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Abstract. Upon invoking the variational characterization of Korn's constant and

Dafermos' technique to reduce it to a boundary value problem, the Korn constant

of a spherical shell of arbitrary thickness has been evaluated. The classical result of

Payne and Weinberger for the sphere is recovered as the special case of vanishing

interior radius, while as the thickness of the shell tends to zero, Korn's constant tends

to infinity in a nonuniform sense.

1. Introduction. Korn's inequalities have a long history which extends for a period

of almost eighty years. They play an important role in the theory of static elasticity

mainly in connection with existence theory, stability, and the qualitative study of

solutions. An extensive list of references can be found in [6, 7, 9]. The optimum

constant in Korn's inequality is known as Korn's constant [4], Its value is known to

be equal to 4 for a circle and to 56/13 for a sphere [10], The Korn constant for an

ellipse, as well as for a general two-dimensional domain which can be conformally

mapped onto the unit disc by a rational mapping, is given by Horgan [8], Dafermos

[2] used the variational characterization of Korn's constant and reduced the problem

to the equation of the eigenvalues of a certain boundary value problem in potential

theory. In fact, utilizing the coincidence of the Euler equation with the Navier

equation of linear elastostatics, as well as the completeness of the Papkovitch-Neuber

representation [3], he showed that the method of eigenfunction expansion can be used

to solve the appropriate boundary value problem.

Dafermos applied his method in the case of a circular ring, and so he evaluated

Korn's constant for a two-dimensional not-simply connected region. His constant

tends to 4 whenever the inner diameter tends to zero, while when the thickness of

the ring tends to zero Korn's constant tends to infinity.

The purpose of this paper is to apply Dafermos' technique to the case of a spherical

shell which is the three-dimensional analogue of the ring problem. Using general

expansions in spherical harmonics and the Papkovitch-Neuber representation [4]

for the elastostatic displacement field, we evaluate the spectrum of the corresponding

boundary value problem, and the Korn constant is obtained from the maximum

value of this spectrum. Long and tedious calculations had to be performed in order
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to bring the terms of the expansions for the Papkovitch potentials in a comparable

form, so that the orthogonality of the surface harmonic can be applied. Nevertheless,

the key point of our work is the appropriate use we made of the dependence of the

four Papkovitch potentials [3] to weaken the coupling between the surface harmonics.

This particular choice of the scalar potential in terms of the vector potential decouples

the infinite system of spherical harmonics to an infinite set of algebraic systems of

finite order, whose solvability is reduced to the vanishing of certain determinants.

Besides the eigenvalues 1 and 2 that have infinite multiplicity which are indepen-

dent of the geometry of the elastic body, we also obtain the eigenvalue 4 which is an

eigenvalue for the case of the sphere as well. Furthermore, just as in the sphere case,

the asymptotic behaviour of the eigenvalues for large n has the form 4 + 0(n~l) for

any shell of fixed thickness. If we denote by S e (0, 1) the ratio of the inner to the

outer radius of the shell, then, apart from the eigenvalues 1, 2, and 4, the rest of the

spectrum depends on d. In other words, we obtain a one-parameter family of spec-

tra, parametrized by the thickness parameter 8. As a consequence, the maximum

eigenvalue depends on 5 and Korn's constant increases quadratically as S —► 1-.

Therefore, the approach of the eigenvalues to 4, as n —► +00, is not uniform. As

S —► 0+ the spectrum of the shell problem coincides with the corresponding spec-

trum of the sphere problem as it was given by Payne and Weinberger [10]. Some

numerical values of the Korn constant for shells of different thickness are given at

the end of Sec. 3. It is observed there, that for a shell of inner radius up to 1/3 of

the outer radius, the Korn constant varies approximately between 4.3 and 5 which is

very close to the 56/13 value for the sphere. On the other hand, if the inner radius

becomes 0.995 of the outer, then Korn's constant assumes the value 692.227. Fur-

thermore, for 3 £ (0,0.85), Korn's constant occurs either on the second, the third,

or the fourth eigenvalue (for the sphere it occurs on the third), while for S = 0.995

Korn's constant is attained at the twenty-sixth eigenvalue.

2. Statement of the problem. Let Q be a three-dimensional open and bounded

region having a smooth boundary dft. If u is a continuously differentiable vector

field, satisfying the normalization condition

L(Vu - VuT) do - 0, (1)
'a

where "t" denotes transposition, then we will say that Korn's inequality holds for ft

if there exists a number K > 0 such that

4 f \\Vu\\2dv < K f \\Vu + Vur\\2do, (2)
J Q J Q

with the norm of the dyadic field a ® b defined by

l|a <S> b|| 2=J2aJbj. (3)
>J= 1

The smallest value of K for which (2) holds is defined to be the Korn's constant

for ft. The variational characterization of (2) leads to the Euler equation [2]

(2 - AT)Au(r) - KV(V ■ u(r)) = 0, reft (4)
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and the boundary condition

(2- K)n- Vu(r) -A"(Vu(r)) n = 0, redfi, (5)

where n denotes the outward unit normal on fi. Equation (4) is the Navier equation

of elastostatics [2] whenever

R = W + fi) = y-i (6)
A

where X and fi are the Lame constants of linearized and isotropic elasticity and v

denotes Poisson's ratio.

It has been proved [2, 10] that the values K = 1 and K = 2 are eigenvalues of (4),

(5) of infinite multiplicity and that if Kn, n € N, are all the eigenvalues of (4), (5)

besides 1 and 2, then Korn's constant is given by

A" = sup{l,2,tf„}. (7)
n€ N

In the next section we evaluate the spectrum of eigenvalues for (4), (5) in the case

of a spherical shell. Then (7) will provide the corresponding Korn constant.

3. The spherical shell. Let fi be the spherical shell having inner radius b > 0 and

outer radius a> b. The boundary condition (5) can be written as

2(1 -K)x ■ Vu- Kr x (V x u) = 0, (8)

where r points into fic.

Any solution of Eq. (4) in fi, for K / 1,2, has the Papkovitch-Neuber represen-

tation [3]

u(r) = A(r)+ *^V(r-A(r) + £(r)), (9)

where the three components of A and B are harmonic functions in fi. Three out of

these four harmonic functions are independent [3]. Nevertheless, we keep all four

in the representation (9), in order to be able to effectively perform the necessary

calculations.

A complete expansion of the harmonic fields A and B in terms of solid spherical

harmonics [5] yields

OO

AW = + A-(„+i)(r)] (10)
n=0

OO

5(r) = ^[fin(r) + 5_(n+1)(r)J (11)

n=0

where An,Bn are interior harmonics of degree n and A_(„+1), are exterior

harmonics of degree n. We decompose the nonharmonic terms in the representation

(9) as follows:

v(r A"» = STTw" + 2^Tf;w A- (l2)

V(r ■ A_(n+Il) = - (13)
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where

W„ = r2"+3V • ( A"
yr2n+\

2 _r2«+ly
2n - 1

is a homogeneous interior harmonic of degree n, and where

1 V • A„
rln— 1 (14)

W_(fl+1) = -V
1
— V • (/"2"+1 A_(„+1))

yln— 1 + 2ir+3~r^TV^2"'V ' A-("+|)l <15>

is a homogeneous exterior harmonic of degree n. Formulae (13) and (15) can be

formally recovered from (12) and (14) respectively via the substitution n —► — (« +1).

Hence, we can combine the expansion for u into the form

u(r, 9, <p)
+°° 'r K-l-OO s

£
1 — — fYl v

An(r.e,v) + 4(i-Jt)(2H + i)W,M.y)

K
+

4(1 -K)

r2

2n + 3
VV • An+2(r, 6, (p) + V5„+1 (r, 9, <p)

y
(16)

where W„ is given by (14). With the exception of the term r2VV ■ An+2, all the

other terms in the «-th term of the series are solid harmonics of degree n. The term

r2VV • A„+2 is a surface harmonic of degree n, but it fails to be a solid harmonic

because of the factor r2. On the other hand, in the interest of satisfying the boundary

condition (8) the r2 factor is immaterial since it becomes a constant for r = a, or

r — b. Therefore, every term in the expansion (16) is a surface harmonic function

of degree n. Consequently, the orthogonality of the surface spherical harmonics can

be directly applied. Next, we use (16) to satisfy the boundary conditions. In view of

(9), condition (8) yields

and since

2(1 - K)^pn- Ki x (V x A) = 0, (17)

rx(VxA) = (VA)-r-|;A=iv(A.r)— (§p + j)^ (18)

we arrive at

2(1 - K)r^-u + Kr^-A + KA-KV(A-t) = 0, (19)
dr dr

for r — a and r — b.

Substituting (10), (12), (13), and (16) into (19) and using Euler's theorem for the

derivative of a homogeneous function, we derive the following form of the boundary

condition (8).

+00-t-oo (

£
1  l"V~I v

[2n - K(n - l)]A„(r, 9, <p) + ^

+?V5„+I(r, 9, q>) + ,/277 ■ A„+2 J = 0 (20)
2 "+1V' 2(2« + 3)

for r — a and r = b.
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By means of the orthogonality of the surface spherical harmonics the boundary

conditions (20) are reduced to the following weakly coupled infinite system:

/ U\n

(7) (L„ + M„) + (-) (L_(#l+1) + M_(„+1))

Kna2

2(2n + 3) \r) ^"+z 2{2n - \)

/<2\" _ . K(n + \)a2 / r\n+x __ k ....

(7) A«+2— 2(2/7-1) (a) VV'A-"+i- (21)

(V \
(L-(n+i) + M_(„+1))

Knb2 (b\n K(n + \)b2 /r\n+l

2^T3t(7) VV'A"+2_ 2(2n-l) \b) VV A-"+1 (22)2(2n + 3) \r / "+z 2(2« - 1) V&,

for n = 0, 1,2,..., where

L„ = [2n - K(n - l)]A„(r, 6, <p) + ^~+\l)W"(r' 6' 9)> (23)

L_(b+1) = [K(n + 2) - 2(« + l)]A_(„+1)(r, 6, p) + ^±llw_(n+1)(r, 6, <p), (24)

Kyi
M„ = —VBn+\{r, 6, ip), (25)

MHn+l) = -K{n+l)VB-n(r.e,<p). (26)

Solving Equations (21), (22) with respect to L„ + M„ and L_(„+1) + M_(„+1) and

combining the resulting expression into a single one, we derive the formulae

T z= K(n + 1) 2n + l a ~ b — ̂  . [r 0 m]
" 2(2n — 1) fl2n+l _ Jj2n+\ V)

1 a2n+3 _ A2n+3

e, r) + Yn - 3 - t2,+1 V ■ A„2(r. ft y) (27)-7'

for « = 0, ±1, ±2, 

At this stage, we utilize the freedom we have to choose one of the potentials

A\,A2, A3, B at will and set

1 .,2n+3 _ A2n+3

Bn+l(r, 6, f) = • A„+2(r, 0, ,) (28)

for n = 0, ±1, ±2, Therefore, if we denote by

<5 =-e(0,l), (29)
a

(27) yields L0 = 0 and

tf(«+l) 2 l-<52 /r\2"+' _ . ,
L" = U VV A-("-'.C'"'") <30>

for « = ±1, ±2, By virtue of the identities

V • W„(r, 0, p) = 2"2(^_+11} V • An(r, 6, q>) (31)
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and

V • [r2"+1VV ■ A_(n_1)(r, 6, cp)] = -n(2n + \)r2n~xV • A_(„_1)(r, 6, q>) (32)

the divergence of (30) assumes the form

2[2n(2n - 1) - K(n2 - n + 1)] (*)"~' V • A„{r, 6, cp)

= Kn(n + 1)(2n + Q" V • Ad, <p), (33)

for every n = ±1, ±2, 

The functions (")"-1V • A„ and (§)"V • A_(„_j) are surface spherical harmonics

of degree n - 1. The role of these functions is interchanged if we replace n in (33)

by -n + 1. Consequently, the «-th degree surface spherical harmonics satisfy the

relation (33) as well as

Kn(n - 1)(2n - 1 (") V A„+1(r, 6, <p)

= 2[2n(2n + 1) - K(n2 + n+ 1)] V ■ A _„(r, 6, <p) (34)

and this is true for every n — 1, 2, 3 

Relations (33) and (34) have to hold simultaneously in order for the boundary

conditions onr = a and r = b to be satisfied. Therefore, since the surface harmonics

of degree n — 1 for n = 1,2,... are not zero, we obtain the characteristic equations

4[2 {n + l)(2n + 1) - K{n2 + n+ \)][2n(2n + 1) - K(n2 + n + 1)]

- K2n(n + 1)(2/2 + 3)(n - 1)(« + 2)(2n - 1) { { 52"~l = 0 (35)

for n = 1,2,... as a consequence of the vanishing of the corresponding determinants.

For n = 1 we obtain the eigenvalue K\ = 4. For n > 2, we set

_ (\-S2)2S2"~l

(1 _<J2«+3)(1 (36)

= rrhs-y (37)
where K„(d) denotes a root of (35) corresponding to a particular value of n, and the

«-th characteristic equation is written as

n(n + 1)(2n + 1)2A^(<5) - 2(2n + 1)2A„(^)

- (« - 1)(« + 2)[1 + n{n + 1)(2« - 1)(2n + 3)r„(<5)] = 0. (38)

Equation (38) has two real roots and since we are interested in the maximum value

of K„(6), we consider only the smallest root of (38) which is given by

An{S) =

1 fl _ V(n2 + n + l)2 + n2(n + l)2(n-\)(n + 2)(2n-l)(2n + 3)rn(S)\
n(n + 1) \ 2n + 1 J

(39)
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for n >2. For any given J e (0, 1),

^lim^ (n2(n + 1 )2(n - l)(n + 2)(2n - 1)(2n + 3)r„(<J)) = 0, (40)

because of the exponential decay of Tn with respect to the thickness parameter 8.

Consequently,

Kn{8) — 4 + 0(\/n), n-+oo (41)

which implies, by virtue of An(8) < 0 for every n > 2, that the maximum value of

Kn(8) is obtained for some integer no(8) > 2. Obviously, the Korn constant depends

on the thickness 8 of the spherical shell and it occurs at an eigenvalue which also

depends on 8. In the limit as 8 —► 0+

A-W=(.+ l)(2" + I)+°W' <42»

Kn(S) = 2{n+2^l + l) +0(8) (43)

and the maximum occurs for

Ar3(<5) = y| + 0(<y)I (44)

which recovers the well-known result of Payne and Weinberger [10] for the Korn

constant of the sphere.

On the other hand, as the thickness of the shell approaches zero,

,^M = (;-ipti|; <45)

hence equation (35) can be written as

K2{ 1) - 2{n2 + n + l)AT(l) + 4n(n + 1) = 0, (46)

which has the roots

Kx(\) = 2, K2(\) = 2n{n+ 1). (47)

Therefore, the Korn constant tends to infinity quadratically with vanishing thickness

of the shell.

In conclusion, for every 8 e (0, 1) the Korn constant is given by

K(8) = max "•2-4>u{ray"i2} (48)

where An(8) has the form (39). The eigenvalues 1, 2, and 4 are independent of

8, while the rest of the spectrum is a function of it. For a very thick shell Korn's

constant tends to 56/13 while for a thin shell it tends to infinity quadratically.
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In the next table Korn's constant for different values of shell thickness is provided.

S no(S) K{d)
.01 3 4.308
.05 3 4.308
.09 2 4.309
.10 2 4.318

.20 2 4.521

.30 2 4.976

.40 2 5.706

.50 2 6.720

.60 3 8.056

.70 3 11.188

.80 4 16.722

.85 4 22.465

.90 5 33.867

.95 8 68.715

.96 9 86.017

.97 10 114.835

.98 13 172.458

.99 18 345.859

.991 19 384.346

.995 26 692.227

We observe that for an interior hole with a radius up to one-third of the radius

of the sphere, the spherical shell behaves approximately as a solid sphere, while an

appreciable discrepancy appears for thickness of the shell less than one half of the

exterior radius.
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