
RESEARCH Open Access

Konnector v2.0: pseudo-long reads from
paired-end sequencing data
Benjamin P Vandervalk, Chen Yang, Zhuyi Xue, Karthika Raghavan, Justin Chu, Hamid Mohamadi,

Shaun D Jackman, Readman Chiu, René L Warren, Inanç Birol*

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2014)

Belfast, UK. 2-5 November 2014

Abstract

Background: Reading the nucleotides from two ends of a DNA fragment is called paired-end tag (PET)

sequencing. When the fragment length is longer than the combined read length, there remains a gap of

unsequenced nucleotides between read pairs. If the target in such experiments is sequenced at a level to provide

redundant coverage, it may be possible to bridge these gaps using bioinformatics methods. Konnector is a local de

novo assembly tool that addresses this problem. Here we report on version 2.0 of our tool.

Results: Konnector uses a probabilistic and memory-efficient data structure called Bloom filter to represent a k-mer

spectrum - all possible sequences of length k in an input file, such as the collection of reads in a PET sequencing

experiment. It performs look-ups to this data structure to construct an implicit de Bruijn graph, which describes

(k-1) base pair overlaps between adjacent k-mers. It traverses this graph to bridge the gap between a given pair of

flanking sequences.

Conclusions: Here we report the performance of Konnector v2.0 on simulated and experimental datasets, and

compare it against other tools with similar functionality. We note that, representing k-mers with 1.5 bytes of

memory on average, Konnector can scale to very large genomes. With our parallel implementation, it can also

process over a billion bases on commodity hardware.

Background
If genomes were composed of random sequences, a

sequence of length L would be specific enough to

describe a locus on a genome of length G when 4L>>G.

For instance, a typical HiSeq 4000 sequencer (Illumina,

San Diego, CA) generates 150 base pair (bp) reads, for

which 4L would be more than 80 orders of magnitude

larger than the human genome. But, of course, genomes

are not random sequences; they have structure, other-

wise, we would not be here to write this paper, nor

would you be there to read it.

Long read lengths are desirable to reveal structures in

genomes of interest. While sequencing technologies

from Pacific Biosciences (Menlo Park, CA) and Oxford

Nanopore Technologies (Oxford, UK) can generate

reads that are several kilo bases (kb) long, their low

throughput and high error make them challenging to

use in experiments that interrogate large targets.

Many experimental designs with short sequencing data

use a paired-end tag (PET) sequencing strategy, where

short sequences are determined from both ends of a

DNA fragment. These PET sequences are then associated

in downstream analysis to resolve structures as long as

fragment lengths. Typically, these fragments are less than

1 kb, and ideally have unimodal length distributions. To

resolve even longer structures, there are specialized

library preparation protocols, such as Nextera and Mole-

culo from Illumina and GemCode from 10X Genomics

(Pleasanton, CA).

In this study, we focus on the PET reads. We describe

Konnector v2.0, a tool that uses the coverage redundancy

in a high-throughput sequencing experiment to recon-

struct fragment sequences (pseudo-reads). Optionally, it
* Correspondence: ibirol@bcgsc.ca

Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer

Agency, Vancouver, BC V5Z 4S6, Canada

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

© 2015 Vandervalk et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:ibirol@bcgsc.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


also extends those fragment sequences in 3’ and 5’ direc-

tions, as long as the extensions are unambiguous. The

tool builds on our earlier implementation [1] that filled

in the bases of the sequence gap between read pairs by

navigating a de Bruijn graph [2]. Konnector represents a

de Bruijn graph using a Bloom filter [3], a probabilistic

and memory-efficient data structure.

The utility of long pseudo-reads has been demon-

strated before [4], and forms the backbone of some de

novo assembly tools [5]. Long pseudo-reads can be gen-

erated by merging overlapping PETs [6,7], or by localiz-

ing the sequence assembly problem around PETs [8,9].

Our focus in this study is the latter problem.

For example, the ELOPER algorithm [8] identifies read

pairs that share an overlap in both reads simultaneously,

and uses these overlaps to generate “elongated paired-

end reads”. The GapFiller algorithm [9], on the other

hand, formulates this problem as a collection of seed-

and-extend local assembly problems. The latter concept

has also been implemented within the MaSuRCA de novo

assembly pipeline [5], a wrapper around the Celera

Assembler software [10].

We benchmark Konnector v2.0 on simulated datasets,

compare its performance against ELOPER [8], GapFiller

[9], and a similar tool within MaSuRCA [5]. We demon-

strate its utility for assembly finishing problems and var-

iant calling. With its frugal memory use and algorithm

implementation, we show that Konnector v2.0 can handle

large sequence datasets with over a billion reads from Gbp

scale genomes in a timely manner. Furthermore, we note

that it consistently provides highly accurate results for a

range of targets.

Implementation
Konnector creates long pseudo-reads from paired-end

sequencing reads (Figure 1) by searching for connecting

paths between read pairs using a Bloom filter representation

of a de Bruijn graph. In addition to connecting read pairs,

Konnector v2.0 can also extend connected or unconnected

sequences by following paths from the ends of sequences

up to the next branching point or dead end in the de Bruijn

graph. When the sequence extension feature of Konnector

v2.0 is enabled, an additional Bloom filter is employed to

avoid the production of an intractable quantity of duplicate

sequences. Figure 2 provides a flowchart overview of the

Konnector 2.0 algorithm.

Bloom filter de Bruijn graph

As the throughput of the Illumina platforms increased

rapidly to generate up to 1Tb in a six-day run with the

HiSeq SBS V4 Kits, one important concern for pseudo-

read generating tools is their computational efficiency.

In related problems, bioinformatics tools have used stra-

tegies such as parallel computing [11,12], FM indexing

[13,14], and compressed data structures [15] for hand-

ling big data.

To fit large assembly problems in small memory, one

recent approach has been the use of Bloom filters [16,3]

to represent de Bruijn graphs, as demonstrated by

the Minia assembler [17]. Konnector adopts a similar

approach. Briefly, a Bloom filter is a bit array that acts as

a compact representation of a set, where the presence or

absence of an element in the set is indicated by the state

of one or more bits in the array. The particular position

of the bits that correspond to each element is determined

by a fixed set of hash functions. While Bloom filters are

very memory-efficient, the principal challenge of develop-

ing Bloom filter algorithms is in dealing with the possibi-

lity of false positives. A false positive occurs when the bit

positions of an element that is not in the set collide with

the bit positions of an element that is in the set. In the

context of Bloom filter de Bruijn graphs, false positives

manifest themselves as false branches, as depicted by the

yellow nodes in Figure 1.

In the first step of the algorithm (Figure 2, step (1)), the

Bloom filter de Bruijn graph is constructed by shredding

the input reads into k-mers, and loading the k-mers into

a Bloom filter. To diminish the effect of sequencing

errors at later stages of the algorithm, k-mers are initially

propagated between two Bloom filters, where the first

Bloom filter contains k-mers that have been seen at least

once, and the second Bloom filter contains k-mers that

have been seen at least twice. At the end of k-mer load-

ing, the first Bloom filter is discarded, and the second

Bloom filter is kept for use in the rest of the algorithm.

We note here that only the k-mers of the input reads,

corresponding to the nodes in the de Bruijn graph, are

stored in the Bloom filter whereas there is no explicit sto-

rage of edges. Instead, the neighbours of a k-mer are

determined during graph traversal by querying for the

presence of all four possible neighbours (i.e. single base

extensions) at each step.

Figure 1 A connecting path between two non-overlapping

paired-end sequencing reads within a de Bruijn graph. Konnector

joins the sequence provided by the input paired-end reads (green) by

means a graph search for a connecting path (blue). Sequencing errors

in the input sequencing data produce bubbles and branches in the de

Bruijn graph of up to k nodes in length (red). Bloom filter false

positives produce additional branches (yellow) with lengths that are

typically much shorter than the error branches.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 2 of 10



Figure 2 The Konnector2 algorithm. (1): The algorithm builds a Bloom filter representation of the de Bruijn graph by loading all k-mers from

the input paired-end sequencing data. (2): For each read pair, a graph search for connecting paths within the de Bruijn graph is performed. (3):

If one or more connecting paths are found, a consensus sequence for the paths is built. (4): If no connecting paths are found, error-correction is

attempted on reads 1 and 2. (5) and (6): the algorithm queries for the existence of either the consensus connecting sequence or the error-

corrected reads in the “duplicate filter”. The duplicate filter is an additional Bloom filter, separate from the Bloom filter de Bruijn graph, which

tracks the parts of the genome that have already been assembled. (7) and (8): If one or more of the k-mers in the query sequence are not found

in the duplicate filter, the sequence is extended outwards in the de Bruijn graph, until either a dead end or a branching point is encountered in

the graph. Finally, the extended sequences are written to the output pseudo-reads file.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 3 of 10



Searching for connecting paths

In a second pass over the input sequencing data,

Konnector searches for connecting paths within the de

Bruijn graph between each read pair (Figure 2, step (2)).

The graph search is initiated by choosing a start k-mer

in the first read and a goal k-mer in the second read,

and is carried out by means of a depth-limited, bidirec-

tional, breadth-first search between these two k-mers.

The start and goal k-mers are selected to reduce the

probability of dead-end searches due to sequencing

errors or Bloom filter false positives. First, the putative

non-error k-mers of each read are identified by querying

for their existence in the Bloom filter de Bruijn graph.

(Recall that after the loading stage, this Bloom filter only

contains k-mers that occur twice or more.) Next, the

algorithm attempts to find a consecutive run of three

non-error k-mers within the read, and chooses the k-mer

on the distal end (i.e. 5’ end) of the run as the start/goal

k-mer. This method ensures that if the chosen start/goal

k-mer is a Bloom filter false positive, the path search will

still proceed through at least two more k-mers instead of

stopping at a dead end. In the likely case that there are

multiple runs of “good” k-mers within a read, the run

that is closest to the 3’ (gap-facing) end of the read is

chosen, in order reduce the depth of subsequent path

search. In the case that there are no runs of three good

k-mers, the algorithm falls back to using the longest run

found (i.e. two k-mers or a single k-mer).

Once the start and goal k-mers have been selected,

Konnector performs the search for connecting paths. In

order to maximize the accuracy of the sequence connect-

ing the reads, it is important for the algorithm to consider

all possible paths between the reads, up to the depth limit

dictated by the DNA fragment length. For this reason, a

breadth-first search is employed rather than a shortest

path algorithm such as Dijkstra or A*. Konnector imple-

ments a bidirectional version of breadth-first search,

which improves performance by conducting two half-

depth searches, and thus reducing the overall expansion of

the search frontier. The bidirectional search is implemen-

ted by alternating between two standard breadth-first

searches that can “see” each other’s visited node lists. If

one search encounters a node that has already been visited

by the other search, the edge leading to that node is

recorded as a “common edge”, and the search proceeds no

further through that particular node. As the two searches

proceed, all visited nodes and edges are added to a tem-

porary, in-memory “search graph”. This facilitates the final

step, where the full set of connecting paths are constructed

by performing an exhaustive search both backwards and

forwards from each common edge towards the start and

goal k-mers, respectively.

If the search algorithm finds a unique path between

the start and goal k-mers, then the path is converted to

a DNA sequence, and is used to join the read sequences

into a single pseudo-read. In the case of multiple paths,

a multiple sequence alignment is performed, and the

resulting consensus sequence is used to join the reads

instead (Figure 2, step (3)). In order to fine-tune the

quality of the results, the user may specify limits with

respect to the maximum number of paths that can be

collapsed to a consensus and/or the maximum number

of mismatches that should be tolerated between alter-

nate paths.

Extending connected and unconnected sequences

Konnector v2.0 introduces a new capability to extend

both connected and unconnected sequences by traversing

from the ends of sequences to the next branching point

or dead-end in the de Bruijn graph (Figure 2, steps (7)

and (8)). If a read pair is successfully connected, the algo-

rithm will extend the pseudo-read outwards in both

directions; if the read pair is not successfully connected,

each of the two reads will be extended independently,

both inwards and outwards. The extensions are seeded in

the same manner described above for the connecting

path searches; a putative non-error k-mer is selected near

the end of the sequence, and following two consecutive

non-error k-mers if possible.

The extension of connected reads or unconnected

reads that are contained within the same linear path of

the de Bruijn graph results in identical sequences. For

this reason, the algorithm uses an additional Bloom filter

to track the k-mers of sequences that have already been

assembled. (Hereafter this Bloom filter will be referred to

as the “duplicate filter” in order to reduce confusion with

the Bloom filter de Bruijn graph.)

The logic for tracking duplicate sequences differs for

the cases of connected and unconnected read pairs. In

the case of connected reads, only the k-mers of the con-

necting sequence are used to query the duplicate filter

(Figure 2, step (5)). By virtue of being present in the

Bloom filter de Bruijn graph, the connecting k-mers are

putative non-error k-mers that have occurred at least

twice in the input sequencing data, and thus a 100%

match is expected in the case that the genomic region in

question has already been covered. If one or more

k-mers from the connecting sequence are not found in

the duplicate filter, the pseudo-read is kept and is

extended outwards to its full length (Figure 2, step (7)).

The k-mers of the extended sequence are then added to

the duplicate filter, and the sequence is written to the

output pseudo-reads file.

In the case of unconnected reads, the reads must first be

corrected prior to querying the duplicate filter (Figure 2,

step (4)). This is done by first extracting the longest con-

tiguous sequence of non-error k-mers within the read,

where k-mers that are present in the Bloom filter de

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 4 of 10



Bruijn graph are considered to be putative non-error

k-mers. An additional step is then performed to correct

for recurrent read-errors that may have made it past the

two-level Bloom filter. Starting from the rightmost k-mer

of the selected subsequence, the algorithm steps left by

k nodes, aborting the correction step if it encounters a

branching point or dead-end before walking the full dis-

tance. As the longest branch that can be created by a sin-

gle sequencing error is k nodes, this navigates out of any

possible branch or bubble created by an error (red nodes

of Figure 1). Finally, the algorithm steps right up to (k+1)

nodes to generate a high confidence sequence for querying

the duplicate filter. The second rightward step stops early

upon encountering a branching point or dead-end, but

any sequence generated up to that point is kept, and is

still used to query the duplicate filter. Following error cor-

rection, the subsequent steps for handling unconnected

reads are similar to the case for connected reads. If the

high confidence sequence contains k-mers that are not

found in the duplicate filter, the sequence is extended to

its full length, added to the duplicate filter, and written to

the output pseudo-reads file.

Finally, some additional look-ahead logic is employed

in the extension algorithm to handle the common cases

of false positive branches and simple bubbles created by

heterozygous SNPs. All branches shorter than or equal

to three nodes in length are assumed to be false positive

branches and are ignored during extension. Upon reach-

ing a fork with two (non-false-positive) branches, a

look-ahead of (k+1) nodes is performed to see if the

branches re-converge. If so, the bubble is collapsed and

the extension continues.

Results and discussion
Read-elongation tools comparison

To evaluate Konnector v2.0, we performed a comparison

with several other read-elongation tools: ELOPER [8],

GapFiller [9], the MaSuRCA super-reads module [5],

and the previously published version of Konnector [1].

ELOPER v1.2 (ELOngation of Paired-End Reads) [8]

operates by calculating gapped overlaps between read

pairs, where a gapped overlap requires simultaneous over-

lap of both reads across two read pairs. The main idea of

the algorithm is that overlaps across read pairs yield

higher-confidence sequence extensions than overlaps

between individual reads alone. The program produces

extended paired-end reads as output and single-end

pseudo-reads in cases where paired reads can be extended

far enough to overlap with their mates. The all-by-all com-

putation of gapped overlaps between read pairs is realized

using a hash table-based approach.

GapFiller v2.1.1 [9] fills the sequencing gap between

paired-end reads using a seed-and-extend approach,

where each input read is considered in turn as a seed.

Reads are iteratively extended towards their mates by

identifying overlapping reads, building a consensus

sequence for the extension, and then repeating the pro-

cess with extended sequence. GapFiller uses the eventual

overlap of an extended read with its mate as a correct-

ness check, and chooses not to continue the extension

beyond the fragment length in favour of higher confi-

dence results. The algorithm for detecting overlaps is

implemented by computing some fingerprint values for

the prefixes and suffixes of each read, and storing the

mapping between fingerprints and reads in a hash-table.

In order to calculate the consensus sequences during

extension, the full set of input read sequences is stored

in memory using a compressed 2-bit representation.

MaSuRCA v2.2.1 [5] is an extension of the CABOG

overlap-layout-consensus assembler [18] that preprocesses

the input short sequencing reads to generate a highly-

reduced set of “super-reads” for input to the Celera assem-

bler [10]. Much like the extension feature of Konnector

v2.0, the super-reads are generated by extending the reads

outward to the next branching point or dead-end within a

de Bruijn graph. These “k-unitig” sequences are then

joined by spanning read pairs or bridging single-end reads,

in cases where such links are unambiguous.

The previously published version of Konnector [1] uses

the same concept for connecting read pairs as Konnector

v2.0, but does not include the sequence extension or

duplicate filtering logic. Its output format is most similar

to GapFiller, in the sense that it generates one fragment-

length sequence for each successfully connected read

pair.

We compared the performance and results of the

tools across four paired-end sequencing data sets from

organisms with a wide range of genome sizes: E. coli,

S. cerevisiae, C. elegans, and H. sapiens (Table 1). The

E. coli data set consists of 100 bp synthetic reads gener-

ated with the pIRS read simulator [19] using a 0.1%

error rate, 50x coverage, and an insert size of 400 ± 50 bp,

while the other three data sets are experimental paired-

end Illumina sequencing data with coverage levels ranging

from 26x to 76x.

For each combination of data set and tool, we mea-

sured running time, peak memory usage, N50 length of

the output pseudo-reads, sum length of the misassembled

pseudo-reads, and percent coverage of the reference gen-

ome (Table 2). The N50 length was calculated using the

QUAST [20] assembly assessment tool, except for the

human data set where the ‘abyss-fac’ utility (ABySS v1.5.2

[11]) was used instead. The “Misassembled Reads

Length” column of Table 2 was also calculated by

QUAST, and reports the sum length of all pseudo-reads

that had split alignments to the reference with distance

greater 1 kb, overlap greater 1 kb, or mappings to differ-

ent strands/chromosomes. We found that QUAST was

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 5 of 10



not able to scale to an analysis of the human Konnector

and Konnector v2.0 pseudo-reads, and so those results

were omitted from Table 2. Finally, the genome coverage

results were calculated by aligning the pseudo-reads to

the reference with bwa mem v0.7.12 [21], with the multi-

mapping option (-a) turned on, and then using the result-

ing BAM file as input to the bedtools v2.17.0 [22]

‘genomecov’ command.

The Konnector and Konnector v2.0 jobs for the com-

parison were run across a range of k-mer lengths to

achieve the best possible results. For the previous ver-

sion of Konnector, the run with the highest percentage

of connected read pairs was selected, whereas for

Konnector v2.0, a k-mer size was selected that provided

a favourable combination of both N50 and misas-

sembled reads length (Figure 3).

From the results of Table 2, we observe that MaSuRCA

was generally the fastest tool. While Konnector and

Konnector v2.0 showed competitive run times, ELOPER

and GapFiller were notably slower, and did not scale well

to larger data sets. In the category of memory usage, both

versions of Konnector outperformed the competitors by

more than an order of magnitude due to their use of

Bloom filters rather than hash tables.

Table 1. Datasets analyzed

Organism Genome Size NGS data source Read length (bp) Read pairs (M) Fragment size (bp) Fold coverage

E.coli
K-12

5 Mbp Simulated PE100 1.2 400 50X

S. cerevisiae 12 Mbp Experimental
SRA:ERR156523

PE100 1.6 300 26X

C.elegans 97 Mbp Experimental
SRA:ERR294494

PE100 44.7 450 89X

H.sapiens
NA19238

3 Gbp Experimental
SRA:ERR309932

PE250 457.0 550 76X

Table 2. Comparative analysis of read elongation tools

Running time
(hms)

Peak memory
(MB)

N50
(bp)

Misassembled Reads Length
(bp)

Percent genome coverage

E. coli (synthetic)

ELOPER 10m46s 19013 501 16146 100.00

GapFiller 32m39s 476 396 14103 100.00

MaSuRCA super-reads 2m56s 4669 54103 0 100.00

Konnector (k = 50) 6m15s 81 406 3133 100.00

Konnector 2 (k = 70) 5m0s 100 32012 276 99.99

S. cerevisiae

ELOPER 97h55m23s 37119 144 71426 99.32

GapFiller 3h13m18s 666 332 96869 97.04

MaSuRCA super-reads 4m2s 5294 1684 129828 98.67

Konnector (k = 50) 8m34s 231 315 75435 97.94

Konnector 2 (k = 40) 7m1s 232 4690 67505 98.99

C. elegans

ELOPER exceeds available memory (120GB)

GapFiller exceeds available memory (120GB)

MaSuRCA super-reads 2h2m17s 80742 2554 1925740 99.98

Konnector (k = 55) 5h5m21s 1954 475 NA 99.80

Konnector 2 (k = 80) 3h30m23s 2193 6232 837480 99.88

H. sapiens (NA19238)

ELOPER not attempted

GapFiller not attempted

MaSuRCA super-reads exceeds available memory (120 GB)

Konnector (k = 150) 4d9h15m48s 410381 556 NA 94.15

Konnector 2 (k = 180) 20h47m24s 471905 3051 NA 94.01

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 6 of 10



The N50 and Misassembled Reads Length results from

Table 2 are plotted in Figure 3, with additional data

points shown for alternate runs of Konnector v2.0 with

different k-mer sizes. The plots show that Konnector 2

generated the longest pseudo-reads and the least misas-

sembled sequence for the experimental S. cerevisiae and

C. elegans data sets, while MaSuRCA generated the long-

est and most accurate pseudo-reads for the synthetic

E. coli data set.

Working with a maximum of 120 GB available memory

on any single machine, Konnector and Konnector v2.0

were the only tools that could be run on the largest of the

four data sets in Table 2 (H. sapiens). One of the main

advantages of Konnector for this data set was the ability to

split work across machines. This was accomplished by first

building a reusable Bloom filter file with the companion

‘abyss-bloom’ utility (ABySS v1.5.2), and then sharing this

file across 20 parallel Konnector jobs, each processing a dis-

joint subset of the paired-end reads. The two-level Bloom

filter size was 40 GB, and each of the jobs was run on a

machine with 12 cores and 48 GB RAM. The wall clock

time for the job was less than 24 hours, and the aggregate

memory requirement for job was just under 0.5TB. We

note that the larger memory usage of Konnector v2.0 is due

to the use of an additional Bloom filter for tracking dupli-

cate sequences. The large improvement in running time

between Konnector and Konnector v2.0 on the H. sapiens

data set is due primarily to the introduction of multi-

threaded Bloom filter construction in Konnector v2.0.

Sealer: a Konnector-based gap-closing application

A natural application to Konnector includes automated

finishing of genomes, by systematically targeting all

regions of unresolved bases, or gaps, in draft genomes of

wide-ranging sizes. This is accomplished by first identify-

ing these scaffold gaps, deriving flanking sequences on

the 5’ and 3’ ends of each gap, running Konnector with

comprehensive short read data set, and patching the gaps

by placing successfully merged sequences in those

regions. We have developed a stand-alone utility called

Sealer for this specific application [23].

To test the utility of Konnector for filing scaffold gaps,

we ran Sealer on an ABySS E. coli genome assembly

(5 Mbp) and, to assess the scalability of the approach, on

an ABySS H. sapiens (3.3 Gbp) draft assembly of next-

generation Illumina sequences (SRA:ERR309932) derived

from the 1000 Genomes Project (individual NA19238)

(Table 3). For E. coli, we were able to successfully close

all but one gap using a single k-mer size of 90 bp. On the

human assembly, gaps were closed with Sealer using 31

k-mers (250 - 130 bp, decrementing by 10, and 125 - 40 bp,

decrementing by 5; parameters for Konnector were -B 1000

-F 700 -P10), and compared the result to two similar tools

GapFiller (v1.10) [24] and SOAPdenovo2 GapCloser (v1.12)

[25]. Default settings were used for both tools in our tests,

maximizing the number of compute threads, when needed

(-t 16 for GapCloser on the human data set). On the

H. sapiens draft assembly GapFiller was manually stopped

after running for over 350 hours (approximately 14 days)

Figure 3 Comparison of pseudo-read tools by N50 and misassembled reads length. Results are shown for Konnector v2.0 and three other

pseudo-read-generating tools across E. coli (synthetic), S. cerevisiae, and C. elegans sequencing data sets. The “misassembled reads length” on the

x-axis of each plot denotes the sum length of all pseudo-reads reported as misassembled by QUAST. MaSuRCA performs best on the synthetic

E. coli data set, producing the highest N50 and creating no misassemblies. However, on the experimental S. cerevisiae and C. elegans data sets,

Konnector v2.0 outperforms the other tools in terms of both N50 and misassembled sequence, for a range of k-mer lengths.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 7 of 10



without completion or output. All Sealer processes were

executed on a 12-core computer running CentOS 5.4 with

two Intel Xeon X5650 CPUs @ 2.67 GHz and 48 GB RAM.

GapFiller and GapCloser were benchmarked on a machine

using CentOS 5.10 with 16 cores @ 2.13 GHz, 125 GB

RAM. The GapCloser run on the H. sapiens data ran on a

CentOS 5.9 with 16 cores @ 2.13 GHz and 236 GB RAM to

allow for its high memory requirement. We also compared

the results of Sealer with two versions of Konnector on the

E. coli and H. sapiens dataset, and noticed a marked

improvement in speed of execution: ~12 h compared

to ~29 h runs on human data with Konnector v2.0 and

Konnector v1.0, respectively. We also noted improved sensi-

tivity in Sealer results, when used in conjunction with

Konnector v2.0 (6,566 or 2.8% more gaps closed). To test

the limits of scalability of Konnector, we applied Sealer on a

draft white spruce genome assembly of length 20 Gbp [26]

(data not shown).

KVarScan: a Konnector-based method for indel detection

Konnector long pseudo-reads can potentially improve the

sensitivity of existing variant detection pipelines. To

explore this idea, we conducted an experiment where we

detected insertions and deletions (indels) using VarScan

[27] ‘pileup2indel’ (version 2.3.7 with default parameters),

and compared the results when using either regular reads

or Konnector pseudo-reads as input. We refer to the two

protocols as VarScan and KVarScan, respectively. For

KVarScan, Konnector reads were generated by running

Konnector on regular reads for a range of k-mer sizes

from 90 bp to 30 bp, with a step size of 10 bp. Starting

with the largest k-mer size of 90 bp, left over read pairs

that were not connected were used for the next run of

Konnector with the next smaller k-mer size. After run-

ning Konnector with a k-mer size of 30 bp, any remain-

ing unconnected reads were used concurrently with the

connected reads as input to the VarScan run. All con-

nected reads output from the -p/–all-paths and -o/–out-

put-prefix parameters of Konnector were used. The other

parameters used for Konnector included: max path set to

4 (-P), max mismatches set to nolimit (-M), path identity

set to 98 (-X), max branches set to 100 (-B), max frag-

ment set to 525 (-F). Prior to the Konnector runs, a

Bloom filter for each k-mer size was built using the

abyss-bloom utility with the trim quality (-q) set to 15

and levels (-l) set to 2.

We performed a comparison of the VarScan and

KVarScan methods on synthetic human data from chro-

mosome 10 by simulating indels in the size range of

10 - 200 bp on hg19 using RSVsim v1.2.1 [28]. A final

number of 224 insertions (10 - 192 bp) and 216 dele-

tions (10-144 bp) were generated. We used pIRs v1.1.1

[19] to generate a diploid human chromosome 10

sequence, and combined it with the rearranged sequence

to simulate a 30x coverage library of 100 bp Illumina

PET reads. The average insert size was set at 400 bp;

default parameters were used otherwise.

Both VarScan and KVarScan were able to detect small

indels as short as 10 bp, the shortest available in the

simulated data. However, the maximum size of indels

detected by VarScan was 30 bp, while it was 99 bp for

the KVarScan protocol. As illustrated by the distribu-

tions of the sizes of indels detected in Figure 4, we note

that the use of long pseudo-reads generated by Konnec-

tor expands the range detection for VarScan. Hence,

long pseudo-reads may find an application for profiling

cancer genomes and other genomes that harbour struc-

tural variations that would otherwise be missed by

shorter sequence reads.

Conclusions
Long reads are highly desirable for both de novo

assembly applications and reference-based applications

such as variant calling. While long read sequencing

technologies such Pacific Biosciences (Menlo Park, CA)

and Oxford Nanopore Technologies (Oxford, UK) have

yet to hit the mainstream, bioinformatics algorithms

continue to be developed to better exploit the sequence

and distance information captured by Illumina paired-

end sequencing reads, currently ranging in length from

150 - 300 bp and spanning DNA fragments with sizes

of 300 - 1000 bp.

Table 3. Performance evaluation of Sealer and other gap-filling applications for finishing draft genomes

Draft genome species Total gaps Software Gaps completely closed % Success Wall clock time (hh:mm) Memory (GB)

E. coli 18 Sealer K2 17 94.4 00:01 0.5

Sealer K1 17 94.4 00:20 0.5

GapCloser 2 11.1 00:05 25.7

GapFiller 15 83.3 00:43 0.4

H. sapiens 237,406 Sealer K2 127,242 53.6 12:09 22.2

Sealer K1 120,676 50.8 29:19 22.2

GapCloser 116,297 48.9 83:15 178.1

GapFiller Incomplete. Terminated after 353 hours.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 8 of 10



In this paper we have presented Konnector v2.0, a

tool for producing long “pseudo-reads” from Illumina

paired-end libraries. While many tools exist to merge

overlapping paired-end reads (e.g. [6,7]), our software

addresses the more challenging problem of filling

the sequencing gap between non-overlapping reads.

Konnector accomplishes this by building a compact,

Bloom filter based representation of a de Bruijn graph

and performing a constrained path search between

each pair of reads within the graph. Konnector v2.0

introduces a significant improvement to the algorithm

by additionally extending sequences outwards within

the de Bruijn graph, up to the point where such exten-

sions are unambiguous. It also keeps the functionality

of Konnector v1.0, as an option.

In a comparison of Konnector v2.0 against several simi-

lar tools, we have demonstrated that the software gener-

ates pseudo-reads with high accuracy, high yield, low

memory usage, and fast run times. Owing to its use of a

Bloom filter de Bruijn graph, Konnector was the only

tool able to process 76x human sequencing data on a set

of computing nodes with 48 GB of RAM, and was able to

do so in under 24 hours.

While the long pseudo-read generating tools were

all reported for their utility in de novo assembly appli-

cations in earlier studies [6-8], we demonstrated the

utility of our tool on two novel uses cases: assembly

finishing and variant detection. With its scaling prop-

erties and broad applications, we think Konnector will

be an enabling technology in many genomics studies.

Availability and requirements
Project name: Konnector

Project home page: http://www.bcgsc.ca/platform/

bioinfo/software/konnector

Source code for version in evaluated in paper: https://

github.com/bcgsc/abyss/tree/konnector2-prerelease

Operating system(s): Unix

Programming language: C++

Other requirements: Boost graph library, Google

sparsehash library is recommended

License: Free for academic use under the British

Columbia Cancer Agency’s academic license

Any restrictions to use by non-academics: Contact

ibirol@bcgsc.ca for license

List of abbreviations used

ABySS: Assembly By Short Sequences; CABOG: Celera Assembler with the

Best Overlap Graph; ELOPER: Elongation of Paired-end Reads; MaSuRCA:

Maryland Super-Read Celera Assembler.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BV implemented the search and extension algorithms for Konnector v2.0,

and wrote descriptions of the algorithm and tools comparison. CY

conducted analyses for the tools comparison and for Sealer. KR ran QUAST

evaluations and other exploratory data analyses. ZX and RC did the analysis

and writing for the KVarScan application. HM and JC provided improved

Bloom filter algorithms and implementations. SDJ implemented the Bloom

filter class and the de Bruijn graph interface for Konnector, and also

implemented algorithmic improvements for the new version of Sealer. RLW

did analysis and writing for the Sealer section, ran jobs for the tools

comparison, and oversaw the planning and organization the paper. IB

designed the algorithms for Konnector v2.0 and oversaw the development,

evaluation, and manuscript preparation.

Declarations

The authors thank the funding organizations, Genome Canada, British

Columbia Cancer Foundation, and Genome British Columbia for their partial

support of the publication. Research reported in this publication was also

partly supported by the National Human Genome Research Institute of the

National Institutes of Health under Award Number R01HG007182. The

content is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health or other

funding organizations.

This article has been published as part of BMC Medical Genomics Volume 8

Supplement 3, 2015: Selected articles from the IEE International Conference

on Bioinformatics and Biomedicine (BIBM 2014): Medical Genomics. The full

contents of the supplement are available online at http://www.

biomedcentral.com/bmcmedgenomics/supplements/8/S3.

Published: 23 September 2015

References

1. Vandervalk BP, Jackman SD, Raymond A, Mohamadi H, Yang C, Attali DA,

Konnector : Connecting paired-end reads using a bloom filter de Bruijn

graph. Bioinformatics and Biomedicine (BIBM) 2014 IEEE International

Conference 2014.

2. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences of the

United States of America 2001, 17:9748-53.

3. Bloom BH: Space/Time Tradeoffs in Hash Coding With Allowable Errors.

Communications of the Acm 1970, 13(7):422, doi:10.1145/362686.362692.

Figure 4 Indels detected by VarScan using unaltered reads

("VarScan”) or Konnector long pseudo-reads ("KVarScan”) as

input. Results are shown for synthetic read data generated from

hg19 chromosome 10 and containing 440 simulated indels. The

indels detected by VarScan (green) range from 10 bp to 30 bp,

whereas the indels detected by KVarScan (blue) range from 10 bp

to 99 bp.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 9 of 10

http://www.bcgsc.ca/platform/bioinfo/software/konnector
http://www.bcgsc.ca/platform/bioinfo/software/konnector
https://github.com/bcgsc/abyss/tree/konnector2-prerelease
https://github.com/bcgsc/abyss/tree/konnector2-prerelease
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S3
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S3


4. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial

genomes. Genome Research 2008, 18:324-30.

5. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The

MaSuRCA genome assembler. Bioinformatics 2013, 29(21):2669-77,

doi:10.1093/bioinformatics/btt476.

6. Magoc T, Salzberg SL: FLASH: fast length adjustment of short reads to

improve genome assemblies. Bioinformatics 2011, 27(21):2957-63,

doi:10.1093/bioinformatics/btr507.

7. Liu B, Yuan J, Yiu SM, Li Z, Xie Y, Chen Y, et al: COPE: an accurate k-mer-

based pair-end reads connection tool to facilitate genome assembly.

Bioinformatics 2012, 28(22):2870-4, doi:10.1093/bioinformatics/bts563.

8. Silver DH, Ben-Elazar S, Bogoslavsky A, Yanai I: ELOPER: elongation of

paired-end reads as a pre-processing tool for improved de novo

genome assembly. Bioinformatics 2013, 29(11):1455-7, doi:10.1093/

bioinformatics/btt169.

9. Nadalin F, Vezzi F, Policriti A: GapFiller: a de novo assembly approach to

fill the gap within paired reads. Bmc Bioinformatics 2012, 13, doi:10.1186/

1471-2105-13-s14-s8.

10. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al: A

whole-genome assembly of Drosophila. Science 2000, 287:2196-204.

11. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a

parallel assembler for short read sequence data. Genome Res 2009,

19(6):1117-23, doi:10.1101/gr.089532.108.

12. Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads

from a mix of high-throughput sequencing technologies. J Comput Biol

2010, 17(11):1519-33, doi:10.1089/cmb.2009.0238.

13. Li H, Durbin R: Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 2009, 25(14):1754-60, doi:10.1093/

bioinformatics/btp324.

14. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.

Genome biology 2009, 10(3):R25, doi:10.1186/gb-2009-10-3-r25.

15. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using

compressed data structures. Genome Research 2012, 22(3):549-56,

doi:10.1101/gr.126953.111.

16. Stranneheim H, Kaller M, Allander T, Andersson B, Arvestad L, Lundeberg J:

Classification of DNA sequences using Bloom filters. Bioinformatics 2010,

26(13):1595-600, doi:10.1093/bioinformatics/btq230.

17. Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. Algorithms for Molecular Biology 2013, 8,

doi:10.1186/1748-7188-8-22.

18. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, et al:

Aggressive assembly of pyrosequencing reads with mates. Bioinformatics

2008, 24:2818-24.

19. Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, et al: pIRS: Profile-based Illumina pair-

end reads simulator. Bioinformatics 2012, 28(11):1533-5, doi:10.1093/

bioinformatics/bts187.

20. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool

for genome assemblies. Bioinformatics 2013, 29(8):1072-5, doi: 10.1093/

bioinformatics/btt086.

21. Li H: Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv preprint 2013.

22. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 2010, 26(6):841-2.

23. Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I:

Sealer: a scalable gap-closing application for finishing draft genomes.

BMC Bioinformatics 2015, 16(230).

24. Boetzer M, Pirovano W: Toward almost closed genomes with GapFiller.

Genome biology 2012, 13(6):R56.

25. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al: SOAPdenovo2: an

empirically improved memory-efficient short-read de novo assembler.

Gigascience 2012, 1(1):18, doi:10.1186/2047-217X-1-18.

26. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al:

Assembling the 20 Gb white spruce (Picea glauca) genome from whole-

genome shotgun sequencing data. Bioinformatics 2013, doi:10.1093/

bioinformatics/btt178.

27. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al:

VarScan: variant detection in massively parallel sequencing of individual

and pooled samples. Bioinformatics 2009, , 25: 2283-5.

28. Bartenhagen C, Dugas M: RSVSim: an R/Bioconductor package for the

simulation of structural variations. Bioinformatics 2013, btt198.

doi:10.1186/1755-8794-8-S3-S1
Cite this article as: Vandervalk et al.: Konnector v2.0: pseudo-long reads
from paired-end sequencing data. BMC Medical Genomics 2015
8(Suppl 3):S1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/S1

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23990416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23990416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23044551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23044551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20958248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20958248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20472541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22731987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23587118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23587118?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Bloom filter de Bruijn graph
	Searching for connecting paths
	Extending connected and unconnected sequences

	Results and discussion
	Read-elongation tools comparison
	Sealer: a Konnector-based gap-closing application
	KVarScan: a Konnector-based method for indel detection

	Conclusions
	Availability and requirements
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Declarations
	References

