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Abstract. We derive the two-sample Kolmogorov-Smirnov type test when a nuisance
linear regression is present. The test is based on regression rank scores and provides a
natural extension of the classical Kolmogorov-Smirnov test. Its asymptotic distributions
under the hypothesis and the local alternatives coincide with those of the classical test.
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1. Introduction

In [3] Hájek extended the Kolmogorov-Smirnov test of the hypothesis of random-

ness to tests against alternatives of simple linear regression. He expressed the test

criterion (see equation (4)) as a functional of a special rank score process (Hájek’s

rank scores) for which he proved convergence to Brownian bridge. We mention this

fact in Subsection 2.1. Similarly he extended the Cramér-von Mises and the Rényi

tests. If, instead of Hájek’s rank scores, we consider the process of regression rank

scores (see e.g. [1]), we can extend the (two-sample) Kolmogorov-Smirnov test also

to a nuisance regression.

So here we deal with the tests of Kolmogorov-Smirnov type on one component of

the regression parameter β in the linear model Y = Xβ + e. These tests, based on

regression rank scores, were introduced in Jurečková [5]. We derive the two-sample

variant of the test and show that this test represents a straightforward extension of

the classical Kolmogorov-Smirnov test, more specifically the variant of the classical

Kolmogorov-Smirnov test that is the most sensitive to difference in location.

*This work was supported by the Czech Science Foundation under Grant No. 201/05/H007
and by Research Project LC06024.
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Note that already in Gutenbrunner and Jurečková [1] the regression rank score

process was studied. Further, in Gutenbrunner et al. [2] a broader class of tests of

hypothesis in linear regression model based on regression rank scores was derived.

This class represents a generalization of simple linear rank tests.

Consider the linear regression model

(1) Y = Xβ + e = X
(1)β(1) + x

(p)βp + e,

where Y = (Y1, . . . , YN )′ is a vector of observations, X = XN×p is a known design

matrix, β = (β1, . . . , βp)
′ = (β(1)′ , βp) are unknown parameters, e = (e1, . . . , eN )′

is the vector of i.i.d. errors, the matrix X
(1) consisting of the first p− 1 columns of

the matrix X represents the nuisance regression and x
(p) is the pth column of X.

Here we do not specify the vector x
(p) but later, in Section 2, we will set x

(p) =

(1, . . . , 1, 0, . . . , 0)′ to derive and describe the two-sample Kolmogorov-Smirnov test.

We want to test the hypothesis

H0 : βp = 0, β(1) unspecified.

This problem will be tested by a test of Kolmogorov-Smirnov (K-S) type. In the

presence of nuisance regression, regression rank scores (RRS) are employed. RRS

(see e.g. [2]) in the submodel of (1) given by H0 are defined as the vector of solutions

âN (α) = (âN1(α), . . . , âNN(α))′, 0 6 α 6 1 of the linear programming problem

(1N denotes the (N × 1) vector of ones):

maxY
′
âN (α)

subject to

X
(1)′

âN (α) = (1 − α)X(1)′
1N ,(2)

âN (α) ∈ [0, 1]N .

1.1. Assumptions

We will impose the following conditions on the regression matrix X and on the

underlying distribution function F .

Let x
′

i denote the ith row of the matrix X, i = 1, . . . , N . We assume that the

matrix X = XN satisfies the regularity conditions

(X.1) xi1 = 1, i = 1, . . . , N ,

(X.2) max
16i6N
16j6p

|xij | = O(N (2(b−a)−δ)/(1+4b))

for some a, b, δ, 0 < a 6 1
4 − ε, 0 < b− a 6 1

2ε, ε > 0, δ > 0,
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(X.3)
1

N

N
∑

i=1

‖xi‖
3 = O(1) as N → ∞,

(X.4) DN = N−1
X

′

NXN
N→∞

−→ D, where D is a positively definite matrix.

Further assume that the errors e1, . . . , eN in (1) are i.i.d. with an absolutely con-

tinuous distribution function F whose tails are assumed to satisfy the following

regularity conditions (F.1)–(F.4) (these conditions are satisfied by many common

densities f including t-distributions with 5 or more d.f.):

(F.1) F has an absolutely continuous density f , positive for A < x < B and

decreasing monotonously when x → A+, x → B−, where −∞ 6 A =

sup{x : F (x) = 0} and +∞ > B = inf{x : F (x) = 1}. The derivative f ′

of f is bounded a.e.

(F.2) |F−1(α)| 6 c(α(1 − α))−a (with a from (X.2)) for 0 < α 6 α0, 1 − α0 6

α < 1 for some 0 < α0 6 1
2 and for some c > 0.

(F.3) 1/f(F−1(α)) 6 c(α(1 − α))−1−a for 0 < α 6 α0, 1 − α0 6 α < 1, c > 0.

(F.4)
∣

∣

∣

f ′(x)

f(x)

∣

∣

∣
6 c(|x| + 1), x ∈ R

1, c > 0.

1.2. Statistic of K-S type

Consider the model (1) and define the projection matrix

H
(1) = H

(1)
N =

(

h
(1)
ij

)j=1,...,N

i=1,...,N
= X

(1)
N (X

(1)′

N X
(1)
N )−1

X
(1)′

N

and x
∗ = (x∗1, . . . , x

∗

N )′ = H
(1)

x
(p) the projection of x(p) into the space spanned by

the columns of X(1)
N .

We define the process {SN(t) : 0 6 t 6 1} on C[0, 1]:

SN (t) =

( N
∑

i=1

(x
(p)
i − x∗i )

2

)

−1/2 N
∑

i=1

(x
(p)
i − x∗i )âNi(t).

It is shown in [5] that under the conditions (X.1)–(X.4) and (F.1)–(F.4) it follows

from [2, Theorem 3.2] that

(3) sup
06t61

|SN (t) − S̃N(t)|
p
→ O as N → ∞,

where

S̃N (t) =

( N
∑

i=1

(x
(p)
i − x∗i )

2

)

−1/2 N
∑

i=1

(x
(p)
i − x∗i )I[ei > F−1(t)], 0 6 t 6 1

and that SN (t) converges to the Brownian bridge in the uniform topology on C[0, 1].

In the next section we show how to construct a test based on this fact in the case of

a two sample problem.
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2. Two-sample problem

Consider the model (1) and let x(p) = (1, . . . , 1, 0, . . . , 0)′ be the vector withm ones

and n zeros, m+ n = N .

We want to test the hypothesis H0 of no difference between the samples. This two-

sample problem will be tested by a test of Kolmogorov-Smirnov (K-S) type which is

a generalization of the classical rank test of K-S type (the variant that is the most

sensitive to difference in location) that works in the model (1) without nuisance

regression (X(1) = 1N).

2.1. Classical K-S two-sample test

In the location model (model (1) with X
(1) = 1N ) the solution âN (α) of (2)

specializes to Hájek’s rank scores a∗

N (α) = (a∗N1(α), . . . , a∗NN(α)) where

a∗Ni(α) = a∗N (Ri, α) =











1, 0 6 α 6 (Ri − 1)/N,

Ri − αN, (Ri − 1)/N < α 6 Ri/N,

0, Ri/N < α 6 1,

where Ri is the rank of Yi among Y1, . . . , YN , i = 1, . . . , N . Hájek in [3] or Hájek &

Šidák in [4] considered the process TN = {TN(t) : 0 6 t 6 1},

(4) TN(t) =

( N
∑

i=1

(cNi − cN )2
)

−1/2 N
∑

i=1

(cNi − cN )a∗N (Ri, t),

with a triangular array cN = (cN1, . . . , cNN )′ of constants satisfying

N
∑

i=1

(cNi − cN )2/ max
16i6N

(cNi − cN )2
N→∞

−→ ∞, cN = N−1
N

∑

i=1

cNi

and showed that TN converges in the uniform topology on C[0, 1] to the Brownian

bridge. We define the empirical distribution functions of the two samples F̂m(x) =

m−1
m
∑

i=1

I[Yi 6 x] and Ĝn(x) = n−1
N
∑

i=m+1

I[Yi 6 x] and the zero-one quantity Vi,

Vi = 1 if Y(i) is one of Y1, . . . , Ym, i = 1, . . . , N .

Setting cN = x
(p), max

06t61
TN (t) coincides with the classical K-S two-sample test

statistic T+. We use the fact that (2) implies
N
∑

i=1

a∗N(Ri, j/N) = (1−j/N)N = N−j

and that max
06t61

TN(t) = max
16j6N

TN (j/N) since the process TN(t) is linear on every
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interval [(j − 1)/N, j/N ], j = 1, . . . , N :

T+ =
(mn

N

)1/2

max
16j6N

[Ĝn(Y(j)) − F̂m(Y(j))]

=
(mn

N

)1/2

max
16j6N

[ 1

n
((1 − V1) + . . .+ (1 − Vj)) −

1

m
(V1 + . . .+ Vj)

]

=
( N

mn

)1/2

max
16j6N

[jm

N
− (V1 + . . .+ Vj)

]

=
( N

mn

)1/2

max
16j6N

[

jm

N
−

m
∑

i=1

(

1 − a∗N

(

Ri,
j

N

))

]

=
( N

mn

)1/2

max
16j6N

[ m
∑

i=1

a∗N

(

Ri,
j

N

)

−
m

N
(N − j)

]

=
( N

mn

)1/2

max
16j6N

[

(

1 −
m

N

)

m
∑

i=1

a∗N

(

Ri,
j

N

)

−
m

N

N
∑

i=m+1

a∗N

(

Ri,
j

N

)

]

= max
06t61

TN (t).

2.2. Main result

Let us first recall that x
(p) = (1, . . . , 1, 0, . . . , 0)′ and x

∗ = (x∗1, . . . , x
∗

N )′ =

H
(1)

x
(p). The projection matrix H

(1) =
(

h
(1)
ij

)j=1,...,N

i=1,...,N
corresponding to X

(1) is

idempotent, so

N
∑

i=1

(x
(p)
i − x∗i )

2 = (x(p) − x
∗)′(x(p) − x

∗) = x
(p)′(IN − H

(1))(IN − H
(1))x(p)

= x
(p)′ (IN − H

(1))x(p) = m−

m
∑

i=1

m
∑

j=1

h
(1)
ij > 0.

Theorem 1. Assume that XN satisfies (X.1)–(X.4) and F satisfies (F.1)–(F.4).

Let âN (α) = (âN1(α), . . . , âNN(α))′, 0 6 α 6 1 be the regression rank scores cor-

responding to the submodel of the model (1), i.e. under H0. Then the process

{SN(t) : 0 6 t 6 1},

SN (t) =

( N
∑

i=1

(x
(p)
i − x∗i )

2

)

−1/2 N
∑

i=1

(x
(p)
i − x∗i )âNi(t)

=

(

m−
m

∑

i=1

m
∑

j=1

h
(1)
ij

)

−1/2[ m
∑

i=1

(

1 −
m

∑

j=1

h
(1)
ij

)

âNi(t)

+

N
∑

i=m+1

(

−

m
∑

j=1

h
(1)
ij

)

âNi(t)

]

,
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converges to the Brownian bridge in the uniform topology on C[0, 1]. Thus, for

K+
N = max

06t61
SN (t) and KN = max

06t61
|SN (t)| we can write, under H0,

lim
N→∞

P (K+
N < x) =

{

1 − e−2x2

, x > 0,

0, x < 0,

lim
N→∞

P (KN < x) =

{

1 − 2
∞
∑

z=1
(−1)z+1e−2z2x2

, x > 0,

0, x < 0.

P r o o f. It follows from (3) and from the properties of the Brownian bridge. �

The statistics K+
N and KN , similarly to the classical K-S statistics, can be used

for testing the two sample problem with nuisance regression against one-sided and

two-sided alternatives.

By Theorem 1 the test based on K+
N rejects H0 on the asymptotic significance

level α provided K+
N > (− 1

2 logα)1/2.

The asymptotic power of the test based on K+
N , against the local alternative

HN : βp = N−1/2∆, with β1, . . . , βp−1 unspecified,

can be obtained from the following theorem.

Theorem 2. Under the conditions of Theorem 1 and under HN , the process

SN (t) −

[(

m−

m
∑

i=1

m
∑

j=1

h
(1)
ij

)1/2

∆N−1/2f(F−1(t))

]

converges to the Brownian bridge {Z(t) : 0 6 t 6 1} in the uniform topology on

C[0, 1] from which it follows that

lim
N→∞

P (K+
N > x|HN )

= P

(

max
06t61

{

Z(t) +

(

m−

m
∑

i=1

m
∑

j=1

h
(1)
ij

)1/2

∆N−1/2f(F−1(t))

}

> x

)

for any x > 0. Additionally,

lim
N→∞

P
(

K+
N >

(

−
logα

2

)1/2

|HN

)

− α

=

[

2

(

m−

m
∑

i=1

m
∑

j=1

h
(1)
ij

)1/2

∆N−1/2α
(

−
logα

2

)1/2

×

∫ 1

0

−
f ′(F−1(u))

f(F−1(u))
ψ(u, α) du

]

(1 + o(1))
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holds for
(

m−
m
∑

i=1

m
∑

j=1

h
(1)
ij

)1/2

∆N−1/2 → 0, where

ψ(u, α) = 2Φ
[(

−
logα

2

)1/2

(2u− 1)(u(1 − u))−1/2
]

− 1,

0 < α < 1 and Φ is the standard normal distribution function.

P r o o f. It follows from (3) and from [4, Theorem VI.3.2]. The last assertion

follows from [4, Theorem VI.4.5]. �

R em a r k 1 (2-way ANOVA model). For example, in two-way layout, we can

use this two-sample K-S test, similarly to e.g. the Friedman test, for comparing

two treatments applied on I blocks. The effects of the blocks would represent the

nuisance regression here.

2.3. Cramér-von Mises type test

Similarly to the Kolmogorov-Smirnov test, we can generalize also the Cramér-von

Mises type two-sample test for nuisance regression.

We first look at the location model. With the same notation as in Subsection 2.1,

we put again cN = x
(p) = (1, . . . , 1, 0, . . . , 0)′, and for TN(t) from (4) we have that

the classical Cramér-von Mises two-sample test statistic M equals (see [4, III.1.3.11

and V.3.8])

M =
1

mn

N−1
∑

j=1

[jm

N
− (V1 + . . .+ Vj)

]2

=

∫ 1

0

T 2
N (t) dt+

1

6N
.

In model (1) (for nuisance linear regression) the test criterion of the Cramér-von

Mises type two-sample test is then
∫ 1

0 S
2
N (t) dt, where SN (t) is the process from

Theorem 1, and it can be seen from the form of the test statistic that this test with a

critical region {
∫ 1

0 S
2
N(t) dt > C} is suitable only for two-sided alternatives (similarly

to the statistic KN). The critical values can be obtained from the following theorem.

Theorem 3. Under the conditions of Theorem 1 we have

lim
N→∞

P

(
∫ 1

0

S2
N (t) dt < x

)

= P

( ∞
∑

j=1

X2
j

j2π
2
< x

)

,

where X1, X2, . . . are independent standardized normal random variables.

P r o o f. It follows from Theorem 1 and from the property of the Brownian

bridge stated in [4, Theorem V.3.3.c]. �
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All the tests proposed in this paper are based on the regression rank scores and

their construction is inspired by the structure of the classical Kolmogorov-Smirnov

(Cramér-von Mises) test. Therefore, they do not require a preliminary estimation of

the nuisance parameter and their asymptotic distributions coincide with the classical

tests.
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