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KORN’S INEQUALITIES FOR PIECEWISE H1 VECTOR FIELDS

SUSANNE C. BRENNER

Abstract. Korn’s inequalities for piecewise H1 vector fields are established.
They can be applied to classical nonconforming finite element methods, mortar
methods and discontinuous Galerkin methods.

1. Introduction

In this paper we use a boldface italic lower-case Roman letter such as v to denote
a vector (or vector function) with components vj (1 ≤ j ≤ d) and a boldface lower-
case Greek letter such as η to denote a d × d matrix (or matrix function) with
components ηij (1 ≤ i, j ≤ d). The Euclidean norm of the vector v (resp. the
Frobenius norm of the matrix η) will be denoted by |v| (resp. |η|).

Let Ω be a bounded connected open polyhedral domain in Rd (d = 2 or 3). The
classical Korn inequality (cf. [8], [14], [5] and the references therein) states that
there exists a (generic) positive constant CΩ such that

(1.1) |u|H1(Ω) ≤ CΩ

(
‖ε(u)‖L2(Ω) + ‖u‖L2(Ω)

)
∀u ∈ [H1(Ω)]d,

where the strain tensor ε(u) is the d× d matrix with components

(1.2) εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
for 1 ≤ i, j ≤ d,

and the (semi)norms are defined by

|u|2H1(Ω) =
d∑
j=1

|uj|2H1(Ω) =
d∑
j=1

∫
Ω

|∇uj |2 dx, ‖ε(u)‖2L2(Ω) =
∫

Ω

|ε(u)|2 dx,

‖u‖2L2(Ω) =
∫

Ω

|u|2 dx and ‖u‖2H1(Ω) = |u|2H1(Ω) + ‖u‖2L2(Ω).

Let RM(Ω) be the space of (infinitesimal) rigid motions on Ω defined by

(1.3) RM(Ω) = {a+ ηx : a ∈ Rd and η ∈ so(d)},
where x = (x1, . . . , xd)t is the position vector function on Ω and so(d) is the Lie
algebra of anti-symmetric d× d matrices. The space RM(Ω) is precisely the kernel
of the strain tensor; i.e., for v ∈ [H1(Ω)]d,

(1.4) ε(v) = 0 ⇐⇒ v ∈ RM(Ω).
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1068 SUSANNE C. BRENNER

Let Φ be a seminorm on [H1(Ω)]d with the following properties:

Φ(v) ≤ CΦ‖v‖H1(Ω) ∀v ∈ [H1(Ω)]d,

where CΦ is a generic positive constant depending on Φ, and

Φ(m) = 0 and m ∈ RM(Ω) ⇐⇒ m = a constant vector.

Note that such a seminorm is invariant under the addition of a constant vector c;
i.e.,

(1.5) Φ(v + c) = Φ(v) ∀v ∈ [H1(Ω)]d.

Then (1.1), (1.4), (1.5) and the compactness of the embedding of H1(Ω) into L2(Ω)
imply that

(1.6) |u|H1(Ω) ≤ CΦ

(
‖ε(u)‖L2(Ω) + Φ(u)

)
∀u ∈ [H1(Ω)]d.

In particular, the inequality (1.6) implies

(1.7) |u|H1(Ω) ≤ CΩ

(
‖ε(u)‖L2(Ω) + ‖Qu‖L2(Ω)

)
∀u ∈ [H1(Ω)]d,

where

Qu = u− 1
|Ω|

∫
Ω

u dx

is the orthogonal projection operator from [L2(Ω)]d onto the orthogonal complement
of the constant vector functions;

(1.8) |u|H1(Ω) ≤ CΩ,Γ

(
‖ε(u)‖L2(Ω) + sup

m∈RM(Ω)
‖m‖L2(Γ)=1,

∫
Γm ds=0

∫
Γ

u ·m ds
)

for all u ∈ [H1(Ω)]d, where ds is the infinitesimal (d − 1)-dimensional volume and
Γ is a measurable subset of ∂Ω with a positive (d− 1)-dimensional volume; and

(1.9) |u|H1(Ω) ≤ CΩ

(
‖ε(u)‖L2(Ω) +

∣∣∣ ∫
Ω

∇× u dx
∣∣∣) ∀u ∈ [H1(Ω)]d,

where ∇× u is the vector function (the curl of u) defined by

∇× u =
(∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)t
when d = 3, and the scalar function (the rotation of u) defined by

∇× u =
∂u2

∂x1
− ∂u1

∂x2

when d = 2.

Remark 1.1. The inequality (1.7) is of course equivalent to Korn’s inequality (1.1).
Inequalities (1.8) and (1.9) imply Korn’s first inequality

|u|H1(Ω) ≤ CΩ,Γ‖ε(u)‖L2(Ω) ∀u ∈ [H1(Ω)]d, u
∣∣
Γ

= 0,

and Korn’s second inequality

|u|H1(Ω) ≤ CΩ‖ε(u)‖L2(Ω) ∀u ∈ [H1(Ω)]d,
∣∣∣ ∫

Ω

∇× u dx
∣∣∣ = 0.

Henceforth we will also refer to (1.9) as Korn’s second inequality.
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KORN’S INEQUALITIES FOR PIECEWISE H1 VECTOR FIELDS 1069

In this paper we establish analogs of (1.7), (1.8) and (1.9) for piecewise H1 vector
fields (functions) with respect to a partition P of Ω consisting of nonoverlapping
polyhedral subdomains, which is not necessarily a triangulation of Ω. In other
words, we only assume that

D ∩D′ = ∅ if D and D′ are distinct members of P , and Ω =
⋃
D∈P

D.

Typical two- and three-dimensional examples of partitions are depicted in Figure 1,
where the square is partitioned into 7 subdomains and the cube is partitioned into
5 subdomains.

Figure 1. Examples of general partitions

The space [H1(Ω,P)]d of piecewise H1 vector fields (functions) is defined by

[H1(Ω,P)]d = {v ∈ [L2(Ω)]d : vD = v
∣∣
D
∈ [H1(D)]d ∀D ∈ P},

and the seminorm | · |H1(Ω,P) is given by

|v|H1(Ω,P) =
( ∑
D∈P
|v|2H1(D)

)1/2

.

We also use the notation εP (v) to denote the matrix function defined by

(1.10) εP (v)
∣∣
D

= ε(v
D

) ∀D ∈ P .
Let S(P ,Ω) be the set of all the (open) sides (i.e., edges (d = 2) or faces (d = 3))

common to two subdomains in P . For example, there are 10 such edges in the
two-dimensional example in Figure 1 and 8 such faces in the three-dimensional
example. (Precise definitions of S(P ,Ω) will be given in Section 4 and Section 5.)
For σ ∈ S(P ,Ω), we denote by πσ the orthogonal projection operator from [L2(σ)]d

onto [P1(σ)]d, the space of vector polynomial functions on σ of degree ≤ 1.
The following are analogs of the classical Korn inequalities for u ∈ [H1(Ω,P)]d:

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) + ‖Qu‖2L2(Ω)(1.11)

+
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) + sup

m∈RM(Ω)
‖m‖L2(Γ)=1,

∫
Γm ds=0

(∫
Γ

u ·m ds
)2

(1.12)

+
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,
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1070 SUSANNE C. BRENNER

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) +

∣∣∣ ∑
D∈P

∫
D

∇× u dx
∣∣∣2(1.13)

+
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,

where [u]σ is the jump of u across the side σ and the positive constant C depends
only on the shape regularity of the partition P . In particular these inequalities
are valid for partitions that are not quasi-uniform. (More details on the shape
regularity assumptions are given in Section 4 and Section 5.)

Inequalities (1.11)–(1.13) imply

|u|H1(Ω,P) ≤ C
(
‖εP (u)‖L2(Ω) + ‖Qu‖L2(Ω)

)
,(1.14)

|u|H1(Ω,P) ≤ C
(
‖εP (u)‖L2(Ω) + sup

m∈RM(Ω)
‖m‖L2(Γ)=1,

∫
Γm ds=0

∫
Γ

u ·m ds
)
,(1.15)

|u|H1(Ω,P) ≤ C
(
‖εP (u)‖L2(Ω) +

∣∣∣ ∑
D∈P

∫
D

∇× u dx
∣∣∣),(1.16)

provided πσ[u]σ = 0 for all σ ∈ S(P ,Ω), or equivalently

(1.17)
∫
σ

[u]σ · l ds = 0 ∀σ ∈ S(P ,Ω) and l ∈ [P1(σ)]d.

Thus we immediately obtain (1.14)–(1.16) for certain classical nonconforming finite
elements (cf. [11], [10], [9], [13]). With some modifications, these estimates can
also be applied to certain mortar elements (cf. [18]). Details will be carried out
elsewhere.

The inequalities (1.11)–(1.13) also immediately imply

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) + ‖Qu‖2L2(Ω)(1.18)

+
∑

σ∈S(P,Ω)

( diam σ)−1‖[u]σ‖2L2(σ)

)
,

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) + ‖u‖2L2(Γ)(1.19)

+
∑

σ∈S(P,Ω)

( diam σ)−1‖[u]σ‖2L2(σ)

)
,

|u|2H1(Ω,P) ≤ C
(
‖εP (u)‖2L2(Ω) +

∣∣∣ ∑
D∈P

∫
D

∇× u dx
∣∣∣2(1.20)

+
∑

σ∈S(P,Ω)

( diam σ)−1‖[u]σ‖2L2(σ)

)
,

for all u ∈ [H1(Ω,P)]d. These estimates are useful for the analysis of discontinu-
ous Galerkin methods for elasticity problems (cf. [15], [6], [12] and the references
therein).

Remark 1.2. Note that classical Korn’s inequalities can also be expressed in terms
of the full H1 norm (cf. [8], [14], [5]). In view of (1.11)–(1.13) and the following
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KORN’S INEQUALITIES FOR PIECEWISE H1 VECTOR FIELDS 1071

Poincaré-Friedrichs inequalities (cf. [2]):

‖u‖2L2(Ω) ≤ C
(
|u|2H1(Ω,P) +

∣∣∣ ∫
Γ

u ds
∣∣∣2 +

∑
σ∈S(P,Ω)

( diam σ)−1‖πσ,0[u]σ‖2L2(σ)

)
,

‖u‖2L2(Ω) ≤ C
(
|u|2H1(Ω,P) +

∣∣∣ ∫
Ω

u dx
∣∣∣2 +

∑
σ∈S(P,Ω)

( diam σ)−1‖πσ,0[u]σ‖2L2(σ)

)
,

for all u ∈ [H1(Ω,P)]d, where πσ,0 is the orthogonal projection operator from
[L2(σ)]d onto [P0(σ)]d, the space of constant vector functions on σ, we also have
the following “full norm” versions of Korn’s inequalities for piecewise H1 vector
fields:

|u|2H1(Ω,P) + ‖u‖2L2(Ω) ≤ C
(
‖εP (u)‖2L2(Ω) + ‖u‖2L2(Ω)(1.21)

+
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,

|u|2H1(Ω,P) + ‖u‖2L2(Ω) ≤ C
(
‖εP (u)‖2L2(Ω) + sup

m∈RM(Ω)
‖m‖L2(Γ)=1

( ∫
Γ

u ·m ds
)2

(1.22)

+
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,

|u|2H1(Ω,P) + ‖u‖2L2(Ω) ≤ C
(
‖εP (u)‖2L2(Ω) +

∣∣∣ ∫
Ω

u dx
∣∣∣2(1.23)

+
∣∣∣ ∑
D∈P

∫
D

∇× u dx
∣∣∣2 +

∑
σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
,

for all u ∈ [H1(Ω,P)]d. The “full norm” versions of (1.14)–(1.16) and (1.18)–(1.20)
can be readily derived from (1.21)–(1.23).

Remark 1.3. Let P1(Γ) be the restriction of P1(Rd) to Γ and let πΓ be the orthogonal
projection operator from [L2(Γ)]d onto [P1(Γ)]d. Then Korn’s first inequalities (1.8)
and (1.15) (resp. (1.12) and (1.22)) remain valid if the terms involving the integral
over Γ in these inequalities are replaced by ‖πΓu‖L2(Γ) (resp. ‖πΓu‖2L2(Γ)).

The rest of the paper is organized as follows. First we derive Korn’s inequalities
for piecewise linear and piecewise H1 vector fields with respect to simplicial trian-
gulations of Ω. These are carried out in Section 2 and Section 3. Korn’s inequalities
for piecewise H1 vector fields with respect to general partitions are then established
in Section 4 for two-dimensional domains and in Section 5 for three-dimensional
domains. A generalization of the result in Section 2 to piecewise polynomial vec-
tor fields is given in Section 6, which can be used to derive (1.14)–(1.16) for some
nonconforming finite elements that violate (1.17). The appendix contains a dis-
cussion of the dependence of the constant in Korn’s second inequality (1.9) on the
underlying domain, which is used in Section 3 and Section 5.

Throughout this paper we use |S| to denote the k-dimensional volume of a k-
dimensional geometric object S in a Euclidean space.
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1072 SUSANNE C. BRENNER

2. A generalized Korn’s inequality for piecewise linear

vector fields with respect to simplicial triangulations

In this and the next two sections we restrict our attention to the case where the
partition is actually a triangulation T of Ω by simplexes (i.e., triangles for d = 2
and tetrahedra for d = 3). The intersection of the closures of any two simplexes in
T is therefore either empty, a vertex, a closed edge or a closed face. In this case
S(T ,Ω) coincides with the set of interior open edges (d = 2) or open faces (d = 3).
The minimum angle of the triangles or tetrahedra in T will be denoted by θT .

To avoid the proliferation of constants, we henceforth use the notation A . B to
represent the statement A ≤ κ(θT )B, where the (generic) function κ : R+ −→ R+

is continuous and independent of T . The notation A ≈ B is equivalent to A . B
and B . A.

Let VT = {v ∈ [L2(Ω)]d : v
T

= v
∣∣
T
∈ [P1(T )]d ∀T ∈ T } be the space of

piecewise linear vector fields and WT = {w ∈ [H1(Ω)]d : wT = w
∣∣
T
∈ [P1(T )]d

∀T ∈ T } be the space of continuous piecewise linear vector fields. We define a
linear map E : VT −→WT as follows. Let V(T ) be the set of all the vertices of T .
Then Ev is defined by

(2.1)
(
Ev
)
(p) =

1
|χp|

∑
T∈χp

v
T

(p) ∀ p ∈ V(T ),

where
χp = {T ∈ T : p ∈ ∂T }

is the set of simplexes sharing p as a common vertex and |χp| is the number of
simplexes in χp. Note that

(2.2) |χp| . 1 ∀ p ∈ V(T ).

The following lemma contains the basic estimate for the operator E.

Lemma 2.1. It holds that

(2.3) |(v
T
− Ev)(p)|2 .

∑
σ∈Ξp

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT , T ∈ T and p ∈ V(T ),

where V(T ) is the set of the vertices of the simplex T ,

Ξp = {σ ∈ S(T ,Ω) : p ∈ ∂σ}
is the set of interior sides sharing p as a common vertex, and [v]σ is the jump of v
across σ.

Proof. Let v ∈ VT , T ∈ T and p ∈ V(T ). We have, by (2.1),

(2.4) (v
T
− Ev)(p) =

1
|χp|

∑
T ′∈χp

(
v
T

(p)− v
T ′ (p)

)
.

Let T ′ be a simplex in χp. There exists a chain of simplexes T1, . . . , Tm ∈ χp
such that (i) T1 = T and Tm = T ′, and (ii) Tj and Tj+1 share a common side
σj ∈ Ξp. (A two-dimensional example is depicted in Figure 2.)

Note that (2.2) implies m . 1 and hence

(2.5) |v
T

(p)− v
T ′ (p)|

2 =
∣∣∣m−1∑
j=1

(
v
Tj

(p)− v
Tj+1

(p)
)∣∣∣2 . m−1∑

j=1

∣∣[v]σj (p)
∣∣2.
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p
T = T

T

T T

T

T = T
1

2

3 4

5

6

σ

σ
σ

σ σ1

2 3

4 5

Figure 2. A chain of triangles connecting T and T ′

The estimate (2.3) follows from (2.4) and (2.5). �
We can now prove a generalized Korn’s inequality for functions in VT .

Lemma 2.2. Let Φ : [H1(Ω, T )]d −→ R be a seminorm such that

|Φ(w)| ≤ CΦ‖w‖H1(Ω) ∀w ∈ [H1(Ω)]d,(2.6) (
Φ(v − Ev)

)2 . ∑
σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT ,(2.7)

where V(σ) is the set of the vertices of σ, and

(2.8) Φ(m) = 0 and m ∈ RM(Ω) ⇐⇒ m = a constant vector.

Then the following estimate holds :

(2.9) |v|2H1(Ω,T ) . ‖εT (v)‖2L2(Ω)+
(
Φ(v)

)2+
∑

σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2

for all v ∈ VT , where εT (v)
∣∣
T

= ε(v
T

) for all T ∈ T .

Proof. Observe first that (2.2), (2.3) and a standard finite element estimate for
| · |H1(T ) (cf. [4], [3]) imply

|v − Ev|2H1(Ω,T ) .
∑
T∈T

( diam T )d−2
∑

p∈V(T )

|(v
T
− Ev)(p)|2(2.10)

.
∑

σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT ,

where we have also used the relation

(2.11) diam T ≈ diam σ ∀T ∈ χp, σ ∈ Ξp and p ∈ V(T ).

From (1.6), (2.7) and (2.10) we then find, for arbitrary v ∈ VT ,

|v|2H1(Ω,T ) . |Ev|2H1(Ω) + |v − Ev|2H1(Ω,T )

. ‖ε(Ev)‖2L2(Ω) +
(
Φ(Ev)

)2 + |v − Ev|2H1(Ω,T )

. ‖εT (v)‖2L2(Ω) +
(
Φ(v)

)2 +
(
Φ(v − Ev)

)2 + |v − Ev|2H1(Ω,T )

. ‖εT (v)‖2L2(Ω) +
(
Φ(v)

)2 +
∑

σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2.
�
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1074 SUSANNE C. BRENNER

The following are examples of Φ that satisfy conditions (2.6)–(2.8). The validity
of (2.6) and (2.8) is obvious in all three examples.

Example 2.3. Let Φ1 : [H1(Ω, T )]d −→ R be defined by

Φ1(v) = ‖Qv‖L2(Ω) ∀v ∈ [H1(Ω, T )]d,

whereQ is the orthogonal projection from [L2(Ω)]d onto the orthogonal complement
of the constant vector fields. Condition (2.7) can be verified as follows:(
Φ1(v − Ev)

)2 ≤ ‖v − Ev‖2L2(Ω) .
∑
T∈T

( diam T )d
∑

p∈V(T )

|(v
T
− Ev)(p)|2

.
∑

σ∈S(T ,Ω)

( diam σ)d
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT ,

where we have used (2.2), (2.3), (2.11) and a standard finite element estimate for
the L2-norm.

Example 2.4. Let Φ2 : [H1(Ω, T )] −→ R be defined by

Φ2(v) = sup
m∈RM(Ω)

‖m‖L2(Γ)=1,
∫
Γm ds=0

∫
Γ

v ·m ds ∀v ∈ [H1(Ω, T )]d,

where Γ is a measurable subset of ∂Ω with a positive (d − 1)-dimensional volume.
Using (2.2), (2.3), (2.11) and a standard finite element estimate for the L2-norm,
condition (2.7) can be verified as follows:(

Φ2(v − Ev)
)2 ≤ ‖v − Ev‖2L2(∂Ω)

.
∑
T∈T

∂T∩∂Ω6=∅

( diam T )d−1
( ∑
p∈V(T )

|(v
T
− Ev)(p)|

)2

.
∑

σ∈S(T ,Ω)

( diam σ)d−1
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT .

Example 2.5. Let Φ3 : [H1(Ω, T )]d −→ R be defined by

Φ3(v) =
∣∣∣ ∑
T∈T

∫
T

∇× v dx
∣∣∣ ∀v ∈ [H1(Ω, T )]d.

Using (2.10), we can easily verify condition (2.7):(
Φ3(v − Ev)

)2 . |v − Ev|2H1(Ω,T )

.
∑

σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[v]σ(p)
∣∣2 ∀v ∈ VT .

Remark 2.6. The definitions of the seminorms Φ1, Φ2 and Φ3 can be extended to
[H1(Ω,P)]d for a general partition P of Ω. In fact, if we denote by PΩ the set of
all the partitions of Ω, then Φj is a well-defined function on

⋃
P∈PΩ

[H1(Ω,P)]d for
1 ≤ j ≤ 3.
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3. Korn’s inequalities for piecewise H1
vector fields

with respect to simplicial triangulations

Let T be a simplicial triangulation of Ω. First we define on each T ∈ T an inter-
polation operator ΠT from [H1(T )]d onto RM(T ) (the space of the rigid motions
restricted to T ) by the following conditions:∣∣∣ ∫

T

(v −ΠTv) dx
∣∣∣ = 0 ∀v ∈ [H1(T )]d,(3.1) ∣∣∣ ∫

T

∇× (v −ΠTv) dx
∣∣∣ = 0 ∀v ∈ [H1(T )]d.(3.2)

These conditions determine ΠT because

m ∈ RM(T ) and
∣∣∣ ∫
T

m dx
∣∣∣ =

∣∣∣ ∫
T

∇×m dx
∣∣∣ = 0 ⇐⇒ m = 0.

Note that (1.4), (3.2) and Corollary A.3 in the appendix imply

(3.3) |v −ΠTv|H1(T ) . ‖ε(v −ΠTv)‖L2(T ) = ‖ε(v)‖L2(T )

for all T ∈ T , v ∈ [H1(T )]d, and (3.1) together with the classical Poincaré-
Friedrichs inequality (with scaling) yields

(3.4) ‖v −ΠTv‖L2(T ) . ( diam T )|v −ΠTv|H1(T ) ∀T ∈ T , v ∈ [H1(T )]d.

Let Π : [H1(Ω, T )]d −→ VT , the space of piecewise linear vector fields with
respect to T , be defined by

(3.5) (Πu)
∣∣
T

= ΠTuT ∀T ∈ T .

We can now prove a generalized Korn’s inequality for functions in [H1(Ω, T )]d.

Theorem 3.1. Let Φ : [H1(Ω, T )]d −→ R be a seminorm satisfying conditions
(2.6)–(2.8) and, in addition, the condition that

(3.6) Φ(u−Πu) . ‖εT (u)‖L2(Ω) ∀u ∈ [H1(Ω, T )]d,

where Π : [H1(Ω, T )]d −→ VT is defined by (3.5). Then the following estimate
holds :

|u|2H1(Ω,T ) ≤ κ(θT )
(
‖εT (u)‖2L2(Ω) +

(
Φ(u)

)2(3.7)

+
∑

σ∈S(T ,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
∀u ∈ [H1(Ω, T )]d,

where κ : R+ −→ R+ is a continuous function independent of T .

Proof. Let u ∈ [H1(Ω, T )]d be arbitrary. From (1.4), (2.9) and (3.3) we have

|u|2H1(Ω,T ) . |u−Πu|2H1(Ω,T ) + |Πu|2H1(Ω,T )

(3.8)

. ‖εT (u)‖2L2(Ω) +
(
Φ(Πu)

)2 +
∑

σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[Πu]σ(p)
∣∣2.

Using condition (3.6), we immediately find

(3.9) Φ(Πu) ≤ Φ(u−Πu) + Φ(u) . ‖εT (u)‖L2(Ω) + Φ(u).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1076 SUSANNE C. BRENNER

Let σ ∈ S(T ,Ω) be arbitrary and p ∈ V(σ). We have, by a standard inverse
estimate (cf. [4], [3]),∣∣[Πu]σ(p)

∣∣2 . ∣∣πσ[u]σ(p)
∣∣2 +

∣∣πσ[u−Πu]σ(p)
∣∣2(3.10)

. ( diam σ)1−d(‖πσ[u]σ‖2L2(σ) + ‖πσ[u−Πu]σ‖2L2(σ)

)
,

where we have also used the fact that πσ[Πu]σ = [Πu]σ since [Πu]σ ∈ [P1(σ)]d.
Let Tσ be the set of the two simplexes in T sharing σ as a common side. It

follows from (3.3), (3.4) and the trace theorem (with scaling) that∥∥πσ[u−Πu]σ
∥∥2

L2(σ)
≤
∥∥[u−Πu]σ

∥∥2

L2(σ)

.
∑
T∈Tσ

(
( diam T )|u

T
−ΠTuT |2H1(T )(3.11)

+ ( diam T )−1‖u
T
−ΠTuT ‖2L2(T )

)
.
∑
T∈Tσ

( diam T )‖ε(uT )‖2L2(T ).

Combining (2.11), (3.10) and (3.11), we find∑
σ∈S(T ,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[Πu]σ(p)
∣∣2(3.12)

.
∑

σ∈S(T ,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)
+ ‖εT (u)‖2L2(Ω).

The estimate (3.7) follows from (3.8), (3.9) and (3.12). �

Finally we observe that the seminorms in Examples 2.3–2.5 satisfy the condition
(3.6). In view of (3.2), this is trivial for Φ3. Using (3.3) and (3.4), the case of Φ1

can be established as follows:(
Φ1(u−Πu)

)2 ≤ ∑
T∈T
‖u

T
−ΠTuT ‖2L2(T )

.
∑
T∈T

( diam T )2‖ε(u
T

)‖2L2(T ) . ‖εT (u)‖2L2(Ω).

For the case of Φ2, we apply (3.3), (3.4) and the trace theorem to obtain(
Φ2(u−Πu)

)2 ≤ ‖u−Πu‖2L2(∂Ω)

.
∑

T∈T , ∂T∩∂Ω6=∅
( diam T )‖ε(u

T
)‖2L2(T ) . ‖εT (u)‖2L2(Ω).

Remark 3.2. From here on we assume that Φ :
⋃
P∈PΩ

[H1(Ω,P)]d −→ R is a
seminorm for every P ∈ PΩ (cf. Remark 2.6) and that it satisfies the conditions
(2.6)–(2.8) and (3.6) for every T ∈ PΩ.

Remark 3.3. By choosing Φ to be Φ1, Φ2 or Φ3, we immediately obtain Korn’s
inequalities (1.11)–(1.13) in the case where P is a simplicial triangulation. Similar
remarks apply in the next three sections.
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4. Korn’s inequalities for [H1(Ω,P)]2 on a two-dimensional Ω

First we need a precise definition of the set S(P ,Ω) of interior (open) edges for a
general partition P , which in turn requires the concept of a vertex of P . We define
a vertex of P to be a vertex of any of the subdomains in P . (For example, the
partition of the square in Figure 1 has 14 vertices.) We then define an open edge
of P to be an open line segment on the boundary of a subdomain in P bounded
between two of the vertices of P . The set S(P ,Ω) consists of the open edges of P
that are common to the boundaries of two subdomains in P .

Remark 4.1. The concept of an edge of a polygon D ∈ P and the concept of an
edge of P on ∂D are different. For example, a square always has 4 edges while
there are 5 edges of the two-dimensional partition in Figure 1 on the boundary of
the square at the lower right corner.

In order to apply Theorem 3.1 we introduce the set

TP = {T : T is a simplicial triangulation of Ω(4.1)

and each member of S(P ,Ω) is also an edge of T }.

By definition (4.1), [H1(Ω,P)]2 is a subspace of [H1(Ω, T )]2 for every T ∈ TP .
Since functions in [H1(Ω,P)]2 are continuous on the edges of T that are not in
S(P ,Ω), the following result is an immediate consequence of Theorem 3.1.

Theorem 4.2. Let Φ be as in Remark 3.2. Then we have

|u|2H1(Ω,P) ≤
(

inf
T ∈TP

κ(θT )
)

×
(
‖εP (u)‖2L2(Ω) +

(
Φ(u)

)2 +
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)(4.2)

for all u ∈ [H1(Ω,P)]2, where κ : R+ −→ R+ is a continuous function independent
of P.

The set {θT : T ∈ TP} provides an abstract measure of the shape regularity
of the partition P and the number infT ∈TP κ(θT ) can be viewed as a constant
depending on the shape regularity of P . However, in applications one may want to
relate the abstract estimate (4.2) to a concrete description of the shape regularity
of P given in terms of (i) the shape regularity of individual subdomains and (ii)
the relative positions of subdomains that share a common edge of P .

We can measure the shape regularity of a polygon (or a polyhedron in 3D) by
using an affine homeomorphism between D and a reference domain and by using
the aspect ratio of D defined by (diameter of D)/(radius of the largest disc (or ball)
in the closure of D).

The relative positions between subdomains sharing a common edge of P can be
measured in terms of the quantity

(4.3) ρ(P) = max{|∂D|/|σ| : σ ∈ S(P ,Ω), D ∈ P and σ ⊂ ∂D}.
The following corollary gives an application of Theorem 4.2 to a fairly general

class of two-dimensional partitions.

Corollary 4.3. Let Φ be as in Remark 3.2 and let {Pi : i ∈ I} be a family of
partitions of Ω such that
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(i) the polygons appearing in all the partitions Pi are affine homeomorphic to
a fixed finite set of reference polygons and the aspect ratios of the polygons
in all the Pi’s are uniformly bounded,

(ii) the set {ρ(Pi) : i ∈ I} is bounded.
Then there exists a positive constant C, independent of i ∈ I, such that

|u|2H1(Ω,Pi) ≤ C
(
‖εPi (u)‖2L2(Ω) +

(
Φ(u)

)2(4.4)

+
∑

σ∈S(Pi,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
for any u ∈ [H1(Ω,Pi)]2 and i ∈ I.

Proof. It suffices to show that under the assumptions on the family of partitions
we can construct one partition Ti ∈ TPi for each i ∈ I such that inf{θTi : i ∈ I} ≥
θ0 > 0. Then the estimate (4.4) follows from (4.2) if we take C to be an upper
bound of the bounded set {κ(θTi) : i ∈ I}.

First we construct a simplicial triangulation on each reference polygon so that
each edge of the reference polygon is also an edge of the triangulation and each
triangle in the triangulation can have at most one edge on the boundary of the
reference polygon.

Let D ∈ Pi. We can induce a triangulation TD on D using the triangulation on
a reference polygon and the corresponding affine homeomorphism. Let p ∈ ∂D be
a vertex of P which is not a vertex of D. Then p belongs to an edge of D which
is an edge of a triangle T ∈ TD, and we connect p to the vertex of T not on ∂D
by a straight line. In this way we have created a triangulation Ti ∈ TPi . (This
construction is carried out in Figure 3 for the two-dimensional partition in Figure 1,
where the reference square is triangulated by its two diagonals.)

Figure 3. An example of the construction of TPi

Let D̂ be the reference polygon affine homeomorphic to D and let x̂ 7→ α(x̂) =
Bx̂ + b be the corresponding affine map from D̂ to D. The uniform boundedness
of the aspect ratios implies (cf. Theorem 3.1.3 in [4]) the existence of a positive
constant C∗, independent of i ∈ I, such that

(4.5) ‖B‖ ≤ C∗(diamD) and ‖B−1‖ ≤ C∗(diamD)−1,

where ‖ · ‖ is the matrix 2-norm induced by the Euclidean vector norm. Hence we
have

(4.6) C−2
∗
|x̂1 − x̂2|
|x̂3 − x̂4|

≤ |x1 − x2|
|x3 − x4|

≤ C2
∗
|x̂1 − x̂2|
|x̂3 − x̂4|

,

where xj = α(x̂j), and x̂1, x̂2, x̂3, x̂3 are any four points such that x̂1 6= x̂2 and
x̂3 6= x̂4.
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We conclude from (4.6) and the boundedness of the set {ρ(Pi) : i ∈ I} that θTi
is bounded away from zero. �

Remark 4.4. If the family of partitions {Pi : i ∈ I} in Corollary 4.3 is actually a
family of triangulations (simplicial or otherwise), then the condition on the bound-
edness of {ρ(Pi) : i ∈ I} is redundant.

An example of a family of partitions satisfying the assumptions of Corollary 4.3
is depicted in Figure 4, where a square is being refined successively towards the
upper right corner.

Figure 4. A family of partitions of a square

5. Korn’s inequalities for [H1(Ω,P)]3 on a three-dimensional Ω

In order to give a precise definition of S(P ,Ω), we first introduce the concept
of an edge of P , which is just an edge of any of the subdomains in P . We then
define an open face of P to be an open subset of the boundary of a subdomain in
P enclosed by edges of P . The set S(P ,Ω) consists of open faces of P common to
the boundaries of two subdomains in P .

Remark 5.1. Again the concept of a face of a polyhedron D ∈ P and the concept
of a face of P on ∂D are different. For example, there are always 6 faces on a
parallelepiped while there are 9 faces of the three-dimensional partition in Figure 1
on the boundary of the subdomain in the back.

As in the two-dimensional case, we would like to derive a generalized Korn’s
inequality for partitions from Theorem 3.1. But here the situation is more compli-
cated since the faces in S(P ,Ω) may not be triangles. Accordingly we introduce
the following family of triangulations:

TP = {T : T is a simplicial triangulation of Ω such that each face(5.1)

in S(P ,Ω) is triangulated by the (triangular) faces in S(T ,Ω)}.

Since a face in S(P ,Ω) may not be a face in S(T ,Ω) for T ∈ TP , we cannot
immediately derive an analog of Theorem 4.2. We need to introduce two more
parameters related to the shape regularity of P in addition to the parameter ρ(P)
already defined in (4.3).

Let T ∈ TP . For σ ∈ S(P ,Ω) we will denote by Tσ the triangulation of σ by
faces of S(T ,Ω), i.e., Tσ = {σ̃ ∈ S(T ,Ω) : σ̃ ⊆ σ}, and define the parameter

(5.2) ρ(P , T ) = max {|σ|/|σ̃| : σ ∈ S(P ,Ω) and σ̃ ∈ Tσ} .
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Note the following obvious bound for |Tσ| (the number of elements in Tσ):

(5.3) |Tσ| ≤ ρ(P , T ) ∀σ ∈ S(P ,Ω) .

Moreover (4.3) and (5.2) imply that

(5.4)
|∂D|
|σ̃| ≤ ρ(P)ρ(P , T ) for any D ∈ P , σ̃ ∈ Tσ and σ ⊂ ∂D .

The other parameter is the smallest number λ(P) ≥ 1 with the property that

(5.5) ‖v −ΠDv‖2L2(∂D) ≤ λ(P)|∂D|1/2‖ε(v)‖2L2(D),

where D is any subdomain in P , v is any function in [H1(D)]3 and ΠD : [H1(D)]3

−→ RM(D) (the space of rigid motions restricted to D) is defined by the conditions

(5.6)
∫
D

(v −ΠDv) dx = 0 =
∫
D

∇× (v − ΠDv) dx.

The existence of λ(P) is a consequence of (1.4), (5.6), the trace theorem, the
Poincaré-Friedrichs inequality and Korn’s second inequality (1.9).

We can now state and prove a generalized Korn’s inequality.

Theorem 5.2. Let Φ be as in Remark 3.2. Then we have

|u|2H1(Ω,P) ≤
(

inf
T ∈TP

K
(
ρ(P), λ(P), ρ(P , T ), θT

))
(5.7)

×
(
‖εP (u)‖2L2(Ω) +

(
Φ(u)

)2 +
∑

σ∈S(P,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
for all u ∈ [H1(Ω,P)]3, where K : R4

+ −→ R+ is a continuous function independent
of P.

Proof. Let T ∈ TP and σ ∈ S(P ,Ω). We have, from (5.3) and the Cauchy-Schwarz
inequality,

( diam σ)2 ≤
( ∑
σ̃∈Tσ

diam σ̃
)2

≤ ρ(P , T )
∑
σ̃∈Tσ

(diam σ̃)2

≤ ρ(P , T )κ∗(θT )
∑
σ̃∈Tσ

|σ̃| = ρ(P , T )κ∗(θT )|σ|,

where κ∗ : R+ −→ R+ is a continuous function independent of P . Therefore it
suffices to show that

|u|2H1(Ω,P) ≤
(

inf
T ∈TP

K∗
(
ρ(P), λ(P), ρ(P , T ), θT

))
(5.8)

×
(
‖εP (u)‖2L2(Ω) +

(
Φ(u)

)2 +
∑

σ∈S(P,Ω)

|σ|−(1/2)
∥∥πσ[u]σ

∥∥2

L2(σ)

)
for all u ∈ [H1(Ω,P)]3, whereK∗ : R4

+ −→ R+ is a continuous function independent
of P .

Since definition (5.1) implies that [H1(Ω,P)]3 is a subspace of [H1(Ω, T )]3 for
every T ∈ TP , we immediately obtain from (3.7) the estimate

|u|2H1(Ω,P) ≤ κ(θT )
(
‖εP (u)‖2L2(Ω) +

(
Φ(u)

)2(5.9)

+
∑

σ∈S(P,Ω)

∑
σ̃∈Tσ

|σ̃|−(1/2)
∥∥πσ̃[u]σ̃

∥∥2

L2(σ̃)

)
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for any u ∈ [H1(Ω,P)]3, where κ : R+ −→ R+ is a continuous function independent
of P .

Let σ ∈ S(P ,Ω) be arbitrary, let σ̃ ∈ Tσ and let Pσ be the set of the two
polyhedra in P that share σ as a common face. It follows from the Cauchy-Schwarz
inequality that, for any u ∈ [H1(Ω,P)]3,∥∥πσ̃[u]σ̃

∥∥2

L2(σ̃)

≤ 3
∥∥πσ[u]σ

∥∥2

L2(σ̃)
+ 3

∑
D∈Pσ

∥∥πσ̃uD − πσuD∥∥2

L2(σ̃)
(5.10)

≤ 3
∥∥πσ[u]σ

∥∥2

L2(σ)
+ 3

∑
D∈Pσ

∥∥πσ̃(u
D
−ΠDuD)− πσ(u

D
−ΠDuD )

∥∥2

L2(σ̃)
,

since πσ̃(ΠDuD ) = ΠDuD = πσ(ΠDuD ) on σ̃.
From (5.5) we have∥∥πσ̃(u

D
−ΠDuD )− πσ(u

D
−ΠDuD )

∥∥2

L2(σ̃)
≤ 4‖u

D
−ΠDuD‖2L2(∂D)(5.11)

≤ 4λ(P)|∂D|1/2‖ε(u
D

)‖2L2(D).

Note also that (5.2) and (5.3) imply

(5.12)
∑
σ̃∈Tσ

|σ|1/2
|σ̃|1/2 ≤ |Tσ| ρ(P , T )1/2 ≤ ρ(P , T )3/2.

Combining (4.3) and (5.10)–(5.12), we find∑
σ̃∈Tσ

|σ̃|−1/2
∥∥πσ̃[u]σ̃

∥∥2

L2(σ̃)

≤ 3
( ∑
σ̃∈Tσ

|σ|1/2
|σ̃|1/2

)
|σ|−(1/2)

∥∥πσ[u]σ
∥∥2

L2(σ)

+ 12λ(P)
( ∑
σ̃∈Tσ

|σ|1/2
|σ̃|1/2

) ∑
D∈Pσ

|∂D|1/2
|σ|1/2 ‖ε(uD )‖2L2(D)(5.13)

≤ 3ρ(P , T )3/2|σ|−(1/2)
∥∥πσ[u]σ

∥∥2

L2(σ)

+ 12λ(P)ρ(P)1/2ρ(P , T )3/2
∑
D∈Pσ

‖ε(u
D

)‖2L2(D),

for any σ ∈ S(P ,Ω) and u ∈ [H1(Ω,P)]3.
Finally we observe that the number of faces in S(P ,Ω) that appear on the

boundary of any subdomain in P is less than or equal to ρ(P), and hence

(5.14)
∑

σ∈S(P,Ω)

∑
D∈Pσ

‖ε(u
D

)‖2L2(D) ≤ ρ(P)‖εP (u)‖2L2(Ω) ∀u ∈ [H1(Ω,P)]3.

The inequality (5.8) follows from (5.9), (5.13) and (5.14), with the function K∗
given by, for example,

K∗
(
ρ(P), λ(P), ρ(P , T ), θT

)
= 13λ(P)ρ(P)3/2ρ(P , T )3/2κ(θT ).

�

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1082 SUSANNE C. BRENNER

The set {
(
ρ(P), λ(P), ρ(P , T ), θT

)
: T ∈ TP} provides an abstract measure of

the shape regularity of the partition P and we can think of

inf
P∈TP

K
(
ρ(P), λ(P), ρ(P , T ), θT

)
as a constant depending on the shape regularity of P . Under appropriate concrete
shape regularity assumptions one can also obtain from Theorem 5.2 Korn’s inequal-
ities for a family of partitions with a uniform constant. For simplicity we only give
an analog of Corollary 4.3 for partitions by convex polyhedra.

Since a face of a partition P consisting of convex polyhedra is a convex polygon, it
can be triangulated by connecting its center to the vertices of P on its boundary by
straight lines. Such a triangulation will be referred to as the canonical triangulation
of the face.

Corollary 5.3. Let Φ be as in Remark 3.2 and {Pi : i ∈ I} be a family of partitions
of Ω with the following properties :

(i) The polyhedra appearing in all the partitions Pi are affine homeomorphic
to a fixed finite set of convex reference polyhedra and the aspect ratios of
the polyhedra in all the Pi’s are uniformly bounded.

(ii) The set {ρ(Pi) : i ∈ I} is bounded.
(iii) The angles of the triangles in the canonical triangulations of the faces of

all the partitions Pi are bounded below by a positive constant.

Then there exists a positive constant C, independent of i ∈ I, such that

|u|2H1(Ω,Pi) ≤ C
(
‖εPi (u)‖2L2(Ω) +

(
Φ(u)

)2(5.15)

+
∑

σ∈S(Pi,Ω)

( diam σ)−1
∥∥πσ[u]σ

∥∥2

L2(σ)

)
for any u ∈ [H1(Ω,Pi)]3 and i ∈ I.

Proof. Let D ∈ Pi be affine homeomorphic to the reference polyhedron D̂ and let
α(x̂) = Bx̂ + b be the corresponding affine map from D̂ to D. Then the estimates
(4.5) and (4.6) again follow from condition (i).

From (1.4), (5.6), the trace theorem (with scaling), the classical Poincaré-
Friedrichs inequality (with scaling), condition (i) and Lemma A.2 in the appen-
dix, we have

(5.16) ‖v −ΠDv‖2L2(∂D) ≤ C†(D̂)|∂D|1/2‖ε(v)‖2L2(D) ∀v ∈ [H1(D)]3,

where C†(D̂) is a positive constant depending only on D̂. Since there are only
finitely many reference polyhedra for the partitions Pi, we conclude from (5.16)
that the set

(5.17) {λ(Pi) : i ∈ I} is bounded.

For each i ∈ I we can construct a triangulation Ti ∈ TPi by first imposing the
canonical triangulation on each face of Pi and then triangulating each subdomain
D ∈ Pi using its center and the triangles on its faces.

Let σ be a face of Pi. Condition (iii) implies that the number of triangles in the
canonical triangulation of σ is uniformly bounded (since these triangles share the
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center of σ as a common vertex) and the areas of any two triangles in the canonical
triangulation are also comparable. It follows that

(5.18) {ρ(Pi, Ti) : i ∈ I} is bounded.

Condition (ii) implies that the number of faces of Pi on the face F of a subdomain
D ∈ Pi is uniformly bounded, which together with the observation in the previous
paragraph implies that the number of triangles of Ti on F is also uniformly bounded.
It then follows from condition (iii) that the triangulation of F by the triangular faces
from Ti is quasi-uniform. Moreover condition (i) implies that the number of faces
of D is uniformly bounded and that the sizes of any two faces of D are comparable.
Therefore the triangulation of ∂D by the faces from Ti is also quasi-uniform, which
together with (4.6) implies

(5.19) inf{θTi : i ∈ I} > 0 .

Combining condition (ii) and (5.17)–(5.19), we see that {
(
ρ(Pi), λ(Pi), ρ(Pi, Ti),

θTi
)

: i ∈ I} is a precompact subset of R4
+. The estimate (5.15) then follows

from (5.7) if we take C to be an upper bound of the bounded set {K
(
ρ(Pi), λ(Pi),

ρ(Pi, Ti), θTi
)

: i ∈ I}. �
Remark 5.4. If the family of partitions in Corollary 5.3 is actually a family of
triangulations (simplicial or otherwise), then conditions (ii) and (iii) are redundant.
Moreover, it is not necessary to assume that the subdomains are convex, since there
are only finitely many different reference polygons for the faces of the Pi’s.

An example of a family of partitions satisfying the assumptions of Corollary 5.3
is depicted in Figure 5, where a cube is being refined successively towards the upper
left front corner.

Figure 5. A family of partitions of a cube

6. Korn’s inequalities for piecewise polynomial vector fields

with respect to triangulations by polyhedral subdomains

Attentive readers may have already noticed that the inequality (2.9) for piecewise
linear vector fields is different from the inequalities (3.7), (4.2) and (5.7) for piece-
wise H1 vector fields. Since pointwise evaluation is not well defined for functions in
[H1(T )]d and d ≥ 2, the formulation of Korn’s inequalities in (3.7), (4.2) and (5.7)
is the appropriate one for piecewise H1 vector fields. However, for piecewise poly-
nomial vector fields associated with a triangulation T (simplicial or otherwise),
pointwise evaluation of the jump across σ ∈ S(T ,Ω) is possible. The following
theorem generalizes Lemma 2.2 to such vector fields.
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Theorem 6.1. Let Φ be as in Remark 3.2 and let {Ti : i ∈ I} be a family of
triangulations of Ω by polygons (d = 2) or polyhedra (d = 3). Assume that the
subdomains appearing in all the triangulations Ti are affine homeomorphic to a
fixed finite set of reference domains and that the aspect ratios of the subdomains
in all the Ti’s are uniformly bounded. Let Vi = {v ∈ [L2(Ω)]d : vT = v

∣∣
T
∈

[Pn(T )]d ∀T ∈ Ti} for i ∈ I, where n is a positive integer. Then there exists a
positive constant C, independent of i ∈ I, such that

|u|2H1(Ω,Ti) ≤ C
(
‖εTi (u)‖2L2(Ω) +

(
Φ(u)

)2(6.1)

+
∑

σ∈S(Ti,Ω)

( diam σ)d−2
∑

p∈V(σ)

∣∣[u]σ(p)
∣∣2)

for any u ∈ Vi and i ∈ I.

Proof. We will use C to denote a generic positive constant independent of i ∈ I.
Let i ∈ I and σ ∈ S(Ti,Ω) be arbitrary. Recall that Tσ is the set of the two

simplexes sharing σ as a common face. For u ∈ Vi, we have

(6.2)
∥∥πσ[u]σ

∥∥
L2(σ)

≤
∥∥[u]Iσ

∥∥
L2(σ)

+
∑
T∈Tσ

‖πσuT − uIT ‖L2(σ),

where [u]Iσ ∈ [P1(σ)]d (respectively uI
T
∈ [P1(T )]d) is the linear nodal interpolant

of [u]σ (respectively u
T

).
The trace theorem (with scaling) and the Bramble-Hilbert lemma (cf. [1]) imply

that

(6.3) ‖πσuT − uIT ‖
2
L2(σ) ≤ C( diam T )3|u

T
|2H2(T ) for T ∈ Tσ.

Moreover, from the well-known relation (cf. [8])

∂2uj
∂xk∂xl

=
∂εjl(u)
∂xk

+
∂εjk(u)
∂xl

− ∂εkl(u)
∂xj

for 1 ≤ j, k, l ≤ d

and a standard inverse estimate we have

(6.4) |u
T
|H2(T ) ≤ C|ε(uT )|H1(T ) ≤ C( diam T )−1‖ε(u

T
)‖L2(T ).

Combining (2.11), (6.3) and (6.4), we find

(6.5) ( diam σ)−1‖πσuT − uIT ‖
2
L2(σ) ≤ C‖ε(uT )‖2L2(T ) for T ∈ Tσ.

On the other hand we obtain, from a standard finite element estimate for the
L2-norm,

(6.6) ( diam σ)−1
∥∥[u]Iσ

∥∥2

L2(σ)
≤ C( diam σ)d−2

∑
p∈V(σ)

∣∣[u]σ(p)
∣∣2.

The inequality (6.1) follows from (6.2), (6.5), (6.6), Corollary 4.3, Corollary 5.3,
Remark 4.4 and Remark 5.4. �

Using Theorem 6.1, we can immediately obtain Korn’s inequalities (1.14)–(1.16)
for Wilson’s brick/rectangle (cf. [17], [4], [16], [19]) and other nonconforming
quadrilateral elements in [20] which are continuous at the vertices of the trian-
gulation. Note that these elements do not satisfy the weak continuity condition
(1.17).
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Appendix A. Dependence of the constant in Korn’s second inequality

on the underlying domain

Let D be a bounded connected open polyhedral domain in Rd and let k(D) be
the smallest positive number such that

(A.1) |v|H1(D) ≤ k(D)
(
‖ε(v)‖L2(D) + ( diamD)1−d

∣∣∣ ∫
D

∇× v dx
∣∣∣)

for all v ∈ [H1(D)]d. In this appendix we briefly discuss the behavior of k(D)
under affine homeomorphisms. More precisely, we assume that D is homeomorphic
to a reference domain D̂ under the affine transformation α : D̂ −→ D defined by
α(x̂) = Bx̂ + b, and we consider the dependence of k(D) on B ∈ GL(d), the Lie
group of nonsingular d× d matrices.

Remark A.1. The estimates (A.3) and (A.4) below are crucial for Lemma 2.2 and
Corollary 5.3. These estimates, though elementary, do not seem to be in the liter-
ature.

Without loss of generality, we may assume b = 0 and write the constant k(D) in
(A.1) as k(B). We have,

k(B)(A.2)

= sup
v̂∈[H1(D̂)]d

|v̂|H1(D̂)=1

( |v̂ ◦ α−1|H1(D)

‖ε(v̂ ◦ α−1)‖L2(D) + ( diamD)1−d
∣∣ ∫
D∇× (v̂ ◦ α−1) dx

∣∣
)
.

Observe that, since |v̂|H1(D̂) = 1, the quotients on the right-hand side of (A.2)
form a family of equicontinuous functions on GL(d). Therefore k(·), defined as the
supremum of this equicontinuous family, is continuous on GL(d) (cf. [7]).

Lemma A.2. Let {Di : i ∈ I} be a family of domains affine homeomorphic to the
reference domain D̂. Assume also that the aspect ratios of the Di’s are uniformly
bounded. Then there exists a positive constant C, independent of i ∈ I, such that

(A.3) |v|H1(Di) ≤ C
(
‖ε(v)‖L2(Di) + ( diam Di)1−d

∣∣∣ ∫
Di

∇× v dx
∣∣∣)

for any v ∈ [H1(Di)]d and i ∈ I.

Proof. We may assume without loss of generality that diamDi = 1 for all i ∈ I. It
follows from the uniform boundedness of the aspect ratios of the Di’s that the norm
of the nonsingular matrix Bi in the affine transformation αi : D̂ −→ Di and the
norm of its inverse are uniformly bounded for all i ∈ I (cf. (4.5)). Hence {Bi : i ∈ I}
is a precompact subset of GL(d) and the boundedness of {k(Bi) : i ∈ I} follows
from the continuity of k(·) on GL(d). �

For a simplex T we can also control the constant k(T ) in terms of the minimum
angle θT of T .

Corollary A.3. There exists a continuous decreasing function κ : R+ −→ R+ such
that, for any simplex T ,

(A.4) |v|H1(T ) ≤ κ(θT )
(
‖ε(v)‖L2(T ) + (diamT )1−d

∣∣∣ ∫
T

∇× v dx
∣∣∣)

for all v ∈ [H1(T )]d.
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Proof. It follows from Lemma A.2 that, for any θ > 0, the set

(A.5) Sθ = {k(T ) : T is a simplex and the minimum angle of T is ≥ θ}

is bounded. Then η(θ) = supSθ defines a nonnegative decreasing function on R+.
In view of (A.1) and (A.5) we have

(A.6) |v|H1(T ) ≤ η(θT )
(
‖ε(v)‖L2(T ) + ( diamT )1−d

∣∣∣ ∫
T

∇× v dx
∣∣∣)

for all v ∈ [H1(T )]d.
The estimate (A.4) follows from (A.6) if we choose κ : R+ −→ R+ to be any

continuous decreasing function satisfying the condition κ ≥ η. (There are infinitely
many such functions.) �
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