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1 Introduction

Korovkin-type theorems furnish simple and useful tools for ascertaining whether a given sequence of
positive linear operators, acting on some function space is an approximation process or, equivalently,
converges strongly to the identity operator.

Roughly speaking, these theorems exhibit a variety of test subsets of functions which guarantee
that the approximation (or the convergence) property holds on the whole space provided it holds
on them.

The custom of calling these kinds of results “Korovkin-type theorems” refers to P. P. Korovkin
who in 1953 discovered such a property for the functions 1, x and x2 in the space C([0, 1]) of all
continuous functions on the real interval [0, 1] as well as for the functions 1, cos and sin in the space
of all continuous 2π-periodic functions on the real line ([77-78]).

After this discovery, several mathematicians have undertaken the program of extending Ko-
rovkin’s theorems in many ways and to several settings, including function spaces, abstract Banach
lattices, Banach algebras, Banach spaces and so on. Such developments delineated a theory which
is nowadays referred to as Korovkin-type approximation theory.

This theory has fruitful connections with real analysis, functional analysis, harmonic analysis,
measure theory and probability theory, summability theory and partial differential equations. But
the foremost applications are concerned with constructive approximation theory which uses it as a
valuable tool.

Even today, the development of Korovkin-type approximation theory is far from complete,
especially for those parts of it that concern limit operators different from the identity operator (see
Problems 5.3 and 5.4 and the subsequent remarks).

A quite comprehensive picture of what has been achieved in this field until 1994 is documented
in the monographs of Altomare and Campiti ([8], see in particular Appendix D), Donner ([46]),
Keimel and Roth ([76]), Lorentz, v. Golitschek and Makovoz ([83]). More recent results can be
found, e.g., in [1], [9-15], [22], [47-52], [63], [71-74], [79], [114-116], [117] and the references therein.

The main aim of this survey paper is to give a detailed self-contained introduction to the field
as well as a secure entry into a theory that provides useful tools for understanding and unifying
several aspects pertaining, among others, to real and functional analysis and which leads to several
applications in constructive approximation theory and numerical analysis.

This paper, however, not only presents a survey on Korovkin-type theorems but also contains
several new results and applications. Moreover, the organization of the subject follows a simple
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and direct approach which quickly leads both to the main results of the theory and to some new
ones.

In Sections 3 and 4, we discuss the first and the second theorem of Korovkin. We obtain both
of them from a simple unifying result which we state in the setting of metric spaces (see Theorem
3.2).

This general result also implies the multidimensional extension of Korovkin’s theorem due to
Volkov ([118]) (see Theorem 4.1). Moreover, a slight extension of it into the framework of locally
compact metric spaces allows to extend the Korovkin’s theorems to arbitrary real intervals or, more
generally, to locally compact subsets of R

d, d ≥ 1.
Throughout the two sections, we present some applications concerning several classical ap-

proximation processes ranging from Bernstein operators on the unit interval or on the canonical
hypercube and the multidimensional simplex, to Kantorovich operators, from Fejér operators to
Abel-Poisson operators, from Szász-Mirakjan operators to Gauss-Weierstrass operators.

We also prove that the first and the second theorems of Korovkin are actually equivalent to
the algebraic and the trigonometric version, respectively, of the classical Weierstrass approximation
theorem.

Starting from Section 5, we enter into the heart of the theory by developing some of the main
results in the framework of the space C0(X) of all real-valued continuous functions vanishing at
infinity on a locally compact space X and, in particular, in the space C(X) of all real-valued
continuous functions on a compact space X.

We choose these continuous function spaces because they play a central role in the whole theory
and are the most useful for applications. Moreover, by means of them it is also possible to easily
obtain some Korovkin-type theorems in weighted continuous function spaces and in Lp-spaces,
1 ≤ p. These last aspects are treated at the end of Section 6 and in Section 8.

We point out that we discuss Korovkin-type theorems not only with respect to the identity
operator but also with respect to a positive linear operator on C0(X) opening the door to a variety
of problems some of which are still unsolved.

In particular, in Section 10, we present some results concerning positive projections on C(X),X
compact, as well as their applications to the approximation of the solutions of Dirichlet problems
and of other similar problems.

In Sections 6 and 7, we present several results and applications concerning Korovkin sets for
the identity operator. In particular, we show that, if M is a subset of C0(X) that separates the
points of X and if f0 ∈ C0(X) is strictly positive, then {f0} ∪ f0M ∪ f0M

2 is a Korovkin set in
C0(X).

This result is very useful because it furnishes a simple way to construct Korovkin sets, but in
addition, as we show in Section 9, it turns out that it is equivalent to the Stone generalization to
C0(X)-spaces of the Weierstrass theorem. This equivalence was already established in [8, Section
4.4] (see also [12-13]) but here we furnish a different, direct and more transparent proof.

We also mention that, at the end of Sections 7 and 10, we present some applications concerning
Bernstein-Schnabl operators associated with a positive linear operator and, in particular, with
a positive projection. These operators are useful for the approximation of not just continuous
functions but also — and this was the real reason for the increasing interest in them — positive
semigroups and hence the solutions of initial-boundary value evolution problems. These aspects
are briefly sketched at the end of Section 10.

Following the main aim of “Surveys in Approximation Theory”, this paper is directed to the
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graduate student level and beyond. However, some parts of it as well as some new methods
developed here could also be useful to expert readers.

A knowledge of the basic definitions and results concerning locally compact Hausdorff spaces
and continuous function spaces on them is required as well as some basic properties of positive
linear functionals on these function spaces (Radon measures). However, the reader who is not
interested in this level of generality may replace everywhere our locally compact spaces with the
space R

d, d ≥ 1, or with an open or a closed subset of it or with the intersection of an open subset
and a closed subset of R

d. However, this restriction does not produce any simplification of the
proofs or of the methods.

For the convenience of the reader and to make the exposition self-contained, we collect all these
prerequisites in the Appendix. There, the reader can also find some new simple and direct proofs
of the main properties of Radon measures which are required throughout the paper, so that no a
priori knowledge of the theory of Radon measures is needed.

This paper contains introductory materials so that many aspects of the theory have been omit-
ted. We refer, e.g., to [8, Appendix D] for further details about some of the main directions
developed during the last fifty years.

Furthermore, in the applications shown throughout the paper, we treat only general constructive
aspects (convergence of the approximation processes) without any mention of quantitative aspects
(estimates of the rate of convergence, direct and converse results and so on) nor to shape preserving
properties. For such matters, we refer, e.g., to [8], [26], [38], [41], [42], [44], [45], [64], [65], [81-82],
[83], [92], [109].

We also refer to [19, Proposition 3.7], [67], [69] and [84] where other kinds of convergence
results for sequences of positive linear operators can be found. The results of these last papers do
not properly fall into the Korovkin-type approximation theory but they can be fruitfully used to
decide whether a given sequence of positive linear operators is strongly convergent (not necessarily
to the identity operator).

Finally we wish to express our gratitude to Mirella Cappelletti Montano, Vita Leonessa and
Ioan Raşa for the careful reading of the manuscript and for many fruitful suggestions. We are
also indebted to Carl de Boor, Allan Pinkus and Vilmos Totik for their interest in this work as
well as for their valuable advice and for correcting several inaccuracies. Finally we want to thank
Mrs. Voichita Baraian for her precious collaboration in preparing the manuscript in LaTeX for
final processing.

2 Preliminaries and notation

In this section, we assemble the main notation which will be used throughout the paper together
with some generalities.

Given a metric space (X, d), for every x0 ∈ X and r > 0, we denote by B(x0, r) and B′(x0, r)
the open ball and the closed ball with center x0 and radius r, respectively, i.e.,

B(x0, r) := {x ∈ X | d(x0, x) < r} (2.1)

and
B′(x0, r) := {x ∈ X | d(x0, x) ≤ r}. (2.2)

The symbol
F (X)
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stands for the linear space of all real-valued functions defined on X. If M is a subset of F (X), then
by L(M) we designate the linear subspace generated by M . We denote by

B(X)

the linear subspace of all functions f : X −→ R that are bounded, endowed with the norm of
uniform convergence (briefly, the sup-norm) defined by

‖f‖∞ := sup
x∈X

|f(x)| (f ∈ B(X)), (2.3)

with respect to which it is a Banach space.
The symbols

C(X) and Cb(X)

denote the linear subspaces of all continuous (resp. continuous and bounded) functions in F (X).
Finally, we denote by

UCb(X)

the linear subspace of all uniformly continuous and bounded functions in F (X). Both Cb(X) and
UCb(X) are closed in B(X) and hence, endowed with the norm (2.3), they are Banach spaces.

A linear subspace E of F (X) is said to be a lattice subspace if

|f | ∈ E for every f ∈ E. (2.4)

For instance, the spaces B(X), C(X), Cb(X) and UCb(X) are lattice subspaces.
Note that from (2.4), it follows that sup(f, g), inf(f, g) ∈ E for every f, g ∈ E where

sup(f, g)(x) := sup(f(x), g(x)) (x ∈ X) (2.5)

and
inf(f, g)(x) := inf(f(x), g(x)) (x ∈ X). (2.6)

This follows at once by the elementary identities

sup(f, g) =
f + g + |f − g|

2
and inf(f, g) =

f + g − |f − g|

2
. (2.7)

More generally, if f1, . . . , fn ∈ E, n ≥ 3, then sup
1≤i≤n

fi, inf
1≤i≤n

fi ∈ E.

We say that a linear subspace E of F (X) is a subalgebra if

f · g ∈ E for every f, g ∈ E (2.8)

or, equivalently, if f2 ∈ E for every f ∈ E. In this case, if f ∈ E and n ≥ 1, then fn ∈ E and hence
for every real polynomial Q(x) := α1x + α2x

2 + · · · + αnxn (x ∈ R) vanishing at 0, the function

Q(f) := α1f + α2f
2 + · · · + αnfn (2.9)

belongs to E as well. If E contains the constant functions, then P (f) ∈ E for every real polynomial
P .
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Note that a subalgebra is not necessarily a lattice subspace (for instance, C1([a, b]) is such an
example). However every closed subalgebra of Cb(X) is a lattice subspace (see Lemma 9.1).

Given a linear subspace E of F (X), a linear functional µ : E −→ R is said to be positive if

µ(f) ≥ 0 for every f ∈ E, f ≥ 0. (2.10)

The simplest example of a positive linear functional is the so-called evaluation functional at a point
a ∈ X defined by

δa(f) := f(a) (f ∈ E). (2.11)

If (Y, d′) is another metric space, we say that a linear operator T : E −→ F (Y ) is positive if

T (f) ≥ 0 for every f ∈ E, f ≥ 0. (2.12)

Every positive linear operator T : E −→ F (Y ) gives rise to a family (µy)y∈Y of positive linear
functionals on E defined by

µy(f) := T (f)(y) (f ∈ E). (2.13)

Below, we state some elementary properties of both positive linear functionals and positive linear
operators.

In what follows, the symbol F stands either for the field R or for a space F (Y ), Y being an
arbitrary metric space.

Consider a linear subspace E of F (X) and a positive linear operator T : E −→ F. Then:

(i) For every f, g ∈ E, f ≤ g,
T (f) ≤ T (g) (2.14)

(ii) If E is a lattice subspace, then

|T (f)| ≤ T (|f |) for every f ∈ E. (2.15)

(iii) (Cauchy-Schwarz inequality) If E is both a lattice subspace and a subalgebra, then

T (|f · g|) ≤
√

T (f2)T (g2) (f, g ∈ E). (2.16)

In particular, if 1 ∈ E, then

T (|f |)2 ≤ T (1)T (f2) (f ∈ E). (2.17)

(iv) If X is compact, 1 ∈ E and F is either R or B(Y ), then T is continuous and

‖T‖ = ‖T (1)‖. (2.18)

Thus, if µ : E −→ R is a positive linear functional, then µ is continuous and ‖µ‖ = µ(1).
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3 Korovkin’s first theorem

Korovkin’s theorem provides a very useful and simple criterion for whether a given sequence (Ln)n≥1

of positive linear operators on C([0, 1]) is an approximation process, i.e., Ln(f) −→ f uniformly
on [0, 1] for every f ∈ C([0, 1]).

In order to state it, we need to introduce the functions

em(t) := tm (0 ≤ t ≤ 1) (3.1)

(m ≥ 1).

Theorem 3.1. (Korovkin ([77])) Let (Ln)n≥1 be a sequence of positive linear operators from
C([0, 1]) into F ([0, 1]) such that for every g ∈ {1, e1, e2}

lim
n→∞

Ln(g) = g uniformly on [0, 1].

Then, for every f ∈ C([0, 1]),

lim
n→∞

Ln(f) = f uniformly on [0, 1].

Below, we present a more general result from which Theorem 3.1 immediately follows.
For every x ∈ [0, 1] consider the auxiliary function

dx(t) := |t − x| (0 ≤ t ≤ 1). (3.2)

Then
d2

x = e2 − 2xe1 + x21

and hence, if (Ln)n≥1 is a sequence of positive linear operators satisfying the assumptions of The-
orem 3.1, we get

lim
n→∞

Ln(d2
x)(x) = 0 (3.3)

uniformly with respect to x ∈ [0, 1], because for n ≥ 1

Ln(d2
x) = (Ln(e2) − x2) + 2x(Ln(e1) − x) + x2(Ln(1) − 1).

After these preliminaries, the reader can easily realize that Theorem 3.1 is a particular case of
the following more general result which, together with its modification (i.e., Theorem 3.5) as well
as the further consequences presented at the beginning of Section 4, should also be compared with
the simple but different methods of [79].

Consider a metric space (X, d). Extending (3.2), for any x ∈ X we denote by dx ∈ C(X) the
function

dx(y) := d(x, y) (y ∈ X). (3.4)

Theorem 3.2. Let (X, d) be a metric space and consider a lattice subspace E of F (X) containing
the constant functions and all the functions d2

x (x ∈ X). Let (Ln)n≥1 be a sequence of positive
linear operators from E into F (X) and let Y be a subset of X such that

(i) lim
n→∞

Ln(1) = 1 uniformly on Y ;
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(ii) lim
n→∞

Ln(d2
x)(x) = 0 uniformly with respect to x ∈ Y .

Then for every f ∈ E ∩ UCb(X)

lim
n→∞

Ln(f) = f uniformly on Y.

Proof. Consider f ∈ E ∩ UCb(X) and ε > 0. Since f is uniformly continuous, there exists δ > 0
such that

|f(x) − f(y)| ≤ ε for every x, y ∈ X, d(x, y) ≤ δ.

On the other hand, if d(x, y) ≥ δ, then

|f(x) − f(y)| ≤ 2‖f‖∞ ≤
2‖f‖∞

δ2
d2(x, y).

Therefore, for x ∈ X fixed, we obtain

|f − f(x)| ≤
2‖f‖∞

δ2
d2

x + ε1

and hence, for any n ≥ 1,

|Ln(f)(x) − f(x)Ln(1)(x)| ≤ Ln(|f − f(x)|)(x) ≤
2‖f‖∞

δ2
Ln(d2

x)(x) + εLn(1)(x).

We may now easily conclude that lim
n→∞

Ln(f) = f uniformly on Y because of the assumptions (i)

and (ii). �

Theorem 3.2 has a natural generalization to completely regular spaces (for more details, we
refer to [15]). Furthermore, the above proof can be adapted to show the next result.

Theorem 3.3. Consider (X, d) and E ⊂ F (X) as in Theorem 3.2. Consider a sequence (Ln)n≥1

of positive linear operators from E into F (X) and assume that for a given x ∈ X

(i) lim
n→∞

Ln(1)(x) = 1;

(ii) lim
n→∞

Ln(d2
x)(x) = 0.

Then, for every bounded function f ∈ E that is continuous at x,

lim
n→∞

Ln(f)(x) = f(x).

Adapting the proof of Theorem 3.2, we can show a further result. We first state a preliminary
lemma.

Lemma 3.4. Let (X, d) be a locally compact metric space. Then for every compact subset K of
X and for every ε > 0, there exist 0 < ε < ε and a compact subset Kε of X such that

B′(x, ε) ⊂ Kε for every x ∈ K.
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Proof. Given x ∈ K, there exists 0 < ε(x) < ε such that B′(x, ε(x)) is compact. Since K ⊂
⋃

x∈K

B(x, ε(x)/2), there exist x1, . . . , xp ∈ K such that K ⊂
p⋃

i=1
B(xi, ε(xi)/2). Set ε := min

1≤i≤p
ε(xi) <

ε and Kε :=
p⋃

i=1
B′(xi, ε(xi)). Now, if x ∈ K and y ∈ X and if d(x, y) ≤ ε, then there exists an

i ∈ {1, . . . , p} such that d(x, xi) ≤ ε(xi)/2, and hence d(y, xi) ≤ d(y, x)+d(x, xi) ≤ ε(xi). Therefore
y ∈ Kε. �

Theorem 3.5. Let (X, d) be a locally compact metric space and consider a lattice subspace E
of F (X) containing the constant function 1 and all the functions d2

x (x ∈ X). Let (Ln)n≥1 be a
sequence of positive linear operators from E into F (X) and assume that

(i) lim
n→∞

Ln(1) = 1 uniformly on compact subsets of X;

(ii) lim
n→∞

Ln(d2
x)(x) = 0 uniformly on compact subsets of X.

Then, for every f ∈ E ∩ Cb(X),

lim
n→∞

Ln(f) = f uniformly on compact subsets of X.

Proof. Fix f ∈ E∩Cb(X) and consider a compact subset K of X. Given ε > 0, consider 0 < ε < ε
and a compact subset Kε of X as in Lemma 3.4.

Since f is uniformly continuous on Kε, there exists 0 < δ < ε such that

|f(x) − f(y)| ≤ ε for every x, y ∈ Kε, d(x, y) ≤ δ.

Given x ∈ K and y ∈ X, if d(x, y) ≤ δ, then y ∈ B′(x, ε) ⊂ Kε and hence |f(x) − f(y)| ≤ ε.
If d(x, y) ≥ δ, then

|f(x) − f(y)| ≤
2‖f‖∞

δ2
d2(x, y).

Therefore, once again,

|f − f(x)| ≤
2‖f‖∞

δ2
d2

x + ε1

so that, arguing as in the final part of the proof of Theorem 3.2, we conclude that

lim
n→∞

Ln(f)(x) = f(x)

uniformly with respect to x ∈ K. �

Theorem 3.1 was obtained by P. P. Korovkin in 1953 ([77], see also [78]). However, in [35],
H. Bohman showed a result like Theorem 3.1 by considering sequences of positive linear operators
on C([0, 1]) of the form

L(f)(x) =
∑

i∈I

f(ai)ϕi(x) (0 ≤ x ≤ 1),

where (ai)i∈I is a finite family in [0, 1] and ϕi ∈ C([0, 1]) (i ∈ I). Finally, we point out that the
germ of the same theorem can be also traced back to a paper by T. Popoviciu ([95]).

Korovkin’s theorem 3.1 (often called Korovkin’s first theorem) has many important appli-
cations in the study of positive approximation processes in C([0, 1]).
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One of them is concerned with the Bernstein operators on C([0, 1]) which are defined by

Bn(f)(x) :=
n∑

k=0

f
(k

n

)(n

k

)
xk(1 − x)n−k (3.5)

(n ≥ 1, f ∈ C([0, 1]), 0 ≤ x ≤ 1). Each Bn(f) is a polynomial of degree not greater than n. They
were introduced by S. N. Bernstein ([34]) to give the first constructive proof of the Weierstrass
approximation theorem (algebraic version) ([119]).

Actually, we have that:

Theorem 3.6. For every f ∈ C([0, 1]),

lim
n→∞

Bn(f) = f uniformly on [0, 1].

Proof. Each Bn is a positive linear operator on C([0, 1]). Moreover, it is easy to verify that for
any n ≥ 1

Bn(1) = 1, Bn(e1) = e1

and

Bn(e2) =
n − 1

n
e2 +

1

n
e1.

Therefore, the result follows from Theorem 3.1. �

The original proof of Bernstein’s Theorem 3.6 is based on probabilistic considerations (namely,
on the weak law of large numbers). For a survey on Bernstein operators, we refer, e.g., to [82] (see
also [42] and [8]).

Note that Theorem 3.6 furnishes a constructive proof of the Weierstrass approximation theorem
[119] which we state below. (For a survey on many other alternative proofs of Weierstrass’ theorem,
we refer, e.g., to [93-94].)

Theorem 3.7. For every f ∈ C([0, 1]), there exists a sequence of algebraic polynomials that
uniformly converges to f on [0, 1].

Using modern language, Theorem 3.7 can be restated as follows

“The subalgebra of all algebraic polynomials is dense in C([0, 1])
with respect to the uniform norm”.

By means of Theorem 3.6, we have seen that the Weierstrass approximation theorem can be ob-
tained from Korovkin’s theorem.

It seems to be not devoid of interest to point out that, from the Weierstrass theorem, it is possible
to obtain a special version of Korovkin’s theorem which involves only positive linear operators Ln,
n ≥ 1, such that Ln(C([0, 1])) ⊂ B([0, 1]) for every n ≥ 1. This special version will be referred to
as the restricted version of Korovkin’s theorem.

Theorem 3.8. The restricted version of Korovkin’s theorem and Weierstrass’ Approximation The-
orem are equivalent.
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Proof. We have to furnish a proof of the restricted version of Korovkin’s theorem based solely on
the Weierstrass Theorem.

Consider a sequence of positive linear operators (Ln)n≥1 from C([0, 1]) into B([0, 1]) such that
lim

n→∞
Ln(g) = g uniformly on [0, 1] for every g ∈ {1, e1, e2}. As in the proof of Theorem 3.1, we

then get
lim

n→∞
Ln(d2

x)(x) = 0

uniformly with respect to x ∈ [0, 1].
For m ≥ 1 and x, y ∈ [0, 1], we have

|xm − ym| ≤ m|y − x|

and hence, recalling the function em(x) = xm (0 ≤ x ≤ 1),

|em − ym1| ≤ m|e1 − y1| (y ∈ [0, 1]).

An application of the Cauchy-Schwarz inequality (2.16) implies, for any n ≥ 1 and y ∈ [0, 1],

|Ln(em) − ymLn(1)| ≤ mLn(|e1 − y1|)

≤ m
√

Ln(1)
√

Ln((e1 − y1)2) = m
√

Ln(1)
√

Ln(d2
y).

Therefore, lim
n→∞

Ln(em) = em uniformly on [0, 1] for any m ≥ 1 and hence lim
n→∞

Ln(P ) = P

uniformly on [0, 1] for every algebraic polynomial P on [0, 1].
We may now conclude the proof because, setting M := sup

n≥1
‖Ln‖ = sup

n≥1
‖Ln(1)‖ < +∞ and

fixing f ∈ C([0, 1]) and ε > 0, there exists an algebraic polynomial P on [0, 1] such that ‖f−P‖ ≤ ε,
and an integer r ∈ N such that ‖Ln(P ) − P‖ ≤ ε for every n ≥ r, so that

‖Ln(f) − f‖ ≤ ‖Ln(f) − Ln(P )‖ + ‖Ln(P ) − P‖ + ‖P − f‖

≤ M‖f − P‖ + ‖Ln(P ) − P‖ + ‖P − f‖ ≤ (M + 2)ε.
�

For another proof of Korovkin’s first theorem which involves Weierstrass theorem, see [117].
It is well-known that there are ”trigonometric” versions of both Korovkin’s theorem and Weier-

strass’ theorem (see Theorems 4.3 and 4.6). Also, these versions are equivalent (see Theorem 4.7).
In the sequel, we shall also prove that the generalizations of these two theorems to compact and to
locally compact settings are equivalent as well (see Theorem 9.4).

We proceed now to illustrate another application of Korovkin’s theorem that concerns the
approximation of functions in Lp([0, 1]), 1 ≤ p < +∞, by means of positive linear operators. Note
that Bernstein operators are not suitable to approximate Lebesgue integrable functions (see, for
instance, [82, Section 1.9]).

The space C([0, 1]) is dense in Lp([0, 1]) with respect to the natural norm

‖f‖p :=
( ∫ 1

0
|f(t)|p dt

)1/p
(f ∈ Lp([0, 1])) (3.6)

and
‖f‖p ≤ ‖f‖∞ if f ∈ C([0, 1]). (3.7)
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Therefore, the subalgebra of all algebraic polynomials on [0, 1] is dense in Lp([0, 1]).
The Kantorovich polynomials introduced by L. V. Kantorovich ([75]) furnish the first con-

structive proof of the above mentioned density result. They are defined by

Kn(f)(x) :=

n∑

k=0

[
(n + 1)

∫ k+1

n+1

k
n+1

f(t) dt
](n

k

)
xk(1 − x)n−k (3.8)

for every n ≥ 1, f ∈ Lp([0, 1]), 0 ≤ x ≤ 1. Each Kn(f) is a polynomial of degree not greater than
n and every Kn is a positive linear operator from Lp([0, 1]) (and, in particular, from C([0, 1]) into
C([0, 1])). For additional information on these operators, see [8, Section 5.3.7], [82], [42, Chapter
10].

Theorem 3.9. If f ∈ C([0, 1]), then

lim
n→∞

Kn(f) = f uniformly on [0, 1].

Proof. A direct calculation which involves the corresponding formulas for Bernstein operators
gives for n ≥ 1

Kn(1) = 1, Kn(e1) =
n

n + 1
e1 +

1

2(n + 1)

and

Kn(e2) =
n(n − 1)

(n + 1)2
e2 +

2n

(n + 1)2
e1 +

1

3(n + 1)2
.

Therefore, the result follows at once from Korovkin’s Theorem 3.1. �

Before showing a result similar to Theorem 3.9 for Lp-functions, we need to recall some prop-
erties of convex functions.

Consider a real interval I of R. A function ϕ : I −→ R is said to be convex if

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y)

for every x, y ∈ I and 0 ≤ α ≤ 1. If I is open and ϕ is convex, then, for every finite family

(xk)1≤k≤n in I and (αk)1≤k≤n in [0, 1] such that
n∑

k=1

αk = 1,

ϕ
( n∑

k=1

αkxk

)
≤

n∑

k=1

αkϕ(xk)

(Jensen’s inequality).
The function |t|p (t ∈ R), 1 ≤ p < ∞, is convex. Given a probability space (Ω,F , µ), an open

interval I of R and a µ-integrable function f : Ω −→ I, then

∫

Ω
f dµ ∈ I.

Furthermore, if ϕ : I −→ R is convex and ϕ ◦ f : Ω −→ R is µ-integrable, then
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ϕ
( ∫

Ω
f dµ

)
≤

∫

Ω
ϕ ◦ f dµ

(Integral Jensen inequality).
In particular, if f ∈ Lp(Ω, µ) ⊂ L1(Ω, µ), then

∣∣∣∣
∫

f dµ

∣∣∣∣
p

≤

∫
|f |p dµ. (3.9)

(For more details see, e.g., [29, pp.18–21].)
After these preliminaries, we now proceed to show the approximation property of (Kn)n≥1 in

Lp([0, 1]).

Theorem 3.10. If f ∈ Lp([0, 1]), 1 ≤ p < +∞, then

lim
n→∞

Kn(f) = f in Lp([0, 1]).

Proof. For every n ≥ 1, denote by ‖Kn‖ the operator norm of Kn considered as an operator from
Lp([0, 1]) into Lp([0, 1]).

To prove the result, it is sufficient to show that there exists an M ≥ 0 such that ‖Kn‖ ≤ M for
every n ≥ 1. After that, the result will follow immediately because, for a given ε > 0, there exists
g ∈ C([0, 1]) such that ‖f − g‖p ≤ ε and there exists ν ∈ N such that, for n ≥ ν,

‖Kn(g) − g‖∞ ≤ ε

so that
‖Kn(f) − f‖p ≤ M‖f − g‖p + ‖Kn(g) − g‖p + ‖g − f‖p ≤ (2 + M)ε.

Now, in order to obtain the desired estimate, we shall use the convexity of the function |t|p on R

and inequality (3.9).
Given f ∈ Lp([0, 1]), for every n ≥ 1 and 0 ≤ k ≤ n, we have indeed

(
(n + 1)

∫ k+1

n+1

k
n+1

| f(t) | dt

)p

≤ (n + 1)

∫ k+1

n+1

k
n+1

| f(t) |p dt

and hence, for every x ∈ [0, 1],

|Kn(f)(x)|p ≤
n∑

k=0

(
n

k

)
xk(1 − x)n−k

[
(n + 1)

∫ k+1

n+1

k
n+1

|f(t)|dt
]p

≤
n∑

k=0

(
n

k

)
xk(1 − x)n−k(n + 1)

∫ k+1

n+1

k
n+1

|f(t)|p dt.

Therefore,

∫ 1

0
|Kn(f)(x)|p dx ≤

n∑

k=0

(
n

k

)(∫ 1

0
xk(1 − x)n−k dx

)(
(n + 1)

∫ k+1

n+1

k
n+1

|f(t)|p dt
)
.
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On the other hand, by considering the beta function

B(u, v) :=

∫ 1

0
tu−1(1 − t)v−1 dt (u > 0, v > 0),

it is not difficult to show that, for 0 ≤ k ≤ n,

∫ 1

0
xk(1 − x)n−k dx = B(k + 1, n − k + 1) =

1

(n + 1)
(n

k

) ,

and hence ∫ 1

0
|Kn(f)(x)|p dx ≤

n∑

k=0

∫ k+1

n+1

k
n+1

|f(t)|p dt =

∫ 1

0
|f(t)|p dt.

Thus, ‖Kn(f)‖p ≤ ‖f‖p for every f ∈ Lp([0, 1]), i.e., ‖Kn‖ ≤ 1. �

Remarks 3.11.

1. For every f ∈ Lp([0, 1]), 1 ≤ p < +∞, it can also be shown that

lim
n→∞

Kn(f) = f almost everywhere on [0, 1]

(see [82, Theorem 2.2.1]).

2. If f ∈ C([0, 1]) is continuously differentiable in [0,1], then, by referring again to Bernstein
operators (3.5), it is not difficult to show that, for n ≥ 1 and x ∈ [0, 1],

Bn+1(f)′(x) =

n∑

h=0

(n + 1)
[
f
(h + 1

n + 1

)
− f

( h

n + 1

)](n

h

)
xh(1 − x)n−h = Kn(f ′)(x).

Therefore, by Theorem 3.9, we infer that

lim
n→∞

Bn(f)′ = f ′ uniformly on [0, 1]. (3.10)

More generally, if f ∈ C([0, 1]) possesses continuous derivatives in [0,1] up to the order m ≥ 1,
then for every 1 ≤ k ≤ m,

lim
n→∞

Bn(f)(k) = f (k) uniformly on [0, 1] (3.11)

([82, Section 1.8]).

3. Another example of positive approximating operators on Lp([0, 1]), 1 ≤ p < +∞, is furnished
by the Bernstein-Durrmeyer operators defined by

Dn(f)(x) :=

n∑

k=0

( 1∫

0

(n + 1)

(
n

k

)
tk(1 − t)n−kf(t) dt

)(n

k

)
xk(1 − x)n−k (3.12)

(f ∈ Lp([0, 1]), 0 ≤ x ≤ 1) (see [53], [40], [8, Section 5.3.8]).
We also refer the interested reader to [16] where a generalization of Kantorovich operators is

introduced and studied.
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4 Korovkin’s second theorem and something else

In this section, we shall consider the space R
d, d ≥ 1, endowed with the Euclidean norm

‖x‖ =
( d∑

i=1

x2
i

)1/2
(x = (xi)1≤i≤d ∈ R

d). (4.1)

For every j = 1, . . . , d, we shall denote by

prj : R
d −→ R

the j-th coordinate function which is defined by

prj(x) := xj (x = (xi)1≤i≤d ∈ R
d). (4.2)

By a common abuse of notation, if X is a subset of R
d, the restriction of each prj to X will be

again denoted by prj. In this framework, for the functions dx (x ∈ X) defined by (3.4), we get

d2
x = ‖x‖21− 2

d∑

i=1

xipri +
d∑

i=1

pr2
i . (4.3)

Therefore, from Theorem 3.5, we then obtain

Theorem 4.1. Let X be a locally compact subset of R
d, d ≥ 1, i.e., X is the intersection of an

open subset and a closed subset of R
d (see Appendix). Consider a lattice subspace E of F (X)

containing {1, pr1, . . . , prd,
d∑

i=1
pr2

i } and let (Ln)n≥1 be a sequence of positive linear operators from

E into F (X) such that for every g ∈ {1, pr1, . . . , prd,
d∑

i=1
pr2

i }

lim
n→∞

Ln(g) = g uniformly on compact subsets of X.

Then, for every f ∈ E ∩ Cb(X)

lim
n→∞

Ln(f) = f uniformly on compact subsets of X.

The special case of Theorem 4.1 when X is compact follows indeed from Theorem 3.2 and is
worth being stated separately. It is due to Volkov ([118]).

Theorem 4.2. Let X be a compact subset of Rd and consider a sequence (Ln)n≥1 of positive linear

operators from C(X) into F (X) such that for every g ∈ {1, pr1, . . . , prd,
d∑

i=1
pr2

i }

lim
n→∞

Ln(g) = g uniformly on X.

Then for every f ∈ C(X)
lim

n→∞
Ln(f) = f uniformly on X.
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Note that, if X is contained in some sphere of R
d, i.e.,

d∑
i=1

pr2
i is constant on X, then the test

subset in Theorem 4.2 reduces to {1, pr1, . . . , prd}. (In [8, Corollary 4.5.2], the reader can find a
complete characterization of those subsets X of R

d for which {1, pr1, . . . , prd} satisfies Theorem
4.2.)

This remark applies in particular for the unit circle of R
2

T := {(x, y) ∈ R
2 | x2 + y2 = 1}. (4.4)

On the other hand, the space C(T) is isometrically (order) isomorphic to the space

C2π(R) := {f ∈ C(R) | f is 2π-periodic} (4.5)

(endowed with the sup-norm and pointwise ordering) by means of the isomorphism Φ : C(T) −→
C2π(R) defined by

Φ(F )(t) := F (cos t, sin t) (t ∈ R) . (4.6)

Moreover,
Φ(1) = 1, Φ(pr1) = cos, Φ(pr2) = sin (4.7)

and so we obtain Korovkin’s second theorem.

Theorem 4.3. Let (Ln)n≥1 be a sequence of positive linear operators from C2π(R) into F (R) such
that

lim
n→∞

Ln(g) = g uniformly on R

for every g ∈ {1, cos, sin}. Then

lim
n→∞

Ln(f) = f uniformly on R

for every f ∈ C2π(R).

Below, we discuss some applications of Theorem 4.3.
For 1 ≤ p < +∞, we shall denote by

Lp
2π(R)

the Banach space of all (equivalence classes of) functions f : R −→ R that are Lebesgue integrable
to the p-th power over [−π, π] and that satisfy f(x + 2π) = f(x) for a.e. x ∈ R. The space Lp

2π(R)
is endowed with the norm

‖f‖p :=
( 1

2π

∫ π

−π
|f(t)|p dt

)1/p
(f ∈ Lp

2π(R)). (4.8)

A family (ϕn)n≥1 in L1
2π(R) is said to be a positive periodic kernel if every ϕn is positive,

i.e., ϕn ≥ 0 a.e. on R, and

lim
n→∞

1

2π

∫ π

−π
ϕn(t) dt = 1. (4.9)
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Each positive kernel (ϕn)n≥1 generates a sequence of positive linear operators on L1
2π(R). For every

n ≥ 1, f ∈ L1
2π(R) and x ∈ R, set

Ln(f)(x) := (f ∗ ϕn)(x) =
1

2π

∫ π

−π
f(x − t)ϕn(t) dt (4.10)

=
1

2π

∫ π

−π
f(t)ϕn(x − t) dt.

From Fubini’s theorem and Hölder’s inequality, it follows that Ln(f) ∈ Lp
2π(R) if f ∈ Lp

2π(R), 1 ≤
p < +∞.

Moreover, if f ∈ C2π(R), then the Lebesgue dominated convergence theorem implies that
Ln(f) ∈ C2π(R). Furthermore,

‖Ln(f)‖p ≤ ‖ϕn‖1‖f‖p (f ∈ C2π(R)) (4.11)

and
‖Ln(f)‖∞ ≤ ‖ϕn‖1‖f‖∞ (f ∈ C2π(R)). (4.12)

A positive kernel (ϕn)n≥1 is called an approximate identity if for every δ ∈]0, π[

lim
n→∞

∫ −δ

−π
ϕn(t) dt +

∫ π

δ
ϕn(t) dt = 0 . (4.13)

Theorem 4.4. Consider a positive kernel (ϕn)n≥1 in L1
2π(R) and the corresponding sequence

(Ln)n≥1 of positive linear operators defined by (4.10). For every n ≥ 1, set

βn :=
1

2π

∫ π

−π
ϕn(t) sin2 t

2
dt. (4.14)

Then the following properties are equivalent:

a) For every 1 ≤ p < +∞ and f ∈ Lp
2π(R)

lim
n→∞

Ln(f) = f in Lp
2π(R)

as well as
lim

n→∞
Ln(f) = f in C2π(R)

provided f ∈ C2π(R).

b) lim
n→∞

βn = 0.

c) (ϕn)n≥1 is an approximate identity.

Proof. To show the implication (a) ⇒ (b), it is sufficient to point out that for every n ≥ 1 and
x ∈ R

βn =
1

2π

∫ π

−π
ϕn(u − x) sin2 u − x

2
du

=
1

2

( 1

2π

∫ π

−π
ϕn(t) dt − (cos x)Ln(cos)(x) − (sin x)Ln(sin)(x)

)
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and hence βn → 0 as n → ∞.
Now assume that (b) holds. Then, for 0 < δ < π and n ≥ 1,

sin2(δ/2)

2π

( −δ∫

−π

ϕn(t) dt +

π∫

δ

ϕn(t) dt
)
≤

1

2π

( −δ∫

−π

ϕn(t) sin2 t

2
dt +

π∫

δ

ϕn(t) sin2 t

2
dt
)
≤ βn

and hence (c) follows.

We now proceed to show the implication (c) ⇒ (a). Set M := sup
n≥1

π∫
−π

ϕn(t) dt. For a given ε > 0

there exists δ ∈]0, π[ such that | cos t−1| ≤
ε

6(M + 1)
and | sin t| ≤

ε

6(M + 1)
for any t ∈ R, |t| ≤ δ,

and hence, for sufficiently large n ≥ 1

∣∣∣
1

2π

∫ π

−π
ϕn(t) dt − 1

∣∣∣ ≤
ε

3
and

∫

δ≤|t|≤π
ϕn(t) dt ≤ π

ε

3
.

Therefore, for every x ∈ R,

|Ln(sin)(x) − sin x| ≤
1

2π

π∫

−π

| sin(x − t) − sinx|ϕn(t) dt

+
∣∣∣
( 1

2π

∫ π

−π
ϕn(t) dt − 1

)∣∣∣| sin x|

≤
1

2π

∫

δ≤|t|≤π

| sin(x − t) − sinx|ϕn(t) dt

+
1

2π

∫

|t|<δ

|(cos t − 1) sin x − cos x sin t|ϕn(t) dt + ε/3

≤
1

π

∫

δ≤|t|≤π

ϕn(t) dt +
ε

3(M + 1)

1

2π

π∫

−π

ϕn(t) dt +
ε

3
≤ ε.

Therefore, lim
n→∞

Ln(sin) = sin uniformly on R. The same method can be used to show that

lim
n→∞

Ln(cos) = cos uniformly on R and hence, by Korovkin’s second theorem 4.3, we obtain

lim
n→∞

Ln(f) = f in C2π(R) for every f ∈ C2π(R).

By reasoning as in the proof of Theorem 3.10, it is a simple matter to get the desired convergence
formula in Lp

2π(R) by using the previous one on C2π(R), the denseness of C2π(R) in Lp
2π(R) and

formula (4.11) which shows that the operators Ln, n ≥ 1, are equibounded from Lp
2π(R) into Lp

2π(R).
�

Two simple applications of Theorem 4.4 are particularly worthy of mention. For other applica-
tions, we refer to [8, Section 5.4], [38], [41], [78].
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We begin by recalling that a trigonometric polynomial of degree n ∈ N is a real function of the
form

un(x) =
1

2
a0 +

n∑

k=1

ak cos kx + bk sin kx (x ∈ R) (4.15)

where a0, a1, . . . , an, b1, . . . , bn ∈ R. A series of the form

1

2
a0 +

∞∑

k=1

ak cos kx + bk sin kx (x ∈ R) (4.16)

(ak, bk ∈ R) is called a trigonometric series.
If f ∈ L1

2π(R), the trigonometric series

1

2
a0(f) +

∞∑

k=1

ak(f) cos kx + bk(f) sin kx (x ∈ R) (4.17)

where

a0(f) :=
1

π

∫ π

−π
f(t) dt, (4.18)

ak(f) :=
1

π

∫ π

−π
f(t) cos kt dt, k ≥ 1, (4.19)

bk(f) :=
1

π

∫ π

−π
f(t) sin kt dt, k ≥ 1, (4.20)

is called the Fourier series of f . The an’s and bn’s are called the real Fourier coefficients of f .
For any n ∈ N, denote by

Sn(f)

the n-th partial sum of the Fourier series of f , i.e.,

S0(f) =
1

2
a0(f) (4.21)

and, for n ≥ 1,

Sn(f)(x) =
1

2
a0(f) +

n∑

k=1

ak(f) cos kx + bk(f) sin kx. (4.22)

Each Sn(f) is a trigonometric polynomial; moreover, considering the functions

Dn(t) := 1 + 2
n∑

k=1

cos kt (t ∈ R), (4.23)

we also get

Sn(f)(x) =
1

2π

∫ π

−π
f(t)Dn(x − t) dt (x ∈ R). (4.24)

The function Dn is called the n-th Dirichlet kernel.
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By multiplying (4.23) by sin t/2, we obtain

sin
t

2
Dn(t) = sin

t

2
+

n∑

k=1

sin
(1 + 2k

2
t
)
− sin

(2k − 1

2
t
)

= sin
1 + 2n

2
t,

so that

Dn(t) =





sin(1 + 2n)t/2

sin t/2
if t is not a multiple of π,

2n + 1 if t is a multiple of π.
(4.25)

Dn is not positive and (Dn)n≥1 is not an approximate identity ([38, Prop. 1.2.3]). Moreover, there
exists f ∈ C2π(R) such that (Sn(f))n≥1 does not converge uniformly (nor pointwise) to f , i.e., the
Fourier series of f does not converge uniformly (nor pointwise) to f .

For every n ∈ N, put

Fn(f) :=
1

n + 1

n∑

k=0

Sk(f). (4.26)

Fn(f) is a trigonometric polynomial. Moreover, from the identity

(sin
t

2
)

n−1∑

k=0

sin
2k + 1

2
t = sin2 n

2
t (t ∈ R), (4.27)

it follows that for every x ∈ R

Fn(f)(x) =
1

2π

∫ π

−π
f(t)

1

(n + 1)

n∑

k=0

sin((2k + 1)(x − t)/2)

sin((x − t)/2)
dt (4.28)

=
1

2π

∫ π

−π
f(t)

1

(n + 1)

sin2((n + 1)(x − t)/2)

sin2((x − t)/2)
dt

=
1

2π

∫ π

−π
f(t)ϕn(x − t) dt,

where

ϕn(x) :=

{
sin2((n+1)x/2)

(n+1) sin2(x/2)
if x is not a multiple of 2π,

n + 1 if x is a multiple of 2π.
(4.29)

Actually, the sequence (ϕn)n≥1 is a positive kernel which is called the Fejér kernel, and the
corresponding operators Fn, n ≥ 1, are called the Fejér convolution operators.

Theorem 4.5. For every f ∈ Lp
2π(R), 1 ≤ p < +∞,

lim
n→∞

Fn(f) = f in Lp
2π(R)

and, if f ∈ C2π(R),
lim

n→∞
Fn(f) = f in C2π(R).
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Proof. Evaluating the Fourier coefficients of 1, cos and sin, and by using (4.26), we obtain, for
n ≥ 1,

Fn(1) = 1, Fn(cos) =
n

n + 1
cos, Fn(sin) =

n

n + 1
sin

and

βn =
1

2(n + 1)
.

The result now follows from Theorem 4.4 or, more directly, from Theorem 4.3. �

Theorem 4.5 is due to Fejér ([56-57]). It furnishes the first constructive proof of the Weierstrass
approximation theorem for periodic functions.

Theorem 4.6. If f ∈ Lp
2π(R), 1 ≤ p < +∞ (resp. f ∈ C2π(R)) then there exists a sequence of

trigonometric polynomials that converges to f in Lp
2π(R) (resp. uniformly on R).

As in the “algebraic” case, we shall now show that from Weierstrass’ approximation theorem,
it is possible to deduce a “restricted” version of Theorem 4.3, where in addition it is required that
each operator Ln maps C2π(R) into B(R). We shall also refer to this version as the restricted

version of Korovkin’s second theorem.

Theorem 4.7. The restricted version of Korovkin’s second Theorem 4.3 and Weierstrass’ Theorem
4.6 are equivalent.

Proof. An inspection of the proof of Theorem 4.5 shows that Theorem 4.3 implies Theorem 4.5
and, hence, Theorem 4.6.

Conversely, assume that Theorem 4.6 is true and consider a sequence (Ln)n≥1 of positive linear
operators from C2π(R) into B(R) such that Ln(g) −→ g uniformly on R for every g ∈ {1, cos, sin}.
For every m ≥ 1, set fm(x) := cos mx and gm(x) := sinmx (x ∈ R). Since the subspace of all
trigonometric polynomials is dense in C2π(R) and

sup
n≥1

‖Ln‖ = sup
n≥1

‖Ln(1)‖ < +∞,

it is enough to show that Ln(fm) → fm and Ln(gm) → gm uniformly on R for every m ≥ 1.
Given x ∈ R, consider the function Φx(y) = sin x−y

2 (y ∈ R). Then

Φ2(y) := sin2 x − y

2
=

1

2
(1 − cos x cos y − sinx sin y) (y ∈ R)

and hence
Ln(Φx)(x) → 0 uniformly with respect to x ∈ R.

On the other hand, for m ≥ 1 and x, y ∈ R, we get

|fm(x) − fm(y)| = 2
∣∣∣ sin m

(x + y

2

)∣∣∣
∣∣∣ sin m

(x − y

2

)∣∣∣ ≤ cm

∣∣∣ sin
(x − y

2

)∣∣∣

where cm := 2 supα∈R

sinmα
sinα , and hence

|fm(x)Ln(1) − Ln(fm)| ≤ cmLn(|Φx|) ≤ cm

√
Ln(1)

√
Ln(Φ2

x).

Therefore, Ln(fm)(x) − fm(x) → 0 uniformly with respect to x ∈ R.
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A similar reasoning can be applied also to the functions gm,m ≥ 1, because

|gm(x) − gm(y)| = 2
∣∣∣ cos m

(x + y

2

)
sin m

(x − y

2

)∣∣∣ ≤ Km

∣∣∣ sin
(x − y

2

)∣∣∣

and this completes the proof. �

For another short proof of Korovkin’s second theorem that uses the trigonometric version of
Weierstrass’ theorem, see [117].

Fejér’s Theorem 4.5 is noteworthy because it reveals an important property of the Fourier series.
Actually, it shows that Fourier series are always Cesaro-summable to f in Lp

2π(R) or in C2π(R),
provided that f ∈ Lp

2π(R) or f ∈ C2π(R). Another deeper theorem, ascribed to Fejér and Lebesgue,
states that, if f ∈ L1

2π(R), then its Fourier series is Cesaro-summable to f a.e. on R ([112, Theorem
8.35]).

Below, we further discuss another regular summation method, namely the Abel-summation

method, which applies to Fourier series.
We begin with the following equality

1 + z

1 − z
= 1 + 2

∞∑

k=1

zk (z ∈ C, |z| < 1) (4.30)

which holds uniformly on any compact subset of {z ∈ C | |z| < 1}. Given x ∈ R and 0 ≤ r < 1, by
applying (4.30) to z = reix and by taking the real parts of both sides, we get

1 + 2

∞∑

k=1

rk cos kx =
1 − r2

1 − 2r cos x + r2
(4.31)

and the identity holds uniformly when r ranges in a compact interval of [0, 1[.
The family of functions

Pr(t) :=
1 − r2

1 − 2r cos t + r2
(t ∈ R) (4.32)

(0 ≤ r < 1) is called the Abel-Poisson kernel and the corresponding operators

Pr(f)(x) :=
1 − r2

2π

∫ π

−π

f(t)

1 − 2r cos(x − t) + r2
dt (x ∈ R) (4.33)

(0 ≤ r < 1, f ∈ L1
2π(R)) are called the Abel-Poisson convolution operators. Taking (4.31)

into account, it is not difficult to show that

Pr(f)(x) =
1

2
a0(f) +

∞∑

k=1

rk(ak(f) cos kx + bk(f) sin kx) (4.34)

where the coefficients ak(f) and bk(f) are the Fourier coefficients of f defined by (4.18)–(4.20).

Theorem 4.8. If f ∈ Lp
2π(R), 1 ≤ p < +∞, then

lim
r→1−

Pr(f) = f in Lp
2π(R)

and, if f ∈ C2π(R),
lim

r→1−
Pr(f) = f uniformly on R.
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Proof. The kernels pr, 0 ≤ r < 1, are positive. Moreover, from (4.34), we get

Pr(1) = 1, Pr(cos) = r cos, Pr(sin) = r sin

and hence

βr =
1 − r

2
.

Therefore, the result follows from Theorem 4.4 (or from Theorem 4.5). �

According to (4.34), Theorem 4.8 claims that the Fourier series of a function f ∈ Lp
2π(R) (resp.

f ∈ C2π(R)) is Abel summable to f in Lp
2π(R) (resp. uniformly on R).

For further applications of Korovkin’s second theorem to approximation by convolution opera-
tors and summation processes, we refer, e.g., to [8, Section 5.4], [38], [41], [78].

We finally point out the relevance of Theorem 4.8 in the study of the Dirichlet problem for

the unit disk D := {(x, y) ∈ R
2 | x2 +y2 ≤ 1}. Given F ∈ C(∂D) = C(T) ≡ C2π(R), this problem

consists in finding a function U ∈ C(D) possessing second partial derivatives on the interior of D

such that 



∂2U

∂x2
(x, y) +

∂2U

∂y2
(x, y) = 0 (x2 + y2 < 1),

U(x, y) = F (x, y) (x2 + y2 = 1).
(4.35)

By using polar coordinates x = r cos θ and y = r sin θ (0 ≤ r < 1, θ ∈ R) and the functions
f(θ) := F (cos θ, sin θ) (θ ∈ R) and u(r, θ) := U(r cos θ, r sin θ) (0 ≤ r < 1, θ ∈ R), problem (4.35)
turns into





∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
(r, θ) +

1

r2

∂2u

∂θ2
(r, θ) = 0 0 < r < 1, θ ∈ R,

u(0, θ) = 1
2π

π∫
−π

f(t) dt θ ∈ R,

lim
r→1−

u(r, θ) = f(θ) uniformly w.r.t. θ ∈ R.

(4.36)

.
With the help of Theorem 4.8 it is not difficult to show that a solution to problem (4.36) is

given by
u(r, θ) = Pr(f)(θ) (0 ≤ r < 1, θ ∈ R). (4.37)

Accordingly, the function

U(x, y) :=

{
u(r, θ) if x = r cos θ, y = r sin θ and x2 + y2 < 1,
F (x, y) if x2 + y2 = 1,

is a solution to problem (4.35). Furthermore, as it is well-known, the solution to (4.35) is unique. A
similar result also holds if F : T → R is a Borel-measurable function such that 1

2π

∫ π
−π | F (cos t, sin t) |p

dt < +∞, 1 ≤ p < +∞. For more details we refer, e.g., to [38, Proposition 1.2.10 and Theorem
7.1.3] and to [96, Section 1.2].

We end this section by presenting an application of Theorem 4.1. Consider the d-dimensional
simplex

Kd := {x = (xi)1≤i≤d ∈ R
d | xi ≥ 0, 1 ≤ i ≤ d, and

d∑

i=1

xi ≤ 1} (4.38)
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and for every n ≥ 1, f ∈ C(Kd) and x = (xi)1≤i≤d ∈ Kd, set

Bn(f)(x) : =
∑

h1,...,hd=0,...,n
h1+···+hd≤n

f
(h1

n
, . . . ,

hd

n

) n!

h1! · · · hd!(n − h1 − · · · − hd)!

× xh1

1 · · · xhd

d (1 − x1 − · · · − xd)
n−h1−···−hd .

(4.39)

Bn(f) is a polynomial and it is usually called the n-th Bernstein polynomial on the d-
dimensional simplex associated with f . These polynomials were first studied by Dinghas ([43]).

Theorem 4.9. For every f ∈ C(Kd),

lim
n→∞

Bn(f) = f uniformly on Kd.

Proof. From the multinomial theorem, it follows that Bn(1) = 1. Consider now the first coordinate
function pr1 (see (4.2)). Then, for x = (xi)1≤i≤d ∈ Kd and n ≥ 1,

Bn(pr1)(x) =
∑

h1,...,hd=0,...,n
h1+···+hd≤n

h1

n

n!

h1! · · · hd!(n − h1 − · · · − hd)!

× xh1

1 · · · xhd

d (1 − x1 − · · · − xd)
n−h1−···−hd

= x1

∑

k1,h2,...,hd=0,...,n
k1+h2+···+hd≤n−1

(n − 1)!

k1!h2! · · ·hd!((n − 1) − k1 − h2 − · · · − hd)!

× xk1

1 xh2

2 · · · xhd

d (1 − x1 − · · · − xd)
(n−1)−k1−h2−···−hd

= x1.

On the other hand, for n ≥ 2,

Bn(pr2
1)(x) =

∑

h1,...,hd=0,...,n
h1+h2+···+hd≤n

h2
1

n2

n!

h1! · · · hd!(n − h1 − · · · − hd)!

× xh1

1 · · · xhd

d (1 − x1 − · · · − xd)
n−h1−···−hd

=
∑

h1+···+hd≤n

h1

n

(n − 1)!

(h1 − 1)!h2! · · · hd!(n − h1 − · · · − hd)!

× xh1

1 · · · xhd

d (1 − x1 − · · · − xd)
n−h1−···−hd

=
∑

h1+···+hd≤n

n − 1

n

h1 − 1

n − 1

(n − 1)!

(h1 − 1)!h2! · · · hd!(n − h1 − · · · − hd)!

× xh1

1 · · · xhd

d (1 − x1 − · · · − xd)
n−h1−···−hd +

x1

n

=
n − 1

n
x2

1 +
x1

n
.

Similar considerations apply to the other coordinate functions. Thus for every j = 1, . . . , d,

Bn(prj) = prj and Bn(pr2
j ) =

n − 1

n
pr2

j +
1

n
prj. (4.40)
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Applying Theorem 4.2 to the sequence of positive linear operators (Bn)n≥1, we get the result. �

Remark 4.10. Theorem 4.9 gives a constructive proof of the multidimensional versions of the
Weierstrass approximation theorem, namely

For every f ∈ C(Kd), there exists a sequence of algebraic polynomials that converges to f
uniformly on Kd.

Another useful generalization of the one-dimensional Bernstein polynomial is discussed below.
Consider the hypercube Qd = [0, 1]d and for every n ≥ 1, f ∈ C(Qd) and x = (xi)1≤i≤d, set

Bn(f)(x) :=
n∑

h1,...,hd=0

f
(h1

n
, . . . ,

hd

n

)( n

h1

)
· · ·

(
n

hd

)
xh1

1 (1 − x1)
n−h1 · · · xhd

d (1 − xd)
n−hd . (4.41)

The polynomials Bn(f), n ≥ 1, are called the Bernstein polynomials on the hypercube

associated with f . They were first studied by Hildebrandt and Schoenberg ([70]) and Butzer ([37]).
The proof of Theorem 4.9 works also for these operators giving the same formula (4.40). Therefore,
again by Theorem 4.2, we obtain

Theorem 4.11. For every f ∈ C(Qd),

lim
n→∞

Bn(f) = f uniformly on Qd.

We end the section by discussing some applications of Theorem 4.1 for noncompact subsets of
R

d .
The first application is concerned with the interval [0,+∞[. Set

E := {f ∈C([0,+∞[) | there exist α ≥ 0 and M ≥ 0

such that |f(x)| ≤ M exp(αx) (x ≥ 0)},
(4.42)

and for every f ∈ E,n ≥ 1, and x ≥ 0, define

Mn(f)(x) := exp(−nx)

∞∑

k=0

f
(k

n

)nkxk

k!
. (4.43)

The operator Mn is linear and positive and is called the n-th Szász-Mirakjan operator The
sequence (Mn)n≥1 was first introduced and studied by Mirakjan ([86]), Favard ([55]) and Szász
([113]) and is one of the most studied sequences of positive linear operators on function spaces on
[0,+∞[.

A simple calculation shows that

Mn(1) = 1, Mn(e1) = e1

and

Mn(e2) = e2 +
1

n
e1 .

Therefore, from Theorem 4.1, we get that
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Theorem 4.12. For every f ∈ Cb([0,+∞[),

lim
n→∞

Mn(f) = f

uniformly on compact subsets of [0,+∞[.

The next application concerns the case X = R
d, d ≥ 1. For every n ≥ 1 and for every real-valued

Borel-measurable function f : R
d → R, set

Gn(f)(x) :=
( n

4π

)d/2
∫

Rd

f(t) exp(−
n

4
‖t − x‖2) dt (4.44)

(x ∈ R
d).

We shall consider the operators Gn, n ≥ 1, defined on the lattice subspace of all Borel-
measurable functions f ∈ F (Rd) for which the integral (4.44) is absolutely convergent. They
are referred to as the Gauss-Weierstrass convolution operators on R

d. Among other things,
they are involved in the study of the heat equation on R

d (see, e.g., [8], [38]).
By using the following formulae:

( 1

2πσ2

)1/2
∫

R

exp
(
−

(t − α)2

2σ2

)
dt = 1, (4.45)

( 1

2πσ2

)1/2
∫

R

t exp
(
−

(t − α)2

2σ2

)
dt = α, (4.46)

and ( 1

2πσ2

)1/2
∫

R

t2 exp
(
−

(t − α)2

2σ2

)
dt = α2 + σ2, (4.47)

(α ∈ R, σ > 0) (see [30, formulae (4.14) and (4.15)]) and appealing to Fubini’s theorem, we
immediately obtain for every i = 1, . . . , d and x ∈ R

d,

Gn(1)(x) :=

d∏

j=1

( n

4π

)1/2
∫

R

exp(−
n

4
(tj − xj)

2) dtj = 1, (4.48)

Gn(pri)(x) =
d∏

j=1
j 6=i

( n

4π

)1/2
∫

R

exp
(
−

n

4
(tj − xj)

2
)

dtj × (4.49)

×
( n

4π

)1/2
∫

R

ti exp
(
−

n

4
(ti − xi)

)2
dti = xi = pri(x)

and

Gn(pr2
i )(x) =

d∏

j=1
j 6=i

( n

4π

)1/2
∫

R

exp
(
−

n

4
(tj − xj)

2
)

dtj × (4.50)

×
( n

4π

)1/2
∫

R

t2i exp
(
−

n

4
(ti − xi)

2
)

dti = x2
i +

2

n
= pr2

i (x) +
2

n
.

From Theorem 4.1, we then obtain
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Theorem 4.13. For every f ∈ Cb(R
d),

lim
n→∞

Gn(f) = f uniformly on compact subsets of R
d.

For additional properties of Gauss-Weierstrass operators, we refer, e.g., to [38] (see also a recent
generalization given in [21-23]).

5 Korovkin-type theorems for positive linear operators

After the discovery of Korovkin’s theorem, several mathematicians tried to extend it in several
directions with the aim, for instance:

(i) to find other subsets of functions satisfying the same property as {1, e1, e2};

(ii) to establish results like Theorem 3.1 in other function spaces or in abstract Banach spaces;

(iii) to establish results like Theorem 3.1 for other classes of linear operators.

As a consequence of these investigations, a new theory was created which is nowadays called
“Korovkin-type Approximation Theory”. This theory has strong and fruitful connections not only
with classical approximation theory but also with real analysis, functional analysis, harmonic anal-
ysis, probability theory and partial differential equations. We refer to [8] for a rather detailed
description of the development of this theory.

We shall next discuss some of the main results of the theory obtained in the framework of the
spaces C0(X) (X locally compact noncompact space), C(X) (X compact space), occasionally in
Lp(X, µ̃) spaces, 1 ≤ p < +∞, and in weighted continuous function spaces. These spaces play a
central role in the theory and they are the most useful in applications.

In addition, it transpires that the elementary methods used in the previous sections are not
appropriate to give a wider possibility to determine other test functions (like {1, e1, e2} in C([0, 1])),
let alone to characterize them. To this aim, it seems to be unavoidable to use a more precise
analysis involving the point topology of the underlying space and the positive linear functionals on
the relevant continuous function spaces.

It turns out that the right framework is the local compactness which we choose to consider in
its generality because the class of locally compact spaces includes, other than the Euclidean spaces
R

d, d ≥ 1, and their open or closed subsets, many other topological spaces which are important in
their own right. The reader who is not interested in this level of generality, may replace everywhere
our locally compact spaces with a space R

d, d ≥ 1, or with an open or a closed subset of it, or with
the intersection of an open subset and a closed subset of R

d. However, this restriction does not
produce any simplification in the proofs or in the methods.

In the sequel, given a locally compact Hausdorff space X, we shall denote by

K(X)

the linear subspace of all real-valued continuous functions on X having compact support. Then
K(X) ⊂ Cb(X). We shall denote by

C0(X)

the closure of K(X) with respect to the sup-norm ‖ · ‖∞ (see (2.3)). Thus, C0(X) is a closed
subspace of Cb(X) and hence, endowed with the norm ‖ · ‖∞, is a Banach space.
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If X is compact, then C0(X) = C(X). If X is not compact, then a function f ∈ C(X) belongs
to C0(X) if and only if

for every ε > 0 there exists a compact subset K of X

such that |f(x)| ≤ ε for every x ∈ X\K.

For additional topological and analytical properties of locally compact spaces and of some relevant
continuous function spaces on them, we refer to the Appendix.

The spaces C0(X) and C(X), (X compact), endowed with the natural pointwise ordering and
the sup-norm, become Banach lattices. Similarly Lp(X, µ̃), endowed with the natural norm ‖ · ‖p

and the ordering
f ≤ g if f(x) ≤ g(x) for µ̃-a.e. x ∈ X,

is a Banach lattice (for more details on (Lp(X, µ̃),‖ · ‖p) spaces, we refer to the Appendix (formulae
(11.11) and (11.12))).

For the reader’s convenience, we recall that a Banach lattice E is a vector space endowed
with a norm ‖ · ‖ and an ordering ≤ on E such that

(i) (E, ‖ · ‖) is a Banach space;

(ii) (E,≤) is a vector lattice;

(iii) If f, g ∈ E and |f | ≤ |g| then ‖f‖ ≤ ‖g‖.

(where |f | := sup(f,−f) for every f ∈ E).
Actually it is convenient to state the main definitions of the theory in the framework of Banach

lattices. However, the reader not accustomed to this terminology may replace our abstract spaces
with the concrete ones such as C0(X), C(X) or Lp(X, µ̃). For more details on Banach lattices, we
refer, e.g., to [2].

If E and F are Banach lattices, a linear operator L : E −→ F is said to be positive if

L(f) ≥ 0 for every f ∈ E, f ≥ 0.

Every positive linear operator L : E −→ F is continuous, (see, e.g., [2, Theorem 12.3]). Moreover,
if E = C(X), X compact, then ‖L‖ = ‖L(1)‖.

A lattice homomorphism S : E −→ F is a linear operator satisfying |S(f)| = S(|f |) for
every f ∈ E. Equivalently, this means that S preserves the finite lattice operation, i.e., for every
f1, . . . , fn ∈ E, n ≥ 2,

S

(
inf

1≤i≤n
fi

)
= inf

1≤i≤n
S(fi) and S

(
sup

1≤i≤n
fi

)
= sup

1≤i≤n
S(fi).

For instance, if X is a locally compact Hausdorff space, µ̃ a regular finite Borel measure on X and
1 ≤ p < +∞, then the natural embedding Jp : C0(X) −→ Lp(X, µ̃) defined by Jp(f) := f (f ∈
C0(X)) is a lattice homomorphism.

Analogously, if X and Y are compact spaces and ϕ : Y −→ X is a continuous mapping, then the
composition operator Tϕ(f) := f ◦ϕ, (f ∈ C(X)), is a lattice homomorphism from C(X) into C(Y ).
Every lattice homomorphism is positive and hence continuous. A linear bijection S : E −→ F is a
lattice homomorphism if and only if S and its inverse S−1 are both positive [2, Theorem 7.3]. In
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this case, we also say that S is a lattice isomorphism. When there exists a lattice isomorphism
between E and F , then we say that E and F are lattice isomorphic.

The following definition, which is one of the most important of the theory, is clearly motivated
by the Korovkin theorem and was first formulated by V. A. Baskakov ([28]).

Definition 5.1. A subset M of a Banach lattice E is said to be a Korovkin subset of E if for
every sequence (Ln)n≥1 of positive linear operators from E into E satisfying

(i) sup
n≥1

‖Ln‖ < +∞,

and
(ii) lim

n→∞
Ln(g) = g for every g ∈ M ,

it turns out that
lim

n→∞
Ln(f) = f for every f ∈ E.

Note that, if E = C(X), X compact space, and the constant function 1 belongs to the linear
subspace L(M) generated by M , then condition (i) is superfluous because it is a consequence of
(ii).

According to Definition 5.1, we may restate Korovkin’s Theorem 3.1 by saying that {1, e1, e2}
is a Korovkin set in C([0, 1]).

We also point out that a subset M is a Korovkin subset of E if and only if the linear subspace
L(M) generated by M is a Korovkin subset. In the sequel, a linear subspace that is a Korovkin
subset will be referred to as a Korovkin subspace of E. If E and F are lattice isomorphic and if
S : E −→ F is a lattice isomorphism, then a subset M of E is a Korovkin subset in E if and only
if S(M) is a Korovkin subset in F .

Korovkin sets (when they exist) are useful for investigating the convergence of equibounded
sequences of positive linear operators towards the identity operator or, from the point of view of
approximation theory, the approximation of every element f ∈ E by means of (Ln(f))n≥1.

According to Lorentz ([80]), who first proposed a possible generalization, it seems to be equally
interesting to study the following more general concept.

Definition 5.2. Let E and F be Banach lattices and consider a positive linear operator T : E −→
F . A subset M of E is said to be a Korovkin subset of E for T if for every sequence (Ln)n≥1 of
positive linear operators from E into F satisfying

(i) sup
n≥1

‖Ln‖ < +∞

and
(ii) lim

n→∞
Ln(g) = T (g) for every g ∈ M ,

it turns out that
lim

n→∞
Ln(f) = T (f) for every f ∈ E.

Thus, such subsets can be used to investigate the convergence of equibounded sequences of
positive linear operators towards a given positive linear operator T : E −→ F or to approximate
weakly T by means of (generally, simpler) linear operators Ln, n ≥ 1.

In the light of the above definition, two problems arise quite naturally:

Problem 5.3. Given a positive linear operator T : E −→ F , find conditions under which there
exists a nontrivial (i.e., the linear subspace generated by it is not dense) Korovkin subset for T . In
this case, try to determine some or all of them.
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Problem 5.4. Given a subset M of E, try to determine some or all of the positive linear operators
T : E → F (if they exist) for which M is a Korovkin subset.

In the next sections, we shall discuss some aspects related to Problem 5.3 (for further details,
we refer to [8, Sections 3.3 and 3.4]). As regards Problem 5.4, very few results are available (see,
e.g., [71], [72-73], [74], [114-116]).

The next result furnishes a complete characterization of Korovkin subsets for positive linear
operators in the setting of C0(X) spaces. It was obtained by Yu. A. Shashkin ([110]) in the
case when X = Y , X compact metric space and T = I the identity operator, by H. Berens and
G. G. Lorentz ([33]) when X = Y , X topological compact space, T = I, by H. Bauer and K. Donner
([31]) when X = Y , X locally compact space, T = I, by C. A. Micchelli ([85]) and M. D. Rusk
([105]) when X = Y , X compact, and by F. Altomare ([4]) in the general form below.

We recall that M+
b (X) denotes the cone of all bounded Radon measures on X (see Appendix).

Theorem 5.5. Let X and Y be locally compact Hausdorff spaces. Further, assume that X has a
countable base and Y is metrizable. Given a positive linear operator T : C0(X) −→ C0(Y ) and a
subset M of C0(X), the following statements are equivalent:

(i) M is a Korovkin subset of C0(X) for T .

(ii) If µ ∈ M+
b (X) and y ∈ Y satisfy µ(g) = T (g)(y) for every g ∈ M , then µ(f) = T (f)(y) for

every f ∈ C0(X).

Proof. (i)⇒(ii). Fix µ ∈ M+
b (X) and y ∈ Y satisfying µ(g) = T (g)(y) for every g ∈ M . Consider

a decreasing countable base (Un)n≥1 of open neighborhoods of y in Y and, for every n ≥ 1, choose
ϕn ∈ K(Y ) such that: 0 ≤ ϕn ≤ 1, ϕn(y) = 1 and supp(ϕn) ⊂ Un (see Theorem 11.1 of the
Appendix).

Accordingly, define Ln : C0(X) −→ C0(Y ) by

Ln(f) := µ(f)ϕn + T (f)(1 − ϕn) (f ∈ C0(X)).

Each Ln is linear, positive and ‖Ln‖ ≤ ‖µ‖ + ‖T‖. Moreover, if g ∈ M , then

lim
n→∞

Ln(g) = T (g) in C0(Y ),

because, given ε > 0, there exists v ∈ N such that

|T (g)(z) − T (g)(y)| ≤ ε for every z ∈ Uv.

Hence, since for every n ≥ v (thus Un ⊂ Uv) and for every z ∈ Y

|Ln(g)(z) − T (g)(z)| = ϕn(z)|T (g)(z) − T (g)(y)|,

we get

|Ln(g)(z) − T (g)(z)| =

{
0 if z 6∈ Un,

≤ ε if z ∈ Un,

and so ‖Ln(g) − T (g)‖ ≤ ε.
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Since M is a Korovkin subset for T , it turns out that, for every f ∈ C0(X), lim
n→∞

Ln(f) = T (f)

and hence lim
n→∞

Ln(f)(y) = T (f)(y). But, for every n ≥ 1, Ln(f)(y) = µ(f) and this completes the

proof of (ii).
(ii)⇒(i). Our proof starts with the observation that from statement (ii), it follows that

if µ ∈ M+
b (X) and µ(g) = 0 for every g ∈ M, then µ = 0. (5.1)

Moreover, since X has a countable base, every bounded sequence in M+
b (X) has a vaguely conver-

gent subsequence (see Theorem 11.8 of Appendix). Consider now a sequence (Ln)n≥1 of positive
linear operators from C0(X) into C0(Y ) satisfying properties (i) and (ii) of Definition 5.2 and
assume that for some f0 ∈ C0(X) the sequence (Ln(f0))n≥1 does not converge uniformly to T (f0).

Therefore, there exist ε0 > 0, a subsequence (Lk(n))n≥1 of (Ln)n≥1 and a sequence (yn)n≥1 in
Y such that

|Lk(n)(f0)(yn) − T (f0)(yn)| ≥ ε0 for every n ≥ 1. (5.2)

We discuss separately the two cases when (yn)n≥1 is converging to the point at infinity of Y or not
(see the Appendix).

In the first case (which can only occur when Y is noncompact), we have lim
n→∞

h(yn) = 0 for

every h ∈ C0(Y ).
For every n ≥ 1, define µn ∈ M+

b (X) by

µn(f) := Lk(n)(f)(yn) (f ∈ C0(X)).

Since ‖µn‖ ≤ ‖Lk(n)‖ ≤ M := sup
n≥1

‖Ln‖, replacing, if necessary, the sequence (µn)n≥1 with a

suitable subsequence, we may assume that there exists µ ∈ M+
b (X) such that µn −→ µ vaguely.

But, if g ∈ M , then

|µn(g)| ≤ |Lk(n)(g)(yn) − T (g)(yn)| + |T (g)(yn)| ≤

≤ ‖Lk(n)(g) − T (g)‖ + |T (g)(yn)|

so that
µ(g) = lim

n→∞
µn(g) = 0.

From (5.1) it turns out that µ(f0) = 0 as well and hence

|Lk(n)(f0)(yn) − T (f0)(yn)| = |µn(f0) − T (f0)(yn)| −→ 0

which contradicts (5.2).
Consider now the case where the sequence (yn)n≥1 does not converge to the point at infinity of

Y . Then, by replacing it with a suitable subsequence, we may assume that it converges to some
y ∈ Y .

Again, consider for every n ≥ 1

µn(f) := Lk(n)(f)(yn) (f ∈ C0(X)).

As in the previous reasoning, we may assume that there exists µ ∈ M+
b (X) such that µn −→ µ

vaguely. Then, for g ∈ M , since

|µn(g) − T (g)(yn)| ≤ ‖Lk(n)(g) − T (g)‖ −→ 0,
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we get µ(g) = T (g)(y). Therefore, assumption (ii) implies µ(f0) = T (f0)(y), or equivalently,

lim
n→∞

(
Lk(n)(f0)(yn) − T (f0)(yn)

)
= 0

which is impossible because of (5.2). �

Some applications of Theorem 4.5 will be shown in subsequent sections.

6 Korovkin-type theorems for the identity operator in C0(X)

In this section, we discuss more closely those subsets of C0(X) that are Korovkin subsets in C0(X)
(see Definition 4.1), i.e., that are Korovkin subsets for the identity operator on C0(X).

Throughout the whole section, we shall fix a locally compact Hausdorff space with a countable
base, which is then metrizable as well. The next result immediately follows from Theorem 4.5.

Theorem 6.1. ([31]). Given a subset M of C0(X), the following statements are equivalent:

(i) M is a Korovkin subset of C0(X).

(ii) If µ ∈ M+
b (X) and x ∈ X satisfy µ(g) = g(x) for every g ∈ M , then µ(f) = f(x) for every

f ∈ C0(X), i.e., µ = δx (see (2.11)).

In order to discuss a first application of Theorem 6.1, we recall that a mapping ϕ : Y −→ X
between two locally compact Hausdorff spaces Y and X is said to be proper if for every compact
subset K ∈ X, the inverse image ϕ−1(K) := {y ∈ Y | ϕ(y) ∈ K} is compact in Y . In this case,
f ◦ ϕ ∈ C0(Y ) for every f ∈ C0(X).

Corollary 6.2. Let Y be a metrizable locally compact Hausdorff space. If M is a Korovkin subset
of C0(X), then M is a Korovkin subset for any positive linear operator T : C0(X) −→ C0(Y ) of
the form

T (f) := λ(f ◦ ϕ) (f ∈ C0(X))

where λ ∈ Cb(Y ), λ ≥ 0, and ϕ : Y −→ X is a proper mapping.

Proof. According to Theorem 5.5, we have to show that, if µ ∈ M+
b (X) and y ∈ Y satisfy

µ(g) = λ(y)g(ϕ(y)) for every g ∈ M , then µ(f) = λ(y)f(ϕ(y)) for every f ∈ C0(X).
If λ(y) = 0, then µ = 0 on M and hence µ = 0 by Theorem 6.1 and property (1) in the proof

(ii) =⇒ (i) of Theorem 5.5. If λ(y) > 0, it suffices to apply Theorem 6.1 to
1

λ(y)
µ and ϕ(y). �

Note that, if Y is a closed subset of X, then the canonical mapping ϕ : Y −→ X defined by
ϕ(y) := y (y ∈ Y ) is proper. Therefore, from Corollary 5.2, we get:

Corollary 6.3. Let M be a Korovkin subset of C0(X). Consider an equibounded sequence (Ln)n≥1

of positive linear operators from C0(X) into C0(X). Then the following properties hold.

1) Given a closed subset Y of X and λ ∈ Cb(Y ), λ ≥ 0, if lim
n→∞

Ln(g) = λg uniformly on Y for

every g ∈ M , then

lim
n→∞

Ln(f) = λf uniformly on Y for every f ∈ C0(X).
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2) If lim
n→∞

Ln(g) = g uniformly on compact subsets of X for every g ∈ M , then lim
n→∞

Ln(f) = f

uniformly on compact subsets of X for every f ∈ C0(X).

Next, we proceed to investigate some useful criteria to explicitly determine Korovkin subsets
of C0(X). We begin with the following result which is at the root of all subsequent results. We
recall that, if M is a subset of C0(M), then the symbol L(M) denotes the linear subspace of C0(X)
generated by M .

Proposition 6.4. Let M be a subset of C0(X) and assume that for every x, y ∈ X,x 6= y, there
exists h ∈ L(M), h ≥ 0, such that h(x) = 0 and h(y) > 0. Then M is a Korovkin subset of C0(X).

Proof. We shall verify condition (ii) of Theorem 6.1. Therefore, consider µ ∈ M+
b (X) and x ∈ X

satisfying µ(g) = g(x) for every g ∈ M and, hence, for every g ∈ L(M).
If y ∈ X, y 6= x, then there exists h ∈ L(M), h ≥ 0, such that h(y) > 0 and 0 = h(x) = µ(h).

Therefore, by Theorem 11.7 of the Appendix, there exists α ≥ 0 such that µ = αδx. Choosing
h ∈ L(M) such that h(x) > 0, we get αh(x) = µ(h) = h(x), so α = 1 and µ = δx. �

Below, we state an important consequence of Proposition 6.4. In the sequel, if M is a subset of
C(X) and for f0 ∈ C(X), we shall set

f0M := {f0 · f | f ∈ M} (6.1)

and
f0M

2 := {f0 · f
2 | f ∈ M}. (6.2)

Theorem 6.5. Consider a strictly positive function f0 ∈ C0(X) and a subset M of C(X) that
separates the points of X. Furthermore, assume that f0M ∪ f0M

2 ⊂ C0(X). Then {f0} ∪ f0M ∪
f0M

2 is a Korovkin subset of C0(X).
If, in addition, M is finite, say M = {f1, . . . , fn}, n ≥ 1, then

{
f0, f0f1, . . . , f0fn, f0

n∑

i=1

f2
i

}

is a Korovkin subset of C0(X).

Proof. If x, y ∈ X,x 6= y, then there exists f ∈ M such that f(x) 6= f(y). Therefore, the function
h := f0(f − f(x))2 belongs to L({f0} ∪ f0M ∪ f0M

2), it is positive and h(x) = 0 < h(y). Thus the
result follows from Proposition 6.4.

If M = {f1, . . . , fn} is finite, then in the above reasoning one can consider the function h :=

f0

n∑
i=1

(fi − fi(x))2. �

The next result is an obvious consequence of Theorem 6.5 but is worth being stated explicitly
because of its connection with the Stone-Weierstrass theorem (see Section 9).

Theorem 6.6. Consider a strictly positive function f0 ∈ C0(X) and a subset M of C0(X) that
separates the points of X. Then {f0} ∪ f0M ∪ f0M

2 is a Korovkin subset of C0(X).
Moreover, if M is finite, say M = {f1, . . . , fn}, n ≥ 1, then

{
f0, f0f1, . . . , f0fn, f0

n∑

i=1

f2
i

}
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is a Korovkin subset of C0(X).
Finally, if f0 is also injective, then {f0, f

2
0 , f3

0 } is a Korovkin subset of C0(X).

From Theorem 6.6, the following result immediately follows.

Corollary 6.7. (1) {e1, e2, e3} is a Korovkin subset of C0(]0, 1]).

(2) {e−1, e−2, e−3} is a Korovkin subset of C0([1,+∞[), where e−k(x) := x−k for every x ∈
[1,+∞[ and k = 1, 2, 3.

(3) {f1, f2, f3} is a Korovkin subset of C0([0,+∞[) where fk(x) := exp (−kx) for every x ∈
[0,+∞[ and k = 1, 2, 3.

(4) {Φ, pr1Φ, . . . , prdΦ, ‖·‖2Φ} is a Korovkin subset of C0(R
d), d ≥ 1, where Φ(x) := exp(−‖x‖2)

for every x ∈ R
d.

A useful generalization of the previous result is presented below.

Proposition 6.8. Given λ1, λ2, λ3 ∈ R, 0 < λ1 < λ2 < λ3, then

(1) {eλ1
, eλ2

, eλ3
} is a Korovkin subset of C0(]0, 1]) where eλk

(x) := xλk for every x ∈]0, 1] and
k = 1, 2, 3.

(2) {e−λ1
, e−λ2

, e−λ3
} is a Korovkin subset of C0([1,+∞[) where e−λk

(x) := x−λk for every x ∈
[1,+∞[ and k = 1, 2, 3.

(3) {fλ1
, fλ2

, fλ3
} is a Korovkin subset of C0([0,+∞[) where fλk

(x) := exp(−λkx) for every
x ∈ [0,+∞[ and k = 1, 2, 3.

Proof. We give the proof only for (3); the proofs of the other statements are left to the reader
(see, e.g., [8, Proposition 4.2.4]). We shall apply Proposition 6.4 and to this end fix x0 ∈ [0,+∞[.
Then, by using differential calculus, it is not difficult to show that the function

h(x) := exp(−λ1x) + α exp(−λ2x) + β exp(−λ3x) (x ≥ 0)

where α :=
λ1 − λ3

λ3 − λ2
exp((λ2 −λ1)x0) and β :=

λ2 − λ1

λ3 − λ2
exp((λ3 −λ1)x0), satisfies h(x0) = 0 < h(y)

for every y ∈ [0,+∞[, y 6= x0. �

Here, we discuss some applications of Proposition 6.8. The first application is taken from [31,
Proposition 4.1].

We begin by recalling that, if ϕ ∈ L1([0,+∞[), then the Laplace transform of ϕ on [0,+∞[
is defined by

L(ϕ)(λ) :=

∫ +∞

0
e−λtϕ(t) dt (λ ≥ 0). (6.3)

By Lebesgue’s dominated convergence theorem, L(ϕ) ∈ C0([0,+∞[) and ‖L(ϕ)‖ ≤ ‖ϕ‖1. By means
of ϕ, we may naturally define a linear operator Lϕ : C0([0,+∞[) → C0([0,+∞[) by setting for every
f ∈ C0([0,+∞[) and x ≥ 0

Lϕ(f)(x) :=

∫ +∞

0
f(x + y)ϕ(y) dy =

∫ +∞

x
f(u)ϕ(x − u) du. (6.4)
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Note that Lϕ(f) ∈ C0([0,+∞[) by virtue of Lebesgue’s dominated convergence theorem. Moreover
Lϕ is bounded and ‖Lϕ‖ ≤ ‖ϕ‖1. Finally, if ϕ ≥ 0, then Lϕ is positive as well.

For every λ > 0, denoting by fλ the function

fλ(x) := exp(−λx) (x ≥ 0), (6.5)

we get
Lϕ(fλ) = L(ϕ)(λ)fλ. (6.6)

Proposition 6.9. Consider a sequence (ϕn)n≥1 of positive functions in L1([0,+∞[) such that
sup
n≥1

‖ϕn‖1 < +∞ and, for every n ≥ 1, denote by

Ln : C0([0,+∞[) → C0([0,+∞[)

the positive linear operator associated with ϕn defined by (6.4). Then the following statements are
equivalent:

(i) lim
n→∞

Ln(f) = f uniformly on [0,+∞[ for every f ∈ C0([0,+∞[).

(ii) lim
n→∞

L(ϕn)(λ) = 1 for every λ > 0.

(iii) There exist λ1, λ2, λ3 ∈ R, 0 < λ1 < λ2 < λ3 such that

lim
n→∞

L(ϕn)(λk) = 1 for k = 1, 2, 3.

Proof. The implication (i)⇒(ii) follows from (6.6). The implication (ii)⇒(iii) being obvious, the
only point remaining concerns (iii)⇒(i).

Since (ϕn)n≥1 is bounded in L1([0,+∞[), we have sup
n≥1

‖Ln‖ < +∞. Moreover, (iii) means that

lim
n→∞

Ln(fλk
) = fλk

uniformly on [0,+∞[) by (6.6). Therefore, (i) follows by applying part (3) of

Proposition 6.8. �

As another application of the previous results, we shall study the behaviour of the Szász-
Mirakjan operators (see (4.43)) on C0([0,+∞[) and on continuous function spaces on [0,+∞[ with
polynomial weights.

We recall that these operators are defined by

Mn(f)(x) := exp(−nx)

∞∑

k=0

f
(k

n

)nkxk

k!
(6.7)

for n ≥ 1, x ≥ 0 and f ∈ C([0,+∞[) such that |f(x)| ≤ M exp(αx) (x ≥ 0) for some M ≥ 0 and
α > 0.

Lemma 6.10. If f ∈ C0([0,+∞[), then Mn(f) ∈ C0([0,+∞[) and ‖Mn(f)‖ ≤ ‖f‖ for every n ≥ 1.

Proof. The function Mn(f) is continuous because the series (6.7) is uniformly convergent on
compact subsets of [0,+∞[. Moreover, for every x ≥ 0

|Mn(f)(x)| ≤ ‖f‖ exp(−nx)
∞∑

k=0

nkxk

k!
= ‖f‖.
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In order to show that Mn(f) ∈ C0([0,+∞[), given ε > 0, choose v ∈ N such that |f
(

k
n

)
| ≤ ε for

every k ≥ v. For sufficiently large x ≥ 0 we get

exp(−nx)

v∑

k=0

∣∣∣f
(k

n

)∣∣∣
(nx)k

k!
≤ ε

so that

|Mn(f)(x)
∣∣∣ ≤ exp(−nx)

v∑

k=0

∣∣∣f
(k

n

)∣∣∣
(nx)k

k!
+ exp(−nx)

∞∑

k=v+1

∣∣∣f
(k

n

)∣∣∣
(nx)k

k!

≤ 2ε.
�

Theorem 6.11. For every f ∈ C0([0,+∞[),

lim
n→∞

Mn(f) = f uniformly on [0,+∞[.

Proof. Since (Mn)n≥1 is an equibounded sequence of positive linear operators from C0([0,+∞[)
into C0([0,+∞[), by Proposition 6.8, (3), it is sufficient to show that, for every λ ≥ 0,

lim
n→∞

Mn(fλ) = fλ uniformly on [0,+∞[

where fλ is defined by (6.5).
A simple calculation indeed shows that

Mn(fλ)(x) = exp
[
− λx

(1 − exp(−λ/n)

λ/n

)]

for every x ≥ 0. Since lim
n→∞

1−exp(−λ/n)
λ/n = 1, the sequence (Mn(fλ))n≥1 converges pointwise to

fλ and is decreasing. Moreover, each Mn(fλ) and fλ vanishes at +∞ and so, by Dini’s theorem
applied in the framework of the compactification [0,+∞], we obtain the uniform convergence as
well. �

Our next aim is to discuss the behaviour of the operators Mn on continuous function spaces
with polynomial weights. This naturally leads to investigate some Korovkin-type results in weighted
continuous function spaces. For further results in this respect, we also refer to the next Section 8
and to [10-11], [14], [60-62], [104].

Consider again an arbitrary locally compact Hausdorff space X having a countable base. Let
w be a continuous weight on X, i.e., w ∈ C(X) and w(x) > 0 for every x ∈ X, and set

Cw
0 (X) := {f ∈ C(X) | wf ∈ C0(X)}. (6.8)

The space Cw
0 (X), endowed with the natural (pointwise) order and the weighted norm

‖f‖w := ‖wf‖∞ (f ∈ Cw
0 (X)) (6.9)

is a Banach lattice
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If w ∈ Cb(X), then C0(X) ⊂ Cw
0 (X) and, if w ∈ C0(X), then Cb(X) ⊂ Cw

0 (X). The spaces
Cw

0 (X) and C0(X) are lattice isomorphic, a lattice isomorphism between C0(X) and Cw
0 (X) being

the linear operator S : C0(X) → Cw
0 (X) defined by

S(f) := w−1f (f ∈ C0(X)). (6.10)

Therefore, if M is a subset of Cw
0 (X), then M is a Korovkin subset of Cw

0 (X) if and only if

wM := {wf | f ∈ M} (6.11)

is a Korovkin subset of C0(X).
Accordingly, from Proposition 6.4 and Theorem 6.5, we immediately obtain the following result.

Corollary 6.12. Given a subset M of Cw
0 (X), the following statements hold:

(1) If for every x, y ∈ X, x 6= y, there exists h ∈ L(M), h ≥ 0, such that h(x) = 0 < h(y), then
M is a Korovkin subset of Cw

0 (X).

(2) Assume that w ∈ C0(X). If M2 ⊂ Cw
0 (X) and M separates the points of X, then {1} ∪

M ∪M2 is a Korovkin subset of Cw
0 (X). Moreover, if M = {f1, . . . , fn}, n ≥ 1, is finite, then{

1, f1, . . . , fn,
n∑

i=1
f2

i

}
is a Korovkin subset of Cw

0 (X).

Applying the above part (2) to a subset X of R
d, d ≥ 1, and M = {pr1, . . . , prd}, we obtain:

Corollary 6.13. Consider a locally compact subset X of R
d, d ≥ 1, and w ∈ C0(X) such that

‖ · ‖2w ∈ C0(X). Then {1, pr1, . . . , prd, ‖ · ‖
2} is a Korovkin subset of Cw

0 (X).

From the previous Corollary 6.13, it follows in particular that, if X is a noncompact real interval,
then {1, e1, e2} is a Korovkin subset of Cw

0 (X) for any w ∈ C0(X) such that e2w ∈ C0(X). When
X ⊂ [0,+∞[, this result can be considerably generalized.

Corollary 6.14. Let X be a noncompact subinterval of [0,+∞[ and let w ∈ C0(X) be a weight on
X. Consider λ1, λ2 ∈ R such that 0 < λ1 < λ2 and eλ2

∈ Cw
0 (X). Then {1, eλ1

, eλ2
} is a Korovkin

subset of Cw
0 (X).

Proof. First note that eλ1
∈ Cw

0 (X) because xλ1 ≤ 1 + xλ2 for every x ≥ 0. In order to get the
result, we shall apply part (1) of Corollary 6.12 by showing that for a given x0 ∈ X there exists
h ∈ L({1, eλ1

, eλ2
) such that h(x0) = 0 < h(y) for any y ∈ X, y 6= x0.

Set a := inf X ≥ 0. If x0 = a, then it is sufficient to consider h(x) = xλ1 − aλ1 (x ∈ X). If X
is upper bounded and x0 = supX, then we may consider h(x) = xλ1

0 − xλ1 (x ∈ X). Finally if x0

belongs to the interior of X, then by means of differential calculus it is not difficult to show that
the function

h(x) := (λ2 − λ1)x
λ2

0 − λ2x
λ2−λ1

0 xλ1 + λ1x
λ2 (x ∈ X)

satisfies the required properties. �

From (6.11) and Proposition (6.8), (3), we also get:
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Corollary 6.15. Consider the functions gβ(x) := exp(βx) and gγ(x) := exp(γx) (x ∈ [0,+∞[),
where 0 < β < γ. Then for every α > γ, the subset {1, gβ , gγ} is a Korovkin subset of the space

Eα
0 := {f ∈ C([0,+∞[) | lim

x→+∞
exp(−αx)f(x) = 0}

endowed with the weighted norm ‖f‖α := sup
x≥0

exp(−αx)|f(x)| (f ∈ Eα
0 )).

In the case when w ∈ Cb(X), another easy method of finding Korovkin subsets of Cw
0 (X) is

indicated below.

Proposition 6.16. Consider a continuous bounded weight w ∈ Cb(X). Then every Korovkin
subset of C0(X) is a Korovkin subset of Cw

0 (X) as well.

Proof. Let M be a Korovkin subset of C0(X). In order to show that M is a Korovkin subset
of Cw

0 (X), we shall show that wM is a Korovkin subset of C0(X). To this end, fix µ ∈ M+(X)
and x ∈ X such that µ(wg) = w(x)g(x) for every g ∈ M , and consider the positive linear form
ν : C0(X) −→ R defined by ν(f) := µ(wf)/w (f ∈ C0(X)). Then ν ∈ M+

b (X) and ν(g) = g(x)
for every g ∈ M . From Theorem 6.1, we then conclude that ν(f) = f(x) for every f ∈ C0(X), i.e.,
µ(wf) = w(x)f(x) for every f ∈ C0(X).

Note that if ϕ ∈ K(X), after setting f := ϕ/w ∈ K(X), we get ϕ = wf and hence µ(ϕ) = ϕ(x).
By density, we conclude that µ(f) = f(x) for every f ∈ C0(X) and hence the desired result follows
from Theorem 6.1. �

Two simple applications of Corollary 6.13 and Proposition 6.16 are shown below. The first one
is concerned again with the Szász-Mirakjan operators (6.7) on the weighted continuous function
spaces

Cwm

0 ([0,+∞[) :=

{
f ∈ C([0,+∞[) | lim

x→∞

f(x)

1 + xm
= 0

}
, (6.12)

m ≥ 1, where wm(x) := 1
1+xm (x ≥ 0).

Theorem 6.17. For every m ≥ 1 and n ≥ 1 and for every f ∈ Cwm

0 ([0,+∞[), Mn(f) ∈
Cwm

0 ([0,+∞[) and lim
n→∞

Mn(f) = f on [0,+∞[ with respect to the weighted norm ‖ · ‖wm and,

hence, uniformly on compact subsets of [0,+∞[.

Proof. In [32, Lemma 5], it was shown that every Mn is a bounded linear operator from Cwm

0

into Cwm

0 and that sup
x≥0

‖Mn‖ < +∞. For every λ > 0 consider again the function fλ(x) :=

exp(−λx) (x ≥ 0). By Propositions 6.8 and 6.16, the subset {fλ1
, fλ2

, fλ3
} is a Korovkin subset

of Cwm

0 ([0,+∞[) provided that 0 < λ1 < λ2 < λ3. On the other hand, for each function fλ, we
have already shown that lim

n→∞
Mn(fλ) = fλ uniformly on [0,+∞[ (see the proof of Theorem 6.11)

and hence the same limit relationship holds with respect to ‖ · ‖wm because ‖ · ‖wm ≤ ‖ · ‖∞ on
C0([0,+∞[) and hence the result follows. �

Remarks 6.18.

1. The behaviour of Szász-Mirakjan operators on locally convex weighted function spaces has
been further investigated in [11].
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2. A result similar to Theorem 6.17 can be also proved for the Baskakov operators [27]

Bn(f)(x) :=
1

(1 + x)n

n∑

h=0

(
n + h − 1

h

)
f
(h

n

)( x

1 + x

)h
(6.13)

(f ∈ Cwm

0 ([0,+∞[), x ≥ 0, m ≥ 1, n ≥ 1).

For the details, we refer to [20, Theorem 2.3] (see also [8, pp. 341-344] and [32]).
As another application consider X = R and the weight wm(x) := 1

1+xm (x ∈ R) with m ≥ 4, m
even. Consider the sequence of the Gauss-Weierstrass operators defined by (4.44) for p = 1. Hence

Gn(f)(x) :=
( n

4π

)1/2
∫

R

f(t) exp
(
−

n

4
(t − x)2

)
dt (6.14)

for n ≥ 1 and x ∈ R where f : R −→ R is any Borel measurable function for which the integral
(6.14) is absolutely convergent. In particular, the operators Gn are well-defined on the function
space

Cwm

0 (R) :=

{
f ∈ C(R) | lim

|x|→∞

f(x)

1 + xm
= 0

}
. (6.15)

Theorem 6.19. Under the above hypotheses, Gn(Cwn

0 (R)) ⊂ Cwm

0 (R) and

lim
n→∞

Gn(f) = f with respect to ‖ · ‖wm

(and hence uniformly on compact subsets of R) for any f ∈ Cwm

0 (R).

Proof. Consider the function em(x) = xm (x ∈ R). Then, for any n ≥ 1 and x ∈ R,

Gn(em)(x) =
( n

4π

)1/2
∫

R

tm exp
(
−

n

4
(t − x)2

)
dt

=

m∑

k=0

(
m

k

)
Mk

( 2

n

)k/2
xm−k

where M0 := 1 and

Mk :=

{
0 if k is odd,

1 · 3 · · · (k − 1) if k is even,

(see [29, formulae (4.20) and (4.21)]). Therefore,

Gn(em)(x) ≤
m∑

k=0

(
m

k

)
Mk

( 2

n

)k/2
|x|m−k ≤ xm +

m∑

k=1

(
m

k

)
Mk2

k/2|x|m−k

and

wm(x)Gn(1 + em)(x) ≤
1

1 + xm

(
xm +

m∑

k=1

(
m

k

)
Mk2

k/2|x|m−k
)
≤ M,

M being a suitable positive constant independent of m.
Consider now f ∈ Cwm

0 (R). Thus to each ε > 0 there corresponds δ1 > 0 such that for any
x ∈ R, |x| ≥ δ1,

wm(x)|f(x)| ≤
ε

2M
.
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Furthermore, choose δ ≥ δ1 such that

wm(x) ≤
ε

2Mδ
for x ∈ R, |x| ≥ δ,

where Mδ := sup
|x|≤δ

|f(t)|. Then, for any x ∈ R, |x| ≥ δ,

|Gn(f)(x)| ≤
( n

4π

)1/2
∫

|t|≤δ
|f(t)| exp

(
−

n

4
(t − x)2

)
dt

+
( n

4π

)1/2
∫

|t|≥δ
|f(t)| exp

(
−

n

4
(t − x)2

)
dt

≤ Mδ +
ε

2M

( n

4π

)1/2
∫

|t|≥δ
(1 + em(t)) exp

(
−

n

4
(t − x)2

)
dt

≤ Mδ +
ε

2M
Gn(1 + em)(x)

so that
wm(x)|Gn(f)(x)| ≤ ε

because of the previous estimates.
This proves that Gn(f) ∈ Cwm

0 (R). Moreover, note that, since |f | ≤ ‖f‖wm(1 + em), then

wm|Gn(f)| ≤ ‖f‖wmwmGn(1 + em)

and hence ‖Gn(f)‖wm ≤ M‖f‖wm , that is, ‖Gn‖ ≤ M for any n ≥ 1.
On the other hand, from Corollary 6.13, we infer that {1, e1, e2} is a Korovkin subset of Cwm

0 (R),
where ek(x) := xk (k = 1, 2, x ∈ R), and for every h ∈ {1, e1, e2} clearly Gn(h) → h as n → ∞
with respect to ‖ · ‖wn because of (4.48)-(4.50). Therefore, the result follows. �

Remark 6.20. A generalization of Theorem 6.19 can be found in [21, Theorem 3.1] and [23].

7 Korovkin-type theorems for the identity operator on C(X), X compact

The results of the previous section also apply when X is a compact metric space (and hence
C0(X) = C(X)). However, in this particular case, some of them have a particular relevance and
hence are worth an explicit description.

From Theorem 6.5, by replacing f0 with the constant function 1, the following result immedi-
ately follows.

Theorem 7.1. If M is a subset of C(X) that separates the points of X, then {1} ∪ M ∪ M2 is a
Korovkin subset of C(X).

Moreover, if M = {f1, . . . , fn}, n ≥ 1, is finite, then

{
1, f1, . . . , fn,

n∑
i=1

f2
i

}
is a Korovkin subset

of C(X).
In particular, if f ∈ C(X) is injective, then {1, f, f2} is a Korovkin subset of C(X).

Theorem 7.1 extends both the Korovkin Theorems 3.1 and 4.3 as well as Volkov’s Theorem 4.2.
It was obtained by Freud ([59]) for finite subsets M and by Schempp ([106]) in the general case.
By adapting the proof of Proposition 6.8 and by using Proposition 6.4, it is not difficult to show
that:
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Proposition 7.2. (1) If 0 < λ1 < λ2, then {1, eλ1
, eλ2

} is a Korovkin subset of C([0, 1]), where
eλk

(x) := xλk for every x ∈ [0, 1] and k = 1, 2.

(2) If u ∈ C([0, 1]) is strictly convex, then {1, e1, u} is a Korovkin subset of C([0, 1]).

Next, we shall discuss some applications of Theorem 7.1 by considering a convex compact subset
K of a locally convex space E. We denote by

A(K)

the subspace of all real-valued continuous affine functions on K. We recall that a function u : K → R

is said to be affine if
u(λx + (1 − λ)y) = λu(x) + (1 − λ)u(y) (7.1)

for every x, y ∈ K and λ ∈ [0, 1], or, equivalently, if

u(
n∑

i=1

λixi) =
n∑

i=1

λiu(xi) (7.2)

for every n ≥ 2, x1, . . . , xn ∈ K and λ1, . . . , λn ≥ 0 such that
∑n

i=1 λi = 1.
Note that A(K) contains the constant functions as well as the restrictions to K of every con-

tinuous linear functional on E so that, by the Hahn-Banach theorem, A(K) separates the points
of K. Therefore, from Theorem 7.1, we immediately get:

Corollary 7.3. A(K) ∪ A(K)2 is a Korovkin subset of C(K).

Consider now a continuous selection (µ̃x)x∈K of probability Borel measures on K, i.e., for every
f ∈ C(K) the function x 7→

∫
K

f dµ̃x is continuous on K. Such a function will be denoted by T (f),

that is

T (f)(x) :=

∫

K
f dµ̃x (x ∈ K). (7.3)

Note that T can be viewed as a positive linear operator from C(K) into C(K) and T (1) = 1.
Conversely, by the Riesz representation theorem (see Theorem 11.3 of the Appendix), each

positive linear operator T : C(K) −→ C(K) generates a continuous selection of probability Borel
measures on K satisfying (7.3). Such a selection will be referred to as the canonical continuous

selection associated with T .
From now on, we fix a continuous selection (µ̃x)x∈K of probability Borel measures on K satis-

fying ∫

K
udµ̃x = u(x) for every u ∈ A(K), (7.4)

namely,
T (u) = u for every u ∈ A(K). (7.5)

Property (7.4) means that each x ∈ K is the barycenter or the resultant of µ̃x ([39, Vol. II,
Def. 26.2]).

For every n ≥ 1 and x ∈ K, denote by
µ̃(n)

x
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the product measure on Kn of µ̃x with itself n times (see, e.g., [30, §22]) and set, for every f ∈ C(K),

Bn(f)(x) :=

∫

Kn

f
(x1 + · · · + xn

n

)
dµ̃(n)

x (x1, . . . , xn). (7.6)

By Fubini’s theorem, we can also write

Bn(f)(x) =

∫

K
· · ·

∫

K
f
(x1 + · · · + xn

n

)
dµ̃x(x1) · · · dµ̃x(xn). (7.7)

By the continuity property of the product measure (see [39, Vol. I, Proposition 13.12] and [30,
Theorem 30.8]) and the continuity of the selection, it follows that Bn(f) ∈ C(K).

The positive linear operator Bn : C(K) −→ C(K) is referred to as the n-th Bernstein-

Schnabl operator associated with the given selection (µ̃x)x∈K (or the given positive linear oper-
ator T : C(K) −→ C(K)).

Bernstein-Schnabl operators were introduced for the first time in 1968 by Schnabl ([107-108])
in the context of the set of all probability Radon measures on a compact Hausdorff space and, as
we shall see next, they generalize the classical Bernstein operators (3.5). Subsequently, Grossman
([66]) introduced the general definition (7.6) (or (7.7)). In the particular case of Bauer simplices
(see, e.g., [8, Section 1.5, p. 59]), these operators have been extensively studied by Nishishiraho ([87-
91]). Another particular class of them has been also studied by Altomare ([5]). Their construction
essentially involves positive projections and, in this case, they satisfy many additional properties
useful in the study of evolution problems (see the end of Section 10). For some shape preserving
properties of these operators, we also refer to Raşa ([97-99]).

For a comprehensive survey on these operators, we refer to [8, Chapter 6] and to the references
contained in the relevant notes. More recent results can be also found in [7], [18], [19], [24-25],
[100-102], [103].

Below, we discuss some examples.

Examples 7.4.

1. Consider K = [0, 1] and set µ̃x := xδ1 + (1 − x)δ0 for all x ∈ [0, 1]. Then (µ̃x)0≤x≤1 is a con-
tinuous selection and the corresponding Bernstein-Schnabl operators turn into the Bernstein
operators (3.5) (use an induction argument).

2. Let α, β, γ ∈ C([0, 1]) and assume that 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, α + β + γ = 1

and β(x)/2 + γ(x) = x for every x ∈ [0, 1]. Put µ̃x := α(x)δ0 + β(x)δ1/2 + γ(x)δ1. Then the
Bernstein-Schnabl operators associated with (µ̃x)0≤x≤1 on [0, 1] are given by

Bn(f)(x) =

n∑

h=0

n∑

k=0

(
n

h

)(
n − h

k

)
α(x)n−h−kβ(x)hγ(x)kf

(h + 2k

2n

)
(7.8)

(f ∈ C([0, 1]), 0 ≤ x ≤ 1).

3. Let a = a0 < a1 < · · · < ap = b, p ≥ 1, be a subdivision of the compact real interval [a, b].
For every x ∈ [a, b], set

µ̃x :=
x − ak

ak+1 − ak
δak+1

+
ak+1 − x

ak+1 − ak
δak

, (7.9)
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whenever x ∈ [ak, ak+1], 0 ≤ k ≤ p − 1. Then the Bernstein-Schnabl operators are given by

Bn(f)(x) =
1

(ak+1 − ak)n

n∑

r=0

(
n

r

)
(x − ak)

r(ak+1 − x)n−rf
( r

n
ak+1 +

n − r

n
ak

)
(7.10)

whenever x ∈ [ak, ak+1], 0 ≤ k ≤ p − 1 (f ∈ C([a, b]), n ≥ 1).

4. Consider the d-dimensional simplex Kd of R
d defined by (4.38) and for every x = (x1, . . . , xd) ∈

Kd, set

µ̃x :=
(
1 −

d∑

i=1

xi

)
δ0 +

d∑

i=1

xiδai

where ai = (δij)1≤j≤d for every i = 1, . . . , d, δij being the Kronecker symbol. Then the
Bernstein-Schnabl operators associated with (µ̃x)x∈Kd

turn into the Bernstein operators on
the simplex Kd defined by (4.38).

5. Consider the hypercube Qd := [0, 1]d of R
d and for every x = (x1, . . . , xd) ∈ Qd, set

µ̃x :=

1∑

h1,...,hd=0

xh1

1 (1 − x1)
1−h1 · · · xhd

d (1 − xd)
1−hdδbh1,...,hd

,

where bh1,...,hd
= (δh11, . . . , δhd1) (h1, . . . , hd ∈ {0, 1}). Then the Bernstein-Schnabl operators

are the Bernstein operators on Qd defined by (4.41).

Many other significant examples can be described in the framework of other finite dimensional
subsets such as balls, or more generally, ellipsoids of R

d, or in the setting of infinite-dimensional
Bauer simplices (see [8, Chapter 6], [24], [103]).

In order to discuss the approximation properties of Bernstein-Schnabl operators, note that for
every n ≥ 1

Bn(1) = 1. (7.11)

Moreover, if u ∈ A(K), then for every x1, . . . , xn ∈ K

u
(x1 + · · · + xn

n

)
=

u(x1) + · · · + u(xn)

n

and

u2
(x1 + · · · + xn

n

)
=

1

n2

[ n∑

i=1

u2(xi) + 2
∑

1≤i<j≤n

u(xi)u(xj)
]
.

Therefore, because of (7.4), for every x ∈ K, we get

Bn(u)(x) = u(x) (7.12)

and

Bn(u2)(x) =
1

n
T (u2)(x) +

n − 1

n
u2(x). (7.13)

In other words, for every h ∈ A(K) ∪ A(K)2, Bn(h) → h uniformly on K and hence by virtue of
Corollary 7.3, we obtain that:
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Theorem 7.5. For every f ∈ C(K),

lim
n→∞

Bn(f) = f uniformly on K.

For additional properties of Bernstein-Schnabl operators, including estimates of the rate of
convergence, asymptotic formulae, shape-preserving properties and, especially, their connections
with the approximation of positive semigroups as well as of the solutions of evolution equations,
we refer to the references we cited before Examples 7.4.

8 Korovkin-type theorems in weighted continuous function spaces and in Lp(X, µ̃)
spaces

By using Korovkin-type theorems in spaces of continuous functions it is also possible to get some
results for Lp(X, µ̃)-spaces, 1 ≤ p < +∞. In this regard, other than the space C0(X), also weighted
continuous function spaces can be efficiently used. In this section, we shall develop this method
by also showing some additional Korovkin-type results in weighted continuous function spaces
that complement the ones already discussed at the end of Section 6, and then by presenting the
corresponding ones in Lp(X, µ̃)-spaces.

The method relies on a fundamental characterization of Korovkin subspaces which is due to
Bauer and Donner ([31]) (see also [8, Theorem 4.1.2]). Its counterpart for Korovkin subspaces
for positive linear operators was obtained in [8, Theorem 3.1.4]. An extension to locally convex
function spaces was obtained in [10]. For the sake of brevity, we omit its proof.

As in the previous section, X denotes a fixed locally compact Hausdorff space with a countable
base.

Theorem 8.1. ([31]) Given a linear subspace H of C0(X), the following statements are equivalent:

(i) H is a Korovkin subspace of C0(X);

(ii) For every f ∈ C0(X) and for every ε > 0, there exist finitely many functions h0, . . . , hn ∈ H,
k0, . . . , kn ∈ H and u, v ∈ C0(X), u, v ≥ 0 such that ‖u‖ ≤ ε, ‖v‖ ≤ ε and

∥∥∥∥ inf
0≤j≤n

kj − sup
0≤i≤n

hi

∥∥∥∥ ≤ ε and sup
0≤i≤n

hi − u ≤ f ≤ inf
0≤j≤n

kj + v.

Remark 8.2. If X is compact and 1 ∈ H, then Theorem 8.1 can be stated in a simpler form (see
[8, Theorem 4.1.4]).

Let us mention two important consequences of Theorem 8.1.

Theorem 8.3. ([31]). Let H be a Korovkin subspace of C0(X). If E is a Banach lattice and if
S : C0(X) → E is a lattice homomorphism, then H is a Korovkin subspace of C0(X) for S.

Proof. Consider a sequence (Ln)n≥1 of positive linear operators from C0(X) into E such that
M := sup

n≥1
‖Ln‖ < +∞ and limn→∞ Ln(h) = S(h) for every h ∈ H. Given f ∈ C0(X) and ε > 0,

choose δ ∈]0, ε[ such that ‖S(g)‖ ≤ ε for every g ∈ C0(X), ‖g‖ ≤ δ. By Theorem 8.1, there exist
h0, . . . , hp, k0, . . . , kp ∈ H and u, v ∈ C0(X), u, v ≥ 0, such that ‖u‖ ≤ δ, ‖v‖ ≤ δ and

‖v‖ ≤ ε
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as well as ∥∥∥∥ inf
0≤j≤n

S(kj) − sup
0≤i≤n

s(hi)

∥∥∥∥ ≤ δ and sup
0≤i≤p

hi − u ≤ f ≤ inf
0≤j≤p

kj + v.

Therefore, ∥∥∥∥∥ inf
0≤j≤p

S(kj) − sup
0≤i≤p

S(hi)

∥∥∥∥∥ ≤ ε.

Moreover, for every n ≥ 1,

sup
0≤i≤p

Ln(hi) − Ln(u) ≤ Ln(f) ≤ inf
0≤j≤p

Ln(kj) + Ln(v)

and
sup

0≤i≤p
S(hi) − S(u) ≤ S(f) ≤ inf

0≤j≤p
S(kj) + S(v) .

Accordingly,

Ln(f) − S(f) ≤

p∑

j=0

|Ln(kj) − S(kj)| + | inf
0≤j≤p

S(kj) − sup
0≤i≤p

S(hi)| + Ln(v) + S(u)

and

S(f) − Ln(f) ≤

p∑

i=0

|Ln(hi) − S(hi)| + | inf
0≤j≤p

S(kj) − sup
0≤i≤p

S(hi)| + +Ln(u) + S(v),

so that

|S(f) − Ln(f)| ≤

p∑

i=0

|Ln(hi) − S(hi)| +

p∑

j=0

|Ln(kj) − S(kj)|

+ | inf
0≤j≤p

S(kj) − sup
0≤i≤p

S(hi)| + Ln(u) + Ln(v) + S(u) + S(v)

≤

p∑

i=0

|Ln(hi) − S(hi)| +

p∑

j=0

|Ln(kj) − S(kj)| + 2Mε + 2ε.

It is now easy to conclude that Ln(f) → S(f) as n → ∞ because Ln(hi) → S(hi) and Ln(kj) →
S(kj) as n → ∞ for every i, j = 0, . . . , p. �

Remark 8.4. From Theorem 8.3, it follows that, if M is a Korovkin subset of C0(X), then M is
a Korovkin subset for the natural embedding from C0(X) into an arbitrary closed lattice subspace
E of B(X) containing C0(X) (for instance, E = Cb(X) or E = B(X)).

Another consequence of Theorem 8.3 is indicated below.

Proposition 8.5. ([120]). Let E be a Banach lattice and consider a lattice homomorphism S :
C0(X) → E such that S(C0(X)) is dense in E. If M is a Korovkin subspace of C0(X), then S(M)
is a Korovkin subspace of E.
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Proof. Consider an equibounded sequence (Ln)n≥1 of positive linear operators on E and assume
that Ln(k) → k as n → ∞ for every k ∈ S(M). This means that Ln(S(h)) → S(h) as n → ∞ for
each h ∈ M and hence for each h ∈ H := L(M). So, by Theorem 8.3, Ln(S(f)) −→ S(f) for every
f ∈ C0(X). The result now follows from the assumption that S(C0(X)) is dense in E and (Ln)n≥1

is equibounded. �

Remark 8.6. A typical situation where Proposition 8.5 can be applied concerns the case when E
is a Banach lattice containing C0(X) as a dense sublattice and S is the natural embedding from
C0(X) into E. Thus, in this case,

every Korovkin subspace of C0(X) is a Korovkin subspace of E as well.

After these preliminaries, we can now proceed to discuss some Korovkin-type results for Lp(X, µ̃)
spaces.

Consider a Borel measure µ̃ on X and, given p ∈ [1,+∞[, consider the space

Lp(X, µ̃)

endowed with its natural norm ‖ · ‖p (for more details, we refer to the Appendix (formulae (11.11)
and (11.12))).

Since µ̃ is regular, K(X) is dense in Lp(X, µ̃) with respect to the convergence in p-th mean (see
Theorem 11.4 of Appendix). Therefore, we get the following useful results.

Corollary 8.7. Let M be a Korovkin subset of C0(X). Furthermore, let Y be a locally compact
Hausdorff space with a countable base and consider a Borel measure µ̃ on Y and p ∈ [1,+∞[. Let
S : C0(X) −→ Lp(Y, µ̃) be a lattice homomorphism such that K(Y ) ⊂ S(C0(X)). Then S(M) is a
Korovkin subset of Lp(Y, µ̃).

In particular, if µ̃ is a finite Borel measure on X, then M is also a Korovkin subset of Lp(X, µ̃).

Corollary 8.8. Let X be a compact subset of R
d, d ≥ 1, and consider a finite Borel measure µ̃ on

X. Then {1, pr1, . . . , prd,
d∑

i=1
pr2

i } is a Korovkin subset of Lp(X, µ̃) for every p ∈ [1,+∞[.

If, in addition, X is contained in some sphere of R
d, then {1, pr1, . . . , prd} is a Korovkin subset

of Lp(X, µ̃).

Corollary 8.9. Consider 0 < λ1 < λ2 < λ3 and p ∈ [1,+∞[. Then

(1) {fλ1
, fλ2

, fλ3
} is a Korovkin subset of Lp([0,+∞[), where fλk

(x) := exp(−λkx) for every
x ∈ [0,+∞[ and k = 1, 2, 3.

(2) If u : R −→]0, 1[ is a strictly increasing continuous function satisfying lim
x→+∞

u(x) = 0 and

lim
x→−∞

u(x) = 1, then

{Φ,Φuλ1 ,Φuλ2}

is a Korovkin subset of Lp(R), where Φ(x) := exp(−x2) (x ∈ R).

Proof. (1) Consider the lattice homomorphism S : C([0, 1]) → Lp([0,+∞[) defined by

S(f)(x) := exp(−λ1x)f(exp(−x)) (f ∈ C([0, 1]), x ≥ 0).
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Then S maps the subset M := {1, eλ2−λ1
, eλ3−λ1

} into

{fλ1
, fλ2

, fλ3
}.

Hence the result follows from Corollary 8.7 and Proposition 7.2, (1).
(2) A similar reasoning can be used by considering now the lattice homomorphism S : C([0, 1]) →

Lp(R) defined by
S(f)(x) := exp(−x2)f(u(x)) (f ∈ C([0, 1]), x ∈ R).

�

We now proceed to state a result analogous to Corollary 8.7 for more general weighted function
spaces (see Section 6). Consider a continuous weight w on X and the relevant weighted space
Cw

0 (X) defined by (6.8). Note that, if µ̃ is a Borel measure on X and if

w−1 ∈ Lp(X, µ̃) for some p ∈ [1,+∞[. (8.1)

then Cw
0 (X) ⊂ Lp(X, µ̃) and it is dense with respect to the convergence in the p-th mean.

Corollary 8.10. Consider a Korovkin subset M of Cw
0 (X), i.e., wM is a Korovkin subset of C0(X)

(see (6.11)), and a Borel measure µ̃ on X. If (8.1) holds, then M is a Korovkin subset of Lp(X, µ̃).

Proof. Consider the lattice homomorphism S : C0(X) −→ Lp(X, µ̃) defined by S(f) := w−1f
(f ∈ C0(X)). Then M = S(wM) and S(C0(X)) = Cw

0 (X). Therefore, the result follows from
Corollary 8.7. �

The previous Corollary together with Corollaries 6.12 - 6.15 furnish a simple but useful method
to construct Korovkin subsets in Lp(X, µ̃)-spaces.

By using similar methods, we can extend some of the previous results to more general weighted
function spaces which often occur in the applications. Some of the subsequent results are taken
from [22, Section 2].

In what follows, we shall assume that X is noncompact and we shall denote by

X∞ := X ∪ {∞}

the Alexandrov one-point compactification of X (see, e.g., [30, §27]). A function f ∈ C(X) is said
to be convergent at infinity if there exists a (unique) l ∈ R such that for any ε > 0 there exists a
compact subset K of X such that |f(x) − l| ≤ ε for each x ∈ X\K. In such a case, we also write
lim

x→∞
f(x) = l. Similarly, we shall write lim

x→∞
f(x) = ∞ to mean that for every M ≥ 0 there exists

a compact subset K of X such that f(x) ≥ M for every x ∈ X\K.
Given a weight w ∈ C(X), consider the Banach lattice

Cw
∗ (X) := {f ∈ C(X) | wf is convergent at infinity } (8.2)

endowed with the natural (pointwise) order and the weighted norm

‖f‖w := ‖wf‖∞ (f ∈ Cw
∗ (X)). (8.3)

For every f ∈ Cw
∗ (X), denote by T (f) the function on X∞ defined by

T (f)(z) :=

{
w(z)f(z) if z ∈ X,

lim
x→∞

w(x)f(x) if z = ∞.
(8.4)
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Then T (f) ∈ C(X∞) and ‖T (f)‖∞ = ‖f‖∞. Moreover, the linear operator T : Cw
∗ (X) → C(X∞)

is a lattice isomorphism whose inverse we shall denote by

S : C(X∞) → Cw
∗ (X).

Thus a subset M of Cw
∗ (X) is a Korovkin subset of Cw

∗ (X) if and only if T (M) is a Korovkin subset
of C(X∞).

Consider now a Borel measure µ̃ on X and assume that (8.1) holds. Then Cw
∗ (X) ⊂ Lp(X, µ̃)

and Cw
∗ (X) is dense in Lp(X, µ̃) because K(X) ⊂ Cw

∗ (X).

Proposition 8.11. Under assumption (8.1), each Korovkin subset of Cw
∗ (X) is a Korovkin subset

of Lp(X, µ̃) as well.

Proof. The above lattice isomorphism S can be considered as a lattice homomorphism from C(X∞)
into Lp(X, µ̃) and its range is Cw

∗ (X) which is dense in Lp(X, µ̃). Since H := T (M) is a Korovkin
subset of C(X∞), then M = S(H) is a Korovkin subset of Lp(X, µ̃) by Corollary 8.7. �

Below, we state some consequences of Proposition 8.11.

Proposition 8.12. Let M be a subset of Cw
∗ (X) and assume that

(i) for every x0, y0 ∈ X, x0 6= y0, there exists h ∈ L(M), h ≥ 0, such that h(x0) = 0 and
h(y0) > 0;

(ii) for every x0 ∈ X there exist positive functions h, k ∈ L(M) such that

h(x0) = 0, lim
x→∞

w(x)h(x) > 0,

and
k(x0) > 0, lim

x→∞
w(x)k(x) = 0.

Then M is a Korovkin subset of Cw
∗ (X) and hence of Lp(X, µ̃) for every Borel measure µ̃ on X

and for every p ∈ [1,+∞[ satisfying (8.1).

Proof. Conditions (i) and (ii) mean that T (M) satisfies the hypotheses of Propositions 6.4 in
C(X∞). Therefore, the result follows from Propositions 6.4 and 8.11. �

Corollary 8.13. Consider a subset M of C(X) that separates the points of X and a strictly
positive function f0 ∈ Cw

0 (X). Further, assume that

(1) f0M ∪ f0M
2 ⊂ Cw

∗ (X) (see (6.1) and (6.2)),

(2) there exists g ∈ M such that

lim
x→∞

w(x)f0(x)g(x) = 0 and lim
x→∞

w(x)f0(x)g2(x) > 0.

Then {f0} ∪ f0M ∪ f0M
2 is a Korovkin subset of Cw

∗ (X) and hence of Lp(X, µ̃) for every Borel
measure µ̃ on X and for every p ∈ [1,+∞[ satisfying (8.1).
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Proof. We shall verify conditions (i) and (ii) of Proposition 8.12. Given x0, y0 ∈ X,x0 6= y0,
there exists f ∈ M such that f(x0) 6= f(y0). Therefore, the function h := f0(f − f(x0))

2 ∈
L({f0} ∪ f0M ∪ f0M

2) satisfies h(x0) = 0 and h(y0) > 0 and hence property (i) follows.
As regards condition (ii) of Proposition 8.12, considering a function g ∈ M satisfying assumption

(2), then for every x0 ∈ X the functions h := f0(g − g(x0))
2 and k := f0 satisfy condition (ii) of

Proposition 8.12. �

Corollary 8.14. Consider f1, . . . , fn ∈ C(X), n ≥ 1, that separate the points of X, and a strictly
positive function f0 ∈ Cw

0 (X). Further, assume that

(i) f0fi ∈ Cw
0 (X) for every i = 1, . . . , n, as well as f0

n∑
i=1

f2
i ∈ Cw

∗ (X);

(ii) lim
x→∞

w(x)f0(x)
n∑

i=1
f2

i (x) > 0.

Then

{
f0, f0f1, . . . , f0fn, f0

n∑
i=1

f2
i

}
is a Korovkin subset Cw

∗ (X) and hence in Lp(X, µ̃) for every

Borel measure µ̃ on X and for every p ∈ [1,+∞[ satisfying (8.1).

Proof. The proof is similar to that of Corollary 8.13, except that in this case, the function h must

be chosen as h := f0

n∑
i=1

(fi − fi(x0))
2. �

The particular case of Corollary 8.14 where f0 = 1 is worth stating separately.

Corollary 8.15. Consider f1, . . . , fn ∈ C(X), n ≥ 1, that separate the points of X a weight such
that and w ∈ C0(X) a weight such that

(i) fi ∈ Cw
0 (X) for every i = 1, . . . , n, as well as

n∑
i=1

f2
i ∈ Cw

∗ (X);

(ii) lim
x→∞

w(x)
n∑

i=1
f2

i (x) > 0.

Then

{
1, f1, . . . , fn

n∑
i=1

f2
i

}
is a Korovkin subset in Cw

∗ (X) and hence in Lp(X, µ̃) for every finite

Borel measure µ̃ on X and for every p ∈ [1,+∞[ satisfying (8.1).

A simple situation when the assumptions of Corollaries 8.14 and 8.15 are satisfied is indicated
below.

Corollary 8.16. Consider f1, . . . , fn ∈ C(X), n ≥ 1, that separate the points of X and assume

that lim
x→∞

n∑
i=1

f2
i (x) = +∞. The following statements hold:

(1) If f0 ∈ C(X) is a strictly positive function, then

{
f0, f0f1, . . . , f0fn, f0

n∑
i=1

f2
i

}
is a Korovkin

subset in Cw
∗ (X), where

w :=
1

f0

(
1 +

n∑
i=1

f2
i

) .
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Therefore, if µ̃ is a Borel measure on X and 1 ≤ p < +∞, and if f0 ∈ Lp(X, µ̃) as well

as f0f
2
i ∈ Lp(X, µ̃) for every i = 1, . . . , n, then

{
f0, f0f1, . . . , f0fn, f0

n∑
i=1

f2
i

}
is a Korovkin

subset in Lp(X, µ̃).

(2) In particular,

{
1, f1, . . . , fn,

n∑
i=1

f2
i

}
is a Korovkin subset in Cw

∗ (X), where

w :=
1

1 +
n∑

i=1
f2

i

.

Therefore, if µ̃ is a finite Borel measure on X and 1 ≤ p < +∞, and if f2
i ∈ Lp(X, µ̃) for

every i = 1, . . . , n, then

{
1, f1, . . . , fn,

n∑
i=1

f2
i

}
is a Korovkin subset in Lp(X, µ̃).

The following particular case of Corollary 8.16 will be used next.

Corollary 8.17. Let X be an unbounded closed subset of R
d, d ≥ 1. The following statements

hold:

(1) If f0 ∈ C(X) is a strictly positive function, then
{
f0, f0pr1, . . . , f0prd, f0‖ · ‖

2
}

is a Korovkin
subset in Cw

∗ (X), where

w :=
1

f0

(
1 + ‖ · ‖2

) .

Therefore, if µ̃ is a Borel measure on X and 1 ≤ p < +∞, and if f0 ∈ Lp(X, µ̃) as well as
‖ · ‖2f0 ∈ Lp(X, µ̃), then

{
f0, f0pr1, . . . , f0prd, f0‖ · ‖

2
}

is a Korovkin subset in Lp(X, µ̃).

(2) In particular,
{
1, pr1, . . . , prd, ‖ · ‖

2
}

is a Korovkin subset in Cw
∗ (X), where

w :=
1

1 + ‖ · ‖2
.

Therefore, if µ̃ is a finite Borel measure on X and 1 ≤ p < +∞, and if ‖ · ‖2 ∈ Lp(X, µ̃), then{
1, pr1, . . . , prd, ‖ · ‖

2
}

is a Korovkin subset in Lp(X, µ̃).

Proof. It is sufficient to apply Corollary 8.16 with fi = pri, 1 ≤ i ≤ d. �

Below, we list some additional examples.

Examples 8.18.

1) Let I be a noncompact real interval and set r1 := inf I ∈ R ∪ {−∞} and r2 := sup I ∈
R ∪ {+∞}. Consider a strictly positive injective function f0 ∈ C(I).

Assume that for some strictly positive function w ∈ C(I) the following properties hold:

(i) lim
x→ri

w(x)f0(x) = lim
x→ri

w(x)f2
0 (x) = 0 for every i = 1, 2 such that ri 6∈ I;

(ii) there exists l > 0 such that lim
x→ri

w(x)f3
0 (x) = l for every i = 1, 2 such that ri 6∈ I.
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Then {f0, f
2
0 , f3

0 } is a Korovkin subset in Cw
∗ (I) and hence in Lp(I, µ̃) for every Borel measure

µ̃ on I and p ∈ [1,+∞[ such that 1/w ∈ Lp(I, µ̃).

The result is a direct consequence of Corollary 8.14 with n = 1 and f1 = f0.

2) Let I be an unbounded closed real interval. The following statements hold:

(1) If f0 ∈ C(I) is a strictly positive function, then {f0, f0e1, f0e2} is a Korovkin subset in
Cw
∗ (I), where

w :=
1

f0

(
1 + e2

) .

Therefore, if µ̃ is a Borel measure on I and 1 ≤ p < +∞, and if f0 ∈ Lp(I, µ̃) as well as
f0e2 ∈ Lp(X, µ̃), then {f0, f0e1, f0e2} is a Korovkin subset in Lp(X, µ̃).

(2) In particular, {1, e1, e2} is a Korovkin subset in Cw
∗ (I), where

w :=
1

1 + e2
.

Therefore, if µ̃ is a finite Borel measure on I and 1 ≤ p < +∞, and if e2 ∈ Lp(X, µ̃),
then {1, e1, e2} is a Korovkin subset in Lp(X, µ̃).

For a rather complete list of references on Korovkin-type theorems in Lp-spaces, we refer to [8,
Appendix D.2.3].

Next, we discuss a simple application of the above results (more precisely, of Corollary 8.17)
concerning the operators Gn, n ≥ 1, defined by (4.44) as

Gn(f)(x) :=
(n

4

)d/2
∫

Rd

f(t) exp
(
−

n

4
‖t − x‖2

)
dt (x ∈ R

d) (8.5)

for every Borel measurable function f : R
d → R for which the integral (8.5) is absolutely convergent

(d ≥ 1).
Let ϕ : R

d → R be a Borel measurable strictly positive function which we assume to be
integrable with respect to the d-dimensional Lebesgue measure λd. We denote by µ̃ϕ := ϕλd the
finite Borel measure on R

d having density ϕ with respect to λd, i.e.,

µ̃ϕ(B) =

∫

B
ϕ(x) dx (8.6)

for every Borel subset B of R
d. If p ∈ [1,+∞[ and f ∈ Lp(Rd, µ̃ϕ), we shall set

‖f‖ϕ,p :=
( ∫

Rd

|f(x)|pϕ(x) dx
)1/p

. (8.7)

Theorem 8.19. Assume that

Cϕ := sup
n≥1, t∈Rd

{ 1

ϕ(t)

( n

4π

)d/2
∫

Rd

ϕ(x) exp
(
−

n

4
‖t − x‖2

)
dx
}

< +∞. (8.8)

Then for every p ∈ [1,+∞[ and n ≥ 1 and for every f ∈ Lp(Rd, µ̃ϕ), the integral (8.5) converges
absolutely for a.e. x ∈ R

d.
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Moreover Gn(f) ∈ Lp(Rd, µ̃ϕ) and

‖Gn(f)‖ϕ,p ≤ max{1, Cϕ}‖f‖ϕ,p. (8.9)

Finally, if pr2
i ∈ Lp(Rd, µ̃ϕ) for every i = 1, . . . , d, then

lim
n→∞

Gn(f) = f with respect to ‖ · ‖ϕ,p. (8.10)

Proof. Setting, for every n ≥ 1,

Kn(x, t) :=
1

ϕ(t)

( n

4π

)d/2
exp

(
−

n

4
‖t − x‖2

)
, (t, x ∈ R

d),

we get

Gn(f)(x) =

∫

R

Kn(t, x)f(t) dµ̃ϕ(t) (x ∈ R
d).

Moreover, if x ∈ R
n is fixed, then

∫

Rd

Kn(t, x) dµ̃ϕ(t) =
( n

4π

)d/2
∫

Rd

exp
(
−

n

4
‖t − x‖2

)
dt = 1

and, for t ∈ R
d fixed, ∫

Rd

Kn(t, x) dµ̃ϕ(x) ≤ Cϕ.

Therefore, the first part of the statement follows from Fubini’s and Tonelli’s theorems and from
Hölder’s inequality (see also [58, Theorem 6.18]). As regards the final part, note that each pri

belongs to Lp(Rd, µ̃ϕ) too because |pri| ≤ 1 + pr2
i , (i = 1, . . . , d).

From (8.9), it follows that the sequence (Gn)n≥1 is equibounded from Lp(Rd, µ̃ϕ) into itself.
Moreover, formulae (4.48)–(4.50) imply that

Gn(h) → h in Lp(Rd, µ̃ϕ)

for every h ∈

{
1, pr1, . . . , pd,

d∑
i=1

pr2
i

}
and hence the result follows from Corollary 8.17, (2). �

Remark 8.20. It is not difficult to show that condition (8.8) is satisfied, for instance, by the
functions ϕm(x) := (1 + ‖x‖m)−1 or ϕm(x) = exp(−m‖x‖) (x ∈ R

d) for every m ≥ 1. For more
details, we refer to the papers [21, Section 3], [22] and [23, Section 4] where an extension of Theorem
8.19 has been established for a sequence of more general integral operators and where the operators
Gn, n ≥ 1, have been studied also in weighted continuous function spaces.

9 Korovkin-type theorems and Stone-Weierstrass theorems

In this section, we shall deepen the connections between Korovkin-type theorems and Stone-
Weierstrass theorems, which have already been pointed out with Theorems 3.8 and 4.7.

We start by giving a new proof of a generalization of Weierstrass’ theorem due to Stone ([111])
by means of Theorem 6.6. We first need the following result.
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Lemma 9.1. Every closed subalgebra A of Cb(X) is a lattice subspace (i.e., |f | ∈ A for every
f ∈ A).

Proof. It is well-known that

t1/2 =

∞∑

n=0

(
1/2

n

)
(t − 1)n = lim

n→∞
pn(t)

uniformly with respect to t ∈ [0, 2], where

pn(t) :=

n∑

k=0

(
1/2

k

)
(t − 1)k (n ≥ 1, t ∈ [0, 2]).

Since lim
n→∞

pn(0) = 0, we also get

t1/2 = lim
n→∞

qn(t) uniformly with respect to t ∈ [0, 2],

where qn := pn − pn(0), n ≥ 1. Therefore, for any f ∈ A, f 6= 0,

|f | = ‖f‖

(
f2

‖f‖2

)1/2

= ‖f‖ lim
n→∞

qn

(
f2

‖f‖2

)
∈ A = A.

�

Before stating the Stone approximation theorem, we recall that a subset M of C0(X) is said to
separate strongly the points of X if it separates the points of X and if for every x ∈ X there
exists f ∈ M such that f(x) 6= 0.

Theorem 9.2. Let X be a locally compact Hausdorff space with a countable base and let A be a
closed subalgebra of C0(X) that separates strongly the points of X. Then A = C0(X).

Proof. We first prove that there exists a strictly positive function f0 in A. For this, note that A
is separable since C0(X) is. Denoting by {hn | n ≥ 1} a dense subset of A, then for every x ∈ X

there exists n ≥ 1 such that hn(x) 6= 0. Hence the function f0 :=
∞∑

n=1

|hn|
2n‖hn‖

lies in A, because of

Lemma 9.1, and is strictly positive on X.
Given such a function f0 ∈ A, we then have that {f0}∪f0A∪f0A

2 ⊂ A and hence, by Theorem
6.6, A is a Korovkin subspace in C0(X).

Considering f ∈ C0(X) and ε > 0, by Theorem 8.1 there exist h0, . . . , hn ∈ A, k0, . . . , kn ∈ A
as well as u, v ∈ C0(X), u ≥ 0, v ≥ 0, such that ‖u‖ ≤ ε, ‖v‖ ≤ ε, and, finally,

∥∥∥∥ inf
0≤j≤n

kj − sup
0≤i≤n

hi

∥∥∥∥ ≤ ε and sup
0≤i≤n

hi − u ≤ f ≤ inf
0≤j≤n

kj + v.

Then f − inf
0≤j≤n

kj ≤ v and

inf
0≤j≤n

kj − f ≤ | inf
0≤j≤n

kj − sup
0≤i≤n

hi| + u.

Therefore,
|f − inf

0≤j≤n
kj | ≤ | sup

0≤i≤n
hi − inf

0≤j≤n
kj | + u + v
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and then
‖f − inf

0≤j≤n
kj‖ ≤ 3ε

which shows that f ∈ A = A (since, by Lemma 9.1, inf
0≤j≤n

kj ∈ A) and this completes the proof. �

As in the case of the interval [0, 1] (see Theorem 3.8), we actually show that Theorems 6.6 and
9.2 are equivalent. The next result will be very useful for our purposes.

Theorem 9.3. Let X be a locally compact Hausdorff space and consider a subset M of C0(X) such
that the linear subspace generated by it contains a strictly positive function f0 ∈ C0(X). Given
x0 ∈ X, denote by A(M,x0) the subspace of all functions f ∈ C0(X) such that µ(f) = f(x0) for
every µ ∈ M+

b (X) satisfying µ(g) = g(x0) for every g ∈ {f0} ∪ f0M ∪ f0M
2. Then A(M,x0) is a

closed subalgebra of C0(X) which contains M .

Proof. A(M,x0) is a closed subspace of C0(X). Set

M(x0) := {x ∈ X | g(x) = g(x0) for every g ∈ M}

= {x ∈ X | f0(x)(g(x) − g(x0))
2 = 0 for every g ∈ M}

and fix f ∈ A(M,x0) and µ ∈ M+
b (X) such that µ(g) = g(x0) for every g ∈ {f0} ∪ f0M ∪ f0M

2.
In particular, µ(f0(g − g(x0))

2) = 0 for each g ∈ M . On the other hand, if x ∈ M(x0), then
δx(g) = g(x0) for every g ∈ {f0}∪f0M∪f0M

2, so that f(x) = f(x0) and hence f0(x0)f
2 = f2(x0)f0

on M(x0).
Therefore, by Corollary 11.6 in the Appendix, we get that µ(f0(x0)f

2) = f2(x0)µ(f0) =
f2(x0)f0(x0) and hence µ(f2) = f2(x0). Therefore, f2 ∈ A(M,x0) and hence A(M,x0) is a
subalgebra of C0(X).

Finally note that, if h ∈ M, then f0(x0)h = h(x0)f0 on M(x0). Therefore, if we again fix
µ ∈ M+

b (X) such that µ(g) = g(x0) for each g ∈ {f0} ∪ f0M ∪ f0M
2, by applying Corollary

11.6 we at once obtain that f0(x0)µ(h) = h(x0)µ(f0) = h(x0)f0(x0), so µ(h) = h(x0) and hence
h ∈ A(M,x0). �

With the help of the preceding theorem, it is easy to show this next result.

Theorem 9.4. The Korovkin-type Theorem 6.6 and the Stone-Weierstrass Theorem 9.2 are equiv-
alent.

Proof. In light of the proof of Theorem 9.2, we have only to show that Theorem 9.2 implies
Theorem 6.6. So, consider a subset M of C0(X) that separates the points of X and such that the
linear subspace generated by it contains a strictly positive function f0 ∈ C0(X).

Given x0 ∈ X, consider the subspace A(M,x0) defined in the preceding theorem. By virtue of
Theorems 9.2 and 9.3, we then infer that A(M,x0) = C0(X). In other words, we have shown that
for every µ ∈ M+

b (X) and for every x0 ∈ X satisfying µ(g) = g(x0) for every g ∈ {f0}∪f0M∪f0M
2,

we also have µ(f) = f(x0) for every f ∈ C0(X) and this means that {f0}∪f0M∪f0M
2 is a Korovkin

subset in C0(X) because of Theorem 6.1. �

For a further deepening of the relationship between Korovkin-type theorems and Stone-Weierstrass
theorems, we refer to [8, Section 4.4] and [12-13].
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10 Korovkin-type theorems for positive projections

In this last section, we shall discuss some Korovkin-type theorems for a class of positive linear
projections by showing a nontrivial application of the general theorem proved in Section 5.

Consider a compact metric space X and a positive linear projection T : C(X) → C(X),
i.e., T is a positive linear operator such that T (T (f)) = T (f) for every f ∈ C(X). We shall denote
by HT the range of T , i.e.,

HT := T (C(X)) = {h ∈ C(X) | T (h) = h} . (10.1)

We shall also assume that 1 ∈ HT (hence T (1) = 1) and that HT separates the points of X. In
the sequel, we shall present some examples of such projections.

For every x ∈ X denote by µx ∈ M+(X) the Radon measure defined by

µx(f) := T (f)(x) (f ∈ C(X)) (10.2)

and by µ̃x the unique probability Borel measure on X that corresponds to µx via the Riesz repre-
sentation theorem, i.e.,

T (f)(x) = µx(f) =

∫

X
f dµ̃x (f ∈ C(X)). (10.3)

Thus, (µ̃x)x∈X is the canonical continuous selection associated with T .
By the Cauchy-Schwarz inequality (2.16), for every h ∈ HT , we get

|h| = |T (h)| ≤
√

T (1)T (h2) =
√

T (h2)

so that
h2 ≤ T (h2) . (10.4)

Set
YT := {x ∈ X | T (f)(x) = f(x) for every f ∈ C(X)}. (10.5)

YT is closed and it is actually equal to the so-called Choquet boundary of HT and hence it is not
empty (see [8, Proposition 3.3.1 and Corollary 2.6.5]).

Proposition 10.1. If M is a subset of HT that separates the points of X, then

YT = {x ∈ X | T (h2)(x) = h2(x) for every h ∈ M}. (10.6)

Moreover, if (hn)n≥1 is a finite or countable family of HT that separates the points of X and if the

series u :=
∞∑

n=1
h2

n is uniformly convergent on X, then u ≤ T (u) and

YT := {x ∈ X | Tu(x) = u(x)}. (10.7)

Proof. Consider x ∈ X such that T (h2)(x) = h2(x), i.e., µx(h
2) = h2(x) for each h ∈ M . Since

M ⊂ HT , we also get µx(h) = h(x) (h ∈ M) and {1} ∪ M ∪ M2 is a Korovkin subset of C(X) by
Theorem 7.1. According to Theorem 6.1, we then obtain that f(x) = µx(f) = T (f)(x) for every
f ∈ C(X).
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As regards the second part of the statement, note that T (u) =
∞∑

n=1
T (h2

n) and hence u ≤ T (u)

by (10.4). Moreover, if x ∈ X and T (u)(x) = u(x), then

∞∑

n=1

(
T (h2

n)(x) − h2
n(x)

)
= 0.

Hence, on account of (10.4), T (h2
n)(x) = h2

n(x) for every n ≥ 1 and so x ∈ YT by (10.6). �

Remark 10.2. Note that there always exists a countable family (hn)n≥1 of HT that separates the

points of X and such that the series
∞∑

n=1
h2

n is uniformly convergent on X. Actually, since C(X) is

separable, HT is separable as well so that, considering a countable dense family (ϕn)n≥1 of HT , it
is enough to put hn := ϕn

2n(1+‖ϕn‖)
(n ≥ 1).

Theorem 10.3. If M is a subset of HT that separates the points of X, then

HT ∪ M2 is a Korovkin subset for T.

Moreover, if u ∈ C(X) satisfies u ≤ T (u) and if (10.7) holds, then

HT ∪ {u} is a Korovkin subset for T.

In particular, the above statement holds for u =
∞∑

n=1
h2

n, where (hn)n≥1 is an arbitrary sequence

in HT that separates the points of X and such that the series
∞∑

n=1
h2

n is uniformly convergent on X.

Proof. In order to apply Theorem 5.5, consider µ ∈ M+(X) and x ∈ X such that µ(h) =
T (h)(x) = (µx(h)) for every h ∈ HT ∪ M2. Accordingly, if h ∈ M ,

µ(T (h2) − h2) = T (h2)(x) − µx(h2) = 0

and T (h2) − h2 ≥ 0. Therefore, by using (10.6) and by applying Theorem 11.5 and Corollary 11.6
of the Appendix, we see that, for every f ∈ C(X), µ(T (f)) = µ(f) because Tf = f on YT . Hence
µ(f) = µ(T (f)) = µx(Tf) = Tf(x) and this finishes the proof.

A similar reasoning can be used to show the second part of the statement by using (10.7) instead
of (10.6). �

Theorem 10.3 is due to Altomare ([3], [5]; see also [8, Section 3.3]). For an extension to so called
adapted spaces, we refer to [9]. Below, we show some examples.

Example 10.4. Consider the d-dimensional simplex Kd of R
d, d ≥ 1, defined by (4.38) and the

positive projection Td : C(Kp) → C(Kp) defined by

Td(f)(x) :=
(
1 −

d∑

i=1

xi

)
f(0) +

d∑

i=1

xif(ai) (10.8)

(f ∈ C(Kd), x = (xi)1≤i≤d ∈ Kd), where ai := (δij)1≤j≤d for every i = 1, . . . , d.
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In this case, HTd
is the subspace A(Kd) (see Section 7, formula (7.1)) which in turn is generated

by M := {1, pr1, . . . , prd}, and hence, by Theorem 10.3,

{
1, pr1, . . . , prd,

d∑

i=1

pr2
i

}
is a Korovkin subset for Td. (10.9)

More generally, if K is an infinite-dimensional Bauer simplex (see, e.g., [8, Section 1.5, p. 59]),
then there exists a unique linear positive projection T on C(K) whose range is A(K). In this case,
for every strictly convex u ∈ C(K), we get that A(K) ∪ {u} is a Korovkin subset for T (see [8,
Corollary 3.3.4]).

Example 10.5. Consider the hypercube Qd := [0, 1]d of R
d, d ≥ 1, and the positive projection

Sd : C(Qd) → C(Qd) defined by

Sd(f)(x) :=

1∑

h1,...,hd=0

xh1

1 (1 − x1)
1−h1 · · · xhd

d (1 − xd)
1−hdf(bh1,...,hd

) (10.10)

where bh1,...,hd
:= (δhi1)1≤i≤d (h1, . . . , hd ∈ {0, 1}).

In this case, HSd
is the subspace of C(Qd) generated by {1} ∪ {

∏
i∈J pri | J ⊂ {1, . . . , d}}.

Therefore, by Theorem 10.3, we obtain that

{1} ∪

{
∏

i∈J

pri | J ⊂ {1, . . . , d}

}
∪

{
d∑

i=1

pr2
i

}
is a Korovkin subset for Sd. (10.11)

For an extension of the above result, see [8, Corollary 3.3.9].

Example 10.6. Consider a bounded open subset Ω of R
d, d ≥ 2, which we assume to be regular

in the sense of potential theory (see, e.g., [68, Section 8.3] or [8, pp. 125-128]) (for instance, each
convex open subset of R

d is regular). Denote by H(Ω) the subspace of all u ∈ C(Ω) that are
harmonic on Ω.

By the regularity of Ω, it follows that for every f ∈ C(Ω) there exists a unique uf ∈ H(Ω) such
that uf |∂Ω = f |∂Ω, i.e., uf is the unique solution of the Dirichlet problem




△u :=

d∑
i=1

∂2u
∂x2

i

= 0 on Ω,

u|∂Ω = f |∂Ω

(u ∈ C(Ω) ∩ C2(Ω)). (10.12)

Then the Poisson operator T : C(Ω) −→ C(Ω) defined by

T (f) := uf (f ∈ C(Ω)) (10.13)

is a positive projection whose range is H(Ω).
Therefore, from Theorem 10.3, we get that

H(Ω) ∪

{
d∑

i=1

pr2
i

}
is a Korovkin subset for T. (10.14)
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For further examples of positive linear projections, we refer to [24] and [103].
We now discuss an application of Theorem 10.3. Consider a metrizable convex compact subset

K of a locally convex space. For every f ∈ C(K), z ∈ K and α ∈ [0, 1], we denote by fz,α ∈ C(K)
the function defined by

fz,α(x) := f(αx + (1 − α)z) (x ∈ K). (10.15)

Consider a positive linear projection T : C(K) −→ C(K), T different from the identity operator,
and assume that

A(K) ⊂ HT := T (C(K)), (10.16)

i.e.,
T (u) = u for every u ∈ A(K), (10.17)

and
hz,α ∈ HT for every h ∈ HT , z ∈ K, 0 ≤ α ≤ 1. (10.18)

Here, once again, we use the symbol A(K) to designate the subspace of all continuous affine
functions on K (see (7.1)). Moreover, note that in all the examples 10.4-10.6, assumptions (10.16)–
(10.18) are satisfied.

Moreover, from Theorem 10.3, it also follows that

HT ∪ A(K)2 is a Korovkin subset for T. (10.19)

Consider the sequence of Bernstein-Schnabl operators (Bn)n≥1 associated with T according to (7.6)
and (7.7), i.e., associated with the continuous selection (µ̃x)x∈X defined by (10.3).

Note that, if T is the projection Tp defined by (10.8) (resp., the projection Sp defined by (10.10)),
then the corresponding Bernstein-Schnabl operators are the Bernstein operators (4.39) (resp., the
Bernstein operators (4.41)). By Theorem 7.5, we already know that

lim
n→∞

Bn(f) = f uniformly on K (f ∈ C(K)). (10.20)

In this particular case, we can also study the iterates of the operators Bn.
For every n,m ≥ 1, we set

Bm
n :=

{
Bn if m = 1,

Bn ◦ Bm−1
n if m ≥ 2.

(10.21)

From (10.18), it follows that, if h ∈ HT , then Bn(h) = h and hence

Bm
n (h) = h = T (h). (10.22)

On the other hand, if u ∈ A(K), then by applying an induction argument it is not difficult to
obtain from (7.13) that

Bn(u2) =
(
1 −

(n − 1

n

)m)
T (u2) +

(n − 1

n

)m
u2. (10.23)

Now, we can easily prove the next result.
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Theorem 10.7. Let f ∈ C(K). Then

(1) lim
n→∞

Bm
n (f) = f uniformly on K for every m ≥ 1.

(2) lim
m→∞

Bm
n (f) = T (f) uniformly on K for every n ≥ 1.

(3) If (k(n))n≥1 is a sequence of positive integers, then

lim
n→∞

Bk(n)
n (f) =

{
f uniformly on K if k(n)

n → 0,

T (f) uniformly on K if k(n)
n → +∞.

Proof. It is sufficient to apply Corollary 7.3 and statement (10.19) taking (10.22) and (10.23) into
account as well as the elementary formula

(n − 1

n

)m
= exp

(
m log

(
1 −

1

n

))
(n,m ≥ 2).

�

It is worth remarking that under some additional assumptions on T , the sequence (B
k(n)
n (f))n≥1

(f ∈ C(K)) converges uniformly also when k(n)
n −→ t ∈]0,+∞[. More precisely, for every t ≥ 0

there exists a positive linear operator T (t) : C(K) −→ C(K) such that for every sequence (k(n))n≥1

of positive integers satisfying k(n)
n −→ t, and for every f ∈ C(K),

T (t)f = lim
n→∞

Bk(n)
n (f). (10.24)

Moreover, the family (T (t))t≥0 is a strongly continuous semigroup of operators whose generator
(A,D(A)) is the closure of the operator (Z,D(Z)) where

D(Z) :=
{
u ∈ C(K) | lim

n→∞
n(Bn(u) − u) exists in C(K)

}
(10.25)

and, for every u ∈ D(Z) ⊂ D(A),

A(u) = Z(u) = lim
n→∞

n(Bn(u) − u). (10.26)

If K is a subset of R
d, d ≥ 1, with nonempty interior and if T maps the subspace of all polynomials

of degree m into itself for every m ≥ 1, then C2(K) ⊂ D(Z) ⊂ D(A) and, for every u ∈ C2(K),

Au(x) = Zu(x) =
1

2

d∑

i,j=1

αij(x)
∂2u(x)

∂xi∂xi
(10.27)

(x = (xi)1≤i≤d), where for every i, j = 1, . . . , d,

αij(x) := T (priprj)(x) − xixj . (10.28)

The differential operator (10.27) is an elliptic second order differential operator which degenerates
on the subset YT defined by (10.5) (which contains all the extreme points of K).
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Moreover, for every u0 ∈ D(A), the (abstract) Cauchy problem





∂u
∂t (x, t) = A(u(·, t))(x) x ∈ K, t ≥ 0,

u(x, 0) = u0(x) x ∈ K,

u(·, t) ∈ D(A) t ≥ 0,

(10.29)

has a unique solution u : K × [0,+∞[→ R given by

u(x, t) = T (t)(u0)(x) = lim
n→∞

Bk(n)
n (u0)(x) (x ∈ K, t ≥ 0) (10.30)

and the limit is uniform with respect to x ∈ K, where k(n)
n → t.

These results were discovered by Altomare ([5], see also [8, Sections 6.2 and 6.3]) and opened
the door to a series of researches whose main aims are, first, the approximation of the solutions of
initial boundary differential problem associated with degenerate evolution equations (like (10.29))
by means of iterates of positive linear operators (like (10.30)), and, second, both a numerical and
a qualitative analysis of the solutions by means of formula (10.30).

These researches are documented in several papers. Here, we content ourselves to cite, other
than Chapter 6 of [8], also the papers [6], [17] and [18] and the references therein.

11 Appendix: A short review of locally compact spaces and of some continuous

function spaces on them

For the convenience of the reader, in this Appendix, we collect some basic definitions and results
concerning locally compact Hausdorff spaces, some continuous function spaces and Radon measures
on them. For more details, we refer the reader to Chapter IV of [30] or to Chapter 3 of [54].

We start by recalling that a topological space X is said to be compact if every open cover of X
has a finite subcover. A subset of a topological space is said to be compact if it is compact in the
relative topology. A topological space is said to be locally compact if each of its points possesses
a compact neighborhood.

Actually, if X is locally compact and Hausdorff (i.e., for every pair of distinct points x1, x2 ∈ X
there exist neighborhoods U1 and U2 of x1 and x2, respectively, such that U1 ∩ U2 = ∅), then each
point of X has a fundamental system of compact neighborhoods.

Every compact space is locally compact. The spaces R
d, d ≥ 1, are fundamental examples

of (noncompact) locally compact spaces. Furthermore, if X is locally compact, then every open
subset of X and every closed subset of X, endowed with the relative topology, is locally compact.
More generally, a subset of a locally compact Hausdorff space, endowed with the relative topology,
is locally compact if and only if it is the intersection of an open subset of X with a closed subset
of X (see [54, Corollary 3.3.10]). Therefore, every real interval is locally compact.

A topological space X is said to be metrizable if its topology is induced by a metric on X.
In this case, we say that X is complete if such a metric is complete. Note that every compact
metrizable space is complete and separable, i.e., it contains a dense countable subset.

A special role in the measure theory on topological spaces (and in the Korovkin-type approxi-
mation theory) is played by locally compact Hausdorff spaces with a countable base (or basis),
i.e., with a countable family of open subsets such that every open subset is the union of some
subfamily of it. Such spaces are metrizable, complete and separable. Actually, a metrizable space
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has a countable base if and only if it is separable. The spaces R
d, d ≥ 1, and each open or closed

subset of them are locally compact Hausdorff spaces with a countable base.
From now on, X will stand for a fixed locally compact Hausdorff space. We denote by K(X)

the linear space of all real-valued continuous functions f : X −→ R whose (closed) support

supp(f) := {x ∈ X | f(x) 6= 0}

is compact. K(X) is a lattice subspace of Cb(X) and it coincides with C(X) if X is compact.
The next result shows that there are sufficiently many functions in K(X). (For a proof, see [30,

Corollary 27.3].)

Theorem 11.1. (Urysohn’s lemma) For every compact subset K of X and for every open subset
U containing K, there exists ϕ ∈ K(X) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on K and supp(ϕ) ⊂ U (and
hence ϕ = 0 on X\U).

Another fundamental function space is the space C0(X) which is defined as the closure of K(X)
in Cb(X) with respect to the sup norm, in symbols

C0(X) := K(X).

Thus, C0(X) is a closed linear subspace of Cb(X) and hence, endowed with the sup-norm, is a
Banach space.

By means of Urysohn’s lemma, it is not difficult to prove the following characterization of
functions lying in C0(X).

Theorem 11.2. Assume that X is not compact. For a function f ∈ C(X), the following statements
are equivalent:

(i) f ∈ C0(X);

(ii) {x ∈ X | |f(x)| ≥ ε} is compact for every ε > 0;

(iii) for every ε > 0 there exists a compact subset K of X such that |f(x)| ≤ ε for every x ∈ X\K.

Because of the preceding theorem, the functions lying in C0(X) are said to vanish at infinity. If
X is compact, then C0(X) = C(X). Moreover, C0(X) is a lattice subspace of Cb(X) and, endowed
with the sup-norm, is separable provided X has a countable base.

Another characterization of functions in C0(X) involves sequences of points of X that converge
to the point at infinity of X. More precisely, assuming that X is noncompact, a sequence (xn)n≥1

in X is said to converge to the point at infinity of X if for every compact subset K of X there
exists ν ∈ N such that xn ∈ X\K for every n ≥ ν. For any such sequence and for every f ∈ C0(X),
we then have

lim
n→∞

f(xn) = 0. (11.1)

Conversely, a function f ∈ C(X) satisfying (11.1) for every sequence (xn)n≥1 converging to the
point at infinity of X necessarily lies in C0(X) provided that X is countable at infinity, i.e., it is the
union of a sequence of compact subsets of X. Note also that X is countable at infinity if and only
if there exists f0 ∈ C0(X) such that f0(x) > 0 for every x ∈ X. Moreover, if X has a countable
basis, then X is countable at infinity.
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A useful tool which plays an important role in Korovkin-type approximation theory is given by
Radon measures. Actually, we shall only need to handle positive bounded Radon measures

which are, by definition, positive linear functionals on C0(X). The set of all of them will be denoted
by M+

b (X).
Every µ ∈ M+

b (X), that is, every positive linear functional µ : C0(X) −→ R, is continuous
(with respect to the sup-norm), and its norm

‖µ‖ := sup{|µ(f)| | f ∈ C0(X), |f | ≤ 1} (11.2)

is also called the total mass of µ.
A simple example of bounded positive Radon measure is furnished by the Dirac measure at

a point a ∈ X, which is defined by

δa(f) := f(a) (f ∈ C0(X)). (11.3)

A positive linear combination of Dirac measures is called a (positive) discrete measure.
In other words, a Radon measure µ ∈ M+

b (X) is discrete if there exist finitely many points
a1, . . . , an ∈ X,n ≥ 1, and finitely many positive real numbers λ1, . . . , λn such that

µ =

n∑

i=1

λiδai
, (11.4)

i.e.,

µ(f) =
n∑

i=1

λif(ai) for every f ∈ C0(X). (11.5)

In this case, ‖µ‖ =
n∑

i=1
λi and µ is also said to be supported on {a1, . . . , an}.

There is a strong relationship between positive bounded Radon measures and (positive) finite
Borel measures on X. In order to briefly describe it, we recall that the Borel σ-algebra in X is,
by definition, the σ-algebra generated by the system of all open subsets of X. It will be denoted
by B(X) and its elements are called Borel subsets of X. Open subsets, closed subsets and compact
subsets of X are Borel subsets.

A Borel measure µ̃ on X is, by definition, a measure µ̃ : B(X) → [0,+∞] such that

µ̃(K) < +∞ for every compact subset K of X. (11.6)

Every finite measure µ̃ on B(X), i.e., µ̃(X) < +∞, is a Borel measure.
A measure µ̃ : B(X) −→ [0,+∞] is said to be inner regular if

µ̃(B) = sup{µ̃(K) | K ⊂ B,K compact} for every B ∈ B(X) (11.7)

and outer regular if

µ̃(B) = inf{µ̃(U) | B ⊂ U,U open} for every B ∈ B(X). (11.8)

A measure µ̃ is said to be regular if it is both inner regular and outer regular. The Lebesgue-Borel
measure on R

d, d ≥ 1, is regular. Actually, if X has a countable base, then every Borel measures
on X is regular ([30, Theorem 29.12]).
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If µ̃ is a finite measure on B(X), then every f ∈ Cb(X) is µ̃-integrable. Therefore, we can
consider the positive bounded Radon measure Iµ̃ on X defined by

Iµ̃(f) :=

∫

X
f dµ̃ (f ∈ C0(X)). (11.9)

Then ‖Iµ̃‖ ≤ µ̃(X), and, if µ̃ is inner regular, ‖Iµ̃‖ = µ̃(X).
As a matter of fact, formula (11.9) describes all the positive bounded Radon measures on X as

the following fundamental result shows (see [30, Section 29]).

Theorem 11.3. (Riesz representation theorem) If µ ∈ M+
b (X), then there exists a unique

finite and regular Borel measure µ̃ on X such that

µ(f) =

∫

X
f dµ̃ for every f ∈ C0(X).

Moreover, ‖µ‖ = µ̃(X).

Another noteworthy and useful result concerning regular Borel measures is shown below. Con-
sider a measure µ̃ on B(X) and p ∈ [1,+∞[. As usual, we shall denote by Lp(X, µ̃) the linear
subspace of all B(X)-measurable functions f : X −→ R such that |f |p is µ̃-integrable.

If f ∈ Lp(X, µ̃), it is customary to set

Np(f) :=

(∫

X
|f |p dµ̃

)1/p

. (11.10)

The functional Np : Lp(X, µ̃) → R is a seminorm and the convergence with respect to it is the
usual convergence in pth-mean. Setting

N := {f ∈ Lp(X, µ̃) | Np(f) = 0}

= {f ∈ F (X) | f is B(X) measurable and f = 0 µ̃ a.e.},

the quotient linear space
Lp(X, µ̃) := Lp(X, µ̃)/N (11.11)

endowed with the norm
‖f̃‖p := Np(f) (f̃ ∈ Lp(X, µ̃)), (11.12)

is a Banach space. (Here, f̃ := {g ∈ Lp(X, µ̃) | f = g µ̃ a.e.}.) Note that, if µ̃ is a Borel measure,
then K(X) ⊂ Lp(X, µ̃) for every p ∈ [1,+∞[.

If µ̃ is also regular, we can say much more (for a proof of the next result, see [30, Theorem
29.14]).

Theorem 11.4. If µ̃ is a regular Borel measure on X, then, for every p ∈ [1,+∞[, the space K(X)
is dense in Lp(X, µ̃) with the respect to convergence in the pth-mean (and hence in Lp(X, µ̃) with
respect to ‖ · ‖p).

Next, we discuss a characterization of discrete Radon measures. Usually this characterization
is proved by using the notion of support of Radon measures (see, e.g., [36, Chapter III, Section 2]
and [39, Vol. I, Section 11]). Below, we present a simple and direct proof.

We start with the following result which is important in its own right.
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Theorem 11.5. Let µ ∈ M+
b (X) and consider a closed subset Y of X such that

µ(ϕ) = 0 for every ϕ ∈ K(X), supp(ϕ) ⊂ X\Y. (11.13)

Then µ(f) = µ(g) for every f, g ∈ C0(X) such that f = g on Y .

Proof. It suffices to show that, if f ∈ C0(X) and f = 0 on Y , then µ(f) = 0. Consider such a
function f ∈ C0(X) and, given ε > 0, set U := {x ∈ X | |f(x)| < ε}. Hence, by Theorem 11.2,
X\U is compact and X\U ⊂ X\Y .

By Urysohn’s lemma (Theorem 11.1), there exists ϕ ∈ K(X), 0 ≤ ϕ ≤ 1, such that ϕ = 1 on
X\U and supp(ϕ) ⊂ X\Y . In particular, supp(fϕ) ⊂ supp(ϕ) ⊂ X\Y and hence µ(fϕ) = 0.

Therefore,
|µ(f)| = |µ(f) − µ(fϕ)| ≤ ‖µ‖‖f(1 − ϕ)‖ ≤ ‖µ‖ε,

because ‖f(1−ϕ)‖ ≤ ε as we now confirm. For every x ∈ X, we have, indeed, |f(x)(1−ϕ(x))| = 0
if x 6∈ U and, if x ∈ U, |f(x)(1 − ϕ(x))| ≤ |f(x)| ≤ ε. Since ε > 0 was arbitrarily chosen, we
conclude that µ(f) = 0. �

We point out that there always exists a closed subset Y of X satisfying (11.13). The smallest of
them is called the support of the measure µ (see the references before Theorem 11.5). An important
example of a subset Y satisfying (11.13) is given below.

Corollary 11.6. Let µ ∈ M+
b (X) and consider an arbitrary family (fi)i∈I of positive functions in

C0(X) such that µ(fi) = 0 for every i ∈ I. Then the subset

Y := {x ∈ X | fi(x) = 0 for every i ∈ I}

satisfies (11.13).
Therefore, if f, g ∈ C0(X) and if

f(x) = g(x) for every x ∈ Y,

then µ(f) = µ(g).

Proof. Consider ϕ ∈ K(X) such that

supp(ϕ) ⊂ X\Y = {x ∈ X | there exists i ∈ I with fi(x) > 0}.

By using a compactness argument, we then find a finite subset J of I such that

supp(ϕ) ⊂
⋃

i∈J

{x ∈ X | fi(x) > 0}.

If we set α := min

{∑
i∈J

fi(x) | x ∈ supp(ϕ)

}
> 0, we then obtain

|ϕ| ≤
‖ϕ‖

α

∑

i∈J

fi

and hence µ(f) = 0. �

By means of the previous result, it is easy to reach the announced characterization of discrete
Radon measures.
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Theorem 11.7. Given µ ∈ M+
b (X) and different points a1, . . . , an ∈ X,n ≥ 1, the following

statements are equivalent:

(i) There exist λ1, . . . , λn ∈ [0,+∞[ such that µ =
n∑

i=1
λiδai

(see (11.5));

(ii) if ϕ ∈ K(X) and supp(ϕ) ∩ {a1, . . . , an} = ∅, then µ(ϕ) = 0;

(iii) for every x ∈ X\{a1, . . . , an} there exists f ∈ C0(X), f ≥ 0, such that f(x) > 0, f(ai) = 0
for each i = 1, . . . , n, and µ(f) = 0.

Proof. (i)⇒(ii). It is obvious.
(ii)⇒(iii). If x ∈ X\{a1, . . . , an}, by Urysohn’s lemma, we can choose ϕ ∈ K(X), 0 ≤ ϕ ≤ 1,

such that ϕ(x) = 1 and supp(ϕ) ⊂ X\{a1, . . . , an} so that µ(f) = 0.
(iii)⇒(ii). Consider ϕ ∈ K(X) such that supp(ϕ) ∩ {a1, . . . , an} = ∅. By hypothesis, for every

x ∈ supp(ϕ), there exists fx ∈ C0(X), fx ≥ 0, such that fx(x) > 0, fx(ai) = 0 for every i = 1, . . . , n,
and µ(fx) = 0.

Since supp(ϕ) is compact, there exist x1, . . . , xp ∈ supp(ϕ) such that

supp(ϕ) ⊂

p⋃

k=1

{x ∈ X | fxk
(x) > 0}.

Therefore, the function f :=
p∑

k=1

fxk
∈ C0(X) is positive, it does not vanish at any point of supp(ϕ),

and µ(f) = 0.
If we set m := min{f(x) | x ∈ supp(ϕ)} > 0, it is immediate to verify that m|ϕ| ≤ ‖ϕ‖f and

hence µ(ϕ) = 0.
(ii)⇒(i). For every j = 1, . . . , n, consider ϕj ∈ K(X) such that 0 ≤ ϕj ≤ 1, ϕj(aj) = 1 and

ϕj(ai) = 0 for each i = 1, . . . , n, i 6= j.
If f ∈ C0(X), then

f =
n∑

i=1

f(ai)ϕi on {a1, . . . , an}.

On the other hand, the subset {a1, . . . , an} satisfies (11.13) and hence, by Theorem 11.5,

µ(f) =

n∑

i=1

f(ai)µ(ϕi) =

n∑

i=1

λif(ai)

where λi := µ(ϕi) ≥ 0 (i = 1, . . . , n) and this completes the proof. �

We end the Appendix by discussing some aspects of vague convergence for Radon measures.
For more details, we refer, e.g., to [30, §30] or to [39, Vol. I, §12].

A sequence (µn)n≥1 in M+
b (X) is said to converge vaguely to µ ∈ M+

b (X) if

lim
n→∞

µn(f) = µ(f) for every f ∈ C0(X). (11.14)

Thus, (11.14) simply means that µn → µ weakly in the dual space of C0(X).
If, in addition, X has a countable base, then C0(X) is separable and hence, by Banach’s theorem,

the unit ball of the dual of C0(X) is weakly sequentially compact. Therefore

Theorem 11.8. If X has a countable base, then every sequence in M+
b (X) that is bounded with

respect to the norm (11.2), has a subsequence that converges vaguely to some µ ∈ M+
b (X).
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Birkhäuser, Basel, 1964.

[60] A. D. Gadjiev, A problem on the convergence of a sequence of positive linear operators on
unbounded sets and theorems that are analogous to P. P. Korovkin’s theorem (Russian), Dokl.
Akad. Nauk SSSR, 218 (1974), no. 5, 1001–1004; translated in Soviet Math. Dokl., 15 (1974),
no. 5, 1433–1436.

[61] A. D. Gadjiev, Theorems of Korovkin type, Math. Notes, 20 (1976), 995–998.

[62] A. D. Gadjiev, Positive linear operators in weighted spaces of functions of several variables
(Russian), Izv. Akad. Nauk Azerbaijan SSR Ser. Fiz.-Tehn. Mat. Nauk, 1 (1980), no. 4, 32–37.

[63] A. D. Gadjiev and C. Orhan, some approximation theorems via statistical convergence, Rocky
Mountain J. Math., 32 (2002), 129–138.

[64] S. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser,
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[79] H. E. Lomeĺı and C. L. Garćıa, Variation on a theorem of Korovkin, Amer. Math. Monthly,
Vol. 113, no. 10 (Oct. 2006), 774–750.

[80] G. G. Lorentz, Korovkin sets (Sets of convergence), Regional Conference at the University of
California, Riverside, June 15-19, 1972, Center for Numerical Analysis, no. 58, The University
of Texas at Austin, 1972.

[81] G. G. Lorentz, Approximation of Functions, 2nd Ed. Chelsea Publ. Comp., New York, N. Y.
1986.

[82] G. G. Lorentz, Bernstein Polynomials, 2nd. Ed. Chelsea Publ. Comp., New York, N. Y. 1986.

[83] G. G. Lorentz, M. v. Golitschek and Y. Makovoz, Constructive Approximation, Advanced
Problems, Grundlehren der mathematischen Wissenschaften, 304, Springer- Verlag, Berlin,
Heidelberg, 1996.



F. Altomare 162

[84] N. I. Mahmudov, Korovkin-type theorems and applications, Cent. Eur. J. Math., 7(2) (2009),
348–356.

[85] C. A. Micchelli, Convergence of positive linear operators on C(X), J. Approx. Theory, 13

(1975), 305–315.

[86] G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, (Russian),
Dokl. Akad. Nauk SSSR, 31 (1941), 201–205.

[87] T. Nishishiraho, A generalization of the Bernstein polynomials and limit of its iterations, Sci.
Rep. Kanazawa Univ., 19 (1974), no. 1, 1–7.

[88] T. Nishishiraho, Saturation of positive linear operators, Tôhoku Math. J., (2) 28 (1976), no.
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[93] A. Pinkus, Weierstrass and approximation theory, J. Approx. Theory, 107 (2000), 1–66.

[94] A. Pinkus, Density in approximation theory, Surveys in Approximation Theory, 1 (2005), 1–45.

[95] T. Popoviciu, Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de in-
terpolare [On the proof of Weierstrass’ theorem with the help of interpolation polynomials],
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Române, Bucuresti, 1951.

[96] T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student
Texts, 28, Cambridge University Press, Cambridge, 1995.
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