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Abstract—Waterborne chemical plumes are studied as a
paradigm for representing a means for molecular communication
in a macro-scale system. Results from the theory of fluid tur-
bulence are applied and interpreted in the context of molecular
communication to characterize an information cascade, the infor-
mation dissipation rate and the critical length scale below which
information modulated onto the plume can no longer be decoded.
The results show that the information dissipation decreases with
increasing Reynolds number and that there exists a theoretical
potential for encoding smaller information structures at higher
Reynolds numbers.
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I. INTRODUCTION

Molecular communication (MC) is concerned with infor-

mation transfer by preserving information in the structure

of chemical flow through molecular diffusion, advection or

reaction. [1]. Hence, the information transmission in MC

is closely associated with the physics of fluid dynamics.

The mechanism of MC, i.e., using chemical substances for

information exchange, is prevalent in nature among organ-

isms at various length scales, from intra-cell signaling [2]

and bacterial communication [3] to airborne and waterborne

pheromone signals [4]. A remarkable applications enabled by

MC is targeted drug delivery that requires coordination and

networking among nanomachines inside the body [5].

At nano-scale the physical conditions are such that the main

mechanism of transport is mass diffusion [1]. Therefore fluid

turbulence, for which other transport mechanisms are relevant,

have hitherto hardly been considered at all in the context of
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MC. Nevertheless, MC is obviously not restricted to nano-

scales, as demonstrated by insect and crustacean pheromone

signaling [4]. Here turbulence does become a crucial issue

affecting the reliability of the message transfer [6], [7]. The

goal of the current study is to draw on turbulence theory to

assess implications of relevance to MC at macro scale.

The conceptual framework for the theoretical description

of fluid turbulence was defined by Kolmogorov [8], [9]. In

the idealized scenario of homogeneous, isotropic turbulence -

that is turbulence which is statistically invariant under trans-

lations and rotations, Kolmogorov’s approach was based on

Richardson’s notion that larger eddies in a turbulent flow field

are unstable and break up into successively smaller eddies.

Thereby a cascade is created by which energy is transferred

from the largest to the smallest length scales. The energy is

eventually dissipated by the viscosity at a critical smallest

length scale (cf. [10], [11]).

As indicated above, MC at macro-scale with turbulence is

abundant in nature and technology (e.g., sensing contamination

in underground water networks). In many such cases, these

plumes carry a biological signal (e.g., communication medi-

ated by pheromones [12]–[14]), and in others the chemical

plume patterns are a proxy signal for a hazardous process

(e.g., oil leakage [15] and source localisation [16], [17]).

If the information is embedded in the physical pattern of the

plumes then the control of these chemical plumes becomes

an essential aspect relevant to health and safety of marine

life. This happens when the marine life communicate with

chemical plumes, and any changes to the physical pattern

of the plume can produce false alarm for recipient of the

plume. Quantities such as the concentration amplitude level

[18] and spatiotemporal characteristics [19]–[22] can be used

for information encoding. The information modulated onto

the chemical plume then propagates through the transmission

channel and eventually arrives at the receiver side, where

the proper signal detection schemes recover the transmitted

information [23], [24].

In terms of fluid dynamics the chemical used to encode

the information represents a passive scalar. That is a quantity

which has no dynamic influence on the ambient turbulence

itself. The concentration of the chemical varies in space and

time as it becomes mixed and distributed by the turbulent flow.

From an information-theoretical point of view, the velocity

field of the chemical plume contains a certain amount of

information. This is so because the velocity field near the

emitter of the plume is correlated to the velocity field some

distance away [11], [25]–[27].
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Fig. 1. Experimental arrangement in water channel (not to scale).

The goal here is to introduce established theoretical con-

cepts for the energy cascade of turbulence and for the mixing

of passive scalars, and apply these to chemical plumes as

an example for a macro-scale MC system, interpreting the

results from the viewpoint of information theory. The aim is to

find the critical smallest length scale below which information

modulated onto chemical plumes by means of a passive tracer

can no longer be decoded and the rate at which information

is dissipated.

II. EXPERIMENTAL SET UP

Experiments were conducted inside a water channel with

overall length 15 m and height 0.6 m. The channel width is

w = 0.3 m and its fill level during operation was h = 0.34 m.

The experimental arrangement is schematically illustrated in

Fig. 1. An obstacle consisting of an array of smooth steel rods,

each of diameter 2.5 cm, can be placed 7 m downstream of

the channel inlet as depicted in Fig. 1. When the water passes

the obstacle then turbulence is generated in the wake of the

rods.

It is assumed that the turbulence in the water channel is

statistically steady when the obstacle is absent. The flow in the

wake of the obstacle will be referred to as modified turbulence.

Its statistical properties depend on the distance from the

obstacle. This is so because sufficiently far downstream from

the obstacle the flow will have resumed the properties of

steady turbulence after all turbulent structures generated by

the obstacle have been dissipated by the action of viscosity.

A syringe-pump arrangement is located 1m downstream of

the obstacle and acts as an information transmitter (Tx). The

information is represented by defined amounts of fluorescent

tracer (Rhodamine WT) which has an aqueous release con-

centration C0 = 105 ppb. The tracer is injected sequentially

into the channel by Tx. The release velocity (0.2 ms−1)

approximately matches the velocity of the ambient liquid to

minimize biasing due to significant shear layers and additional

turbulence resulting from the scalar release [28]. The released

liquid quickly adopts the flow velocity of the ambient water

and is then transported along as a passive scalar.

TABLE I
EXPERIMENT PARAMETERS

Variable Value

Channel dimensions 15 m ×0.6 m ×0.3 m
Distance between Tx and Rx, d 1 m to 5 m
Diameter of rods, D 25 mm
Schmidt number of
Rhodamine WT, Sc 2100

Kinematic Viscosity of water, ν 1× 10−6 m2s−1

Density of water, ρ 1000 kgm−3

Transmitter Concentration, C0 105ppb
Mean velocity at level of Tx-Rx

in steady turbulence, U0 0.16, 0.23, 0.295 m s−1

A receiver (Rx) is mounted at a distance in the range

1 m≤ d ≤ 5 m downstream of Tx. The receiver comprises

an Ultrasonic Velocity Profiler (UVP) [29] combined with a

CYCLOPS-7 Submersible Fluorometer [30] such that it can

concurrently measure the flow velocity and the Rhodamine

tracer concentration. The maximum axial extent of the section

measurable with the UVP probe is 185 mm. The spatial

and temporal measurement resolution of the velocity field is

0.74mm and 63ms, respectively. The temporal resolution of

the CYCLOPE is 2 Hz and it measures the concentration at a

single point along the channel.

Water was pumped through the channel at rates yielding

mean flow velocities U0 of 0.16, 0.23 and 0.295 m s−1 at

the height level connecting Tx and Rx. A global Reynolds

number to characterize the dynamics in the open channel flow

is defined as Re0 = U0L/ν, where L = A/P represents the

hydraulic radius of the channel with its wetted cross-sectional

area A = wh and its wetted perimeter p = 2h+w [31]. For the

three values of the flow velocities U0 for which experiments

were conducted, this yields values Re0 of 16, 000 24, 000 and

30, 000.

The velocity component in the main flow direction inside

the channel is measured as a function of time t and distance x
from Rx and referred to by u(t, x). The time-averaged mean

flow velocity at any particular location in the flow field is

denoted by u0 and its associated fluctuating component is

u′. Similarly the tracer concentration is C(t, x) with random

fluctuation (variance) 〈C2〉.
On-off keying (OOK) modulation [32], a special case of

the binary concentration shift keying, is used for the tracer

release at Tx. Note that in OOK, the transmission of bit ‘1’

is represented by the emission of a chemical plume for a time

period of tp, while the bit ’0’ message corresponds to a period

of no tracer release.

III. ON-OFF KEY DYE INJECTION

A. Injection Mechanism

Single emissions and consecutive emissions are consid-

ered for OOK dye injection. In single emission, 10mL of

fluorescent tracer liquid (the information carrier) is released

into the channel for a period of t=2.5 s. A perfect step-

pulse release is unrealistic. Therefore the concentration profile

in steady turbulence at a location 1m downstream of the

injector (transmitter) is considered as the release function (see
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Fig. 2. a1) Concentration profile at d=1 m from the transmitter. This profile is fitted by the Gaussian distribution to derive the OOK injector pulse function.
The inset shows histogram of the peak values of the concentration profiles at d=1 m from the transmitter. Superposition of ten CIRs at a2) d=1 m, a3) d=3 m
a4) d=5 m. b1) Seven consecutive signals sent to the channel by the transmitter. Seven consecutive signals received by the receiver at b2) d=1 m, b3) d=3 m
b4) d=5 m.

Fig. 2(a1)) representing bit ’1’. The superposition of 10 single

emissions in 3 different locations downstream of the injector

is displayed in Fig. 2(a2-a4). The distribution of the peak

amplitudes at each location is displayed in the inset of each of

Fig. 2(a2-a4). The figures reveal that the variance of the peak

amplitudes decreases with distance from the transmitter. The

consecutive-emission scenario is illustrated in Fig. 2(b1-b4).

The symbol duration for each bit ‘1’ is tp = 7.5 s with time

delay ∆tp = 5.0 s between each pair of successive puffs. At

d = 1.0 m downstream of the transmitter, the individual bit

‘1’ is distinguishable but as the distance from the transmitter

increases, the effects of ISI on the received signal is intensified

in a way that at d = 5.0 m a sophisticated detection algorithm

is required to detect the received signal.

B. Concentration data

Figure 3 displays raw data for the concentration C(t)
recorded by the Fluorometer for the release of seven consec-

utive bit ‘1’ symbols in steady turbulence. The Fluorometer

was located d = 1.0 m downstream of Tx. Data for the three

different release Reynolds numbers Re0 are included.

Figure 3 shows that the information at higher Re0 arrives

at Rx earlier than those with lower Re0 resulting from higher

mean velocity U0 at higher Re0. The result to note from

Fig. 3 is that the tracer concentration detected by the Fluorom-

eter decreases substantially with increasing Reynolds number.

This reflects increased turbulence levels and, associated, more

effective mixing at higher Re0. The significant reduction in

the signal amplitude can degrade the so-called bit error rate

(BER) performance. This is an important index characterizing

the reliability of a communication system. It is defined as the

ratio of incorrectly decoded bit number to the total transmitted

Fig. 3. Seven-bit signal sequences for the tracer concentration, for three
different values of the Reynolds number Re0, in steady turbulence.

bit number; such that lower BER values represent better

performance.

Figure 4 compares measured concentration levels for the

seven-bit sequence of Figure 3 at Re0 = 16, 000 for steady

turbulence to a corresponding bit sequence for modified turbu-

lence existing when the obstacle is in place. The figure reveals

that the concentration levels for the modified turbulence are

substantially lower than those for the steady turbulence. This

signal attenuation implies that the turbulence generated by the

obstacle has significantly increased the mixing efficiency. The

measurements revealed that the obstacle leads to an almost

tenfold increase of the turbulence level 〈u′2〉 in comparison to
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Fig. 4. Seven-bit signal sequences for the tracer concentration for steady
turbulence at Re0 = 16, 000 in comparison to data for the corresponding
flow in the modified turbulence.

steady turbulence in the absence of the obstacle.

IV. TURBULENT VELOCITY SIGNAL

To quantify the different length scales of a turbulent flow the

spatiotemporal variation of the velocity field is required. Fig-

ure 5 and Fig. 6 illustrate examples of such variations obtained

from our experiments. Figure 5 displays the temporal variation

of the flow velocity u(t) at a point d = 1.0 m downstream of

Tx. The random nature of the signal reflects that a wide range

of frequencies associated with the hierarchy of tangled eddies

of varying sizes are embedded in the turbulent flow. Lower

frequency components are associated with large eddies and

higher frequency components correspond to smaller eddies.

Whilst Fig. 5 illustrated temporal velocity fluctuation Fig. 6

shows a spatial velocity variation u(x) of a flow section at a

particular instance in time. The large-scale fluctuations in the

lower plot of Fig. 6 qualitatively reflect the approximate scale

of the largest eddies. A quantitative measure of this scale is

defined in section IV-A.

A. Velocity correlation and integral length scale

The correlation function is one main tool for analyzing

velocity data in fluid turbulence. It can be used to assess the

distance required between sample points in the flow field for

the velocity values to become effectively uncorrelated. The

velocity correlation is given by the ensemble average [11]

Rxx =
1

2X

∫ X

−X

u′(x)u′(x+ r)dr = 〈u′(x)u′(x+ r)〉 . (1)

The associated longitudinal velocity correlation function is

a dimensionless component of Rxx given by [11]

f(r) =
Rxx(r)

Rxx(r = 0)
(2)

and satisfying f(r = 0) = 1.

Fig. 5. Temporal variation of velocity, u(t) at d = 1 m from Tx

Large Eddyl

Fig. 6. Spatial variation of velocity, u(x) over a section extending 185 mm
upstream of Rx, which itself was located d = 1 m downstream of Tx.

The integral scale l characterizes the extent of the region

where velocities are appreciably correlated. It represents the

length scale of the largest eddies containing most of the energy

(cf. Fig. 6) and it is given by [11]

l =

∫
∞

0

f(r)dx . (3)

B. Energy cascade

According to the Wiener–Khinchin theorem [33] the Fourier

transform F of the autocorrelation function Rxx of (1) yields

the one-dimensional energy spectrum E(k) of u′



 5

F[Rxx] = 2π|U(k)|2 = E(k) (4)

where U(k) = F(u′) is the Fourier transform of u′ and k is

the wavenumber.

Figure 7 displays the energy spectrum of the velocity field

as a function of the wavenumber k. Data are shown for three

different values of a large-scale Reynolds number defined as

Rel = lul/ν. Here ul is velocity of the largest eddies for

which estimates can be inferred from the measured UVP data.

The figure reveals that the data approach E ∝ k−5/3 for

increasing Rel. To readers unfamiliar with fluid dynamics

we highlight that this relation between E and k, at high

Reynolds number, represents one of the most celebrated results

in turbulence and is referred to as the Kolmogorov five-thirds

law [10]. The fact that the −5/3 dependence is obtained for

the present measurements gives us confidence in our UVP

velocity data.

While the integral scale of (3) represents the measurable

scale of the largest eddies the size of the smallest eddies, η, and

their associated velocity uη cannot be resolved experimentally;

they have to be obtained from theoretical consideration. A

Reynolds number associated with these two quantities is

defined as Reη = ηuη/ν.

It is known (cf. [11]) that most eddies break up on a time

scale of their turn-over time. For the largest eddies this time

scale is l/ul. Therefore the rate at which energy (per unit

mass) is transferred down the energy cascade from the largest

eddies is [11]

ǫl =
u2

l

l/ul
. (5)

The energy cascade comes to a halt at small scales where

the viscous forces are dominant and Reη will be of order unity.

The rate of dissipation of energy at the smallest scales is given

by (cf. [11]),

ǫη = ν
u2

η

η2
(6)

When the turbulent flow is statistically steady, the rate of

the generation and dissipation of energy at large and small

scales are the same. If this were not the case, then energy

would accumulate at an intermediate scale. From (5) and (6)

it therefore follows that

u3

l

l
∼ ν

u2

η

η2
. (7)

The Reynolds number Reη = ηuη/ν at smallest scales,

where viscous forces dominate, must be of order unity. Rear-

ranging (7) by considering Reη ∼ 1 yields

η ∼ lRe
−3/4
l . (8)

The expression in (8) provides a means to quantify the

smallest scale η of the turbulent energy cascade based on

the known size l of the largest eddies and their associated

Reynolds number Rel. The length scale η and the velocity

scale uη are referred to as the Kolmogorov microscales [11].

V. RESULTS AND DISCUSSION

A. Information length scale

Analogous to the Kolmogorov microscale η for turbulence,

one can define a characteristic length scale, ηc, for the

molecular information. When the length scale of the eddies is

smaller than ηc, the propagation of the information molecules

is dominated by diffusion. The kinetic energy of the molecules

is small and the Reynolds number Reη is of order unity.

Therefore inertial effects are negligible and viscous forces

cause dissipation of energy.

The length scales η and ηc are related by the Schmidt

number (cf. [11]). This non-dimensional number is defined as

Sc = ν/α and characterizes the ratio of momentum diffusivity,

ν, and mass diffusivity, α. When ν > α then vorticity diffusion

is more effective than the diffusion of C and vice versa.

For the current experiments with Rhodamine in water the

data of Ref. [34] provide Sc ∼ 2100. This value implies

that the diffusion of vorticity is substantially more effective

than mass diffusivity. Therefore it is expected that a fine-scale

structure of the concentration will develop such that ηc < η.

For high Schmidt number, η and ηc are related by [11]

ηc ∼ η(
α

ν
)1/2 . (9)

Thus, for Sc = 2100 one has ηc/η ≈ 0.02. The range

between ηc and η is referred to as the viscous-convective

subrange in the literature [11]. From (8) and (9) one finds

for the current study where Rel = 23, 260, 875 that ηc =
0.011, 0.0084, 0.0049 mm, respectively. Thus, ηc decreases

with increasing Rel. This implies that, theoretically, smaller

information structures can be embedded in flows at higher

Reynolds numbers.

In the context of MC the main implication of these con-

siderations is that ηc is the theoretical smallest scale for

which messages from a molecular signal concentration can

be decoded. For values that lie below the diffusion-dominated

scale ηc, it will no longer be possible to recover the original

signal.

B. Information dissipation rate

In the preceding section ηc is the transition length scale

between the energy containing and diffusion-dominated length

scales. As is discussed in [11] the quantity arises from con-

siderations that suggest that the energy cascade resulting in

the energy dissipation rate of (5) should be accompanied by a

corresponding cascade of 〈C2〉. The discussions conclude that

when the same mechanism is used to create the turbulence and

the scalar fluctuations, as is the case in our experiments, then

the flux of scalar 〈C2〉, can be estimated by [11]

ǫc ∼
〈C2〉

l/u
. (10)

The expression in (10) warrants a comment. In conventional

diffusion-based MC, at nano scales, the variations of the

concentration 〈C2〉 is ordinarily regarded as resulting from

random noise with constant probability distribution [1], [35].

Similarly, in steady homogeneous isotropic turbulence the
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Fig. 7. Energy spectrum for three different values of the Reynolds number Rel of the large eddies.

Fig. 8. Variation of 〈C2〉 of the molecular signals with distance d from Tx
for three different values of the Reynolds number Rel for modified turbulence

Fig. 9. Variation of information dissipation rate ǫc of the molecular signals
with distance d from Tx for three different values of the Reynolds number
Rel for modified turbulence.

statistics of the noise of the channel would not change with

location such that 〈C2〉 would also remain constant. However,

in the presence of a disturbance-generating device, such as

the turbulence-generating obstacle in Fig. 1, the variance

〈C2〉 is modified according to the particular characteristics

of the device in place and, therefore, 〈C2〉 changes with the

spatial separation from the device. Thus, the device-specific

modifications of 〈C2〉 become an inherent part of the MC

channel. Figure 8 displays the decrease of 〈C2〉 as a function

of the distance d from Tx in the downstream flow field of

the obstacle for three different values of Rel. The figure

also reveals that, in the present case one has, approximately,

〈C2〉 ∝ d−3.3.

Similar to (5), the information dissipation rate ǫc of (10)

is calculated using the length scale l and the velocity scale

u for the largest eddies which can be inferred from signals

measured by the UVP probe (cf. Fig. 6). Figure 9 displays ǫc
as a function of the distance d for three different values of the

Reynolds number Rel.

The figure reveals two results. Firstly, the information

dissipation rate decreases with increasing distance d from Tx.

This means that, as the information carrying tracer gets diluted

to successively lower concentrations the rate at which it dilutes

further must decrease. Secondly, at any particular distance d
the information dissipation rate also decreases with increasing

Rel.

For comparison to ǫc of Figure 9 the energy dissipation

rate ǫl from (5) is displayed in a corresponding plot in Fig. 10.

Figure 10 shows that ǫl also decreases with increasing distance

d. Most importantly, however, the figure reveals that, contrary

to ǫc, for any particular distance d the value of ǫl increases

with Rel.

The result that the information dissipation rate ǫc decreases

with increasing Rel may appear counter intuitive because

stronger turbulence levels at higher Reynolds numbers have

increased energy dissipation rates. However, increased turbu-

lence leads to more efficient scalar mixing and, therewith,

the power of the molecular signal quickly reduces to low

levels. Accordingly the information dissipation rate necessarily

reduces due to the remaining low information content avail-

able. This issue is illustrated in Fig. 11. The figure shows the

superposition of seven individual bit ‘1’ and bit ‘0’ signals
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Fig. 10. Energy dissipation rate, ǫl vs. distance from transmitter.

Fig. 11. Superposition of temporal concentration variations for seven indi-
vidual bit ‘1’ and bit ‘0’ signals in modified turbulence and their associated
respective mean curves for three different values of the Reynolds number Rel
(d = 1.5 m).

together with their associated respective mean curves in the

modified turbulence. The figure illustrates that the information

amplitude has reduced to low levels for the highest value of

Rel.
In summary, the issues of turbulence and mixing of passive

scalars are of fundamental relevance to macroscale MC sys-

tems. From the viewpoint of information theory, it is important

to understand that the energy cascade and the associated infor-

mation cascade are interrelated and they cannot be examined

separately.

C. Mutual Information

In the current context, the transmitted signal is represented

by the concentration of ejected fluorescent liquid, and the

corresponding received signal is the concentration at the

receiver with the unsteady turbulence background. Conven-

tionally, the mutual information between the scalar input and

output random variables X and Y are considered in molecular

communication [36], and it quantifies the uncertainty reduction

of the random variable X or Y , given the observation of

another one. In this case, the mutual information is given by

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

=
∑
x

∑
y

P (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)
,

(11)

where H(·) is the entropy function, and P (·) represents the

probability. Note that the probability distribution functions are

required to obtain the analytical mutual information.

To avoid the strong turbulence effect in the near field, the

concentration value with steady turbulence at d =1m can

be sampled as the transmitted signal. In each realization, the

transmitted concentration signal has a sharply rising trend to

reach its peak at the first stage, and it then undergoes a rapid

decline.

Since there are multiple samples of the transmitted signal,

we may further consider the mutual information between the

n-dimensional random vector (X1, X2, . . . , Xn) and random

variable Y . To find the dependency between the samples of

the transmitted signal at different times, mutual information

can be used as the metric [37]. Without loss of generality, we

consider I(X1, X2), where X1 and X2 are the observation

random variable sampled at t1 and t2, and their time difference

is defined by

∆t = |t2 − t1| = nTs, (12)

where n is an integer, and Ts represents the sampling pe-

riod. Due to the absence of probability density functions,

we resort to Kraskov’s method, which provides a way for

mutual information estimation that only requires the data set

of random variables [38]. In light of this, the roughly estimated

mutual information between the samples that has various time

difference is shown in Fig. 12. Intuitively, the neighbour

samples have strong dependency.

By using the chain rule [39], we have

I(X1, X2, . . . , Xn;Y ) =

n−1∑
i=1

I(Xi;Y |X1, X2, . . . , Xi−1).

(13)

Hence, compared with (11), one may obtain higher mutual

information by using the random vector as input instead of

the scalar random variable. Yet, its computation requires more

probability distribution functions, making the analytical results

hard to obtain.

VI. CONCLUSION AND FUTURE WORKS

Waterborne chemical plumes were studied as a paradigm

for a means of MC at macro scales. In experiments infor-

mation was modulated onto chemical plumes represented by

means of pulse sequences of a fluorescent tracer. As fluid

turbulence mixes the tracer with the ambient carrier fluid and
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spatiotemporal concentration fluctuations are established in the

flow field whose development is governed by the background

turbulence field.

Results from the theory of fluid turbulence describing the

turbulent energy cascade were applied and interpreted in terms

of a corresponding information cascade associated with the

mixing of the tracer. This enabled characterizing the theoret-

ical critical information micro-scale below which information

modulated onto the plume can no longer be decoded. This

scale decreases with increasing turbulence which implies a the-

oretical potential for encoding smaller information structures

at higher Reynolds number. Moreover, the information dissi-

pation rate was found to decrease for the increased turbulence

levels at higher Reynolds number. The latter result arising due

to more efficient mixing at higher Reynolds numbers which

decreases the remaining power of the molecular signal. Finally,

the analytical mutual information had been defined, while the

more accurate results will be considered in our future work.
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