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Nonlinear dynamical systems with symmetries exhibit a rich variety of behaviors, including complex
attractor-basin portraits and enhanced and suppressed bifurcations. Symmetry arguments provide a way
to study these collective behaviors and to simplify their analysis. The Koopman operator is an infinite di-
mensional linear operator that fully captures a system’s nonlinear dynamics through the linear evolution of
functions of the state space. Importantly, in contrast with local linearization, it preserves a system’s global
nonlinear features. We demonstrate how the presence of symmetries affects the Koopman operator structure
and its spectral properties. In fact, we show that symmetry considerations can also simplify finding the Koop-
man operator approximations using the extended and kernel dynamic mode decomposition methods (EDMD
and kernel DMD). Specifically, representation theory allows us to demonstrate that an isotypic component
basis induces block diagonal structure in operator approximations, revealing hidden organization. Practi-
cally, if the data is symmetric, the EDMD and kernel DMD methods can be modified to give more efficient
computation of the Koopman operator approximation and its eigenvalues, eigenfunctions, and eigenmodes.
Rounding out the development, we discuss the effect of measurement noise.

Many natural and engineered dynamical sys-
tems — power grid networks and biological regu-
latory networks, to mention two — exhibit sym-
metries in their connectivity structure and in
their internal dynamics. Some have time-reversal
symmetry, others rotational and spatial transla-
tion invariance, and others still, combinations.
These symmetries are often key for understand-
ing the behavior of systems. For instance, a well-
known example that exploits the connection be-
tween system state and interconnection symme-
tries arises in locomotion, where spatio-temporal
symmetries of the observed locomotion behav-
ior constrain the structure of neural circuits that
generate these patterns. For network systems in
particular, symmetries in the connectivity struc-
ture are of fundamental importance. For in-
stance, the structural symmetries of a network
of identical oscillators can determine its admis-
sible patterns of symmetry-breaking. That said,
additional information beyond the knowledge of
the network structure is often required to ad-
dress more detailed questions about a system’s
dynamics, such as whether a particular configu-
ration is stable in a given parameter regime. In
these cases, the system’s linearization near the
steady state can be combined with interconnec-
tion symmetry to provide the answer. However,
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these linearization methods are only valid on a
local subset of the state space and therefore are
not sufficient for global characteristics of nonlin-
ear dynamical systems, such as their attractors,
basins, and transients. The Koopman operator,
in contrast, is a linear infinite-dimensional oper-
ator that evolves the functions on the state space
that is valid on the entire state space. We show
how to combine symmetry considerations with
the Koopman analysis to study nonlinear dynam-
ical systems with symmetries. We use represen-
tation theory to determine the effect of symme-
tries on the Koopman operator and its approxi-
mations, drawing out how local dynamical sym-
metries interact with symmetries arising from the
connectivity of system variables. This, in turn, al-
lows us to modify data-driven Koopman operator
approximation algorithms to make them more ef-
ficient when applied to dynamical systems with
symmetries. We illustrate our findings in a sim-
ple network of coupled Duffing oscillators with
symmetries in individual oscillator dynamics and
in their physical couplings.

I. INTRODUCTION

Symmetries of dynamical systems manifest themselves
in asymptotic dynamics, bifurcations, and attractor
basin structure. Symmetries play a crucial role in guid-
ing the emergence of synchronization and pattern for-
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mation, behaviors broadly observed in natural and engi-
neered systems. Methods from group theory, represen-
tation theory, and equivariant bifurcation theory provide
useful tools to study the common features of systems with
symmetries13–15.

Dynamical elements organized into a network are an
important class of dynamical systems that often exhibit
these behaviors, especially when symmetries appear in
both network structure and the dynamics of the individ-
ual nodes. Studying the effect of symmetries in network
topology of synthetic and real-life systems using compu-
tational group theory is an active area of research26,30,31.
Those symmetries lead to phenomena such as full syn-
chronization, cluster synchronization, and formation of
exotic steady states such as chimeras8,12,27,38. Moreover,
topological symmetries underlying cluster synchroniza-
tion of coupled identical elements assist in analyzing the
stability of these fully synchronous cluster states16,30.
For networks of identical coupled oscillators, the form
of their limit cycle solutions and the form of their bifur-
cations can be derived from symmetry considerations1.
Symmetries are also key in determining network con-
trollability and observability. For example, Refs.11,34 ex-
plored the effect of explicit network symmetries for linear
time-independent and time-dependent networks. Simi-
larly, Refs.24,44 considered nonlinear network motifs with
symmetries and studied how the presence of different
types of structural symmetries affect the observability
and controllability of the system. Ref.29, similar to our
approach, uses the Koopman operator formalism (dis-
cussed below). They provide analytic results that link
the presence of permutational symmetries in dynamical
systems to their observability properties.

Many dynamical systems of current interest are high
dimensional and nonlinear. For instance, this is the case
for many complex networks, such as power grids and bio-
logical networks. Complexity there arises from the inter-
action between network interconnectivity structure and
the nonlinearities in the node and edge dynamics. And,
this often leads to multistability. Linearization methods
can provide insight near the system’s attractors, but they
poorly approximate the dynamics on the rest of the state
space. In contrast, operator-based methods give access
to the global characteristics of nonlinear systems. And,
they do so in a linear setting and are therefore more well-
suited, for instance, to characterize the attractor basin
structure of multistable dynamical systems or the design
control interventions. The Perron-Frobenius and Koop-
man operator are adjoint linear infinite-dimensional oper-
ators whose spectra can provide global information about
the system. Their approximations using data-driven ap-
proaches make operator methods potentially applicable
when there is no prior knowledge of the system.

The Perron-Frobenius operator evolves densities on
state space. It has been used extensively to access global
behavior of nonlinear dynamical systems23,42. There are
several well developed approaches for obtaining its nu-
merical approximations, such as Ulam’s method that re-

lies on the discretization of physical space to obtain an
approximation of the Perron-Frobenius operator43. Since
the Koopman operator is adjoint to the Perron-Frobenius
operator, numerical approximations of the Koopman op-
erators can be obtained using these methods as well18.

The Koopman operator is an infinite dimensional lin-
ear operator that describes the evolution of observables
(functions of the state space)18,20,23. Its definition and
properties in the context of dynamical systems are pro-
vided, for instance, in Ref.7, which also summarizes its
applicability to model reduction, coherency analysis, and
ergodic theory. Methods based on the Koopman oper-
ator decomposition have been proven useful for applica-
tions such as model reduction and control of fluid flows2,
power system analysis41, and extracting spatio-temporal
patterns of neural data5.

Data driven methods to approximate the Koopman op-
erator rely upon snapshot pairs of measurements of the
state of the system at consecutive time steps. Recon-
structing the operator from these snapshot pairs requires
that a set of functions (called a dictionary of observables)
is chosen. The first data driven method introduced, dy-
namic mode decomposition (DMD), implicitly uses linear
monomials as a dictionary and thus is most applicable to
systems where the Koopman eigenfunctions are well rep-
resented by this basis set35. A more recent method called
extended DMD (EDMD) introduced in Ref.45 can be
more powerful than the standard DMD when applied to
nonlinear systems as it allows the choice of more compli-
cated sets of dictionary functions. Applying the EDMD
is most computationally feasible if the number of the dic-
tionary functions does not exceed the total number of the
snapshot pairs used. That is not necessarily the case if a
rich function dictionary (e.g., a dictionary of high order
polynomials) is chosen. A modification of EDMD called
kernel DMD introduced in Ref.46 addresses this issue by
providing a way to efficiently calculate the Koopman op-
erator approximation in a case when the number of dic-
tionary functions exceeds the number of measurements.
Yet, the principled choice of an underlying dictionary
that leads to an accurate approximation of the eigenspec-
trum corresponding to the leading Koopman modes using
EDMD or kernel DMD remains an outstanding challenge.
That problem is confronted, for instance, in Ref.25, where
an iterative EDMD dictionary learning method is pre-
sented. Although the optimal choice of dictionary func-
tions is often unknown, there are some common choices
that are known to produce accurate results for certain
classes of systems45.

Here we study nonlinear dynamical systems with dis-
crete symmetries combining operator-based approaches
and linear representation theory. Recently, related meth-
ods have been applied to dynamical systems with sym-
metries. On the one hand, Ref.28 addresses symmetries
of the Perron-Frobenius operator in relation to the ad-
missible symmetry properties of attractors. On the other,
Ref.36 links the spatiotemporal symmetries of the Navier-
Stokes equation to the spatial and temporal Koopman
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operator. Additionally, Ref.6 noted that symmetry con-
siderations play an important role in discovering govern-
ing equations. And, Ref.17 shows how conservation laws
can be detected with Koopman operator approximations
and then used to control Hamiltonian systems.

In contrast, our focus is on dynamical systems with
symmetries described by a finite group. We show how the
properties of the associated Koopman operator spectrum
can be linked to the properties of the spectrum of the
finite dimensional approximations of the Koopman oper-
ator obtained from finite data. We further show how the
analytic properties of the Koopman operator decompo-
sition can inform the choice of dictionary functions that
can be used in the Koopman operator approximations.
This gives a practical way to reduce the dimensionality
of the approximation problem.

Our development builds as follows. Section II defines
the Koopman operator, introduces approximation meth-
ods (EDMD and kernel DMD), and defines equivariant
dynamical systems as well as useful concepts from group
theory and representation theory. Section III draws out
the implications of dynamical system symmetries for the
structure of the Koopman operator and its eigendecom-
position. Section IV connects the properties of the Koop-
man operator and the structure of its EDMD approxima-
tion for symmetric systems. This then allows modifying
the EDMD method to exploit the underlying symmetries,
resulting in a block-diagonal Koopman operator approx-
imation matrix. We also provide numerical examples,
showing how using particular dictionary structures speed
up the algorithm. Finally, the last section summarizes
our findings and outlines directions for future work.

II. PRELIMINARIES

A. Koopman operator

In this section, we provide some background in oper-
ator theoretic approaches to dynamical systems, in par-
ticular, the Koopman operator and its adjoint Perron-
Frobenius operator. Since in this manuscript we address
the approximations of the Koopman operator where the
input is discrete time data, we focus on their definition
in the discretized setting. The continuous time defini-
tions are similar7. Our results regarding the degeneracy
of Koopman operator eigenvalues and the properties of
its corresponding eigenfunctions presented in Section III
hold in both discrete and continuous time settings.

Suppose we are interested in studying continuous time
autonomous dynamical systems defined as:

ẋ = gc(x). (1)

Here, x ∈ Rn, gc : Rn → Rn. Let Φ(x(t),∆t) be a flow
map mapping the initial condition x(t) to the solution at

time t+ ∆t. It is defined in the following way:

Φ(x(t),∆t) = x(t) +

t+∆t∫
t

gc(x(τ))dτ. (2)

The system can be discretized with a finite time step
∆tstep, so that xi+1 = Φ(xi,∆tstep). We denote the func-
tion evolving the dynamics of this discretized system by
g:

xi+1 = g(xi). (3)

The Koopman operator is a linear infinite dimensional
operator that evolves the functions (referred to as observ-
ables) of state space variables f : Rn → C. The action
of the Koopman operator K on an observable function f
for discrete time systems is defined as:

(Kf)(x) = f(g(x)). (4)

Since we consider data-driven Koopman operator ap-
proximation methods in this manuscript, the discrete
time version of the definition is most applicable.

In general, parts of the Koopman operator spectrum
can be continuous7,22, for instance, that can be the case
for chaotic systems. However, for the purposes of this
manuscript, we focus on the case of a discrete spectrum.

Pairs of eigenvalues λ and eigenfunctions φ of the
Koopman operator K are defined as:

(Kφ)(x) = λφ(x). (5)

Of particular interest are the Koopman modes that
can be used in model reduction and coherency
estimation33,40. The Koopman modes vi of the full state
observable are defined by:

x =
∑
i

viφi(x), (6)

and are projections of the observable onto the span of the
eigenfunctions of the Koopman operator K.

The other candidate for studying dynamical sys-
tems using an operator based approach is the Perron-
Frobenius operator P defined as follows for deterministic
dynamical systems:∫

A

Pρ(x)dx =

∫
g−1(A)

ρ(x)dx. (7)

Here, ρ(x) is a density on state space, and A ⊆ Rn is a
subset of the state space. The Perron-Frobenius operator
is an adjoint to the Koopman operator23, so an approxi-
mation of one of them provides an approximation of the
other18.
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B. Koopman operator approximation methods

Extended dynamic mode decomposition (EDMD) in-
troduced in Ref.45 is a way of approximating the Koop-
man operator for discretized systems that requires an
explicit choice of a dictionary of functions referred to as
observables. How to optimally choose those functions re-
mains an open problem for many systems, especially if
the form of differential equations describing the govern-
ing dynamical system is not known in advance and only
finite data on the behavior of the system is available. The
method can be very accurate in capturing the dynamics
of the system, but its accuracy depends strongly on the
choice of an appropriate dictionary of observables. The
method’s convergence properties are studied in Ref.21,
and its relation to the Perron-Frobenius operator ap-
proximation methods is discussed in Ref.18. Here, we
summarize the EDMD and its relation to the Koopman
operator.

The first requirement for the method is a set pairs
of consecutive snapshots x = [x1, x2, ..., xM ] and y =
[y1, y2, ..., yM ], where the measurements xi and yi are
performed with a small constant time interval ∆t: yi =
Φ(xi,∆t). Typically, the set of snapshots contains mea-
surements from different trajectories in state space. We
define a dictionary of linearly independent observables
D = {ψ1, ..., ψN} and form vectors of observables Ψx

and Ψy. Here, Ψx ∈ RM×N , where N is the number of
dictionary functions used in the approximation, and M
is the number of data snapshots. The elements of Ψx are
obtained from (Ψx)ij = ψj(xi). We also use the notation
Ψ(xm) = (ψ1(xm), ..., ψN (xm)) for the dictionary func-
tions evaluated at a particular point on the trajectory.

A finite dimensional approximation of the Koopman
operator K that we denote as K can be obtained using:

K = Ψ+
x Ψy. (8)

Here, Ψ+
x denotes the pseudoinverse of Ψx. We focus on

the case of the Moore-Penrose pseudoinverse for the rest
of the manuscript32.

If the number of snapshots is much higher than the
dimensionality of the function dictionary (M � N), it
is more practical instead to define the square matrices G
and A as shown below and obtain the approximation in
the following way:

K = G+A, where

G =
∑
m

Ψ(xm)∗Ψ(xm), A =
∑
m

Ψ(xm)∗Ψ(ym). (9)

Here, ∗ represents the complex conjugate transpose.
If the only observables are the states of the system
x1, x2, ..., xn, EDMD reduces to DMD18,45.

The eigendecomposition of K provides the Koopman
eigenvalues, eigenfunctions, and modes that allow an ap-
proximate linear representation of the underlying system
dynamics. Let λj and uj be the jth eigenvalue and eigen-

vector of K. Then the corresponding Koopman eigen-
function can be approximated by:

φj(x) = Ψ(x)uj . (10)

Let bi be the vectors defined by g(x)i = Ψbi, where
g(x)i = e∗i x denotes the elements the full state observable
discussed in Ref.45, and B = (b1 ... bn). The Koopman
eigenmodes can then be obtained as:

vi = (w∗iB)T . (11)

Here, wi denotes the ith left eigenvector of K.
A modification of EDMD named kernel DMD46 is bet-

ter suited for systems with a low number of measure-
ments and a high number of observables (e.g., the full
state observable for fluid dynamical systems is very high
dimensional, so defining a polynomial dictionary of the
full state observable is very computationally expensive),
i.e. M � N . The method relies on evaluating the kernel
function:

k(xi, yi) = Ψ(xi)Ψ(yi)
∗. (12)

That allows efficient computation of M ×M matrices Ĝ,
Â, and K̂, where M is the number of trajectory time
steps. The eigendecomposition of K̂ then can be used to
obtain the approximations of the Koopman eigenvalues,
eigenfunctions, and modes.

In the main body of the manuscript, we focus on the
case where the number of measurements is relatively high
for each degree of freedom (M � N), and obtain a way to
reduce the dimensionality of the EDMD approximation
of the Koopman operator for systems with symmetries in
Section IV. A similar modification of the kernel DMD is
discussed in Appendix D.

C. Point symmetries

In this section, we define the concepts useful to study
the structure of the Koopman operator K and its ap-
proximations K for systems with symmetries. Through-
out this section and the rest of the manuscript, we use
an example of a small network of Duffing oscillators to
illustrate the definitions and algorithms.

In this manuscript, we consider dynamical systems (as
defined in Eqs. (1) and (3)) that respect point symme-
tries. These systems are called equivariant with respect
to the symmetry group Γ. We define groups by their
presentations in a form 〈S|R〉, where S is a set of gen-
erators of the group, and R is a set of relations among
these generators that define that group. Every element
of the group can be written as a product of powers of
some of these generators.

For instance, the cyclic group Z3 is presented by
〈r|rn = 1〉. An example of a realization of that group
is a set of rotational symmetries of a regular n-gon.

To study dynamical systems with symmetries, we need
to define the specific actions of the group on a vector
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space in addition to an abstract presentation of a group
Γ. Let X ⊂ Rn be a vector space with elements x ∈ X.
We denote the actions γρ on a vector space X by γρx if
the set of these actions Γρ is isomorphic to Γ. A short-
hand γρx = γx is sometimes used in the literature when
the action corresponding to the subscript ρ is clear from
the context (for instance, it is defined by a permutation
matrix of the same degree as the state space of the sys-
tem), however, we use the γρ notation to avoid ambiguity,
since the precise definition of group action in particular
cases is important in this manuscript, as shown, for in-
stance, in Example II.1 and Example II.2.

Finally, we define what it means for a dynamical sys-
tem to be symmetric. Let ẋ = gc(x) be a continuous
time system of differential equations. Here, x ∈ Rn, and
gc : Rn → Rn. The system is Γ-equivariant with respect
to the actions of Γρ if for all x ∈ X and γρ ∈ Γρ:

gc(γρx(t)) = γρgc(x(t)). (13)

As discussed in Section II, data comes in discretized form,
so a discrete form of that definition is useful. For discrete
time systems defined by xi+1 = g(xi), equivariance is
defined in a similar manner:

g(γρxi) = γρg(xi). (14)

We note that if a continuous time system is Γ-equivariant,
so is its discretization. Moreover, the set of trajectories
of a γ-equivariant system in state space also respects the
symmetries of the system. For discretized systems, it
means that if {x0, x1, ...xn} form a trajectory in state
space, then {γρx0, γρx1, ...γρxn} form a trajectory as
well.

An important example of equivariant dynamical sys-
tems that many of the recent works have focused on (such
as Refs.16,27,30,38) is a system of coupled identical oscilla-
tors. In that case, the set (or a subset) of actions under
which the system is equivariant is defined by the set of
permutational matrices P that commute with the adja-
cency matrix of that oscillator network. In this case, the
action of the group is linear, however, that does not al-
ways have to be the case.

We also need to define the action of the group in func-
tion space, where f ∈ F are functions f : X → C as:

(γρ ◦ f)(x) ≡ f(γ−1
ρ x). (15)

This definition will be useful since the Koopman operator
acts on functions (i.e. observables).

Another concept useful for our work is a linear group
representation T , which is a mapping from group ele-
ments γ ∈ Γ to the elements of the general linear group
(a group of matrices of degree n with the operation of
matrix multiplication denoted by GL(n, V )) on a vector
space V (in this case, we are interested in V = Cn). The
characters of a group representation Ti(γ) are defined as
χi(γ) = Tr(Ti(γ)).

A representation is called irreducible if it has no non-
trivial invariant subspaces (meaning that the representa-
tion matrices corresponding to the group elements can

not be simultaneously non-trivially block diagonalized
into the same block form). For each Γ we can obtain all
of its irreducible matrix representations. We denote their
elements mapping γ ∈ Γ to p × p-dimensional matrices
as Ri(γ), where the index i corresponds to the ith ir-
reducible representation. Irreducible representations are
defined up to an isomorphism. For the purposes of this
manuscript, it is useful to either make use of the unitary
irreducible representations or the characters χi(γ) of the
unitary irreducible representations.

A vector space, e.g. the space of square integrable
functions F , can be uniquely decomposed into compo-
nents that transform like the ith irreducible representa-
tion of Γ under the actions of Γρ. These components are
called isotypic components13. We denote these compo-
nents by Fi. An isotypic decomposition of the square in-
tegrable function space with respect to Γρ is then defined
as F =

⊕
i

Fi. We illustrate the construction of an iso-

typic decomposition using an example of a Z2-equivariant
system.

Example II.1 Symmetries of a single Duffing oscillator
dynamics and isotypic components in function space cor-
responding to the actions of its symmetry group.

The unforced Duffing oscillator equation has the form:

ẍ = −σẋ− x(β + α2x). (16)

We can rewrite the above equation as a system of differ-
ential equations to obtain:

ẋ = y,

ẏ = −σy − x(β + α2x).
(17)

Let x =

(
x
y

)
, and let the dynamics be denoted by ẋ =

g(x). Let rs =

(
−1 0
0 −1

)
= −I2×2 be the action on the

state space that flips the signs of variables. The actions
rs and es = I2×2 form a group Γs isomorphic to Γ =
Z2 = 〈r|r2 = e〉. Let γs ∈ Γs, then:

γsg(x) = g(γsx). (18)

Thus, the Duffing oscillator system is Z2-equivariant with
respect to the actions γs.

We now illustrate the isotypic component decomposi-
tion of Z2 in function space. Z2 has two one-dimensional
irreducible representations: the trivial representation de-
fined by Rtr(r) = 1 and the sign representation defined
by Rsign(r) = −1. Then the space of square integrable
functions F can be decomposed into F = Ftr ⊕ Fsign,
where Ftr = {f : rs ◦ f = f(−x,−y) = f(x, y)} and
Fsign = {f : rs ◦ f = f(−x,−y) = −f(x, y)}. In this
case, the sets of functions Ftr and Fsign consisting of
even and odd functions respectively transform like the
trivial and sign irreducible representations with respect
to sign flip as a group generator action.
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We now extend the example to a network of Duffing os-
cillators and explore additional permutation symmetries.

Example II.2 We now consider the dynamics of a net-
work of Duffing oscillators. Suppose the coupling is linear
in x with a coupling coefficient assigned to every edge ηij.
Then for each node i in the network, we have the follow-
ing dynamics:

ẋi = yi,

ẏi = −σẏi − xi(β + α2xi) +
∑
ij

ηij(xi − xj). (19)

This general coupling scheme is used to describe many
systems in literature30,38.

We now consider the case of a 3-node network. De-
pending on what the coupling terms are, the system
may be Γ-equivariant with respect to different symmetry
groups that act by permuting node indexes. Some exam-
ples are:

a) If all coupling strengths ηij are equal, the net-
work has D3 symmetry. This case is shown on
Fig. 1a. Let the state of the system be defined by

x = (x1 y1 x2 y2 x3 y3)
T

. Then, the symme-
try group is presented by D3 = 〈r, κ|r3 = κ2 =
e, κrκ = r−1〉 and generated by the actions rp =0 1 0

0 0 1
1 0 0

⊗ I2×2 and κp =

1 0 0
0 0 1
0 1 0

⊗ I2×2.

b) If the coupling strengths obey the conditions ηij 6=
ηji and ηij = ηjk, the network has Z3 symmetry.
This case is shown on Fig. 1b. The symmetry group
is presented by Z3 = 〈r|r3 = e〉 and generated by
the action rp defined above.

c) If the coupling strengths obey the conditions η12 =
η21 and no other equalities hold, the network has
Z2 symmetry. This case is shown on Fig. 1c. The
symmetry group is presented by Z2 = 〈κ|κ2 = e〉
and generated by the action κp defined above.

Even though in case (c) the permutation symmetry is
isomorphic to the same group as the sign flip symme-
try in Example II.1, the isotypic components in func-
tion space F induced by the group action are differ-
ent. Z2 has two one-dimensional irreducible represen-
tations: trivial representation R1(r) = Rtr(r) = 1
and sign representation R2(r) = Rsign(r) = −1. Let

xi =

(
xi
yi

)
. The isotypic components are defined by

Ftr = {f : rp ◦ f = f(x1,x3,x2) = f(x1,x2,x3)} and
Fsign = {f : rp ◦ f = f(x1,x3,x2) = −f(x1,x2,x3)}.

Additionally, each node still has Z2 symmetry with re-
spect to the action rs which is not broken since the cou-
pling function is odd. That symmetry is also depicted in
Fig. 1. We can find the isotypic components of the whole
symmetry group as F =

⊕
i,j

(Fi,s ⊗Fj,p).

Any function can be rewritten as a sum of projections
into different isotypic components. The procedure is out-
lined in the following section.

III. PROPERTIES OF THE KOOPMAN OPERATOR
FOR SYSTEMS WITH SYMMETRIES

In this section, we consider the structure of the
eigenspace of the Koopman operator of Γ-equivariant sys-
tems. We show how to obtain a particular eigenbasis of
the system corresponding to the isotypic decomposition
in function space and demonstrate that the isotypic de-
composition induces a block diagonal structure on the
matrix representation of K.

Theorem III.1 For a Γ-equivariant dynamical system
ẋ = g(x) and an arbitrary function f , the Koopman op-
erator commutes with the actions of the elements of Γ:

γρ ◦ (Kf)(x) = K(γρ ◦ f)(x). (20)

Proof:
The commutativity follows from the definitions of the
Koopman operator and the definition of the action of the
group in state space and function space.

γρ ◦ (Kf)(x) = γρ ◦ f(g(x)) = f(γ−1
ρ g(x))

= f(g(γ−1
ρ x)) = Kf(γ−1

ρ x) = K(γρ ◦ f)(x)
(21)

This result is similar to Theorem 3.1 in28, where it is
shown that the action of Perron-Frobenius operator com-
mutes with the action of the symmetry group Γ for Γ-
equivariant systems.

Corollary III.1.1 The space of eigenfunctions of the
Koopman operator K with eigenvalue λ for a Γ-
equivariant system is Γ-invariant.
Proof:
Let Sλ be the set of eigenfunctions of K with eigenvalue
λ. Let φ ∈ Sλ. Then, using the commutativity of K and
Γρ, we can show that ∀γρ ∈ Γρ:

K(γρ ◦ φ(x)) = γρ ◦ (Kφ)(x) = λγρ ◦ φ(x). (22)

Thus, φγ,ρ ∈ Sλ, where φγ,ρ is also an eigenfunction with
an eigenvalue λ defined as φγ,ρ(x) = γρ ◦ φ(x).

We now consider a particular form of the eigenbasis
of the Koopman operator that induces block diagonal
structure of the matrix representation of the action of
the Koopman operator K. The result quoted below is
useful for that purpose.

Theorem III.2 (Theorem 3.5 in Chapter XII of Ref.15).
Let Γ be a compact Lie group acting on the vector
space V decomposed into isotypic components V =
W1

⊕
...
⊕
Wt. Let A : V → V be a linear mapping

commuting with Γ. Then A(Wk) ⊂Wk.
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(a) Duffing oscillator network with
Z2 ⊗D3 symmetry
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(b) Duffing oscillator network with
Z2 ⊗ Z3 symmetry
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(c) Duffing oscillator network with
Z2 ⊗ Z2 symmetry

FIG. 1: Possible symmetries of a network of three identical Duffing oscillators depending on the coupling strength
between the oscillators. Different coupling strengths are shown in blue and red. Green arrows correspond to
permutational symmetries arising from physical coupling, black arrows correspond to the symmetries of nodal
dynamics.

This result is applicable to finite symmetry groups.
Isotypic components of F with respect to Γ induce block
diagonal structure of the matrix representation of the
Koopman operator. Since K and Γ commute, K(Fk) ⊂
Fk. This block structure can be exploited in finding the
Koopman operator approximations, as we show in the
next section. Thus, we need to be able to obtain an iso-
typic component basis from an arbitrary function dictio-
nary. This is a well defined procedure9, outlined below.
Functions obtained via isotypic decomposition are useful
to perform calculations in many areas of physics, for in-
stance, they can simplify finding approximate solutions
to Schrodinger equation, or in studying crystallographic
point groups9,39. The construction is also widely applied
to dynamical systems, for instance, to study states and
their stability using equivariant bifurcation theory.

Suppose we start from an arbitrary basis function dic-
tionary Dψ = {ψi}. Each of those functions can be ex-
panded in the isotypic component basis with at least one
nonzero coefficient αpmn:

ψ =
∑
p

dp∑
m,n=1

αpmnξ
p
mn. (23)

Here, ξpmn is a basis function in the pth isotypic compo-
nent of F , and dp is the dimension of that isotypic com-
ponent. Alternatively, it can be thought of as a sum over
all inequivalent (non-isomorphic) irreducible representa-
tions of Γ, where ξpmn transforms as (m,n)th element of
pth irreducible representation of Γ9. We define a projec-
tion operator and form a new function basis consisting of
functions {ξpmn} as outlined below.

The projection operator is defined as:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnγρ. (24)

Here, [Rp(γ)]mn denotes the element in nth row and mth

column of the i th unitary irreducible representation of
γ ∈ Γ, and γρ is the group action. We can form an or-
thonormal basis Dξ = {ξi} using that projection operator
as follows:

ξpmn(x) =
1

cnp
Ppmn ◦ ψ(x). (25)

Here, cnp = 〈Ppnnψ,Ppnnψ〉1/2, where 〈, 〉 denotes the in-
ner product, which can be omitted for our purposes since
the scaling of basis functions does not affect the EDMD
results.

Equivalently, due to orthogonality of characters of ir-
reducible representations, the projection operator can be
obtained using the following expression:

Pp =
dp
|Γ|
∑
γ∈Γ

χp(γ)∗γρ. (26)

Here, χp(γ) is a character of the pth irreducible repre-
sentation of Γ. If this formula is used, each irreducible
representation of degree dp provides a basis function, and
d2
p − 1 other basis functions can be formed using the

Gram-Schmidt orthogonalization process9,30,39.
Once an isotypic component basis is obtained, the ac-

tion of the Koopman operator on function space can be
presented in the form of a block diagonal matrix. Each
irreducible unitary representation of dimension dp in this
case corresponds to a number dp of dp×dp sized blocks in
that matrix K. Similar analysis works for the Koopman
operator approximation K. The reason why this addi-
tional decomposition works can be found in Appendix A.
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IV. IMPLICATIONS FOR EDMD

A. Constructing a basis for systems with known
symmetries

In this section we show that the approximation of K
obtained using EDMD can be reduced to the block di-
agonal structure similar to K under certain assumption
on the data. We provide some examples of constructing
an isotypic component basis from a given function dic-
tionary. We highlight that the basis depends on both the
structure of Γ and the definition of its actions Γρ.

First, we establish that the Koopman operator approx-
imation K commutes with the actions γρ of Γ if the data
used in the calculation respects the symmetry, meaning
the set of pairs of data points satisfies the condition:

{(γρxi, γρyi)} = {(xi, yi)}. (27)

In other words, the set of trajectories is closed under the
action of the symmetry group of the underlying dynam-
ical system.

In order to perform further simplifications, we pick a
particular order of group elements {γ1, ..., γ|Γ|} and cre-
ate the vectors Ψx (and analogously Ψy) according to
that ordering:

Ψ(x) =
(
γ1 ◦Ψ(x) ... γ|Γ| ◦Ψ(x)

)
,

Ψx =

Ψ1(x1) ... ΨN/|Γ|(x1)
...

. . .
...

Ψ1(xM ) ... ΨN/|Γ|(xM )

 .
(28)

Given the ordering of the group elements, we can also
construct the permutation representation of the group
such that:

Pγk(γ1, ..., γ|Γ|)
T = (γkγ1, ..., γkγ|Γ|)

T . (29)

By Cayley’s theorem, such permutations form a group
isomorphic to Γ. Determining the actions Pγk of the
group generators is sufficient to find the actions of all
group elements. Let Pγk = Pγk ⊗ In×n. We note that
(Pγk)∗ = (Pγk)−1. It can be shown that:

PγkG = GPγk , PγkA = APγk . (30)

By definition, A = Ψ∗xΨy. We note that:

(ΨxPγk)∗ΨyPγk = Ψ∗xΨy. (31)

That is the case for symmetric trajectories satisfying
Eq. (27):

((ΨxPγk)∗ΨyPγk)ij =
∑
m

ψ∗i (γ−1
k xm)ψj(γ

−1
k xm)

=
∑
m

ψ∗i (xm)ψj(xm) = (Ψ∗xΨy)ij .
(32)

Thus, A and G commute with the action of the symmetry
group.

If G is invertible and G commutes with γρ, G
−1 com-

mutes with γρ as well. Then:

PγiK = PγiG
−1A = G−1APγi = KPγi . (33)

If G is not invertible, the commutativity result still
holds for G+. G is a normal matrix since it satisfies
GG∗ = G∗G. In Appendix B, we show that if G is
normal, GG+ = G+G, so G commutes with its Moore-
Penrose pseudoinverse, and therefore the actions of K
and Γ commute.

Since K commutes with the actions of Γ, KFi ⊂ Fi.
This shows that K can be block-diagonalized in the same
way as K.

Suppose we start from a dictionary of observables.
Since that dictionary is not necessarily an isotypic com-
ponent dictionary corresponding to Γ and its action, in
order to obtain a block diagonal matrix K, the dictionary
needs to be modified using the procedure outlined in Sec-
tion III. In the example below, we show explicitly how to
perform this transformation into the isotypic component
basis.

In order for the basis to faithfully represent the sym-
metries of the system we require that:

• The dictionary is closed under the action of the
symmetries of the system:

If ψ ∈ D, γρψ ∈ span(D) (34)

• Each isotypic component is present after the iso-
typic component decomposition of the original
function basis:

∀m, p ∃ψ ∈ D, s.t. Ppmnψ 6= 0 (35)

For instance, using a monomial basis for a D3 equiv-
ariant system does not satisfy the second requirement.

If these requirements are satisfied, the change of ba-
sis does not affect the result obtained by applying the
EDMD algorithm as shown in Appendix C. Additionally,
we note that the eigenvalues of K do not typically have
the same degeneracy properties as the eigenvalues of K,
but the symmetries of the underlying dynamical system
are preserved in trajectory reconstructions.

Example IV.1 Constructing an isotypic component ba-
sis for a network of Duffing oscillators from a given basis.

We consider the case of a system of Duffing oscillators
with identical coupling as depicted in Fig. 1a. In that
case, the system has Z2⊗D3 symmetry. Suppose we want
to construct an isotypic component basis from a given
function dictionary D. As an example, we use an initial
dictionary Dψ of n mesh-free radial basis functions. The
radial basis function centers can be obtained by either
k-means clustering of the data or sampling from a pre-
determined distribution. Each function can be presented
in a form ψ(c, x) = rclog(rc), where c is a 6-dimensional
radial basis function center, and rc,x = ||x − c||1/2. In
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order to preserve the symmetries of the system, we need
to have dictionary elements corresponding to acting on
the basis functions by each γρ ∈ Γρ. Due to the form of
these functions, γρ ◦ ψ(c, x) = ψ(γ−1

ρ c, x).
Since Γ = Z2⊗D3 is a direct product of two groups, we

can write the projection operator in the following form:

Ppmn =
dp
|Γ|
∑
γ∈Γ

|Rp(γi, γj)|∗mn(γi, γj). (36)

We first consider the irreducible representations of D3.

• Trivial representation Rtr: Rtr(r) = 1, Rtr(κ) = 1

• Sign representation Rsign: Rsign(r) = 1,
Rsign(κ) = −1

• Standard representation Rst: Rst(r) =(
ω 0
0 ω2

)
, Rst(κ) =

(
0 1
1 0

)
. Here, ω = e2πi/3.

Suppose we form a vector of basis functions in Dψ,
Ψ = (ψ1,1ψ2,1, ..., ψn,1, ..., ψ1,|Γ|, ψ2,|Γ|, ..., ψn,|Γ|)

T , where

the first index corresponds to acting on ψ1,i by the jth el-
ement of Γρ. Using the equations above, we obtain trans-
formation matrices that we will use to get the isotypic
component basis:

TD3
=


1 1 1 1 1 1
1 1 1 −1 −1 −1
1 ω ω2 0 0 0
0 0 0 1 ω2 ω
1 ω2 ω 0 0 0
0 0 0 1 ω ω2

 , TZ2
=

(
1 1
1 −1

)
.

(37)

The isotypic component basis then can be obtained by
modifying a set of functions in Dψ:

Ξ = TΨ, T = TZ2 ⊗ TD3 ⊗ In×n. (38)

If we use Ξ as a basis, we obtain K decomposed into
8 blocks, each corresponding to an irreducible representa-
tion of Z2 ⊗D3.

We implement the EDMD algorithm to obtain the ap-
proximation of K. Here, the data comes from 500 ini-
tial trajectories of length 10 that were then reflected and
rotated so that the data respects the symmetries. The
parameter values of α = 1., β = −1., δ = .5, and
η = 1. were used. We plot the approximation matrix
K on Fig. 2. In this case, a dictionary of 120 radial
basis functions was used. Fig. 2a illustrates the Koop-
man operator approximation matrix K calculated using
an initial dictionary Dψ and requires performing matrix
operations on the full 120×120 matrix. Fig. 2b shows K
obtained from the symmetry adapted basis functions. The
order of calculations can be reduced significantly since it
is only necessary to perform matrix operations on blocks.
Ksymm has 4, 10× 10 and 2, 20× 20 unique blocks.

(a) K for a standard
dictionary of
observables

(b) K for a symmetry
adapted dictionary of
observables

FIG. 2: Structure of K for different choices of
dictionary functions

As shown in examples above, we can construct a basis
that diagonalizes the Koopman operator matrix approxi-
mation K from the elements of any arbitrary basis. Since
the off block-diagonal elements of the matrix are a pri-
ori known to be zero, we do not need to compute these
elements explicitly. This suggests that for systems with
symmetries it is more efficient to perform the EDMD al-
gorithm for isotypic decomposition blocks. We denote
the number of conjugacy classes or irreducible represen-
tations of Γ by rΓ. In that case, instead of perform-
ing O((mrΓ)α) operations of matrix inversion, multipli-
cation, and eigendecomposition, it is sufficient to perform
these operations for each of the rΓ blocks, with operations
being O(mα). Here 2 < α < 319. Even though the al-
gorithmic complexity only differs by a factor that scales
with the size of the group that is fixed for any given
system, in practice, the computation is more efficient
when EDMD specific to Γ-equivariant systems is used.
We also note that each dp dimensional irreducible repre-
sentation results in dp of dp × dp dimensional blocks in
Ksymm known to be equal a priori, which further simpli-
fies the calculation. Moreover, in the case of networks of
high dimensionality, it allows parallel eigendecomposition
computation for isotypic component blocks. Table I sum-
marizes the modified EDMD algorithm for Γ-equivariant
systems and highlights that the order of computations
can be lowered.

Koopman eigenfunctions and eigenmodes have many
applications in dimensionality reduction, finding the
basins of attraction, characterizing coherency between
oscillatory systems, etc. Block diagonalizing K allows
the efficient computation of the Koopman eigenvalues,
eigenfunctions, and modes.

The kernel DMD is closely related to the EDMD algo-
rithm. It relies on the calculating the eigentriples associ-
ated with K from a dual matrix K̂ evaluated using a ker-
nel trick commonly applied in machine learning46. This
method can be computationally advantageous for cases
when the number of basis functions exceeds the number
of available measurements of the state of the system. We
find that the kernel DMD can also be modified to in-
clude symmetry considerations in order to optimize the
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Standard EDMD EDMD for Γ-equivariant systems

• Pick a dictionary ofN ob-
servables

• Evaluate the observables
at data points xi and yi

• Evaluate the entries of
G,A: N2 elements

• Obtain G+: N × N ma-
trix

• Find K = G+A: N × N
matrices

• Find the eigendecomposi-
tion of K: N ×N matrix

• Pick a dictionary of N observables

• Identify the symmetry Γ of the system, find the irreducible representations of Γ

• Change the basis to a Γ-symmetric basis using Eq. (26) and Eq. (25) : multiplying at
most N/|Γ| |Γ| × |Γ| matrices by vectors |Γ| × 1. Let Np be the number of functions
obtained from applying a projection operator Pp corresponding to p th irreducible
representation of Γ (e.g., Np = N/|Γ| for cyclic groups).

• Evaluate the observables at data points xi and yi, add trajectories to reflect the sym-
metries if necessary

• To obtain the blocks Kpq of K (each isotypic component corresponds to dp blocks), for
each p:

– Evaluate the entries of Gp1, Ap1: (Np/dp)
2 elements

– Obtain G+
p1: (Np/dp)× (Np/dp) matrix

– Find Kp1 = G+
p1Ap1: (Np/dp)× (Np/dp) matrices

– Find the eigendecomposition of Kp1: (Np/dp)× (Np/dp) matrix

– The other Kpq blocks equal to Kp1

• K =
⊕
p

dp⊕
q=1

Kpq. Its eigenvalues are the eigenvalues of Kp, and its eigenvectors only

have Np nonzero elements. Mathematically, eigenvectors vkl of K are of the form
(vkl)i =

⊕
p

δpkvpl.

TABLE I: EDMD vs modified EDMD for Γ-equivariant systems. |Γ| is the order of Γ. The irreducible
representations of Γ are indexed by p and are dp-dimensional.

calculations. The method is provided in Appendix D.

B. Consequences of symmetry assumptions in the basis

Assume the data is symmetric as defined by Eq. (27)
with respect to the symmetry group Γ. A “perfect” ba-
sis is the one respecting the isotypic decomposition of Γ.
Suppose the basis functions belong to isotypic compo-
nents of Σ 6= Γ. That choice will affect the structure of
K. We study that structure by evaluating the elements
of A, since K and G+ have the same structure as A.

If the system is Γ-equivariant and Σ ⊂ Γ and the set
of actions of Σ is a subset of actions of Γ, the system is
also Σ-equivariant. Thus, picking a basis respecting the
isotypic decomposition of Σ will have the block diagonal
structure corresponding to Σ. This means that choice
of basis results in block diagonal K, but its structure
does not provide any additional information about the
symmetries of the system.

If the system is Γ-equivariant and Γ ⊂ Σ, functions
belonging to particular isotypic components of Σ are not
preserved by the action of K. In the case of symmetric
trajectories, that can provide information on what the
true symmetries of the system are.

A simple case corresponds to Σ = Σ0 ⊗ Γ. In this
case, every action of Σ0 commutes with every action
of Γ. Each isotypic component of F with respect to Σ
can be expressed as Fpq = FpΣ0

∩ (FΓ)q, where FpΣ0
de-

notes the pth isotypic component of Σ0. In this case,
the off-diagonal blocks corresponding to interactions be-
tween isotypic components Fp1q1 and Fp2q2 are zero if
q1 = q2, and generally nonzero otherwise. For instance,
if a network of three Duffing oscillators similar to the
one discussed in, e.g., Example IV.1, has no permutation
symmetry and Σ = Z2⊗D3, with the action of Z2 being
a sign flip in nodal dynamics, the isotypic components
corresponding to these Z2 symmetries will not interact,
resulting in two blocks in K.

Next, we consider a more general case. We denote the
pth isotypic component of F with respect to the symme-
try group Σ by FpΣ. We note that if FpΣ ∩ F

q1
Γ 6= ∅ and

FpΣ ∩ F
q2
Γ 6= ∅ where q1 and q2 index different isotypic

components of Γ, then the off-diagonal blocks of K corre-
sponding to interactions between those components are
generally nonzero. The condition for FpΣ ∩ F

q
Γ 6= ∅ is

equivalent to:

PpΣ ◦ (PqΓ ◦ f) 6= 0, (39)

where f is an arbitrary function, and PpΣ denotes the
projection operator onto the pth isotypic component with
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respect to the symmetry group Σ.

PpΣ ◦ (PqΓ ◦ f)

=
∑
σ∈Σ

χp(σ)∗σρ ◦
∑
γ∈Γ

χq(γ)∗γρ ◦ f

=
∑

σ∈Σ,γ∈Γ

χp(σ)∗χq(γ)∗(σργρ) ◦ f.

(40)

Let H be the set of left cosets of Γ in Σ (defined as
H = Σ/Γ = {σΓ : σ ∈ Σ}, where σΓ = {σγ : γ ∈ Γ}13).
Thus, the condition of Eq. (39) holds if for all h ∈ H:∑

γ∈Γ

χ∗p(hγ
−1)χ∗q(γ) = 0 (41)

Using Eq. (41), the structure of Γ can be determined
given the structure of K and Σ used in the calculation.
Characters of irreducible representations are available for
small order symmetry groups, and scaling up to larger
order is possible using computational group theory soft-
ware. Below is an example for the subgroups of a dihedral
group D3.

Example IV.2 Coupled Duffing oscillators: Z2 ⊗ Z2,3-
equivariant system with Z2 ⊗D3 basis functions.

We consider different coupling schemes of networks of
3 Duffing oscillators shown in Fig. 1b and 1c. We first
note that the Z2 symmetry generated by a sign flip is
still present in the system for both cases, so two non-
interacting blocks corresponding to irreducible represen-
tations of that group with respect to that action are still
present. Now we focus on the structure of K within each
of these non-interacting blocks.

First, let the function dictionary symmetry be Σ =
D3 = 〈r, κ|r3 = κ2 = e, κrκ = r−1〉 and the true sym-
metry of the system be Γ = Z3 = 〈r|r3 = e〉, where
rD3

and rZ3
have the same action. The isotypic com-

ponent decomposition of D3 is defined in Example IV.1
and can be written as F = Ftr,D3

⊕ Fsign,D3
⊕ Fst,D3

.
The isotypic component decomposition of Z3 is defined
as F = Ftr,Z3

⊕Fω,Z3
⊕Fω2,Z3

(Z3 has 3 1-dimensional
irreducible representations with χtr(r) = 1, χω(r) = ω,
χω2(r) = ω2). We note that:

• Ftr,Z3 ∩ Ftr,D3 6= ∅

• Ftr,Z3
∩ Fsign,D3

6= ∅

• Fω,Z3
∪ Fω2,Z3

= Fst,D3

Thus, the off block-diagonal structure of K is defined by:

• KFtr,D3 ∩ Fsign,D3 6= ∅

• KFsign,D3 ∩ Ftr,D3 6= ∅

• other off-diagonal blocks are zeros

This structure is illustrated on Fig. 3b and differs from
that on Fig. 3a.

Now, let Σ = D3 and Γ = Z2. Here, Z2 = 〈e, κ|κ2 =
e〉, and κD3

and κZ2
have the same action. The isotypic

component decomposition of Z2 is defined as F = Ftr,Z2
⊕

Fsign,Z2
.

We note that:

• Ftr,Z2
∩ Ftr,D3

6= ∅

• Ftr,Z2 ∩ Fst,D3 6= ∅

• Fsign,Z2
∩ Fsign,D3

6= ∅

• Fsign,Z2 ∩ Fst,D3 6= ∅

Additionally:

• Ftr,Z2
∩ Fsign,D3

= ∅

• Fsign,Z2 ∩ Ftr,D3 = ∅

Thus, the off block-diagonal structure of K is defined by:

• KFtr,D3
∩ Fsign,D3

= ∅

• other off-diagonal blocks corresponding to inter-
actions between node permutation isotypic compo-
nents are generally nonzero

This structure is illustrated on Fig. 3c and differs from
that on Fig. 3a and Fig. 3b.

This example shows that the structure of the approx-
imation K with maximal symmetries assumed provided
information about the actual underlying symmetries of
the system.

C. Towards realistic systems

In this manuscript, we provide a general approach for
dimensionality reduction in the calculation of Koopman
operator approximations by exploiting the underlying
symmetries of the systems dynamics and structure. The
exact scaling achieved by the reduction depends on the
structure of the symmetry group of the dynamical sys-
tem, specifically, the number of irreducible representa-
tions of the symmetry group and their dimensionality.

The results outlined in this manuscript, similar to most
of the other literature related to dynamical systems with
symmetries, are immediately applicable in the case of ex-
istence of exact symmetries in nonlinear dynamics. That
is the case when the system is completely deterministic
and the initial conditions respect the symmetries of the
system. If the symmetries of the system are known and
the available trajectories are deterministic, it is always
possible to reconstruct the trajectories that are related
via the symmetry group of the system. Then, a full set
of trajectories respecting the symmetries of the system
can be used to approximate the Koopman operator and
its eigendecomposition.

However, in many systems that information is not nec-
essarily available ahead of time and the symmetries are
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(a) K if Σ = Γ = D3 (b) K if Σ = D3, Γ = Z3 (c) K if Σ = D3, Γ = Z2

FIG. 3: Structure of K with basis functions belonging to the isotypic components of Σ = D3 for different underlying
symmetries of the system

not present in data, even if the initial conditions are sym-
metric, because of the presence of noise in the system.
Some of the examples of not fully symmetric data include
the following cases and their combinations:

• Deterministic systems with measurement noise.
DMD for systems with measurement noise and pos-
sible ways to correct for it are presented in Ref.10.
It is shown in Appendix E that in this case the
expected values of off-diagonal elements of K com-
puted using the EDMD are zero, so the block de-
composition may still be applicable.

• Stochastic systems with symmetric initial condi-
tions and process noise. DMD applied to the sys-
tems with process noise is studied, for instance, in
Ref.3.

• Systems with imperfect symmetries due to sam-
pling and unknown underlying symmetries.

• Systems with imperfect symmetries in dynamics
(e.g. slight parameter mismatch).

All these cases require separate treatment, and
whether the isotypic component decomposition is still
useful in computing the Koopman operator approxima-
tion will vary depending on specific characteristics of the
data available from the system, such as the strength of
noise or the trajectory sampling characteristics.

V. CONCLUSION

In this manuscript, we apply tools from group theory
and representation theory to study the structure of the
Koopman operator for equivariant dynamical systems.
This approach can be applied to systems with permuta-
tion symmetries (e.g. networks symmetric under node
permutations where the information about the symme-
tries is contained in the adjacency matrix), systems with
intrinsic dynamical symmetries, and systems with both
types of symmetries present. We find that the operator

itself and its approximations can be block diagonalized
using a symmetry basis that respects the isotypic compo-
nent structure related to the underlying symmetry group
and the actions of its elements. For the approximation
matrix to be exactly block diagonal, the data must re-
spect the symmetries of the system. That can be readily
accomplished if the underlying symmetry is known ahead
of time (e.g., the topology of the network is known).
Symmetry considerations are applicable to both EDMD
and kernel DMD, which means they become useful both
in the regime when the number of observables is much
larger than that of measurements and vice versa.
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Appendix A: Block diagonalization of isotypic components
obtained from dp-dimensional irreducible representations

We show that d-dimensional irreducible representa-
tions of Γ yield identical blocks of K in the isotypic com-
ponent basis obtained using the unitary irreducible rep-
resentations of Γ.

Let the function space be decomposed into isotypic
components according to the actions of the symmetry
group Γ of order |Γ|, γρ ∈ Γρ: F = F1⊕...⊕FN , where N
is the number of irreducible representations of Γ. Let Fp
be one of these isotypic components with a corresponding
unitary irreducible representation with elements Rp(γ)
corresponding to γ ∈ Γ, and let dp be the dimensionality
of that representation.
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The projection operator is defined as:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnγρ. (A1)

It acts on f ∈ F to produce sets of projected functions
according to:

ξpmn = Ppmn ◦ f. (A2)

We already know that Kξpmn = hp, where hp ∈ Fp.
The subspace Fp can be decomposed into dp components
Fp = Fp,1⊕...⊕Fp,dp , where Fp,m = {g|g = Pmn◦f, f ∈
F , n = 1, ..., dp}. This is a well-defined decomposition
since 〈Ppmnf,P

p
klh〉 = 〈f,PpnmP

p
klh〉 = 〈f, δmkPpnlh〉9 can

be nonzero only when m = k.
We want to show that Kξpmn ∈ Fp,m (also true for

any linear operator that commutes with the action of the
symmetry group). Since the operator commutes with the
actions of the group:

KPpmn ◦ f = PpmnK ◦ f = Ppmn ◦ h ∈ Fp,m. (A3)

Here, K ◦ f ≡ h.
Let fΓ = {γ ◦ f |γ ∈ Γ}. Any set of linearly indepen-

dent functions that span fΓ can be transformed into a
symmetry respecting basis obtained by calculating all the
projections Ppmn ◦ fγ , where fγ ∈ fΓ. That corresponds
to a block diagonal form of the Koopman operator.

We’ve already shown that K, the approximation of
K, also commutes with the actions of the elements of Γ
for Γ-equivariant dynamical systems with Γ-equivariant
data. Thus, we can obtain an observable dictionary
that block diagonalizes K into |Γ| blocks, where each
dp-dimensional irreducible representation results in dp
dp × dp-dimensional blocks.

Additionally, suppose KPpmn ◦ f = h, then KPpkn ◦ f =
PpkmKPpmn ◦ f = Ppkm ◦ h. This gives us the relation be-
tween blocks in K corresponding to the same irreducible
representation p. In context of the approximation K,
it means that we get that Kp,i (blocks corresponding to
ψ ∈ Fp,i) are equal for all i (for data respecting the
symmetries of the system and a proper ordering of basis
functions).

Appendix B: Commutativity of K and γρ acting in function
space

We show that G and G+ (+ denotes the Moore-Penrose
pseudoinverse) commute. We note that G is a Hermitian
matrix since:

G∗ =

(∑
m

Ψ∗(xm)Ψ(xm)

)∗
=
∑
m

Ψ∗(xm)Ψ(xm) = G

(B1)

Thus, G is also normal, i.e. GG∗ = G∗G. We show that
if G is normal, GG+ = G+G.

Two of the criteria that define the Moore-Penrose
pseudoinverse32 state that G+ = G+GG+ and (GG+)∗ =
GG+. It follows that the following relation holds: G+ =
G+(GG+)∗ = G+(G+)∗G∗. Using that relation4 and
commutativity of + and ∗ operations, we obtain:

G+G = G+(G+)∗G∗G = (G+)∗G+GG∗

= (G+)∗G∗ = (G+(G+)∗G∗)∗G∗

= GG+(G+)∗G∗ = GG+.

(B2)

Since the action of γ commutes with A and G, and
since G commutes with G+, the action of γ commutes
with K = G+A. which is a Koopman operator approxi-
mation.

Appendix C: Change of basis and the EDMD approximation

We show that rotating the observable dictionary pre-
serves the symmetries of the reconstructed trajectories.

Suppose we have a basis consisting of dictionary
functions Dψ and a dictionary Dξ obtained by Ξ =
TΨ. Let Ψ(t) = (ψ1(x(t)) ψN (x(t)))T and Ξ(t) =
(ξ1(x(t)) ξN (x(t)))T . We show that rotating the dic-
tionary function vector does not affect the trajectory re-
construction:

Ψt+1 = KψΨt

Ξt = TΨt

Ξt+1 = KψTΨt = TKψΨt = TΨt+1

(C1)

Next, we show that the state reconstruction preserves
the symmetries of the system. Let P be the action of
the symmetry group on the basis functions Ψ. We aim
to show that if Ψt+1 = KΨt, then PΨt+1 = KPΨt. It
follows directly from the fact that K and P commute:

PΨt+1 = PKΨt = KPΨt (C2)

Thus, the trajectories of basis functions reconstructed
using the EDMD approximation are Γ-equivariant, just
like the original system. In particular, this is true in case
of the evolution of the full state observable.

Appendix D: Applicability to kernel methods

Kernel DMD introduced in Ref.46 is a variant of ap-
proximating the Koopman operator matrix most efficient
when the number of measurement points is much smaller
than the number of basis functions. Kernel DMD relies
on evaluating Ĝ and Â using the kernel method. Their
elements can be found by indirectly evaluating the in-
ner products in the basis function space: k(xm, yn) =
Ψ(xm)Ψ(yn)∗ (e.g., if k is a polynomial kernel, k(x, y) =
(1+xyT )α). We note that k(γx, γy) = k(x, y) due to the
properties of inner products.

In kernel DMD, Ĝij = k(xi, xj) and Âij = k(xi, yj).

The eigendecomposition of Ĝ = QΣ2QT is then used to
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find the matrix K̂ and use it in computing the eigen-
decomposition of the Koopman operator approximation
matrix K:

K̂ = (Σ+QT )Â(QΣ+). (D1)

Again, we pick a particular order of group elements
similarly to Eq. (28):

Ψx =

 Ψ(γ1x)
...

Ψ(γ|Γ|x)

 ,

where Ψ(x) =

 Ψ1(x1) ... ΨN (x1)
...

. . .
...

Ψ1(xM/|Γ|) ... ΨN (xM/|Γ|)


(D2)

We also construct a permutation representation of the
group with elements denoted by Pγi as defined in
Eq. (29).

By Cayley’s theorem, such permutations form a group
isomorphic to Γ. Determining the actions Pγi of the
group generators is sufficient to find the actions of all
the group elements. Let Pγk = Pγk ⊗ In×n. We note
that (Pγk)

∗
= (Pγk)−1. It can be shown that:

PγiĜ = ĜPγi , PγiÂ = ÂPγi . (D3)

We do so for Â, and the proof for Ĝ is equivalent. We
find that:

(PγiÂ)kl = Âpl = k(xp, yl), γp = γiγk,

(ÂPγi)kl = Âkq = k(xk, yq), γq = γ−1
i γl.

(D4)

And finally, k(xp, yl) = k(γixk, γiyq) = k(xk, yq).
Since the relation D3 holds, the same reasoning can be

applied to block diagonalize the matrix K̂. It is sufficient
to apply the projection operator39:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnPγi . (D5)

This projection operator is analogous to the one intro-
duced in equation 24, except the symmetry group in this
case acts by permuting the group elements.

We can apply the singular value decomposition of P
to obtain the basis for the projection subspaces of irre-
ducible representations (isotypic components). We form
the transformation matrix T by finding the singular value
decomposition (SVD) and stacking its eigenvectors as
rows of T such that T = T ⊗ In×n.

Similarly to EDMD, the isotypic component basis sim-
plifies calculating the approximations of K̂.

ÂD =
⊕
p

⊕
q

Âpq,

ĜD =
⊕
p

⊕
q

Ĝpq =
⊕
p

⊕
q

QpqΣ
2
pqQ

T
pq,

K̂D =
⊕
p

⊕
q

(Σ+
pqQ

T
pq)Âpq(QpqΣ

+
pq).

(D6)

The modification is summarized in table II.

Finally, the approximations of Koopman eigenvalues,
eigenfunctions, and eigenmodes can be calculated using
KD, as shown in Ref.46.

Appendix E: Deterministic systems with sensor noise

Transfer operators with process and measurement
noise were also studied in Ref.37. Characterizing and cor-
recting for the effect of sensor noise in DMD is discussed
in Ref.10. We need to extend the results to EDMD to
quantify the effect of sensor noise on the structure of the
matrix K. The main modification that needs to be made
is the consideration of the effect of the noise in measuring
X and Y on Ψx and Ψy.

Let X and Y be matrices analogous to Ψx and Ψy

corresponding to the full-state observable evaluated at
discrete time steps. We denote the sensor noise matrices
by Nx and Ny, so that the measured Xn and Yn can be
found from Xn = X +Nx and Yn = Y +Ny. We assume
that the noise distributions respect the symmetries of
the system, which might be the case, for instance, for
symmetric networks. Moreover, we assume that the noise
is state-independent.

We can form vectors Ψxn and Ψyn that can be used to
find the approximation K using EDMD:

Kn = Ψ+
xnΨyn. (E1)

Here, (Ψxn)ij = ψj((Xn)i), (Ψyn)ij = ψj((Yn)i), and
NΨ,x and NΨ,y correspond to noise matrices obtained as:

(NΨ,x)ij = ψj(Xi +Nx,i)− ψj(Xi). (E2)

We aim to show that E(PKn) = E(KnP ), meaning
that the expected value of the Koopman operator Kn

commutes with the permutation matrix corresponding
to an element of the symmetry group. If that is the
case, then the expected values of the off-block-diagonal
elements of Kn in a symmetry adapted basis as defined
in Eq. (26) are zero. To do that, we can express Kn as:

Kn = Ψ+
xnΨyn = (Ψx +NΨ,x)+(Ψy +NΨ,y)

= ((Ψx +NΨ,x)∗(Ψx +NΨ,x))+

(Ψx +NΨ,x)∗(Ψy +NΨ,y)

= (Ψ∗xΨx + Ψ∗xNΨ,x +N∗Ψ,xΨx +N∗Ψ,xNΨ,x)+

(Ψ∗xΨy + Ψ∗xNΨ,y +N∗Ψ,xΨy +N∗Ψ,xNΨ,y).

(E3)

If the inverse of the first term exists, it can be expanded
into the Taylor series with terms of the form below in a
weak noise limit. We need to show that:

PγkE(M∗1M2...M
∗
n−1Mn) (E4)

= E(M∗1M2...M
∗
n−1Mn)Pγk (E5)
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Standard kernel DMD Kernel DMD for Γ-equivariant systems

• Pick a dictionary ofN ob-
servables

• Evaluate the kernel func-
tions at data points xi
and yi

• Evaluate the entries of
Ĝ, Â: M2 elements

• Obtain Ĝ+: M ×M ma-
trix

• Find
K̂ = (Σ+QT )Â(QΣ+):
M ×M matrices

• Find the eigendecomposi-
tion of K̂: M×M matrix

• Pick a dictionary of N observables

• Identify the symmetry Γ of the system, find the irreducible representations of Γ

• Change the basis to a Γ-symmetric basis using Eq. (29) and Eq. (D5)

• Evaluate the observables at data points xi and yi, add trajectories to reflect the sym-
metries if necessary

• To obtain the blocks K̂pq of K̂ (each isotypic component corresponds to dp blocks), for
each p:

– Evaluate the entries of Ĝp1, Âp1: (Mp/dp)
2 elements

– Obtain Ĝ+
p1: (Mp/dp)× (Mp/dp) matrix

– Find K̂p1 = Ĝ+
p1Âp1: (Mp/dp)× (Mp/dp) matrices

– Find the eigendecomposition of K̂p1 : (Mp/dp)× (Mp/dp) matrix

– The other K̂pq blocks equal to K̂p1

• K̂ =
⊕
p

dp⊕
q=1

K̂pq. Its eigenvalues are the eigenvalues of K̂p, and its eigenvectors only

have Mp nonzero elements. Mathematically, eigenvectors vkl of K are of the form
(vkl)i =

⊕
p

δpkvpl.

TABLE II: kernel DMD vs modified kernel DMD for Γ-equivariant systems. |Γ| is the order of Γ. The irreducible
representations of Γ are indexed by p and are dp-dimensional. Here, M be the number of data points used by the
algorithm, and {(xm, ym)} respect the symmetries of the system.

Here, the matrices Mi are selected from NΨ,x/y and Ψx/y.
That follows directly from:

E((M1Pγk)∗(M2Pγk)...(Mn−1Pγk)∗(MnPγk))

= P−1
γk

E(M∗1M2...M
∗
n−1Mn)Pγk

= E(M1M
∗
2 ...Mn−1M

∗
n)

(E6)

Thus, the expected values of the off-block-diagonal ele-
ments of Kn are zero in the isotypic component basis.
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