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Abstract A statistical procedure for the analysis of time-frequency noise maps is

presented and applied to LISA Pathfinder mission synthetic data. The procedure is

based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-

frequency noise maps produced with the spectrogram technique. The influence of

the finite size windowing on the statistic of the test is calculated with a Monte Carlo

simulation for 4 different windows type. Such calculation demonstrate that the test

statistic is modified by the correlations introduced in the spectrum by the finite size

of the window and by the correlations between different time bins originated by over-

lapping between windowed segments. The application of the test procedure to LISA

Pathfinder data demonstrates the test capability of detecting non-stationary features
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in a noise time series that is simulating low frequency non-stationary noise in the

system.

Keywords Kolmogorov-Smirnov test · Spectrogram · Noise analysis ·

Time-frequency map · LISA Pathfinder · Gravitational waves · eLISA · LISA

1 Introduction

The Kolmogorov-Smirnov test is a well known statistical tool for the analysis of data,

it allows to verify with what probability an empirical distribution will tend to a given

cumulative distribution function when the number of data points goes to infinite [1].

The great advantage of the Kolmogorov-Smirnov test is its flexibility since the test

statistic does not depend from the particular distribution of the test data. The aim of

the present work is to develop a procedure based on the Kolmogorov-Smirnov test

for the analysis of time-frequency maps of noisy data in the framework of the LISA

Pathfinder mission. LISA Pathfinder (LPF) is an European Space Agency mission

that will characterize and analyze all possible sources of disturbance which perturb

free-falling test masses from their geodesic motion [2–6]. One of the final outcomes

of the mission will be the definition of a noise model for free-falling test masses that

will be used as a reference for the design and realization of future space-based gravi-

tational wave detectors. This will require a technique to quantitatively analyze noise

data and to assess the differences between noise measurements and models. More-

over, the analysis of noise is typically performed in the frequency or time-frequency

domain therefore we aim to develop a noise analysis tool that is suited for such data.

The problem of the statistical analysis of noise in the frequency domain was already

formulated in [7] where a number of data analysis strategies were developed and

compared. In this paper we present a further refinement of the Kolmogorov-Smirnov

test presented in [7] and we extend its range of application to the time-frequency

domain. The analysis of time-frequency data is particularly interesting since it allows

to identify and characterize non-stationary noise. In LISA Pathfinder non-stationary

noise can be the result of natural processes such as test masses random charging due

to high energy particles and thermal drift in the electronics. In Section 2, the statisti-

cal properties of the time-frequency spectrogram are discussed while in Section 3 the

Kolmogorov-Smirnov test is introduced and applied to the analysis of time-frequency

spectrogram data. The influence on the test statistic of the correlations introduced

by the data windowing process are analyzed in details for 4 different windows. In

Section 4 the test is applied to LISA Pathfinder synthetic noise. The noise series is

made non-stationary assuming that the noise provided by the capacitive sensor has

an energy that is increasing quadratically with the time. Once applied to the time-

frequency noise spectrogram the Kolmogorov-Smirnov test detect unambiguously

the increase of the noise excess with the time. In this paper we simulated an example

of non-stationary noise adding a non-stationary term (quadratic with time) in one of

LPF sub systems (electrostatic actuators). The global noise model used is represen-

tative of the current expectations of LPF performances. The non-stationary scenario

that has been chosen is only one of the possibility but currently it is not possible to
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predict if LPF noise will be non-stationary, in what amount and in what sub-system.

We know that some subsystems are sensitive to thermal drifts but the true environ-

ment in the space will be known only when the mission will fly. In any case the

method presented here is not dependent from the model assumed. The method detects

the differences in the underlining distributions for the noise sample spectrum at two

different times independently from the underlining model.

2 Statistical properties of the noise spectrogram

The spectrogram is a time-frequency map of the power content of a time series

x0, . . . , xN−1 that is based on the application of a short-time Fourier Transform. A

segment of data of length M < N is selected by a window function w and the

spectrogram elements for a time ti and a frequency fj are calculated by:

S
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ti, fj

)

= T
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Here T is the sampling time of the data, p is the starting point of the data segment

of length M , the window function w1 is defined over a segment of length M starting

at 0, the frequency fj = j/(T M) with j = 0, . . . , M/2 and ti is the time cor-

responding to the center of the interval
[

xp, xp+M−1

]

. It is worth to note that the

frequency series defined by the spectrogram data for a given ti is the sample spectrum

(sample periodogram) of the reduced time series xp, . . . , xp+M−1. If the data series

x0, . . . , xN−1 is constituted of non-stationary noise then the spectrogram provides

the spectral evolution of the noise power with the time.

The statistic of the sample spectrum was analyzed in detail in [7] where it was

demonstrated that the elements of the sample spectrum follow a Gamma distribution

if the elements of the time domain stochastic process are independent and Gaus-

sian distributed. The statistical properties of the elements of the spectrogram can be

obtained in analogy to the results presented in [7] for the sample spectrum. In particu-

lar in the case that the elements of the noise time series are independent and Gaussian

distributed the distribution of the elements of the spectrogram is a Gamma:

f (z; k, θ) =
z(k−1)e−

z
θ

θkŴ (k)
. (2)

Where k = ν/2, ν = 2, θ = 2λ, λ = E
[

S
(

ti, fj

)]

/νz = S
(

ti, fj

)

and

E
[

S
(

ti, fj

)]

is the expectation value for the spectrogram element.

It is worth to note that the statistic of the sample spectrum at each frequency bin

depends on the expectation value at that frequency (equation (2)), therefore the set of

random variables that constitutes the sample spectrum does not have the same cumu-

lative distribution. As a consequence the Kolmogorov-Smirnov test is, in principle,

1w is assumed to be square normalized to 1 so that
∑

i w2
i = 1.
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not applicable. Here we are interested in performing a test on the sample spectrum

in a given frequency band, If instead we considered a normalized spectrum, which is

obtained dividing the sample spectrum for its expectation value (pre-whitening), the

statistic of each frequency bin become the same and equation (2) simplifies to a Chi

square distribution. In such conditions the Kolmogorov-Smirnov test can be applied

to the data in a given frequency band. All these considerations are valid in the case

of vanishing correlation among the different elements of the spectrogram S
(

ti, fj

)

.

In practice the calculation of the spectrogram introduces two types of correlations

affecting S
(

ti, fj

)

along the frequency axis fj and the time axis ti respectively. The

correlations along the frequency axis are introduced by the data windowing process

that naturally correlates different frequency bins since it is a convolution operation

in frequency domain between the data and the window function. The correlations as

a function of the frequency bins separation �f can be written as [8]:

R (�f ) =
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The result of the application of equation (3) to a selection of windows functions [9] is

reported in Fig. 1a. It is worth to note that in the case of the rectangular window the

correlations are negligible on the standard Fourier frequency grid in accordance to the

well known result of the Fourier theory [8]. Blackman-Harris window instead is the

worst performing of the set but it remains one of the most appealing window func-

tion for the application to high dynamic range signals thanks to its efficiency in the

suppression of the spectral leakage. Correlations along the time axis are introduced

by the overlapping of the data segments in spectrogram estimation, such correlations

can be calculated as [8]:

Q(k) =
1
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a b

Fig. 1 a) Correlation between the frequency bins of a spectrogram at a given time bin. The reported values

refer to a series containing 105 data points and sampled at 1 Hz. As a consequence the minimum difference

between two contiguous frequency bins in the sample spectra is �f = 1 × 10−5 Hz. The definition of

the different windows can be found in [9]. b) Overlap correlation between contiguous time bins of the

spectrogram. The different segments of the time series are assumed to contain 105 data points
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Where k is an overlap shift factor. The expected values for the different windows of

our set are reported in Fig. 1b where it can be seen that the Blackman-Harris window

is the better performing in terms of suppressing correlations for a given overlap. This

property is particularly advantageous for spectrogram estimation since it allows to

obtain a finer time grid without increasing too much the degree of correlation between

the different time bins.

3 Kolmogorov-Smirnov test

Let X1, . . . , Xn be a set of independent random variables with cumulative distribu-

tion function F(x), and let X̄1, . . . , X̄n be the same set sorted in ascending order, we

define the empirical distribution of the sample:

Fn(x) =

⎧

⎨

⎩

0 for x < X̄1
k
n

for X̄k ≤ x < X̄k+1

1 for x ≥ X̄n.

(5)

As n → ∞ we expect that Fn(x) → F(x). The Kolmogorov-Smirnov test pro-

vides a statistical tool to verify if an empirical distribution is compatible with a given

cumulative distribution function [1]. Moreover the test can be used to verify if two

empirical distributions share the same asymptotic cumulative distribution function.

In this case, given two empirical distributions Fn1
(x) and Fn2

(x) we test the hypoth-

esis that they share the same cumulative distribution function F(x) if we define a

distance in the space of the cumulative functions:

dK (x) =
∣

∣Fn1
(x) − Fn2

(x)
∣

∣ . (6)

Where dK (x) is defined on the interval [0, 1] and K = (N1N2) / (N1 + N2) [1].

The statistical properties of dK = max [dK (x)] are independent from the particular

distribution F(x) that we are testing. This flexibility represents the major advantage

of the Kolmogorov-Smirnov test and it allows to implement the test for spectrogram

data in a straightforward way.

As already discussed the statistic of the sample spectrum at each frequency bin

depends on the expectation value at that frequency (equation (2)), those problems

are solved if we considered a normalized spectrum (pre-whitened), which is obtained

dividing the sample spectrum for its expectation value. In this case the statistic of each

frequency bin become the same and the Kolmogorov-Smirnov test can be applied

to the data. Therefore assuming to have a normalized spectrum or white noise the

Kolmogorov-Smirnov test can be easily applied for the analysis of non-stationary

noise in time-frequency maps obtained with the Fourier spectrogram technique. The

expectation value for the sample spectrum that is used for its normalisation (pre-

whitening) is typically not known a priori therefore it has to be estimated from the

data itself or from a previous noise run. As a consequence the model used for the

normalisation can not be an exact representation of the expectation value but, since

the same model is used for all the sample spectra corresponding to different time bins

of the spectrogram, the effect of the model inaccuracy cancels out and the test results

preserve their reliability.
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Fig. 2 Window induced correlation (above) and Kolmogorov-Smirnov critical values (below) for four

different window functions. Calculations are done assuming 0 % overlap and 5000 points in the time series

Given a spectrogram, we select the sample spectrum corresponding to the first time

bin as reference and construct the reference cumulative distribution from it according

to equation (5). We then compare the spectra corresponding to the other time bins

with the reference using the Kolmogorov-Smirnov test as formulated in equation (6).

As discussed above the application of a finite-time window to the data introduces

two sources of correlation, one is connected with the convolution in the frequency

domain the other is caused by segments overlap. Those two sources of correlations

affect the Kolmogorov-Smirnov test statistic in opposite directions. As can be seen

in Fig. 2 the frequency convolution tends to enlarge the possible fluctuations of the

empirical distribution and as a consequence the expected critical value2 is enlarged

proportionally. The overlap, instead, reduces such fluctuations since the overlapping

time series share a given amount of the data points. As a consequence a large overlap

correlation tends to decrease the expected critical values for the test. This can be

easily seen in Fig. 3 where we report the calculated critical values at 95 % confidence

for the Kolmogorov-Smirnov test, obtainded with a Monte Carlo simulation over

5000 independent realizations of white noise. The critical values are shown for 4

different data windows as a functions of the overlap and the number of samples in

the data series.

4 Application to LISA Pathfinder synthetic data

LISA Pathfinder is a controlled three body system composed of two test masses and

the enclosing spacecraft. One test mass is free falling along the principal measure-

ment axis and it is used as reference for the drag-free controller of the spacecraft. The

second test mass is actuated at very low frequencies (below 1 mHz) in order to follow

2Critical values are cut-off values that define regions where the test statistic has a probability lower than

α to be if the null hypothesis is true. α is the significance level such that the confidence level is 1 − α.

The null hypothesis is rejected if the test statistic lies within this region which is often referred to as the

rejection region [10].
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Fig. 3 Critical values for a 95 % confidence level for the Kolmogorov-Smirnov test on two spectral data

series as defined in equation (6). Those values are obtained with a Monte Carlo calculation over 5000

white noise independent realizations, the critical values are displayed as a function of the segments overlap

percentage and the number of samples (Nsamp) in the test data. I.e. critical values are calculated for two

sample spectra obtained from overlapping segments and containing Nsamp data each

the free falling test mass. This actuation scheme provides a measurement bandwidth

1 ≤ f ≤ 100 mHz in which both test masses can be considered effectively free-

falling. The system has two output channels along the principal measurement axis,

one measures the displacement of the spacecraft relative to one free falling test mass

and the other measures the relative displacement between the test masses. From the

knowledge of the displacement signals an effective force-per-unit-mass, aeff , acting

on the test masses can be extracted by a data reduction procedure that project dis-

placement data into force-per-unit-mass using a model for the spacecraft dynamics

[11]. Thanks to the common mode rejection between the two test masses, the differ-

ential force-per-unit-mass is not affected by the spacecraft noise, while It is largely

dominated by test mass noise at frequencies f < 10 mHz and by the interferometer

readout noise for f > 10 mHz. The test mass noise is then determined by the combi-

nation of different contributions such as magnetic noise, thermal gradients, test mass

charging and capacitive actuation noise.

In order to simulate a case in which the test mass is affected by non-stationary

noise, we generated a set of LISA Pathfinder synthetic data in which the capacitive

actuation noise is characterized by a power that is quadratically increasing with the

time while the other noise sources are kept stationary. At the beginning of the time

series we have the nominal capacitive actuation noise while at the end of the time
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Fig. 4 Displacement time series (above plot) as obtained at the interferometer differential channel in our simu-

lation. Those data are then processed in order to obtain the force per unit of mass time series (below plot)

series the average noise power is 6 time the nominal one. Displacement time series

at the output of the interferometer differential channel is reported in Fig. 4, together

with the corresponding force per unit of mass. In displacement time series the pres-

ence of an increasing low frequency noise is clearly visible, while the force per unit

of mass time series seems unaffected by that noise. In reality the force per unit of

mass is obtained by a data reduction procedure that involves a second derivative

that largely enhance the high frequency noise component that appears dominant in a

visual expection.

As we have already noted, the test mass noise is dominating the noise budget only

for frequencies f < 10 mHz, combining this range with the measurement bandwidth

we get a frequency band of interest for our experiment 1 ≤ f ≤ 10 mHz. We adopted

the procedure reported in [12] for the generation of two-channel cross-correlated data

series. We then converted the raw displacement time series in effective force-per-unit-

mass and we calculated the spectrogram for the differential force-per-unit-mass using

a Balckman-Harris data window and 50 % overlap between different segments. We

then divided the sample spectra at each time bin by an expected model3 for the accel-

eration noise in order to have a normalized time-frequency map as reported in Fig. 5.

The Kolmogorov-Smirnov test can be applied to the spectrogram data in order

to perform a quantitative assessment of the noise evolution with the time in the fre-

quency band of interest. As discussed in Section 3 we use the sample spectrum

corresponding to the first time bin as reference. All the sample spectra correspond-

ing to the other time bins of the spectrogram are then compared against the reference

using the Kolmogorov-Smirnov test. The quantity dK reported in Fig. 6 corresponds

to the Kolmogorv-Smirnov statistic dK = max [dK (x)], where dK (x) is defined in

equation (6).

3The expected model was obtained by a fit procedure of a sample spectra realized with all the noise sources

kept stationary at their nominal values.
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Fig. 5 Time-frequency spectrogram of the synthetic data series. The data series is representing a 3 days

noise run sampled at 10 Hz. The frequency band of interest is 1 ≤ f ≤ 10 mHz as marked in the figure.

For the calculation of the spectrogram, we converted the raw data series in force-per-unit-mass and split it

in 50 overlapping segments (50 % overlap). The spectrogram is obtained calculating the sample spectrum

for each of the segments and then normalizing for the expected value, which is calculated assuming all the

noise sources stationary and at their nominal values

As can be observed in Fig. 6, the Kolmogorov-Smirnov statistic is presenting an

increasing trend with the increase of the time, which is indicating a departure from

the statistic of the spectrum corresponding to the first time bin. The dashed lines on

the plot are the thresholds corresponding to different confidence levels. As can be

Fig. 6 Kolmogorov-Smirnov statistic as a function of the time. The statistic is calculated for the time-

frequency data reported in Fig. 4 in the frequency band of interest 1 ≤ f ≤ 10 mHz. We also report

the threshold line corresponding to different confidence levels, such levels are obtained by a Monte Carlo

calculation over 5000 independent white noise realisations. The graph should be interpreted in the sense of

a statistical test in which one rejects the null hypotheses if the test statistic is larger than the critical value.

Here the null hypothesis is that the noise level in the given segment of the spectrogram is compatible with

the one of the first segment. If one of the threshold level is exceeded then the two noise levels should be

considered not compatible to the confidence level associated to that threshold
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seen all the lines are crossed with the increase of the time with the exception of the

99.99 % confidence line. In order to have a quantitative comparison we can look at

the values of the in-band energy excess for the different time bins. In particularly we

have that at the time 1.5, 2 and 2.5 × 105 seconds, we observe an excess energy with

respect to the first time bin of 12, 16 and 21 % respectively.

5 Conclusions

A procedure for the statistical analysis of time-frequency noise maps was pre-

sented and applied to LISA Pathfinder synthetic data. The procedure is based on the

Kolmogorov-Smirnov test that, thanks to its flexibility, can be applied in a straight-

forward way to the analysis of time-frequency maps. The influence of the correlations

introduced by the data windowing process was classified and quantified thanks to

a Monte Carlo calculation over 5000 independent realizations of a Gaussian white

noise process. The application of the test to LISA Pathfinder synthetic noise data

has demonstrated the capability of detecting non-stationary features in the noise data

series. The proposed experiment was simulating a failure in the capacitive actuation

hardware that was introducing a quadratically increasing power term to the test mass

noise time series. The test applied to a normalized time-frequency map has unam-

biguously demonstrated its capabilities of detecting non-stationary behavior in noise

data series. In fact, the Kolmogorov-Smirnov statistic clearly demonstrates an evo-

lution with the time that is a consequence of the change in the power content of the

noise time series. In particular we have observed, in our test, that the Kolmogorov-

Smirnov statistic is convincingly crossing the 95 % confidence threshold for in-band

energy excess greater then 12 %.
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