
intermediate measurement changes the state of
the system, and the corresponding probability
distributions for different sets of times are not
compatible anymore [16, 23].

It is important to highlight the close relation
of this breakdown of consistency and the
violation of Leggett-Garg inequalities in quantum
mechanics [7, 9]. The assumption of consistency
between descriptors for different sets of times
that is crucial for the derivation of the KET
subsumes the assumptions of realism per se
and noninvasive measurability that are the
basic principles leading to the derivation of
Leggett-Garg inequalities: While realism per
se implies that joint probability distributions
for a set of times can be expressed as
marginals of a joint probability distribution
for more times, non-invasiveness means that
all finite distributions are marginals of the
same distribution. For example, the two-step
joint probability distributions P{t2,t1}, P{t3,t2},
and P{t3,t1}, that are considered in the
Leggett-Garg scenario are all marginals of a
three-step distribution P{t3,t2,t1}. As soon
as non-invasiveness and/or realism per se do
not hold, the KET can fail and Legget-Garg
inequalities can be violated.

Nevertheless, there should be some compatibil-
ity between descriptors for different sets of times;
the breakdown of the KET should be a problem
of the formalism rather than a physical fact. We
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now show that a change of perspective enables
one to prove an extension theorem in quantum
mechanics and any theory with interventions.

4.2 Instruments and Combs

Processes involving interventions, including
quantum processes and those in classical causal
modelling, do not lead to compatible joint
probability distributions for different sets of
times in general. This problem can be remedied
by assuming the standpoint of quantum causal
modelling, and choosing a description of such
stochastic processes that takes interventions and
their corresponding change of the system into
account. With this description, it is possible
to recover a compatibility property that is
satisfied by any process with interventions, and
a generalized extension theorem can be derived.

As in the classical causal modelling case,
in quantum mechanics, an experimenter can
choose an instrument Jα at each time tα, and
every outcome iα corresponds to a particular
transformation of the system that is interrogated.
Denoting the Hilbert space of the system at tα by
Hα, mathematically, an observation of outcome
iα given the instrument Jα corresponds to a
(trace non-increasing) completely positive (CP)
map Miα : B1(Hi

α) → B1(Ho

α) that describes
the change of the state of the system [24, 25].
Here, B1(Hα) denotes the space of trace class
operators onHα – which in the finite dimensional
case coincides with the set of bounded operators
B(Hα) onHα – and we account for the possibility
that Miα creates or discards degrees of freedom
by distinguishing between its input (i) and
output (o) spaces. The set of possible CP
maps an instrument comprises add up to a
completely positive trace preserving (CPTP)
map Mα =

∑

iα
Miα , which describes the

overall average transformation applied by the
instrument. While the CP maps the instrument
comprises can only be implemented probabilis-
tically, the corresponding overall CPTP map
can be performed deterministically, i.e., with
unit probability. In contrast to classical physics
without interventions, where the introduction
of maps (or events more generally [23]) is
superfluous, it is fundamentally unavoidable in
quantum mechanics, as well as in more general
probabilistic theories [23, 26]; every measurement
alters the state of the system of interest, and a

full description of a temporal process necessitates
knowledge of how the system is changed at each
time.

As in the example from Sec. 4.1, an
experimenter could choose to measure a system
in different bases. The projective measurement
in the basis {|i〉} at tα of a state ρ that yields
outcome iα would be described by a CP map
of the form Miα [ρ] = 〈iα| ρ |iα〉 |iα〉〈iα|, where
|iα〉 ∈ {|i〉}. More generally, the measuring
instrument need not preserve the measured state
of the system, but could replace it entirely; upon
measuring an outcome iα (corresponding to a
projection on a state |iα〉), a different instrument
could leave the system in the state ρiα , with a
resulting CP mapMiα [ρ] = 〈iα| ρ |iα〉 ρiα . In the
most general case, the experimenter – at a time
tα – could perform any (trace non-increasing)
CP map, including deterministic operations such
as unitary transformations. We will employ the
convention that, for a given instrument Jα, the
CP map corresponding to the outcome iα is
denoted byMiα , and we will denote the complex
vector space that is spanned by all of these CP
maps by Lα.

In this language, each realization of an
experiment corresponds to a (possibly temporally
correlated, see below) sequence of CP maps
that transform the system at a series of times.
The set of possible CP maps that could be
applied is dictated by the choice of instruments
used to interrogate the system in question. A
quantum process is fully characterized once all
of the probabilities PΛk

(ik, . . . , i1|Jk, . . . ,J1) for
each such sequence with all possible instruments
are known. Having all of these probability
distributions at hand allows one to deduce the
causal structure of a process, i.e., it is the basis
of quantum causal modelling [13].

Written more succinctly, a k-step quantum
process is fully characterized by an object
TΛk

that maps sequences of CP maps to
probabilities. Specifically, this means that
TΛk

is a CP map TΛk
: LΛk

→ ❈, where
LΛk

=
⊗

α∈Λk
Lα, such that TΛk

[Mik
, . . . ,Mi1

]
yields the probability PΛk

(ik, . . . , i1|Jk, . . . ,J1)
to obtain the outcomes ik, . . . , i1 given the
choices of instruments Jk, . . . ,J1 (see Fig. 3).
In this sense, TΛk

represents a Born rule for
temporal processes [27, 28]. The mapping TΛk

is a completely positive multilinear functional
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that can be reconstructed in a finite number of
experiments [12, 29–31].

For example, a k-step quantum process could
be of the form

TΛk
[Mik

, . . . ,Mi1
]

= tr{Mik
◦ Ek−1 ◦Mik−1

◦ Ek−2 · · ·

· · · ◦Mi2
◦ E1 ◦M1[ρ]} , (3)

where {Ei} are CPTP maps and ρ is a fixed state
of the system of interest. More generally, TΛk

can describe a process with memory – i.e., a non-
Markovian process [30] – in which case it would
be of the form

TΛk
[Mik

, . . . ,Mi1
]

= tr{(Mik
⊗ Ie) ◦ Uk−1 ◦ (Mik−1

⊗ Ie) ◦ · · ·

· · · ◦ U1 ◦ (Mi1
⊗ Ie)[ρse]}, (4)

where ρse is a (possibly correlated) state on the
system of interest and an additional environment,
and the maps {Ui} can be chosen to be unitary
evolutions on the system-environment space. As
information from the past can be propagated
through the additional environment, processes
that are described via Eq. (4) generally display
non-trivial memory effects [30].

If Λk corresponds to an ordered set of times,
then every k-step process on Λk can be written
in the form of Eq. (4) [30, 32]. On the other
hand, if the process at hand were to not abide by
a clear causal order, then it would not possess
a representation of this form, but could still
display non-trivial correlations between different
events [33, 34]. The respective causal ordering
that TΛk

is compatible with imposes further
requirements on its properties; besides being CP,
TΛk

has to be properly normalized. Naturally,
TΛk

has to yield unit probability when acting
on an operation that can be implemented
deterministically. Consequently, we have

TΛk
[Mk, . . . ,M1] = 1 (5)

for all sequences Mk, . . . ,M1 of CPTP maps.
Additionally, depending on the underlying causal
structure, the respective deterministic operations
an experimenter performs could be correlated –
both in a classical and a quantum way. For
example, if Λk is an ordered set of times, the
choice of instrument used to interrogate the
system at a time tα′ ∈ Λk could be conditioned

on the outcomes of all measurements at times
Λk ∋ tα < tα′ . Put more generally, in
quantum mechanics, deterministic operations are
all operations that can be realized by preparing
ancillary states, performing unitary operations,
and discarding degrees of freedom in a temporally
ordered fashion that agrees with the ordering
given by Λk.

On the other hand, in situations where Λk

does not correspond to a temporally ordered
set, or, more generally, a partially ordered set
corresponding to a definite causal order [32], but
rather a set of labels for different laboratories
with an unclear causal ordering, then such
non-trivially correlated operations are not
considered to be experimentally implementable,
and the corresponding linear functionals TΛk

only
have to satisfy Eq. (5) (and be CP), with no
additional restrictions [34].

Finally, in operational probabilistic theories
(OPTs), the set of deterministically imple-
mentable operations is the set of opera-
tions obtained from concatenating deterministic
preparations, deterministic transformations, and
deterministic effects in a well-defined order that
agrees with the causal structure of the respective
OPT [35].

In anticipation of later proofs, it is worth
briefly discussing the set of operations that
proper physical linear functionals on k times
can be meaningfully applied to. As mentioned
above, in quantum mechanics, a deterministically
implementable operation is one that can be
decomposed as a causally ordered concatenation
of state preparations, unitary operations and
a final discarding of degrees of freedom.
Analogously, a general (temporally correlated)
quantum measurement that an experimenter
performs can always be decomposed as a causally
ordered concatenation of state preparations,
unitary operations and a final projective
measurement on some degrees of freedom [32].

More concretely, setting HΛk
=

⊗

α∈Λk
Hα,

such scenarios would be described by a collection
of temporally non-local (trace non-increasing)
CP maps MΛk

γ : B1(Hi

Λk
) → B1(Ho

Λk
),

where each of the maps MΛk
γ corresponds to

a possible measurement outcome. Overall, the
respective probabilities have to add to unity,
which implies thatMΛk

=
∑

γM
Λk
γ corresponds

to a deterministic operation. Such a collection
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{MΛk
γ } of maps is known as a generalized

instrument or tester in the literature [27, 32,
36] (see [32] for a thorough discussion of their
properties).

Naturally, a physically reasonable mapping
TΛk

for such a causal scenario has to satisfy
0 ≤ TΛk

[MΛk
γ ] ≤ 1 for all possible tester

elements on Λk and TΛk
[MΛk

] = 1 for any
temporally correlated operation that can be
implemented deterministically. Likewise, in
scenarios where no a priori causal order is
assumed, TΛk

only has to satisfy Eq. (5) as
well as 0 ≤ TΛk

[Mi1
, . . . ,Mik

] ≤ 1 for any
collection {Mik

} of CP maps. Finally, in OPTs,
‘tester elements’ are given by all operations that
can be realized by concatenating deterministic
preparations, deterministic transformations, and
probabilisitc effects in an order that agrees with
Λk. As before, a physically reasonable mapping
TΛk

would have to yield unit probability on
deterministically implementable operations, and
a probability p ∈ [0, 1] for any operation that
cannot be implemented deterministically.

In each case, the set of operations that
a physically reasonable functional TΛk

can be
applied to forms a convex set: if {MΛk

γ } is
a set of (probabilistically and deterministically)
implementable operations, then

TΛk

[

∑

γ

µγM
Λk
γ

]

∈ [0, 1] . (6)

where µγ ≥ 0 and
∑

γ µγ ≤ 1. We will denote
this set of operations on times Λk that TΛk

can
meaningfully act on KΛk

.
Since the respective normalization of the

families of linear functionals TΛk
that we

consider, as well as the particular underlying
theory is not of importance for the proof and/or
the applicability of the main theorem of the
paper, we will assume an agnostic standpoint and
adhere to the following convention:

Throughout the remainder of this Paper, a
multilinear functional TΛk

: LΛk
→ ❈ that is

positive on KΛk
, and which yields unit prob-

ability on all deterministically implementable
operations that the underlying causal structure
(and underlying theory) allows, will be referred
to as a k-step comb, following Refs. [32, 37, 38].
For the particular case of quantum mechanics, we
would additionally demand that the comb is CP.

Note that, in the convention above, KΛk
and

Figure 3: Graphical representation of a four step
quantum comb. A four step comb can be represented
as an object with four slots (each slot corresponds to
a time tα ∈ Λ4); it encodes all multi-time correlations
between observables at those times. The probability to
observe the outcomes i4, . . . , i1 given the instruments
J4, . . . ,J1 is obtained by inserting the corresponding
CP maps into the comb, i.e., by letting TΛ4

act on
Mi4

, . . . ,Mi1
.

its associated set of k-step combs depend on the
respective scenario one considers. Additionally,
as TΛk

is positive on all elements of KΛk
, we

automatically have TΛk
[MΛk

γ ] ≤ 1, since for any

MΛk
γ ∈ KΛk

, there exists a MΛk

γ′ ∈ KΛk
such

that MΛk
γ +MΛk

γ′ ∈ KΛk
is a deterministically

implementable operation. Importantly, outside
the set KΛk

, TΛk
can yield ‘probabilities’ that

exceed 1, even when acting on maps that
may be deterministically implementable in other
scenarios. This is due to the fact that the action
of a comb TΛk

on a deterministic map that is not
causally ordered in a compatible way can lead to
causal loops, and thus non-sensical results; for
example, letting a comb that is ordered t1 before
t2 act on an operation that is ordered t2 before
t1 will lead to causal loops and is, as such, not
meaningful.

In what follows, we will predominantly phrase
our statements with respect to CP maps (i.e.,
for the case of quantum mechanics), with
the understanding that generalization to other
theories is always straightforwardly possible.

A comb TΛk
contains all the multi-time

correlations necessary to fully characterize a
k-step quantum process. While the CP maps
Miα change the state of the system, they do
not change the k-step process given by TΛk

.
Loosely speaking, the comb contains all parts
of the dynamics that are not manipulated by
the experimenter. This is analogous to the
way in which the preparation of an initial
state and the measurement of the final state in
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quantum process tomography do not influence
the underlying dynamics (i.e., the CPTP map
connecting input and output state).

Just as in the classical case, the knowledge of
all relevant joint probability distributions (i.e.,
the knowledge of TΛk

) allows one to deduce
causal relations between the k events in Λk.
We emphasize that classical causal modelling
is included in this quantum causal modelling
framework as a special case. Whenever a
system is measured and prepared in a fixed
basis (using a classical instrument), and the
process TΛk

also preserves this basis, the result
is a set of joint distributions consistent with a
classical causal model. From Observation 1, it
also follows that classical stochastic processes
without interventions can be described by the
same framework.

4.3 Generalized extension theorem (GET)

With the complete description on finite sets
of times at hand, we can determine the
compatibility condition between related combs.
A family of combs that stems from an underlying
(open) dynamics fulfills a natural consistency
condition [30]; for any two sets of times Λk ⊆ Λℓ,
the comb TΛk

can be obtained from TΛℓ
by letting

it act on identity operations Itα (with Itα [ρ] = ρ
for any state of the system ρ at time tα) at times
tα ∈ Λℓ \ Λk, i.e.,

TΛk
[ · ] = TΛℓ





⊗

tα∈Λℓ\Λk

Itα , ·



 := T
|Λk

Λℓ
[ · ] , (7)

where we have employed the shorthand notation
⊗

tα∈Λℓ\Λk
Itα to signify that the identity

operation was ‘implemented’ at each time tα ∈
Λℓ \ Λk. The graphical representation of Eq. (7)
is depicted in Fig. 4.

It is important to note the difference between
Eq. (7) and the consistency condition for classical
stochastic processes, stemming from the stronger
notion of ‘doing nothing’ in the quantum case.
If there is an underlying process, any comb can
be obtained from one that applies to a larger
set of times by letting it act on the identity
map, which leaves any state unchanged, at the
excessive times. This is by no means the
same as computing the marginals of families of
probability distributions that have been obtained
for a fixed set of measurement instruments, which

Figure 4: Consistency condition for combs. If there is
an underlying process, any comb TΛk

can be obtained
from TΛℓ

by letting TΛℓ
act on the identity map at the

excessive times. Here, for the sets of times Λ13 =
{t13, . . . , t1}, Λ8 = {t13, t12, t11, t9, t7, t6, t3, t1} and
Λ5 = {t13, t12, t6, t3, t1} we depict the containment of
the comb TΛ8

in TΛ13
and the containment of TΛ5

in
both TΛ13

and TΛ8
.

will only preserve states which are diagonal
in a fixed basis. We recover descriptors for
different sets of times that are compatible with
each other only when we switch to a causal
modelling description of the process. From
this, we obtain our main result, the generalized
extension theorem (GET):

Theorem (Generalized extension theorem). Let
Λ be a set of times. For each finite Λk ⊆
Λ let TΛk

be a k-step comb. There exists a
general stochastic process TΛ, i.e., a multilinear
CP functional defined on all times in Λ, that

satisfies TΛk
= T

|Λk

Λ , as defined in Eq. (7), for all

finite Λk ⊆ Λ iff TΛk
= T

|Λk

Λℓ
for all Λk ⊆ Λℓ ⊆ Λ.

Note that we make no assumption about
the cardinality of the number of outcomes at
each time tα. The GET holds independently
of whether there are finitely, countably or
uncountably many possible outcomes.

Importantly, the GET is qualitatively distinct
from quantum marginal problems [39]. The
question it answers is not whether, for a given
collection of combs TΛk

, TΛℓ
, . . . , there exists a

comb TΛk∪Λℓ∪··· that has all of them as marginals.
Rather, it starts from the assumption that there
exists a family of combs {TΛk

} defined on all
finite subsets of Λ and shows that this family
can be extended to a comb TΛ if the family {TΛk

}
satisfies the consistency conditions laid out in the
above theorem. For the case that Λ is a finite
set, the theorem is thus trivial, as the desired
comb is simply the comb of the family {TΛk

}
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that is defined on the largest set of times (that
is, on Λ itself). The importance of the GET lies
in the case where Λ is an infinite set. There,
it shows that a family of finite combs satisfying
proper consistency conditions suffices to define
an underlying comb on all times in Λ.

The proof of the GET proceeds analogously
to that of the original Kolmogorov extension
theorem, presented, e.g., in Ref. [6]. It can
be broken up into two main parts: (i) The
consistency property is used to define a unique
comb T ♯

Λ on a ‘sufficiently large’ container space

L♯
Λ. (ii) It is shown that T ♯

Λ is linear and

bounded on a subset K♯
Λ of said container

space and can thus be extended to a linear

functional T
♯
Λ fulfilling the properties of the

desired comb TΛ on the closure of K♯
Λ. As in

the classical case [5], the underlying stochastic

process characterized by TΛ is – unlike T
♯
Λ –

not necessarily unique. Since the action of all

possible TΛ coincides with the unique T
♯
Λ on

the correct set of operations, and hence yields
the correct finite combs TΛk

, this non-uniqueness
cannot be detected experimentally and does not
constitute a practical problem.

Proof. To begin with, a short comment on the
spaces that the respective objects we will deal
with are defined on is in order. Firstly, for
ease of notation, we assume all CP maps that
the combs act on to have the same input and
output space, i.e., they do not create or discard
degrees of freedom.2 Consequently, at each time
tα, we have Miα : B1(Hα) → B1(Hα). As
before, for any finite Λk, we will employ the
naming conventions HΛk

, B1(HΛk
), and LΛk

for
the Hilbert space HΛk

=
⊗

α∈Λk
Hα, the space

of trace class operators thereon, and the vector
space spanned by the CP maps on B1(HΛk

),
respectively. Notably, in the finite dimensional
case, B1(HΛk

) coincides with B(HΛk
), the space

of bounded operators onHΛk
, while in general we

have B1(HΛk
) ⊂ B(HΛk

). As the generalization
to infinite dimensional Hilbert spaces Hα does
not bring additional technical difficulties, we will
not assume dim(Hα) to be finite in what follows.

Since we will deal with operations at each time
tα ∈ Λ, the natural Hilbert space to consider

2A generalization to maps with distinct input and
output spaces is straightforward.

is the – possibly uncountably infinite – tensor
product HΛ :=

⊗

α∈ΛHα. Such infinite products
of Hilbert spaces have been defined in Def. 3.5.1
of [40]. For their construction, let {fα|fα ∈
Hα}α∈Λ be a C-sequence, i.e., a sequence of
elements of the Hilbert spaces Hα such that
∏

α∈Λ ‖fα‖ converges.3 On any such C-sequence,
one can define particular linear functionals

Φr(fα; α ∈ Λ) :=
∏

α∈Λ

(f r
α, fα) , (8)

where {f r
α|f

r
α ∈ Hα}α∈Λ is a C-sequence, and

(·, ·) is the respective inner product of Hα. In a
slight abuse of notation, this functional can be
written Φr =

⊗

α∈Λ f r
α. With this, we can define

the space F0 as the finite linear span of all such
elements Φr, i.e.,

F0 = {Θ|Θ =
N

∑

r=1

Φr} . (9)

This space is equipped with a well-defined
scalar product [40]: Taking two elements Φ1 =
∑N1

r=1

⊗

α∈Λ f r
α and Φ2 =

∑N2

s=1

⊗

α∈Λ gs
α of F0,

we can set

(Φ1, Φ2) :=
N1
∑

r=1

N2
∑

s=1

∏

α∈Λ

(f r
α, gs

α) . (10)

With this, we obtain the space HΛ as the set of
all limits of Cauchy sequences in F0. Specifically,
all elements ϕ ∈ HΛ are such that there exists a
Cauchy sequence {Θs; Θs ∈ F

0} that converges
to ϕ in the sense that

ϕ(fα; α ∈ Λ) = lim
s→∞

Θs(fα; α ∈ Λ) , (11)

for all C-sequences {fα; α ∈ Λ}, where
convergence is understood with respect to the
metric induced by the scalar product in Eq. (10).
To put it more intuitively, the space F0 is the
space spanned by all infinite tensor products
⊗

α∈Λ fα which have a finite norm, and HΛ is its
completion. On this Hilbert space, we can define
the space of trace class operators B1(HΛ), and we
shall denote the complex vector space spanned by
CP maps M : B1(HΛ)→ B1(HΛ) by LΛ.

Intuitively, the general stochastic process TΛ,
whose existence we will prove below, should be a

3See [40] for a detailed discussion of the convergence of
uncountably infinite products and sums.
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functional of the form TΛ : LΛ → ❈. However,
as we will see, the space LΛ is slightly ‘too big’
for two distinct reasons, and TΛ will only be
uniquely defined on a smaller, naturally arising
space. With these preliminary definitions of the
involved spaces out of the way, we can now prove
the first part of the theorem:

(i) Existence of a unique comb T ♯
Λ on the

set Λ.
Let Λ be a (possibly uncountable) set,
{Λk}Λk⊆Λ the set of all finite subsets of Λ, and let
{

TΛk

}

Λk⊆Λ be the corresponding family of combs.
Consequently, we have TΛk

: LΛk
→ ❈. Now,

let the family of combs satisfy the consistency
condition of Eq. (7) for all finite Λk ⊆ Λℓ ⊆ Λ.

With this, we can ‘lift’ the family of combs to
a comb T ♯

Λ that acts on the full space LΛ and
contains all of the finite combs as ‘marginals’. To
this end, we first define the inverse projection
π−1

Λk
: LΛk

→ LΛ which trivially extends every
map ξΛk

∈ LΛk
that is only defined on a finite

number of times to an operator

π−1
Λk

[ξΛk
] = ξΛk

⊗
⊗

tα∈Λ\Λk

Itα (12)

that is defined on all times.4 In other words, π−1
Λk

maps any ξΛk
to a corresponding operator that

lies in LΛ and only acts non-trivially on LΛk
. The

operator π−1
Λk

[ξΛk
] exists and is unique for any

finite Λk ∈ Λ and all ξΛk
∈ LΛk

[40].
In the same way, we can define a partial inverse

projection π−1
Λk←Λℓ

: LΛk
→ LΛℓ

for any two finite
sets Λk ⊆ Λℓ ⊆ Λ, i.e.,

π−1
Λk←Λℓ

[ξΛk
] = ξΛk

⊗
⊗

tα∈Λℓ\Λk

Itα . (13)

Employing these partial inverse projections, the
consistency property of the family {TΛk

} reads

TΛk
[ξΛk

] = TΛℓ

[

π−1
Λk←Λℓ

[ξΛk
]
]

. (14)

All of the lifted operators π−1
Λk

[ξΛk
] are elements

of LΛ. Let L♯
Λ ⊂ LΛ denote the set of all lifted

operators, i.e., for all Λk finite, we have

L♯
Λ = {ξ ∈ LΛ|ξ = ξΛk

⊗
⊗

tα∈Λ\Λk

Itα} . (15)

4We will denote elements of LΛk
by ξΛk

instead of MΛk

to emphasize that they are not necessarily CP maps, but
rather complex linear combinations of CP maps.

On this space, we can define a comb T ♯
Λ via

T ♯
Λ[ξ] := TΛk

[ξΛk
] , where ξ = π−1

Λk
[ξΛk

] . (16)

It remains to show that T ♯
Λ is well-defined in the

sense that it maps every ξ ∈ L♯
Λ to a unique value.

Specifically, if there are two different operators
ξΛk
∈ LΛk

and ξΛℓ
∈ LΛℓ

that are lifted to the
same ξ ∈ LΛ, such that

ξ = π−1
Λk

[ξΛk
] = π−1

Λℓ
[ξΛℓ

] , (17)

then T ♯
Λ[ξ] = TΛk

[ξΛk
] but also T ♯

Λ[ξ] = TΛℓ
[ξΛℓ

]

and T ♯
Λ might not be well-defined. However,

uniqueness of T ♯
Λ[ξ] is ensured by the consistency

property; from Eq. (17), it is straightforward to
see that

π−1
Λk←Λk∪Λℓ

[ξΛk
] = π−1

Λℓ←Λk∪Λℓ
[ξΛℓ

]

=: ξΛk∪Λℓ
. (18)

Employing the consistency condition (14) then
yields

TΛk
[ξΛk

] = TΛk∪Λℓ
[π−1

Λk←Λk∪Λℓ
[ξΛk

]]

= TΛk∪Λℓ
[ξΛk∪Λℓ

]

= TΛk∪Λℓ
[π−1

Λℓ←Λk∪Λℓ
[ξΛℓ

]] = TΛℓ
[ξΛℓ

] . (19)

Consequently, T ♯
Λ[ξ] is independent of the

representation of ξ. Additionally, by construction

we have T
♯|Λk

Λ = TΛk
, i.e., T ♯

Λ contains all
finite combs of the family {TΛk

} as ‘marginals’.

However, so far T ♯
Λ is only defined on the set

L♯
Λ ⊂ LΛ. In the second part of the proof, we

show that T ♯
Λ can be uniquely extended to a linear

functional on a bigger space L
♯
Λ ⊇ L

♯
Λ.

(ii) Extension of T ♯
Λ.

In order to extend T ♯
Λ to a linear functional T

♯
Λ

that acts on elements of (a subest of) the closure

L
♯
Λ of L♯

Λ , we will make use of the fact that any

linear bounded mapping from a subset K♯
Λ of a

normed vector space X to a normed complete
vector space Y can be uniquely extended to a

linear transformation from the completion K
♯
Λ of

K♯
Λ to Y (see, e.g., Thm. 2.7-11 of [41]).

So far, we have considered T ♯
Λ as a mapping

T ♯
Λ : L♯

Λ → ❈. However, T ♯
Λ is not necessarily

bounded on L♯
Λ; as we discussed in Sec. 4.2, the

action of a k-step comb TΛk
is only meaningfully
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defined on the set KΛk
of maps that agree with

the causal ordering of TΛk
. In general, there will

be many maps in LΛk
that have, for example, an

opposite causal ordering than the one TΛk
abides

by. Thus, the action of TΛk
on such a map would

create causal loops and lead to ‘probabilities’ that
exceed 1. The norm of TΛk

on LΛk
would thus

depend on the number of possible causal loops,
which, in turn, depends on the number of times
in Λk. This, finally, implies that, in principle,
for every positive number r, we could find a
CPTP map Mr ∈ L♯

Λ with unit norm, such

that T ♯
Λ[Mr] > r, rendering T ♯

Λ unbounded on

L♯
Λ. While this unboundedness is not a problem

for the first part of the proof, it keeps us from
uniquely extending T ♯

Λ to a linear functional on

the closure of L♯
Λ.

However, this is not a conceptual problem,
as a CPTP map Mr that yields a probability
higher than 1 cannot be implemented within
the causal order the combs TΛk

abide by.
Consequently, without losing generality, we can
restrict ourselves to the respective subsets of
operations that the combs TΛk

are meaningfully
defined on. Specifically, we set

K♯
Λ := {ξ ∈ L♯

Λ|ξ = ξΛk
⊗

⊗

tα∈Λ\Λk

Itα ,

ξΛk
∈ KΛk

} , (20)

i.e., K♯
Λ contains all trivial extensions of

operators that the finite combs TΛk
are

meaningfully defined on. As K♯
Λ ⊂ L

♯
Λ, T ♯

Λ is

uniquely defined on K♯
Λ. Now, considering the

mapping

T ♯
Λ : K♯

Λ → ❈ , (21)

we can show that there exists a unique extension

T
♯
Λ : K

♯
Λ → ❈ that has the desired properties.

To this end, we have to show that L♯
Λ is a

normed vector space, and that T ♯
Λ is linear, and

bounded on K♯
Λ (the space ❈ is well-known to

be a complete vector space). We start with the
former:

Let β, γ ∈ ❈ and ξ = π−1
Λk

[ξΛk
], ζ = π−1

Λℓ
[ζΛℓ

].
It follows directly from the definition (12) of the
inverse projection that

β ξ = π−1
Λk

[β ξΛk
] ∈ L♯

Λ (22)

Now, we define ΓΛk∪Λℓ
∈ LΛk∪Λℓ

as

ΓΛk∪Λℓ

= π−1
Λk←Λk∪Λℓ

[β ξΛk
] + π−1

Λℓ←Λk∪Λℓ
[γ ζΛℓ

]. (23)

One immediately sees that

β ξ + γ ζ = π−1
Λk∪Λℓ

[ΓΛk∪Λℓ
] ∈ L♯

Λ , (24)

which implies that L♯
Λ is a complex vector space.

Additionally, L♯
Λ becomes a normed vector space

by setting ‖ξ‖ = ‖π−1
Λk

[ξΛk
]‖ := ‖ξΛk

‖op, where
‖ · ‖op is the norm on LΛk

induced by the trace
norm on B1(HΛk

), i.e.,

‖ξΛk
‖op = sup

|A|tr=1
{|ξ[A]|tr | A ∈ B1(HΛk

)} . (25)

To prove linearity, and boundedness on K♯
Λ of

T ♯
Λ, we make use of the linearity and boundedness

of the finite combs TΛk
: For all Λk, we have

TΛk
[MΛk

] ≤ 1 for allMΛk
∈ KΛk

. As this bound
is uniform, i.e., independent of the set of times
Λk, we immediately see that T ♯

Λ[MΛ] ≤ 1 for all

MΛ ∈ K
♯
Λ, rendering T ♯

Λ bounded on K♯
Λ.

The linearity of T ♯
Λ follows in a similar vein;

due to the linearity of TΛk
and the linearity of

the inverse projection operators, for all β, γ ∈ ❈
and all η, ξ ∈ L♯

Λ we have

T ♯
Λ[βξ + γη] = βT ♯

Λ[ξ] + γT ♯
Λ[η] . (26)

Consequently, there exists a unique comb T
♯
Λ

defined on the completion K
♯
Λ of K♯

Λ that
has, by construction, the family

{

TΛk

}

Λk⊆Λ as

‘marginals’. As T ♯
Λ is positive and bounded by

1 on K♯
Λ, by continuity so is T

♯
Λ on K

♯
Λ. This

concludes the proof.

The space K
♯
Λ is a proper subset of L

♯
Λ (this

latter space is sometimes called quasilocal algebra
in the literature [42, 43]). There are two
important points to note about these spaces.
On the one hand, it is clear that in most

relevant cases, K
♯
Λ cannot coincide with L

♯
Λ. As

mentioned above, L♯
Λ generically contains CPTP

maps that do not agree with the causal order of
the finite combs TΛk

, and extending T ♯
Λ to a linear

functional on L
♯
Λ would neither be possible (as

outlined above) nor meaningful. In this sense,

K
♯
Λ is the ‘biggest’ space that we can extend the

finite functionals to, and it can be understood
as the set of all operations on times in Λ that
abide with the causal order of the finite combs
Λk. As such, it is not just the ‘biggest’ space we
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can extend the action of T ♯
Λ to, but also the most

meaningful one.

On the other hand, it is important to note that

the space L
♯
Λ does not coincide with LΛ (they

coincide iff Λ is finite [40]). Consequently, there
might be different combs TΛ defined on LΛ with

coinciding action on all elements of K
♯
Λ. This,

however, is not problematic; first, L
♯
Λ “is in a way

more important than” LΛ because its elements
arise from the ones of L(Hα) “by extension
and algebraical and topological processes” [40].
Second, just as for the KET [5], the different
possible combs on LΛ all lead to the same
measurement statistics on any experimentally
accessible set of times, so this non-uniqueness is
not accessible/detectable in practice.

We emphasize that, even though we have
phrased the above in the language of quantum
mechanics, there is nothing particularly quantum
mechanical about the GET. The proof of the
theorem uses the compatibility, linearity and
boundedness of the combs TΛk

, as well as
the assumption that the spaces they act on
span a vector space. Consequently, it holds
for any probabilistic theory (with interventions)
satisfying these minimal assumptions.

Furthermore, the input and output spaces of
the CP maps the comb acts on do not have to
be of the same dimension. In this case, the
identity map used for the consistency condition
has to be slightly generalized: A CPTP map
Mα : B1(Hi

α) → B1(Ho

α) is implemented via
a corresponding unitary Uα, a fixed ancillary
state ηα ∈ B1(HAα

), and a partial trace trBα

that is such that the resulting state Mα[ρ] =

trBα

[

Uα (ρ⊗ ηα) U †α
]

lies in B1(Ho

α). With this,

we can define a generalized identity map

I
(i→o)
tα

[ρ] = trBα
(ρ⊗ ηα) , (27)

and the GET still holds. The only difference
being that the inverse projections used in its
derivation, and given in Eqs. (12) and (13),
have to be changed accordingly to account for
the altered identity map. Consequently, our
theorem accounts for the case where particles
are created/annihilated in the process, as well
as the case where different degrees of freedom
are manipulated at each time tα, or where the
number of measurement outcomes and active
interventions differ.

Even more generally, the particular form of
the ‘do nothing’ operation, i.e., the action on
the system of interest in the absence of active
experimental intervention is of no importance for
the derivation of the GET. In case that it does
not coincide with the identity map I (or the
more general identity map discussed above) but
is represented by some mapM (for example, one
could imagine a theory where nature constantly
measures the system of interest) the logic of the
proof of the GET would still follow through.
Again, the only change in its derivation would
be an adjustment of the inverse projection maps
of Eqs. (12) and (13), with the rest of the proof
staying the same.

In the derivation of the GET, we make
the implicit assumption that the employed CP
maps only depend on the measurement outcome
they correspond to, but not on the particular
instrument that was used to carry out the
respective measurement. This property has
been dubbed ‘instrument non-contextuality’ [28,
44] or ‘operational instrument equivalence’ [23].
In principle, our derivation could be straight-
forwardly adapted to any theory, where this
assumption is no longer satisfied, but in which
probabilities are still a linear function of the maps
and their respective contexts (i.e., instruments).
Instead of the identity map, one would then use a
pair (I,JI) of identity map and identity context
for marginalization, and the GET would still
hold.

It is important to clearly distinguish between
the classical Kolmogorov extension theorem and
the GET. The KET hinges on the fact that, in
classical physics, a measurement does not change
the average state of a system. This fails to
hold in quantum mechanics, or any theory with
interventions. More concretely, in the language
of quantum maps, the sum over the outcomes
iα of a measurement in a basis {|i〉} at time tα

corresponds to the CPTP map Mα =
∑

iα
Miα ,

where Miα [ρ] = 〈iα| ρ |iα〉 |iα〉〈iα|. In a classical
stochastic process, the state ρ is diagonal in the
basis {|i〉}, and we have Mα[ρ] = ρ; the average
over measurement outcomes has the same effect
as the classical ‘do nothing’ operation. As soon
as ρ is not diagonal in the measurement basis,
we have Mα[ρ] 6= ρ; on average, a measurement
in quantum mechanics changes the state of the
system and the future measurement statistics will
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depend on the measurement that was performed.
Consequently, joint probability distributions in
classical physics (without interventions) exhibit
a consistency condition, while quantum processes
(and theories with interventions) generally do
not.

As in the classical case, the proof of the GET
does not assume an a priori temporal ordering.
The sets Λk could be sets of times, but also labels
of different laboratories. We have the following
remark:

Remark. The proof of the GET does not assume
any ordering of the sets Λk, and only uses the
generalized consistency property of Eq. (7) as its
main ingredient.

As alluded to above, this implies that the GET
also applies to causally indefinite processes [33,
34, 45], as the descriptors for different sets of
laboratories would still satisfy a compatibility
condition. However, these processes do not
admit a Stinespring dilation that is compatible
with a fixed causal order [33, 34] and the
interpretation of an underlying ‘process’ becomes
much less clear in the absence of a definitive
causal ordering. We will briefly remark on
this further in our conclusions, but leave a full
exploration of this interpretation as an open
question for future work. Next, we will see that
the distinction between stochastic processes and
causal modelling does not exist in the general
case.

4.4 Quantum stochastic processes and quan-
tum causal modelling

Using an instrument at some intermediate
time tα alters the state of a quantum system
(even when averaging over all outcomes) and
influences the statistics of later measurements
in a non-negligible way. Nevertheless, the full
descriptor of an ℓ-step process, i.e., TΛℓ

, contains
all descriptors TΛk

for fewer times Λk ⊆ Λℓ, and a
family of compatible combs implies the existence
of an underlying stochastic process TΛ.

Like in the classical case, the GET provides
the mathematical underpinnings for the theory
of stochastic processes in quantum mechanics,
or any other theory with interventions, and
fixes the minimal necessary requirements for the
existence of an underlying process. As we have
seen, in quantum mechanics, it is unavoidable to

employ a description that takes interventions into
account, when attempting to obtain a consistent
description of a quantum process; if one wants
to properly define quantum stochastic processes,
one is forced to use the framework of causal
modelling where active interventions are used
to infer the causal relations between different
events. This motivates the following observation:

Observation 2. The theory of quantum causal
modelling and the theory of quantum stochastic
processes are equivalent.

In contrast to Observation 1, the set of
quantum causal models does not just contain
the set of quantum stochastic processes but
coincides with it; in classical physics, we obtain
a consistent description of stochastic processes
without taking interventions into account, and
we can choose to intervene whenever we want
to probe the causal structure of a process. In
quantum mechanics, a consistent description of
stochastic processes can only be recovered if
interventions are included in the description from
the start. Interventions are not a choice but a
necessity in quantum mechanics, which leads to
the equivalence of quantum causal modelling and
quantum stochastic processes.

This implies that the breakdown of the KET in
quantum mechanics is fundamental, while it can
in principle be removed by changing perspective
in a classical process with interventions. In
the latter case, a super-observer, that observes
both the experimenter manipulating the system
of interest as well as the stochastic process
itself, would obtain families of joint probability
distributions that display a compatibility prop-
erty. Put differently, for classical processes,
by incorporating the experimenter and their
choice of instrument into the stochastic process,
the KET always applies on a higher level.
In quantum mechanics, this is generally not
true. No matter the level at which a
super-observer observes a process, the respective
joint probability distributions do not satisfy
a compatibility property, and the KET fails
to hold. This fundamental breakdown of the
KET in quantum mechanics is mirrored by
no-go theorems that show that non-contextual
theories cannot reproduce the predictions of
quantum mechanics; for many of these theorems,
the notion of ontic latent variables [46, 47] or
ontic processes [23] are introduced, and the

Accepted in Quantum 2020-04-04, click title to verify. Published under CC-BY 4.0. 16



basic assumption is made that the distributions
over observable outcomes can be obtained by
marginalization of a larger joint distribution over
the values of the ontic variable. Subsequently, it
is shown that, together with other assumptions,
this prerequisite fails to reproduce predictions
made by quantum mechanics. The GET dictates
how to correctly compute marginals in quantum
mechanics, such that all resulting probability
distributions ‘fit together’ and are the marginals
of one common comb TΛ. It is therefore
conceivable that a derivation starting from the
assumption of compatibility in the sense of the
GET would lead to theories that can indeed
reproduce quantum mechanics.

We reiterate that classical stochastic processes
are a very special subset of general stochastic
processes, namely the ones where the system of
interest is never rotated out of its fixed (pointer)
basis, and the experimenter can only perform
projective measurements in this basis.5 We now
show that the KET can be derived in a straight
forward way as a corollary of the GET.

4.5 GET ⇒ KET

Our generalised extension theorem applies to a
strictly larger class of theories than the standard
KET and includes the latter as a corollary.
Specifically, in the language introduced above, a
classical process is one where the experimenter
can only perform measurements in a fixed basis,
and the resulting joint probability distributions
satisfy Kolmogorov consistency conditions. With
this – under the aforementioned assumption that
all considered value spaces are ❘, ◆, or, more
generally, Borel spaces – we have the following
proposition:

Proposition 1. The GET implies the KET.

Proof. In order to prove this statement, we will
show that any family of classical joint probability
distributions that satisfies the consistency
property of the KET can be mapped onto
a family of quantum combs that satisfies the
consistency condition of the GET – albeit with
a slightly different identity map. The GET
then guarantees that there exists an underlying

5The set of quantum processes that can be described
by only classical means is in fact slightly bigger [48, 49].
We will comment on this subtlety below.

classical comb T cl
Λ , and thus also an underlying

classical process PΛ.
Let {PΛk

}Λk⊂Λ be a family of joint probability
distributions on all finite subsets of Λ that
satisfies the consistency conditions of the KET,

i.e., PΛk
= P

|Λk

Λℓ
for all Λk ⊂ Λℓ ⊂ Λ.

We denote the set of perfectly distinguishable
possible outcomes at time tα by {iα}. With this,
we can define a Hilbert space Hα spanned by an
orthogonal set of states {|iα〉}, and projective CP
operators Piα that correspond to a measurement
with outcome iα. The action of these operators
on a state ρ ∈ B1(Hα) is given by Piα [ρ] =
〈iα|ρ|iα〉 |iα〉〈iα|. The complex vector space
spanned by these projective operators will be
denoted by Ωα, and, correspondingly, we set
ΩΛk

=
⊗

α∈Λk
Ωα. On said vector space, we can

define a classical comb T cl.
Λk

, with its action on
every PiΛk

=
⊗

α∈Λk
Piα given by

T cl.
Λk

[PiΛk
] = PΛk

(iΛk
) . (28)

To stay closer in spirit to the proof of the
GET, we could extend T cl.

Λk
to a CP linear

functional on the whole space LΛk
⊃ ΩΛk

, but
as this step is not necessary for the proof of
the KET, we will not carry it out here. As the
family of probability distributions {PΛk

} satisfies
a consistency condition, we have for Λk ⊂ Λℓ

∑

Λℓ\Λk

T cl.
Λℓ

[PiΛℓ
] = PΛk

(iΛk
) = T cl.

Λk
[PiΛk

] , (29)

where iΛk
is the restriction of iΛℓ

to Λk. Setting
∆tα :=

∑

iα
Piα , we see that the family of combs

{TΛk
}Λk⊂Λ satisfies a consistency condition with

respect to the operators ∆tα (in contrast to the
GET, where the corresponding operator was Itα).
As discussed above, the proof of the GET can
be straightforwardly generalised to any choice of
the ‘do-nothing’ operation. Analogous to the
proof of the GET, setting Ω♯

Λ = {ξ|ξ = ξΛk
⊗

⊗

tα∈Λ\Λk
∆tα , ξΛk

∈ ΩΛk
} and

ω♯
Λ = {ξ ∈ Ω♯

Λ|ξ =
⊗

α∈Λk

Piα ⊗
⊗

Λ\Λk

∆tα} , (30)

we see that there exists a unique comb T
cl.♯
Λ ,

defined on the closure ω♯
Λ of ω♯

Λ, that has the
family {T cl.

Λk
} as marginals (with respect to the

operators ∆tα).
It remains to show how to obtain a probability

distribution PΛ from T
cl.♯
Λ that contains all finite
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distributions as marginals. To this end, we note

that the classical comb T
cl.♯
Λ is well-defined and

yields probabilities on all ξ ∈ ω♯ ⊂ Ω
♯
Λ. Every

ξ ∈ ω♯
Λ \ ω♯

Λ that lies in the extension of ω♯
Λ

has a unique restriction ξ|Λk
= PiΛk

, to any
finite set Λk, and as such uniquely fixes a set of
outcomes iΛk

. Taking the union of all these sets
of outcomes, we see that every ξ ∈ ω♯ defines a set
iΛ (we will thus add an additional subscript and
denote them by ξiΛ

) of corresponding outcomes

at all times in Λ. Setting PΛ(iΛ) = T
cl.♯
Λ [ξiΛ

],
we obtain a probability distribution PΛ that –
by construction – yields the correct probability
distributions PΛk

when restricted to finite sets
Λk ⊂ Λ.

While the original version of the KET does
not hold for quantum processes, it is important
to note that the breakdown of the compatibility
property of joint probability distributions is not
a signature of quantum mechanics per se; as we
have already seen, any framework that allows
for interventions will exhibit this feature. The
GET provides a proper theoretical underpinning
for the corresponding experimental situations.
On the other hand, the breakdown of the
compatibility property can happen in quantum
mechanics even if only projective measurements
in a fixed basis {|iα〉} are performed [16, 17].

As already mentioned, the absence of compat-
ibility is tantamount to the absence of either
realism per se, or non-invasiveness (or both).
Consequently, it can be used as a definition
of non-classicality, as proposed in Ref. [17].
There, the authors employ the breakdown of the
consistency condition on the level of probability
distributions, when measuring in a fixed basis,
as a means to define the non-classicality of
Markovian processes. Using the framework of
quantum combs for the description of quantum
stochastic processes the ideas of [17] can be
extended to general processes with memory, i.e.,
non-Markovian processes [48, 49].

Following Ref. [17], we consider an ℓ-step
process to be classical if its joint probability
distributions with respect to measurements in a
fixed basis {|iα〉} satisfy a consistency condition.
Put differently, an ℓ-step process TΛk

is classical
(with respect to the basis {|i〉}) iff for all Λk ⊆ Λℓ

and all possible sequences of outcomes ik, . . . , i1

TΛk
[Pik

, . . . ,Pi1
] =

∑

Λℓ\Λk

TΛℓ
[Piℓ

, . . . ,Pi1
] , (31)

where Piα corresponds to obtaining outcome iα

from a projective measurement in a fixed basis at
time tα, i.e., Piα [ρ] = 〈iα| ρ |iα〉 |iα〉〈iα|.

The general structure of classical combs that
satisfy Eq. (31) can then be analyzed using the
Choi isomorphism between quantum processes
and positive matrices [50, 51]. As combs can
describe general processes with memory, Eq. (31)
represents a consistent definition of classical
processes with memory and allows a direct
extension of the results obtained in Ref. [17] to
the non-Markovian case [48, 49].

5 Relation to previous works

As already mentioned, the proof of the GET does
not rely on any particularities that are exclusive
to quantum mechanics or our formulation
thereof. The GET constitutes a sound basis
for the description of any conceivable (classical,
quantum or beyond) theory of stochastic
processes with interventions – independent of the
employed framework.

While we referred throughout to the frame-
work of quantum combs [32, 37, 38], originally
derived as the most general representation
of quantum circuit architectures, our results
apply equally well to any other framework
for describing quantum processes as linear
functionals. Examples of the mathematical
objects and frameworks (often the same thing
under a different name) given a firm theoretical
foundation by the GET include: process
tensors [12, 29, 30] and causal automata/non-
anticipatory channels [43, 52], which describe
the most general open quantum processes
with memory; causal boxes [53] that enter
into quantum networks with modular elements;
operator tensors [54, 55] and superdensity
matrices [56], employed to investigate quantum
information in general relativistic space-time;
and, finally, process matrices, used for quantum
causal modelling [13–15, 34]. In classical
physics, as well as the standard causal modelling
framework discussed in Sec. 2, our result applies
to the ǫ-transducers used within the framework
of computational mechanics [57, 58] to describe
processes with active interventions.
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Our theorem proves the existence of a
container space for all of the aforementioned
frameworks and allows for their complete and
consistent representation in the continuous time
limit, thus providing an overarching theorem for
probabilistic theories with interventions. This
is of particular importance for the field of
open quantum mechanics where the lack of
an extension theorem has been a roadblock
to obtaining a framework that coincides with
classical descriptions in the correct limit [16].
Here, switching perspective allows one to
describe both classical as well as quantum
open systems in a unified framework. This
fact has recently been used to obtain an
unambiguous definition of non-Markovianity in
quantum mechanics that coincides with the
classical one in the correct limit [59].

The GET goes beyond previous attempts to
generalize the KET for quantum mechanics. An
extension theorem for positive operator valued
measures was derived in Ref. [60] and was used
in Ref. [61] to show the existence of an ‘infinite
composition’ of an instrument. This extension
theorem is, however, limited to particular cases
of positive operator valued measures, and not
general enough to provide an underpinning for
the description of stochastic processes with
interventions.

More generally, a version of the KET for
quantum processes was derived in Ref. [18]. In
this work, the authors showed that any quantum
stochastic “process can be reconstructed up
to equivalence from a projective family of
correlation kernels”. By decomposing the control
operations Miα into their component Kraus
operators, it can explicitly be shown that these
correlation kernels correspond to combs, and
consequently, for quantum processes, the GET
is equivalent to Thm. 1.3 in Ref. [18]. However,
the mathematical structure of the latter does not
tie in easily with recently developed frameworks
for the description of quantum (or classical)
causal modelling, nor does it lend itself in a
straightforward way to the discussion of their key
properties. Additionally, our proof – in contrast
to the one presented in [18] – highlights the
role that causal order plays for the domain of
the resulting stochastic process TΛ. Specifically,
while independent CP maps at different times ti

are considered in [18], our construction makes

explicit the set of correlated operations on Λ that
TΛ can be meaningfully applied to.

The structural features of combs render
the investigation of fundamental features of
a process, like their non-Markovianity [29,
59], their causal structure [13, 34, 53], and
their classicality tractable. Furthermore, our
formulation has the advantage that combs are
defined in a clear-cut operational way, and allow
for a generalized Stinespring dilation [30, 32],
which makes their interpretation in terms of
open quantum system dynamics straightforward.
Finally, even though the GET is stated for combs
that map sequences of CP maps to probabilities,
its proof also applies – with slight modifications –
to general quantum combs (i.e., maps that map
combs onto combs [32, 38]).

6 Conclusions

While the KET is the fundamental building block
for the theory of classical stochastic processes,
it does not hold in quantum mechanics, or any
other theory that allows for active interventions.
This breakdown goes hand in hand with the
violation of Leggett-Garg inequalities: the
violation of such an inequality always implies
that compatibility conditions are not satisfied,
and hence the KET does not hold.

In this work, we have proven a generalized
extension theorem that applies to any process
with interventions, including quantum ones.
We have therefore shown that the roadblocks
encountered when describing quantum processes
in terms of joint probability distributions can
be remedied by changing perspective; while the
evolution of a density matrix over time does
not contain enough statistical information for
consistency properties to hold [16], considering a
quantum stochastic process as a linear functional
acting on sequences of CP maps allows one
to formulate a fully fledged theory. Taking
interventions into account is the only way
to obtain a consistent definition and rigorous
mathematical foundation for quantum stochastic
processes. Put differently, without taking
interventions into account, there is no way to
consistently define quantum stochastic processes.
In this sense, two seemingly different frameworks
– the framework of causal modelling, and the
theory of quantum stochastic processes – are
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actually two sides of the same coin.

In the limit of continuous time, the sequence of
CP maps becomes a continuous driving/control
of the system of interest. Thus, the
GET provides the theoretical foundation for
these experimental scenarios, important for
development of quantum technologies. Likewise,
just as in the case of classical stochastic
processes, the GET provides a toolbox for the
modelling of quantum stochastic processes; any
mechanism that leads to consistent families
of combs automatically defines an underlying
process.

It is important to emphasize the generality
of our main result. Due to the linearity
of mixing, any meaningful description of a
stochastic process – quantum or not – must
be expressible in terms of a linear function on
the space of locally accessible operations [12].
The proof of the GET is versatile enough to
account for any framework that aims to describe
temporally ordered processes, and hence provides
a sound mathematical underpinning for all of
them.

The GET contains the original KET as the
special case where the family of processes is
diagonal in the reference basis, and the only
allowed CP maps are projective measurements
in the same basis. On the one hand, this implies
that our extension of classical processes to the
quantum realm is the correct one. On the
other hand, this clear-cut definition of classical
combs lends itself ideally to the investigation
of the interplay of coherence and classicality,
as proposed in Ref. [17], in the experimental
observation of real-world processes with memory.

Finally, our discussion made transparent
where causality and causal order enter into
the proof of the GET, and what sets of
operations the resulting stochastic process can
meaningfully be applied to. While we have
mostly discussed temporally ordered processes,
in principle, even causally disordered processes
could be described by families of functionals
that satisfy a consistency requirement (Λ would
then be thought of as a set of labels for
different laboratories). However, there is no
deterministic Stinespring dilation for causally
disordered processes [33]. There are, on the other
hand, dilations that include post-selection [37,
62], and we conjecture that an underlying

causally disordered stochastic process would
be equivalent to post-selection on a class
of trajectories resulting from continuous weak
measurement.
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