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Preface

The systematic use of Koszul cohomology computations in algebraic geometry
can be traced back to the foundational paper [Gre84a] by M. Green. In this
paper, Green introduced the Koszul cohomology groups Kp,q(X,L) associated to a
line bundle L on a smooth, projective variety X, and studied the basic properties
of these groups. Green noted that a number of classical results concerning the
generators and relations of the (saturated) ideal of a projective variety can be
rephrased naturally in terms of vanishing theorems for Koszul cohomology, and
extended these results using his newly developed techniques. In a remarkable series
of papers, Green and Lazarsfeld further pursued this approach. Much of their work
in the late 80’s centers around the shape of the minimal resolution of the ideal of
a projective variety; see [Gre89], [La89] for an overview of the results obtained
during this period.

Green and Lazarsfeld also stated two conjectures that relate the Koszul coho-
mology of algebraic curves to two numerical invariants of the curve, the Clifford
index and the gonality. These conjectures became an important guideline for future
research. They were solved in a number of special cases, but the solution of the
general problem remained elusive. C. Voisin achieved a major breakthrough by
proving the Green conjecture for general curves in [V02] and [V05]. This result
soon led to a proof of the conjecture of Green–Lazarsfeld for general curves [AV03],
[Ap04].

Since the appearance of Green’s paper there has been a growing interaction
between Koszul cohomology and algebraic geometry. Green and Voisin applied
Koszul cohomology to a number of Hodge–theoretic problems, with remarkable
success. This work culminated in Nori’s proof of his connectivity theorem [No93].
In recent years, Koszul cohomology has been linked to the geometry of Hilbert
schemes (via the geometric description of Koszul cohomology used by Voisin in her
work on the Green conjecture) and moduli spaces of curves.

Since there already exists an excellent introduction to the subject [Ei06], this
book is devoted to more advanced results. Our main goal was to cover the re-
cent developments in the subject (Voisin’s proof of the generic Green conjecture,
and subsequent refinements) and to discuss the geometric aspects of the theory,
including a number of concrete applications of Koszul cohomology to problems in
algebraic geometry. The relationship between Koszul cohomology and minimal res-
olutions will not be treated at length, although it is important for historical reasons
and provides a way to compute Koszul cohomology by computer calculations.

Outline of contents. The first two chapters contain a review of a number of
basic definitions and results, which are mainly included to fix the notation and
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viii PREFACE

to obtain a reasonably self–contained presentation. Chapter 3 is devoted to the
theory of syzygy schemes. The aim of this theory is to study Koszul cohomology
classes in the groups Kp,1(X,L) by associating a geometric object to them. This
chapter includes a proof of one of the fundamental results in the subject, Green’s
Kp,1–theorem. In Chapter 4 we recall a number of results from Brill–Noether
theory that will be needed in the sequel and state the conjectures of Green and
Green–Lazarsfeld.

Chapters 5–7 form the heart of the book. Chapter 5 is devoted to Voisin’s
description of the Koszul cohomology groups Kp,q(X,L) in terms of the Hilbert
scheme of zero–dimensional subschemes of X. This description yields a method to
prove vanishing theorems for Koszul cohomology by base change, which is used in
Voisin’s proof of the generic Green conjecture. In Chapter 6 we present Voisin’s
proof for curves of even genus, and outline the main steps of the proof for curves of
odd genus; this case is technically more complicated. Chapter 7 contains a number
of refinements of Voisin’s result; in particular, we have included a proof of the
conjectures of Green and Green–Lazarsfeld for the general curve in a given gonality
stratum of the moduli space of curves. In the final chapter we discuss geometric
applications of Koszul cohomology to Hodge theory and the geometry of the moduli
space of curves.

Acknowledgments. MA thanks the Fourier Institute Grenoble, the University of
Bayreuth, Laboratoire Painlevé Lille, and the Max Planck Institut für Mathematik
Bonn, and JN thanks the Fourier Institute Grenoble, the University of Bayreuth,
and the Simion Stoilow Institute Bucharest for hospitality during the preparation
of this work. MA was partially supported by an ANCS contract. The authors are
members of the L.E.A. “MathMode”.

Marian Aprodu and Jan Nagel



CHAPTER 1

Basic definitions

1.1. The Koszul complex

Let V be a vector space of dimension r + 1 over a field k. Given a nonzero
element x ∈ V ∨, the corresponding map 〈x,−〉 : V → k extends uniquely to an
anti–derivation

ιx :
∧∗
V → ∧∗

V

of the exterior algebra of degree −1. This derivation is defined inductively by
putting ιx|V = 〈x,−〉 : V → k and

ιx(v ∧ v1 ∧ . . . ∧ vp−1) = 〈x, v〉.v1 ∧ . . . ∧ vp−1 − v ∧ ιx(v1 ∧ . . . ∧ vp−1).

The resulting maps
ιx :

∧p
V → ∧p−1

V

are called contraction (or inner product) maps; they are dual to the exterior product
maps

λx :
∧p−1

V ∨ ∧x−→ ∧p
V ∨

and satisfy ιx◦ιx = 0. Hence we obtain a complex

K•(x) : (0 → ∧r+1
V → . . .→ ∧p

V ιx−−→ ∧p−1
V ιx−−→ ∧p−2

V → . . .→ k → 0)

called the Koszul complex.

Note that for any α ∈ k∗, the complexes K•(x) and K•(αx) are isomorphic;
hence the Koszul complex depends only on the point [x] ∈ P(V ∨).

Lemma 1.1. Given nonzero elements ξ ∈ V , x ∈ V ∨, let λξ :
∧p−1

V ∧ξ−−→ ∧p
V

be the map given by wedge product with ξ. We have

ιx◦λξ + λξ◦ιx = 〈x, ξ〉. id .
Proof: It suffices to verify the statement on decomposable elements. To this end,
we compute

(λξ◦ιx)(v1 ∧ . . . ∧ vp) =
∑

i

(−1)i〈x, vi〉.ξ ∧ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp

(ιx◦λξ)(v1 ∧ . . . ∧ vp) = 〈x, ξ〉.v1 ∧ . . . ∧ vp
+

∑

i

(−1)i−1〈x, vi〉.ξ ∧ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp

and the statement follows. ¤

Corollary 1.2. For every nonzero element x ∈ V ∨, the Koszul complex K•(x)
is an exact complex of k-vector spaces.

Proof: Choose ξ ∈ V such that 〈x, ξ〉 = 1 and apply Lemma 1.1. ¤
1



2 1. BASIC DEFINITIONS

Remark 1.3. Put Wx = ker(〈x,−〉 : V → k). Taking exterior powers in the
resulting short exact sequence

0 →Wx → V → k → 0

we obtain exact sequences

0 → ∧p
Wx →

∧p
V → ∧p−1

Wx → 0

for all p ≥ 1. Using these exact sequences, one checks by induction on p that
∧p
Wx = ker(ιx :

∧p
V → ∧p−1

V ) = im(ιx :
∧p+1

V → ∧p
V )

for all p ≥ 1. Hence the contraction map ιx :
∧p
V → ∧p−1

V factors through∧p−1
Wx.

1.2. Definitions in the algebraic context

Let M be a graded module of finite type over the symmetric algebra S∗V . Let
ι :

∧p
V → ∧p−1

V ⊗V be the dual of the wedge product map λ :
∧p−1

V ∨⊗V ∨ →∧p
V ∨. Note that we have the identification

∧p
V ι−→ ∧p−1

V ⊗ V ∼= Hom(V ∨,
∧p−1

V )
v1 ∧ . . . ∧ vp 7→ (x 7→ ιx(v1 ∧ . . . ∧ vp)).

The graded S∗V –module structure of M induces maps µ : V ⊗Mq →Mq+1 for all
q. Define a map

δ :
∧p
V ⊗Mq →

∧p−1
V ⊗Mq+1

by the composition ∧p
V ⊗Mq

ι⊗id//

δ

((PPPPPPPPPPPP
∧p−1

V ⊗ V ⊗Mq

id⊗µ
²²∧p−1

V ⊗Mq+1.

Definition 1.4. The Koszul cohomology group Kp,q(M,V ) is the cohomology
at the middle term of the complex

(1.1)
∧p+1

V ⊗Mq−1
δ−→ ∧p

V ⊗Mq
δ−→ ∧p−1

V ⊗Mq+1.

An element x ∈ V ∨ induces a derivation

∂x : S∗V → S∗V

of degree −1 on the symmetric algebra, which is defined inductively by the rule

∂x(v.v1 . . . vp−1) = ∂x(v).v1 . . . vp−1 + v.∂x(v1 . . . vp−1).

If we choose coordinates X0, . . . , Xr on V , with duals xi ∈ V ∨, the resulting map

∂xk
: SpV → Sp−1V

sends a homogeneous polynomial f of degree p to the partial derivative ∂f
∂Xk

. Using
the natural map

Sq+1V −→ SqV ⊗ V ∼= Hom(V ∨, SqV )
f 7→ (x 7→ ιx(f))

and the wedge product map λ :
∧p−1

V ⊗ V → ∧p
V we define the map

D :
∧p−1

V ⊗ Sq+1V → ∧p
V ⊗ SqV
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as the composition ∧p−1
V ⊗ Sq+1V

id⊗ι //

D

))SSSSSSSSSSSSSS

∧p−1
V ⊗ V ⊗ SqV

λ⊗id

²²∧p
V ⊗ SqV.

Proposition 1.5. We have K0,0(S∗V, V ) ∼= C, and Kp,q(S∗V, V ) = 0 for all
(p, q) 6= (0, 0).

Proof: The first part follows from the definition. To prove the second part, choose
coordinates X0, . . . , Xr on V and note that

D :
∧p
V ⊗ Sq+1V → ∧p+1

V ⊗ SqV

is given by

Xi1 ∧ · · · ∧Xip ⊗ f 7→
r∑

k=0

Xk ∧Xi1 ∧ · · · ∧Xip ⊗
∂f

∂Xk
.

The Euler formula
r∑

k=0

Xk
∂f

∂Xk
= q.f

implies that
D ◦ δ + δ ◦D = (p+ q).id,

hence the Koszul complex is exact. ¤

Corollary 1.6. We have an exact complex of graded S∗V –modules

K•(k) : (0 → ∧r+1
V ⊗ S∗V (−r − 1) → ∧r

V ⊗ S∗V (−r) → . . .(1.2)

· · · → ∧2
V ⊗ S∗V (−2) → V ⊗ S∗V (−1) → S∗V → k → 0).

Proof: Put together the Koszul complexes for S∗V with various degree shifts.
¤

1.3. Minimal resolutions

Let M = ⊕qMq be a graded S∗V –module of finite type. Let m = ⊕d≥1S
dV ⊂

S∗V be the irrelevant ideal of S∗V = S.

Definition 1.7. A graded free resolution

· · · → Fp+1
ϕp+1−→ Fp → · · · → F0 →M → 0(1.3)

is called minimal if ϕp+1(Fp+1) ⊂ m.Fp for all p.

Remark 1.8. Put F i = Fi ⊗ k, ϕi = ϕ⊗ id : F i → F i−1. The resolution F• is
minimal if and only if ϕi = 0 for all i.

Proposition 1.9. Every finitely generated graded S∗V –module admits a min-
imal free resolution. The minimal free resolution is unique up to isomorphism.

Proof: The statement is proved in [Ei95, §20.1] for the case of local rings. The
proof in the graded case is analogous. ¤
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Remark 1.10. Bruns and Herzog [BH93] note that the statement of Proposi-
tion 1.9 extends to so–called *–local rings, a class of rings that includes local rings
and symmetric algebras.

Definition 1.11. Let F• → M be a minimal graded free resolution. Write
Fi = ⊕jS(−j)βi,j = ⊕jMi,j ⊗ S(−j), where Mi,j is a k–vector space of dimension
βi,j .

(i) The numbers βi,j are called the graded Betti numbers of the module M ;
(ii) The vector space M0,q is called the space of generators of M of degree q.

If p ≥ 1 then Mp,q is called the space of syzygies of order p and degree q
of the module M .

Proposition 1.12. We have

Kp,q(M,V ) ∼= Mp,p+q.

Proof: The symmetry property of the Tor functor implies that we can calculate
TorSp (M,k) via a free resolution of one of the two factors. The Koszul complex
K•(k) provides a free resolution of k by Corollary 1.6. Hence

TorSp (M,k)p+q = Hp(K•(k)⊗M)p+q = Kp,q(M,V ).

If we compute TorSp (M,k) via the free resolution F• of M , we find

TorSp (M,k)p+q = Hp(F• ⊗ k)p+q = Mp,p+q

by Remark 1.8, and the statement follows. ¤

Corollary 1.13. Put κp,q = dim kKp,q(M,V ). We have κp,q = βp,p+q.

Corollary 1.14 (Hilbert syzygy theorem). Any graded S∗V module M of
finite type has a graded free resolution F• →M of length at most dim V .

Proof: Put r = dim P(V ∨). Clearly κp,q = 0 for p ≥ r + 2, hence Mp,q = 0 for
p ≥ r + 2 by Proposition 1.12. ¤

Definition 1.15. The Betti table associated to a graded S∗V –module M is
given by

β0,0 β1,1 β2,2 . . .
β0,1 β1,2 β2,3 . . .
β0,2 β1,3 β2,4 . . .

...
...

...

=

κ0,0 κ1,0 κ2,0 . . .
κ0,1 κ1,1 κ2,1 . . .
κ0,2 κ1,2 κ2,2 . . .

...
...

...

Remark 1.16. The number of columns with non-zero elements in the Betti
diagram equals the projective dimension of the module M . See Remark 2.38 for
the meaning of the number of rows in the Betti diagram.

Example 1.17. The coordinate ring SX of the twisted cubic X ⊂ P3 admits a
resolution

0 → S(−3)2 → S(−2)3 → S → SX → 0.
The associated Betti diagram is (we put a dash ’−’ if the corresponding entry is
zero)

1 − −
− 3 2.
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1.4. Definitions in the geometric context

Let X be a projective variety over C, and let L be a holomorphic line bundle
on X. Put V = H0(X,L).

Definition 1.18. The Koszul cohomology group Kp,q(X,L) is the Koszul co-
homology of the graded S∗V –module

R(L) =
⊕

qH
0(X,Lq).

Concretely, this means that Kp,q(X,L) is the cohomology at the middle term
of the complex

∧p+1
V ⊗H0(X,Lq−1) δ−→ ∧p

V ⊗H0(X,Lq) δ−→ ∧p−1
V ⊗H0(X,Lq+1),

where the differential
∧p+1

V ⊗H0(X,Lq−1) δ−→ ∧p
V ⊗H0(X,Lq)

is given by

δ(v1 ∧ . . . ∧ vp+1 ⊗ s) =
∑

i

(−1)iv1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp+1 ⊗ (vi.s).

More generally, if V ⊂ H0(X,L), and F is a coherent sheaf on X, then we
define

R(F , L) =
⊕

qH
0(X,F ⊗ Lq)

Kp,q(X;F , L, V ) = Kp,q(R(F , L), V ).

If F = OX we write Kp,q(X,L, V ).

Remark 1.19. The above definition admits an obvious generalization to higher
cohomology groups. Consider the graded S∗V –module

Ri(F , L) =
⊕

qH
i(X,F ⊗ Lq)

and put Ki
p,q(X;F , L) = Kp,q(Ri(F , L), V ). For technical reasons it is sometimes

useful to study these groups; cf. [Gre84a].

Remark 1.20. Note that we may shift the second index in the Koszul coho-
mology groups by changing the coherent sheaf:

Kp,q(X;F , L) = Kp,q−1(X;F ⊗ L,L) = . . .

= Kp,1(X;F ⊗ Lq−1, L) = Kp,0(X;F ⊗ Lq, L).

Given a vector bundle E on X and a section σ ∈ H0(X,E∨), the construction
of Section 1.1 generalizes and gives a Koszul complex of vector bundles

K•(σ) : (
∧r
E → . . .→ ∧p

E ισ−−→ ∧p−1
E → . . .→ OX).

If σ is a regular section, i.e. the rank of E coincides with the codimension of the
zero locus Z = V (σ), this complex provides a resolution of the ideal sheaf IZ of Z;
cf. [FL85]. More generally, given a line bundle L and a homomorphism of vector
bundles σ : E → L, we obtain a complex of vector bundles

K•(σ) : (. . .→ ∧p
E ⊗ Lq δ−→ ∧p−1

E ⊗ Lq+1 → . . .)
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where δ is defined as the composition
∧p
E ⊗ Lq ι⊗id−−−→ ∧p−1

E ⊗ E ⊗ Lq id⊗(µ◦σ)−−−−−−−→ ∧p−1
E ⊗ Lq+1.

Given a line bundle L, put V = H0(X,L). Applying the above construction to the
evaluation map ev : V ⊗OX → L, we obtain a Koszul complex of vector bundles

K•(X,L) : (. . .→ ∧p
V ⊗ Lq δ−→ ∧p−1

V ⊗ Lq+1 → . . .).

The Koszul complex K•(X,L) associated to the S∗V –module R(L) is obtained
from this complex by taking global sections.

Example 1.21. Let V be a k–vector space of dimension r + 1. Applying the
above construction to the line bundle OP(1) on P(V ∨), we obtain an exact complex
of locally free sheaves

(1.4) 0 → ∧r+1
V ⊗OP(−r−1) → . . .→ ∧2

V ⊗OP(−2) → V ⊗OP(−1) → OP → 0.

Note that complex (1.4) coincides with the sheafification of the complex of graded
S∗V –modules appearing in Corollary 1.6. (And conversely, this complex can be
recovered from the complex of sheaves (1.4) by taking global sections.)

1.5. Functorial properties

1.5.1. Algebraic case. Consider the category C whose objects are pairs (M,V ),
where V is a finite–dimensional k–vector space and M i s a graded S∗V –module.
Given a homomorphism f : M → M ′ of graded S∗V –modules and a linear map
g : V → V ′, let

S(g) : S∗V → S∗V ′

be the induced homomorphism of symmetric algebras. We say that (f, g) : (M,V ) →
(M ′, V ′) is a morphism in C if

f(λ.x) = S(g).f(x) ∀λ ∈ S∗V, ∀x ∈M.

Given a morphism ϕ = (f, g) as above, we obtain induced maps of Koszul groups

ϕ∗ : Kp,q(M,V ) → Kp,q(M ′, V ′)

for all p, q. Hence Koszul cohomology defines a covariant functor

Kalg : C → (BiGr − V ect)k
(M,V ) 7→ K∗,∗(M,V )

from C to the category of bigraded k–vector spaces.

Lemma 1.22. An exact sequence 0 → A→ B → C → 0 of graded S∗V –modules
induces a long exact sequence of Koszul groups

Kp+1,q−1(C, V ) → Kp,q(A, V ) → Kp,q(B, V ) → Kp,q(C, V ) → Kp−1,q+1(A, V ).

Proof: Let

K•(M) = (. . .→ ∧p+1
V ⊗Mq−1 →

∧p
V ⊗Mq →

∧p−1
V ⊗Mq+1 → . . .)

be the Koszul complex associated to a graded S∗V –module M . The result follows
by taking the long exact homology sequence associated to the short exact sequence

0 → K•(A) → K•(B) → K•(C) → 0.

¤
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This leads to the following easy but useful corollary.

Corollary 1.23. Let f : A→ B be a homomorphism of graded S∗V –modules
(i) If f is injective then

(a) Kp,q(A, V ) → Kp,q(B, V ) is injective if Aq−1 = Bq−1;
(b) Kp,q(A, V ) → Kp,q(B, V ) is surjective if Aq = Bq.

(ii) If f is surjective then
(a) Kp,q(A, V ) → Kp,q(B, V ) is injective if Aq = Bq;
(b) Kp,q(A, V ) → Kp,q(B, V ) is surjective if Aq+1 = Bq+1.

Proof: To prove (i), put C = ker f , apply Lemma 1.22 and note that Ci = 0
implies Kp,i(C, V ) = 0. For (ii), apply the same reasoning with C = coker f .

¤

1.5.2. Geometric case. Let V be the category whose objects are pairs (X,L),
with X a projective variety defined over C and L a holomorphic line bundle on X.
A morphism in V is a pair (f, f#) : (X,L) → (Y,M) with f : X → Y a morphism of
k–varieties and f# : M → f∗L a homomorphism of line bundles. By adjunction, f#

corresponds to a homomorphism (still denoted f#) f∗M f#−−→ L. Given a morphism
ϕ = (f, f#) as above, we obtain maps

H0(Y,M q) f∗−−→ H0(X, f∗Mq) f#−−→ H0(X,Lq).

Put V = H0(X,L), W = H0(Y,M). Given a morphism ϕ = (f, f#) as above, we
obtain an induced morphism (R(M),W ) → (R(L), V ) in C. Hence the preceding
construction defines contravariant functors

R : V → C
(X,L) 7→ (R(L), V ).

and

Kgeom : V → (BiGr − V ect)k
(X,L) 7→ K∗;∗(X,L).

Note that Kgeom = Kalg◦R.

Remark 1.24. There exists an obvious extension of the functors R and Kgeom

to the category Ṽ of quadruples (X;F , L, V ) with F ∈ Coh(X), L ∈ Pic(X), V ⊆
H0(X,L). A morphism in this category is a 3–tuple (f, f#, f##) : (X,L,F , V ) →
(Y,M,G,W ) with

f : X → Y, f# : M → f∗L, f## : G → f∗F
such that f is proper and such that the induced mapH0(Y,M) → H0(X,L) induces
a linear map W → V .

Definition 1.25. Given a pair (X,L) ∈ V there is a natural homomorphism
of graded S∗V –modules π : S∗V → R(L). Put

S(X) = im(π), I = ker(π).

Remark 1.26. If L is globally generated with associated morphism ϕL : X →
PH0(X,L)∨, then S(X) is the coordinate ring of ϕL(X) and I its ideal.
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Proposition 1.27. Notation as above. The inclusion S(X) ⊂ R(L) induces a
homomorphism

Kp,q(S(X), V ) → Kp,q(R(L), V ) = Kp,q(X,L).

We have
(i) Kp,1(S(X),W ) ∼= Kp,1(X,L,W ) for every linear subspace W ⊂ V ;
(ii) Kp,q(S(X), V ) ∼= Kp−1,q+1(I, V ) for all q ≥ 1.

Proof: The first isomorphism follows by applying Corollary 1.23 to the inclusion
S(X) ⊂ R(L), using the equalities S0(X) = R0(X) = C, S1(X) = R1(L) = V . The
second statement follows from the long exact sequence of Koszul groups associated
to 0 → I → S∗V → S(X) → 0 and the vanishing Kp,q(S∗V, V ) = 0 for all q ≥ 1
(Proposition 1.5). ¤

Corollary 1.28. Suppose X and Y are subvarieties of P(V ∨) such that Y ⊂
X. If Y is nondegenerate then Kp,1(S(X), V ) ⊂ Kp,1(S(Y ), V ).

Proof: By hypothesis I1(X) = I1(Y ) = 0, hence

Kp−1,2(I(X), V ) ⊂ Kp−1,2(I(Y ), V )

by Corollary 1.23. The result then follows from Proposition 1.27. ¤

Let f : X → S be a projective morphism of schemes, and let L ∈ Pic(X/S).
Recall [HAG77, II, Ex. 5.16] that given a sheaf F of OS–modules, its p–th exterior
power

∧pF is defined as the sheaf associated to the presheaf

U 7→ ∧pF(U).

In particular, there exist natural wedge product and (by duality) contraction maps

λ :
∧p−1F ⊗ F → ∧pF , ι :

∧pF → ∧p−1F ⊗ F .
Proposition 1.29. Let f : X → S be a flat, projective morphism such that

S is integral. There exist a coherent sheaf Kp,q(X/S,L) on S and a Zariski open
subset U ⊂ S such that

Kp,q(X/S,L)⊗ k(s) ∼= Kp,q(Xs, Ls)

for all s ∈ U .

Proof: Put E = f∗L. Using the natural maps

ι :
∧pE → ∧p−1E ⊗ E , µ : f∗L⊗ f∗(Lq) → f∗(Lq+1),

we obtain a homomorphism of OS–modules

δ :
∧pE ⊗ f∗(Lq) →

∧p−1E ⊗ f∗(Lq+1).

The sheaf Kp,q(X/S,L) is defined as the cohomology sheaf at the middle term of
the resulting complex of sheaves of OS–modules

(1.5)
∧p+1E ⊗ f∗(Lq−1) δ−→ ∧pE ⊗ f∗(Lq) δ−→ ∧p−1E ⊗ f∗(Lq+1).

As f is proper, the sheaves f∗(Lq) are coherent for all q ≥ 0. Hence the cohomology
sheaf Kp,q(X/S,L) is a coherent sheaf of OS–modules.



1.5. FUNCTORIAL PROPERTIES 9

Since f is flat and L is locally free, Lq is flat over S for all q ≥ 0. Hence the
function

Fq : s 7→ dim k(s)H
0(Xs, L

q
s)

is upper semicontinuous for all q ≥ 0 [HAG77, III, Thm. 12.8]. The function Fq
takes its minimal value on a nonempty Zariski open subset Uq ⊂ S. Put

U = U0 ∩ Uq−1 ∩ Uq ∩ Uq+1.

Since the functions F0, Fq−1, Fq and Fq+1 are constant on U , the maps

(1.6) f∗(Lk)⊗ k(s) → H0(Xs, L
k
s)

are isomorphisms for k ∈ {0, q−1, q, q+1} by Grauert’s theorem; cf. [HAG77, III,
Cor. 12.9]. Let is : Spec k(s) ↪→ S be the inclusion of a point. Since the functor
F 7→ F ⊗ k(s) = i∗sF is exact, we have

Hp(i∗sF•) ∼= i∗sHp(F•)
for every complex F• of coherent OS–modules. Put V = H0(Xs, Ls) and apply the
functor i∗s = ⊗ k(s) to the complex (1.5). Using the isomorphisms (1.6) we obtain
a complex

∧p+1
V ⊗H0(Xs, L

q−1
s ) δs−−→ ∧p

V ⊗H0(Xs, L
q
s)

δs−−→ ∧p−1
V ⊗H0(Xs, L

q+1
s )

for all s ∈ U . By construction δs is the usual Koszul differential. Hence

Kp,q(X/S,L)⊗ k(s) ∼= Kp,q(Xs, Ls)

for all s ∈ U . ¤

Remark 1.30. The construction of the sheaf Kp,q(X/S,L) appears in [V93]
in the case that E is locally free. More generally, if F is a coherent sheaf on X that
is flat over S one can define coherent sheaves Kip,q(X/S;F , L) such that

Kip,q(X/S;F , L)⊗ k(s) ∼= Ki
p,q(Xs;Fs, Ls)

for all s belonging to a suitable Zariski open subset of S.

Corollary 1.31. Notation as above. The function

s 7→ κp,q(Xs, Ls)

is upper semicontinuous on the Zariski open subset U ⊂ S.

Proof: Nakayama’s lemma implies that for every coherent sheaf F on S, the
function

s 7→ dim k(s)(F ⊗ k(s))

is upper semicontinuous; cf. [HAG77, III, Example 12.7.2]. ¤
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1.6. Notes and comments

The Koszul complex was originally defined as a graded differential algebra. The
first example emerged from to the following situation, see [Ko50] and [Hal87].
Consider G → E → X be a (real) principal principal fibre bundle over a real-
analytic manifolds X (a typical example is obtained for a Lie group E, when G is a
Lie subgroup, and X = E/G is a homogeneous space). If PG denotes the subspace
of primitive elements, then the graded algebra of differential forms A∗(E) on E is
isomorphic to the graded algebra A∗(M) ⊗ ∧∗

PG. Under this isomorphism, the
deRham differential corresponds to an explicit differential operator on A∗(M) ⊗∧∗
PG. Hence, the deRham cohomology of E can be explicitly recovered from the

given Koszul complex.

The general algebraic situation is the following. Consider A be a commutative
ring, n a positive integer, and endow the tensor algebra A ⊗Z

∧∗Zn the natural
graduation, [Ei95], obtained giving to any element of the canonical basis {ei}i
of Zn the degree one. Choosing an element a = (a1, . . . , an) of An, on the ring
A⊗Z

∧∗Zn ∼= ∧∗(An) one defines a differential dA by mapping A to 0 and any ei
to ai; note that this map shifts the degrees by −1. This differentiation coincides
with the contraction ia, where a is seen as an element of the dual module (An)∨.
The new graded differential algebra is denoted by K•(a). One readily sees that we
have an isomorphism of graded differential algebras K•(a) ∼= K•(a1)⊗ . . .⊗K•(an),
where the structures on the latter algebra are defined naturally.

If M is an A-module, we have an induced differentiation dM on the K•(a)-
graded modulesK•(a,M) = M⊗Z

∧∗Zn, respectivelyK•(a,M) = HomA(K•(a),M)
and versions are available for differential graded modules, [EGA 3-1].

For other applications of the Koszul cohomology we refer to [Hal87].



CHAPTER 2

Basic results

2.1. Kernel bundles

Definition 2.1. Suppose that L is globally generated. The kernel ML of the
surjective map

ev : H0(X,L)⊗OX → L

is called the kernel bundle of L. It is a vector bundle of rank h0(X,L) − 1. If
W ⊂ H0(X,L) is a linear subspace such that ev |W : W ⊗ OX → L is surjective,
we put MW = ker(ev |W ).

Remark 2.2. The vector bundles ML were extensively used in the work of
Green and Lazarsfeld; cf. [La89].

Remark 2.3. The short exact sequence

0 →ML → H0(X,L)⊗OX → L→ 0

is the pull-back via the morphism defined by L of the Euler sequence

0 → Ω1
P(1) → H0(X,L)⊗OP → OP(1) → 0

on the projective space P = PH0(X,L)∨.

Proposition 2.4. Suppose that L is a globally generated line bundle on X.
Then

Kp,q(X,L) ∼= coker (
∧p+1

V ⊗H0(X,Lq−1) → H0(X,
∧p
ML ⊗ Lq))

∼= ker(H1(X,
∧p+1

ML ⊗ Lq−1) → ∧p+1
V ⊗H1(X,Lq−1)).

Proof: Taking exterior powers in the short exact sequence

0 →ML → V ⊗OX ev−−→ L→ 0

we obtain exact sequences

0 → ∧p
ML →

∧p
V ⊗OX → ∧p−1

ML ⊗ L→ 0

for all p ≥ 1. As in Remark 1.3 one shows that the map

δ :
∧p
V ⊗ Lq → ∧p−1

V ⊗ Lq+1

factors through
∧p−1

ML ⊗Lq+1. Hence the kernel and image of the Koszul differ-
ential

δ :
∧p
V ⊗H0(X,Lq) → ∧p−1

V ⊗H0(X,Lq+1)
are given by

ker δ ∼= H0(X,
∧p
ML ⊗ Lq)

im δ ∼= im(
∧p
V ⊗H0(X,Lq) → H0(X,

∧p−1
ML ⊗ Lq+1))

11
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and the first description follows. The second description is obtained from the long
exact cohomology sequence associated to the exact sequence

0 → ∧p+1
ML ⊗ Lq−1 → ∧p+1

V ⊗ Lq−1 → ∧p
ML ⊗ Lq → 0.

¤

Remark 2.5. From the proof, one easily deduces the following vanishing result

(2.1) H0(X,
∧p
ML) = 0,

for all p ≥ 1.

Remark 2.6. More generally, ifW ⊂ H0(X,L) generates L and F is a coherent
sheaf on X then Kp,q(X;F , L,W ) is isomorphic to

coker (
∧p+1

W ⊗H0(X,F ⊗ Lq−1) → H0(X,F ⊗∧p
MW ⊗ Lq))

and to

ker(H1(X,
∧p+1

MW ⊗F ⊗ Lq−1) → ∧p+1
W ⊗H0(X,F ⊗ Lq−1)).

Proposition 2.7. Suppose that L is a very ample line bundle on X. Put
P = PH0(X,L)∗, and denote MP = Ω1

P(1) the kernel of the evaluation map, and
IX the ideal sheaf of X in P. Then

Kp,1(X,L) ∼= H0(P,
∧p−1

MP ⊗ IX ⊗OP(2))
∼= ker(H0(P,

∧p−1
MP ⊗OP(2)) → H0(X,

∧p−1
ML ⊗ L2)).

Proof: The exact sequence of sheaves

0 → IX → OP → OX → 0

induces a long exact sequence of Koszul cohomology spaces:

Kp,1(P,OP(1)) → Kp,1(X,L) → Kp−1,2(P, IX ,OP(1)) → Kp−1,2(P,OP(1))

The vanishing of Koszul cohomology on projective spaces (Proposition 1.5)
shows that

Kp,1(X,L) ∼= Kp−1,2(P, IX ,OP(1)).

As in the proof of the Proposition 2.4 above, we observe that the latter space
is isomorphic to H0(P,

∧p−1
MP ⊗ IX ⊗OP(2)).

2.2. Projections and linear sections

Let A and B be finite–dimensional k–vector spaces. Recall the following two
basic constructions.

(i) Given a surjective map p : A → B and a projective variety X = V (I) ⊂
P(A∨) we obtain an induced map S(p) : S∗A → S∗B. Let J ⊂ S∗B be
the ideal generated by the image of I, and put Y = V (J) ⊂ P(B∨). Then
Y = X ∩ P(B∨) is a linear section of X.

(ii) Given an injective map i : B → A and a projective variety Y = V (J) ⊂
P(B∨), let I be the ideal generated by the image of J under the induced
map S(i) : S∗B → S∗A and put X = V (I) ⊂ P(A∨). Then X is the cone
over Y with vertex P(C∨), C = coker i.
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In the next two subsections we shall consider the effect of these operations on
Koszul cohomology. It suffices to treat projections from a point and sections with a
hyperplane, since general projections and linear sections are obtained by a repeated
application of these operations.

2.2.1. Projection and evaluation maps. LetX be a projective variety over
C, and let L be a line bundle on X. Given a linear subspace V ⊆ H0(X,L) and an
element 0 6= x ∈ V ∨, the map evx = 〈x, −〉 induces an exact sequence

0 →Wx → V evx−−−→ C→ 0.

Taking exterior powers, we obtain an exact sequence

0 → ∧p
Wx →

∧p
V −→ ∧p−1

Wx → 0.

As we have seen in Remark 1.3, the map
∧p
V → ∧p−1

Wx is given by contraction
with x, i.e., it is given by the formula

ιx(v1 ∧ . . . ∧ vp) =
∑

i

(−1)iv1 ∧ . . . v̂i ∧ . . . ∧ vp ⊗ evx(vi).

The factorization ∧p
V ιx−−→ ∧p−1

Wx ↪→
∧p−1

V

induces a commutative diagram

Kp,q(M,V )
prx //

evx

((PPPPPPPPPPPP
Kp−1,q(M,Wx)

²²
Kp−1,q(M,V ).

The maps

prx : Kp,q(M,V ) → Kp−1,q(M,Wx)
evx : Kp,q(M,V ) → Kp−1,q(M,V )

are called the projection and evaluation maps on Koszul cohomology.

Lemma 2.8. The projection map prx fits into a long exact sequence of Koszul
cohomology groups

(2.2) Kp,q(M,Wx) → Kp,q(M,V ) prx−−−→ Kp−1,q(M,Wx) → Kp−1,q+1(M,Wx).

Proof: Apply Lemma 1.22 to the exact sequence of S∗V –modules

0 → ∧p
Wx ⊗M → ∧p

V ⊗M −→ ∧p−1
Wx ⊗M → 0.

¤

Corollary 2.9. If Kp,0(M,V ) = 0, then Kp,1(M,Wx) injects into Kp,1(M,V ).

As x varies, the maps evx glue together to a homomorphism of vector bundles
on P = P(V ∨)

ev : OP ⊗Kp,q(M,V ) → OP(1)⊗Kp−1,q(M,V ).

The homomorphism ev is obtained in the following way. Given ` ∈ Z, we put

Kp,q(`) =
l−p−q∧

V ⊗OP(p)⊗Mq.
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This defines a double complex of vector bundles on P(V ∨); the horizontal differential
is the differential of the sheafified Koszul complex (1.4), and the vertical differential
is the differential of the Koszul complex of M . As the the Koszul complex (1.4)
is exact, the rows of this double complex are exact. Hence the associated spectral
sequence

Ep,q1 (`) = Hp(K•,q(`)) = OP(p)⊗Kl−p−q,q(M,V )

converges to zero. The desired homomorphism is then obtained as the differential

E0,1
1 (`) d1−−→ E1,1

1 (`)
‖ ‖

K`−1,1(M,V )⊗OP → K`−2,1(M,V )⊗OP(1).

Proposition 2.10. Let M be a graded S∗V –module such that

(2.3) Mq = 0 for all q < 0 and Kp,0(M,V ) = 0 for all p ≥ 1.

Then the map
H0(ev) : Kp+1,1(M,V ) −→ V ⊗Kp,1(M,V )

is injective for all p ≥ 1.

Proof: We take global sections in the double complex Kp,q(`) to obtain a double
complex with general term

Kp,q(`) =
{ ∧`−p−q

V ⊗ SpV ⊗K`−p−q,q(M,V ) p ≥ 0
0 p < 0

The assumptions on M imply that the associated spectral sequence

Ep,q1 (`) = SpV ⊗K`−p−q,q(M,V )

is a first quadrant spectral sequence, i.e., Ep,q1 (`) = 0 if p < 0 or q < 0. We have

Ep,q∞ (`) =
{

0 (p, q) 6= (0, `)
M` (p, q) = (0, `).

The map H0(ev) is the differential d1 : E0,1
1 (`) → E1,1

1 (`). The assumptions on
M and p imply that ` ≥ 3 and E0,2

1 (`) = K`−2,0(M,V ) = 0. Hence there are no
incoming or outgoing differentials at position (0, 1) and

kerH0(ev) = E0,1
2 (`) = E0,1

∞ (`) = 0.

¤

Remark 2.11. If L is a line bundle on X such that L � OX and H0(X,L) 6= 0,
the hypotheses of the Proposition are satisfied for the module R(L).

Remark 2.12. If M is a graded S∗V –module such that M−1 = 0, M0 = C,
M1 = V , and W ⊂ V is a linear subspace, then Kp,0(M,W ) = 0 for all p > 0.
Indeed, the assumptions imply that

Kp,0(M,W ) = ker(
∧p
W δ−→ ∧p−1

W ⊗ V ).

The dual map δ∨ is surjective, since it factors as
∧p−1

W∨ ⊗ V ∨ → ∧p−1
W∨ ⊗W∨ ∧−→ ∧p

W∨.
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Corollary 2.13. If M satisfies the condition (2.3) then

Kp,1(M,V ) = 0 =⇒ Kp+1,1(M,V ) = 0

for all p > 0.

Proposition 2.14. Let M be a graded S∗V –module that satisfies (2.3), and
let α ∈ Kp+1,1(M,V ) be a non-zero element. There exists a proper linear subspace
Λ ( P(V ∨) such that prx(α) 6= 0 for all [x] /∈ Λ.

Proof: As H0(ev) is injective by Proposition 2.10, we have H0(ev)(α) 6= 0. Write

H0(ev)(α) =
k∑

i=1

vi ⊗ αi,

with αi ∈ Kp,1(M,V ) linearly independent and vi ∈ V . Let Hi ⊂ V ∨ be the
hyperplane dual to vi. Since

evx(α) = 0 ⇐⇒ vi ∈Wx for all i
⇐⇒ x ∈ Hi for all i

the assertion follows by taking Λ = ∩ki=1P(Hi). ¤

Proposition 2.15. Let W ⊂ V be a linear subspace. Then Kp,q(S∗V,W ) = 0
for all p > 0.

Proof: We argue by induction on c = codim (W ). If c = 0 the result follows from
Proposition 1.5. For the induction step, we assume that the result is known for
linear subspaces of codimension ≤ c− 1. Choose a flag of linear subspaces

W = Wc ⊂Wc−1 ⊂ . . . ⊂W1 ⊂W0 = V

such that codim (Wi) = i. As there exists x ∈ W∨
c−1 such that Wc = ker(evx) ⊂

Wc−1, we have an exact sequence

Kp,q−1(S∗V,Wc) → Kp,q(S∗V,Wc) → Kp,q(S∗V,Wc−1).

The induction hypothesis implies that the map

Kp,q−1(S∗V,Wc) → Kp,q(S∗V,Wc)

is surjective for all q ≥ 1. Hence Kp,q(S∗V,W ) is a quotient of Kp,0(S∗V,W ), and
the result follows from Remark 2.12. ¤

Corollary 2.16. Put I = ker(S∗V → R(L)). If p ≥ 1 then

Kp,1(S(X),W ) ∼= Kp−1,2(I,W )

for every linear subspace W ⊂ V .

Remark 2.17. In the geometric case, the projection map can be defined using
kernel bundles. For simplicity, consider X be a curve, L be a line bundle on X,
and suppose x ∈ X is a point which is not a base point of L. As before, we have
an induced short exact sequence

0 →Wx → H0(X,L) → C→ 0,

where Wx = H0(X,L(−x)). From the restricted Euler sequences corresponding to
L, and L(−x) respectively, we obtain an exact sequence:

0 →ML(−x) →ML → OX(−x),
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and further

0 →
p+1∧

ML(−x) ⊗ L→
p+1∧

ML ⊗ L→
p∧
ML(−x) ⊗ L(−x),

for any positive integer p. The exact sequence of global sections, together with the
natural sequence

0 →
p+2∧

Wx →
p+2∧

H0(X,L) →
p+1∧

Wx → 0,

induce an exact sequence:

0 → Kp+1,1(X,L,Wx) → Kp+1,1(X,L)
prx−→ Kp,1(X,L(−x)),

where prx is the projection map centered in x.

In the case of varieties X of higher dimension, one has to blow up the point x.

2.2.2. Lefschetz theorems. Let X ⊂ P(V ∨) be a nondegenerate variety, and
let H = V (t) ⊂ P(V ∨) be a hyperplane such that no irreducible component of X
is contained in H. Put Y = X ∩H, W = V/C.t. Let I(Y ) be the saturated ideal
defining Y , and put

I ′(Y ) = I(X) + (t)/(t) ⊆ I(Y ), S′(Y ) = S∗W/I ′(Y ).

Lemma 2.18. We have Kp,q(S(X), V ) ∼= Kp,q(S′(Y ),W ) for all p, q.

Proof: The choice of a splitting V ∼= W ⊕ C.t induces isomorphisms

Kp,q(S′(Y ), V ) ∼= Kp,q(S′(Y ),W )⊕Kp−1,q(S′(Y ),W ).

The hypothesis of the theorem implies that t ∈ S(X) is not a zero divisor. The
resulting exact sequence

0 → S(X)(−1) .t−→ S(X) → S′(Y ) → 0

gives rise to a long exact sequence

Kp,q−1(S(X), V ) .t−→ Kp,q(S(X), V ) → Kp,q(S′(Y ), V ) → Kp−1,q(S(X), V )

of S∗V –modules. The commutative diagram
∧p+1

V ⊗ Sq−1(X)

δ

²²∧p
V ⊗ Sq−1(X)⊗ V

55jjjjjjjjjjjjjjj
// ∧p

V ⊗ Sq(X)

shows that the map

Kp,q−1(S(X), V ) .t−→ Kp,q(S(X), V )

is zero. Hence we obtain short exact sequences

0 → Kp,q(S(X), V ) → Kp,q(S′(Y ),W )⊕Kp−1,q(S′(Y ),W ) → Kp−1,q(S(X), V ) → 0.

By induction on p (the case p = 0 being obvious) we find that

Kp,q(S(X), V ) ∼= Kp,q(S′(Y ),W ).

¤
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Theorem 2.19. Notation as before.
(i) The restriction map Kp,1(S(X), V ) → Kp,1(S(Y ),W ) is injective for all

p ≥ 1;
(ii) If the restriction map I2(X) → I2(Y ) is surjective then Kp,1(S(X), V ) ∼=

Kp,1(S(Y ),W );
(iii) Kp,q(S(X), V ) ∼= Kp,q(S(Y ),W ) if Ik(X) → Ik(Y ) is surjective for all

k ∈ {q − 1, q, q + 1}.
Proof: To prove (i), note that I1(Y ) = I ′1(Y ) = 0, hence S1(Y ) = S′1(Y ) and
Kp,1(S′(Y ),W ) ⊆ Kp,1(S(Y ),W ) by Corollary 1.23 (ii). The result then follows
from Lemma 2.18. To obtain the statements (ii) and (iii), we apply Corollary 1.23
to the inclusion I(X) ⊂ I(Y ) and use the isomorphism of Proposition 1.27 (ii).

¤

Theorem 2.20. Let X be an irreducible projective variety, and let L be a line
bundle on X. Given a connected divisor Y ∈ |L|, we write LY = L⊗OY .

(i) Let W be the image of the restriction map H0(X,L) → H0(Y,LY ). The
map Kp,1(X,L) → Kp,1(Y,LY ) induces an inclusion

Kp,1(X,L) ⊂ Kp,1(Y, LY ,W )

for all p ≥ 1;
(ii) If H1(X,OX) = 0 then Kp,1(X,L) → Kp,1(Y,LY ) is an isomorphism for

all p ≥ 1;
(iii) If H1(X,Lq) = 0 for all q ≥ 0 then Kp,q(X,L) ∼= Kp,q(Y, LY ) for all p, q.

Proof: Since Y is connected we have an exact sequence

0 → C→ H0(X,L) → H0(Y,LY ) → 0.

As S0(Y ) = S′0(LY ) = C, Corollary 1.23 implies that Kp,1(S′(Y ),W ) ⊂
Kp,1(S(Y ),W ). We then apply Theorem 2.19 (i) and Proposition 1.27 (i). To
prove the statements (ii) and (iii) put R′(LY ) = im(R(L) → R(LY ) and argue as
in the proof of part (ii) and (iii) of Theorem 2.19, replacing S(X), S(Y ) and S′(Y )
by R(L), R(LY ) and R′(LY ). ¤

Remark 2.21. Using Green’s base change spectral sequence, one can prove a
more general version of theorem 2.20 valid for divisors Y that do not necessarily
belong to |L|; cf. [AN04].

Remark 2.22. The condition H1(X,OX) = 0 in (ii) can be replaced by the
surjectivity of the map H0(X,L) → H0(Y,LY ). Similarly in (iii) it suffices to
assume that the restriction maps H0(X,Lq) → H0(Y,LqY ) are surjective for all q.

2.3. Duality

Lemma 2.23. Given a long exact sequence of coherent sheaves

0 → F → I1 → . . .→ I` → G → 0

we have ker((H`(X,F) → H`(X, I1)) ∼= coker (H0(X, I`) → H0(X,G)) if

H`−p(X, Ip) = H`−p(X, Ip+1) = 0, p = 1, . . . , `− 1.
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Proof: Break up the long exact sequence into short exact sequences

0 → F → I1 → Q1 → 0, 0 → Q1 → I2 → Q2 → 0, . . .
. . . , 0 → Q`−2 → I`−1 → Q`−1 → 0, 0 → Q`−1 → I` → G → 0

and note that the hypotheses of the Lemma imply that

ker((H`(X,F) → H`(X, I1)) ∼= H`−1(Q1) ∼= H`−2(Q2) ∼= . . .

. . . ∼= H1(X,Q`−1) ∼= coker (H0(X, I`) → H0(X,G)).

(Alternatively, put I0 = F , I`+1 = G and use that the spectral sequence Ep,q1 =
Hq(X, Ip), which converges to zero since the complex is exact.) ¤

Theorem 2.24. Let L be a globally generated line bundle on a smooth projective
variety X of dimension n. Put r = dim |L|. If

Hi(X,Lq−i) = Hi(X,Lq−i+1) = 0, i = 1, . . . , n− 1

then
Kp,q(X,L)∨ ∼= Kr−n−p,n+1−q(X,KX , L).

Proof: By Proposition 2.4 and Serre duality we have

Kp,q(X,L) ∼= coker (
∧p+1

V ⊗H0(X,Lq−1) → H0(X,
∧p
ML ⊗ Lq))

∼= ker(Hn(X,KX ⊗
∧p
M∨
L ⊗ L−q) → ∧p+1

V ∨ ⊗Hn(X,KX ⊗ L1−q)).

As rank (ML) = r and detML
∼= L−1, the latter group is isomorphic to

ker(Hn(X,KX ⊗
∧r−p

ML ⊗ L1−q) → ∧r−p
V ⊗Hn(X,KX ⊗ L1−q)).

Take exterior powers in the exact sequence defining the kernel bundle ML to obtain
a long exact sequence

0 → ∧r−p
ML ⊗KX ⊗ L1−q → ∧r−p

V ⊗KX ⊗ L1−q →
→ ∧r−p−1

V ⊗KX ⊗ L2−q → . . .

. . .→ ∧r−p−n+1
V ⊗KX ⊗ Ln−q → ∧r−p−n

ML ⊗KX ⊗ Ln+1−q → 0.
Applying Lemma 2.23 with ` = n we find that

Kp,q(X,L)∨ ∼= Kr−n−p,n+1−q(X,KX , L)

if

Hn−1(X,KX ⊗ L1−q) = . . . = H1(X,KX ⊗ Ln−1−q) = 0,
Hn−1(X,KX ⊗ L2−q) = . . . = H1(X,KX ⊗ Ln−q) = 0.

By Serre duality, these conditions are equivalent to the hypothesis of the theorem.
¤

Remark 2.25. A similar argument proves the following slightly more general
statement. Let X be a projective manifold of dimension n, L be a line bundle, and
E be a vector bundle on X. Suppose that V ⊂ H0(X,L) is a base-point-free linear
system of dimension r + 1, and assume that

(1) Hi(X,E ⊗ Lq−i) = 0 for all i = 1, . . . , n− 1;
(2) Hi(X,E ⊗ Lq−i−1) = 0 for all i = 1, . . . , n− 1.
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Then

(2.4) Kp,q(X,E,L, V )∨ ∼= Kr−n−p,n+1−q(X,KX ⊗ E∨, L, V ).

Remark 2.26. On a curve, the assumptions in the statement above are empty.

2.4. Koszul cohomology versus usual cohomology

We have seen that if V generates L, then the groups Kp,q(X;F , L, V ) can be
computed with help of the usual cohomology. It is natural to ask if a converse of
this description is also true: can usual cohomology of a coherent sheaf be recovered
from its Koszul cohomology with values in some line bundle ? The aim of this
section is to give a positive answer to this question.

Theorem 2.27. Let X be a connected complex compact manifold, let r and q
be two positive integers, F be a coherent sheaf on X, L be a line bundle on X, and
V be an (r + 1)-dimensional subspace of global sections of L which generates L.
Suppose that

(i) Hq−i(X,F ⊗ Li) = 0, i = 1, . . . , q − 1;
(ii) Hq−i(X,F ⊗ Li+1) = 0, i = 0, . . . , q − 1.

Then
Hq(X,F) ∼= Kr−q,q+1(X,F , L, V ).

Proof: Dualise the exact sequence

(2.5) 0 →MV → V ⊗OX → L→ 0

and twist it by F ⊗ L to obtain the exact sequence

0 → F → V ∨ ⊗F ⊗ L→M∨
V ⊗F ⊗ L→ 0.

As rank (MV ) = r and det(MV ) = L∨, we can rewrite this exact sequence in the
form

(2.6) 0 → F → ∧r
V ⊗F ⊗ L→ ∧r−1

MV ⊗F ⊗ L2 → 0.

Proposition 2.4 shows that

H1(X,F) ∼= Kr−1,2(X,F , L, V )

if H1(X,F ⊗ L) = 0; this solves the case q = 1.

We may thus assume q ≥ 2. In that case, since Hq(X,F ⊗ L) = 0 and
Hq−1(X,F ⊗ L) = 0, the long cohomology sequence associated to the sequence
(2.6) shows that

Hq(X,F) ∼= Hq−1(X,
∧r−1

MV ⊗F ⊗ L2).

Taking exterior powers in (2.5) we obtain a long exact sequence

0 → ∧r−1
ML ⊗F ⊗ L2 → ∧r−1

V ⊗F ⊗ L2 → ∧r−2
V ⊗F ⊗ L3 → . . .

. . .→ ∧r−q+1
V ⊗F ⊗ Lq+1 → ∧r−q

ML ⊗F ⊗ Lq+1 → 0.

The result then follows from Lemma 2.23 and Proposition 2.4. ¤
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Remark 2.28. One can give a more conceptual proof of Theorem 2.27 using
the hypercohomology spectral sequence associated to the complex of sheaves

0 → ∧r+1
V ⊗F(−r − 1) → ∧r

V ⊗F(−r) → . . .

· · · → ∧2
V ⊗F(−2) → V ⊗F(−1) → F → 0.

Remark 2.29. Under the hypotheses of Theorem 2.27, the Koszul cohomology
groups Kr−q,q+1(X;F , L, V ) do not depend on the choice of V .

Definition 2.30. A property (P) is said to hold for a sufficiently ample line
bundle if there exists a line bundle L0 such that property (P) holds for every line
bundle L such that L⊗ L−1

0 ample.

Let F be a coherent sheaf on X. An argument due to M. Green (cf. [Pard98,
Lemma 5.2]) shows that by taking L is sufficiently ample, we may assume that L
is globally generated and

Hj(X,F ⊗ Lk) = 0 if





j = 0, k < 0
1 ≤ j ≤ dim X − 1, k 6= 0
j = dim X, k > 0.

Corollary 2.31. Let X be an integral projective variety let F be a coherent
sheaf on X. If L is sufficiently ample, then

Hq(X,F) ∼= Kh0(X,L)−q−1,q+1(X,F , L)

for all q ≥ 1.

Corollary 2.31 is a generalization of a previous result due to Green [Gre84a,
Theorem (4.f.1)], where this statement was proved for the case F = ΩpX . Our proof
is nevertheless different from that of Green.

Theorem 2.27 shows that Koszul cohomology can be seen as an extension of
classical sheaf cohomology. However, from the practical point of view, the rôle of
Koszul cohomology is to complete the classical theory rather than to replace it.

Remark 2.32. There are a number of immediate consequences of Theorem
2.27, obtained for different particular choices of the sheaf F . For example, if
H1(X,L) = 0 then

H1(X,OX) ∼= Kr−1,2(X,L, V ).
This result shows in particular that the topological genus of a curve can be read off
from Koszul cohomology of X with values in any line bundle L with H1(X,L) =
0, see also [Ei06], [Tei07]. This explains the interest for studying these Koszul
cohomology groups in relation with the intrinsic geometry of curves; see [Gre84a],
[GL84]. There exists a similar interpretation for Hq(X,OX), q ≥ 2.

When we apply Theorem 2.27 to the canonical bundle, we obtain an alternative
proof of [Gre84a, Theorem (2.c.1)]:

Theorem 2.33 (Green, 1984). Let X be a connected complex projective mani-
fold of dimension n ≥ 2, L be a line bundle on X, and V be an (r+1)-dimensional
subspace of global sections of L (r ≥ 1) that generates L. Suppose that

Hi(X,L−i) = Hi(X,L−i−1) = 0 for all 1 ≤ i ≤ n− 1.
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Then
Kr−n,n+1(X,KX , L, V ) ∼= C.

Proof: Serre duality implies that

Hn−i(X,KX ⊗ Li+1) ∼= Hi(X,L−i−1)∗ = 0, for all 1 ≤ i ≤ n− 1,

and

Hn−i−1(X,KX ⊗ Li+1) ∼= Hi+1(X,L−i−1)∗ = 0, for all 1 ≤ i ≤ n− 2.

Since L is globally generated, it follows that H0(X,L−1) = 0, hence

Hn(X,KX ⊗ L) = 0

and the hypotheses of Theorem 2.27 are satisfied. ¤

2.5. Sheaf regularity.

Definition 2.34. Let L be a globally generated ample line bundle on a pro-
jective variety X, and let F be a coherent sheaf on X. We say that F is m–regular
with respect to L if

Hi(X,F ⊗ Lm−i) = 0 for all i > 0.

Mumford has shown that if F is m–regular, then F is (m + k)–regular for all
k ≥ 0; cf. [La04]. This motivates the following definition.

Definition 2.35. The Castelnuovo–Mumford regularity of a coherent sheaf F
with respect to a globally generated ample line bundle L on X is

regL(F) = min{m | F is m–regular w.r.t. L}
Remark 2.36. The conditions of Theorem 2.27 can be rewritten in the form

Hj(X,F ⊗ Lq−j) = 0, j = 1, . . . , q − 1

Hj(X,F ⊗ Lq+1−j) = 0, j = 1, . . . , q.

These conditions can be thought of as partial regularity conditions. In particular,
the above conditions hold if F is q–regular with respect to L.

It is well-known that the regularity of a projective variety can be read off from
its graded Betti numbers. This phenomenon can be generalized as follows.

Proposition 2.37. Let F be a coherent sheaf on the complex projective mani-
fold X, and L be a globally generated ample line bundle. Let m be a positive integer,
and suppose that F is (m + 1)-regular with respect to L. Then F is m-regular if
and only if Kp,m+1(X;F , L) = 0 for all p. In particular, the regularity of F is
computed by the formula

regL(F) = min{m | Kp,m+1(X,F , L) = 0 for all p}.
Proof:

Since F is (m+ 1)-regular, we have

Hi(X,F ⊗ Lm+1−i) = 0 for i > 0.

For the ”if” part, write r = h0(X,L)− 1 and let p be an integer. If p > r, then
Kp,m+1(X;F , L) = 0 by Proposition 2.4 since

∧p+1
ML = 0. So we may assume
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that p < r; put q = r − p > 0. We can write Kp,m+1(X;F , L) = Kr−q,q+1(X;F ⊗
Lm−q, L). Since F is m–regular, the sheaf F ⊗ Lm−q is q–regular. Hence the
hypotheses of Theorem 2.27 are satisfied for the sheaf F ⊗ Lm−q by Remark 2.36,
and we obtain Kp,m+1(X;F , L) ∼= Hq(X,F ⊗ Lm−q). This last group vanishes as
well, by m-regularity.

For the ”only if” part, we prove by induction on i that

Hi(X,F ⊗ Lm−i) = 0 for all i > 0.

If i = 1, then we apply Theorem 2.27 to the 1–regular sheaf F ⊗ Lm−1 to obtain

H1(X,F ⊗ Lm−1) ∼= Kr−1,2(X;F ⊗ Lm−1, L) = Kr−1,m+1(X,L) = 0.

For the induction step, suppose that

Hj(X,F ⊗ Lm−j) = 0 for j ≤ i− 1.

Applying Theorem 2.27 to the i–regular sheaf F ⊗ Lm−i, we find

Hi(X,F ⊗ Lm−i) ∼= Kr−i,i+1(X;F ⊗ Lm−i, L) = Kr−i,m+1(X,L) = 0.

¤

Remark 2.38. Proposition 2.37 says that the Castelnuovo–Mumford regularity
regL(F) equals the number of rows in the Betti diagram of the graded module
R(F , L) =

⊕
qH

0(X,F ⊗ Lq).

2.6. Vanishing theorems

Theorem 2.39 (Green). Let W ⊂ H0(Pr,OP(d)) be a base–point free subspace
of codimension c. We have Kp,q(Pr,OP(k),OP(d);W ) = 0 if k + (q − 1)d ≥ p+ c.

Proof: Choose a flag of linear subspaces

W = Wc ⊂Wc−1 ⊂ . . . ⊂ . . . ⊂W1 ⊂W0 = H0(Pr,OP(d))
such that dim Wi/Wi+1 = 1 for all i, and let Mi be the kernel of the evaluation
map

Wi ⊗OP → OP(d).
Using the exact sequence

0 →M0 → H0(Pr,OP(d))⊗OP → OP(d) → 0

one easily shows that M0 is 1–regular in the sense of Castelnuovo–Mumford, hence∧p
M0 is p–regular (see e.g. [La04]). From the commutative diagram

0 0y
y

0 → Mi → Wi ⊗OP → OP(d) → 0y
y ‖

0 → Mi−1 → Wi−1 ⊗OP → OP(d) → 0y
y

OP = OPy
y

0 0
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we obtain a short exact sequence

0 →Mi →Mi−1 → OP → 0.

Taking exterior powers in this exact sequence and using induction, one shows that∧p
Mi is (p+ i)–regular for all i; see [Gre89, Theorem 4.1] for details. By Propo-

sition 2.4 it suffices to show that

H1(Pr,
∧p+1

Mc ⊗OPr (k)⊗OPr (d)⊗(q−1)) = 0.

Hence the desired vanishing holds if

k + (q − 1)d+ 1 ≥ p+ c+ 1.

¤

Corollary 2.40. If W ⊂ H0(OPr (d)) is a base–point free linear subspace of
codimension c, then the Koszul complex

∧p+1
W ⊗H0(OP(k − d)) → ∧p

W ⊗H0(OP(k)) →
∧p−1

W ⊗H0(OP(k + d))

is exact at the middle term if k ≥ d+ p+ c.

Proof: Apply the previous result with q = 0. ¤

Corollary 2.41. Let Σ = {p1, . . . , pd} be a finite set of points on a rational
normal curve Γ ⊂ Pr = P(V ∨). Then Kp,1(S(Γ), V ) ∼= Kp,1(S(Σ), V ) if d ≥
2r − p+ 2.

Proof: Put L = OΓ(r) and consider the S∗V –modules

A = R(L), A′ = ker(R(L) → R(LΣ)) =
⊕

qH
0(Γ, Lq(−d))

A′′ = im(R(L) → R(LΣ)) = S(Σ).

The exact sequence of S∗V –modules

0 → A′ → A→ A′′ → 0

induces a long exact sequence of Koszul groups

Kp,1(A′, V ) → Kp,1(A, V ) → Kp,1(A′′, V ) → Kp−1,2(A′, V ).

By definition we have Kp,q(A′, V ) ∼= Kp,q(P1,OP(−d),OP(r)). Hence it suffices to
show that

Kp,1(P1,OP(−d),OP(r)) = Kp−1,2(P1,OP(−d),OP(r)) = 0.

By duality, this is equivalent to

Kr−1−p,1(P1,OP(d− 2),OP(r)) = Kr−p,0(P1,OP(d− 2),OP(r)) = 0.

By Proposition 2.39 these conditions hold if d ≥ 2r − p+ 2. ¤
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Proposition 2.42. Let X ⊂ PH0(X,L)∨ be a nondegenerate projective variety
of dimension n. If p > r − n then Kp,1(X,L) = 0.

Proof: We intersect X with n − 1 general hyperplanes to obtain a curve C =
X∩H1 . . .∩Hn−1 ⊂ Pr−n+1. LetW be the image of the restriction mapH0(X,L) →
H0(C,LC). By Theorem 2.20 (i) we have an injective map

Kp,1(X,L) → Kp,1(C,LC ,W ).

Note that W generates LC and dim W = r−n+2. By Proposition 2.4 we have an
inclusion

Kp,1(C,LC ,W ) ⊂ H1(C,
∧p+1

MW ).
The desired statement then follows, since rank (MW ) = dim W − 1 = r − n + 1.

¤

Remark 2.43. Many important conjectures on Koszul cohomology center around
the relationship between vanishing/nonvanishing of Koszul cohomology groups and
the geometry of projective varieties; cf. [Gre89]. Proposition 2.42 can be improved
by taking into account the geometry of the variety X. This leads to the so–called
Kp,1–theorem, which we shall discuss in Chapter 3.



CHAPTER 3

Syzygy schemes

In this chapter, we present a geometric approach to the study of Koszul co-
homology groups Kp,1(X,L). In [Gre82, (1.1)], M. Green defined a geometric
object, which is nowadays called the syzygy scheme, associated to a Koszul class
in Kp,1(X,L). He also proved a strong result, the so-called Kp,1-Theorem, which
gives a description of these schemes in the cases p = h0(X,L) − dim (X) − 1 and
p = h0(X,L)−dim (X)−2. F.-O. Schreyer and his students further developed this
theory; see e.g. [vB07a, Introduction].

3.1. Basic definitions

Let X be a projective variety over C, and let L be a holomorphic line bundle
on X.

Lemma 3.1. Let [γ] ∈ Kp,1(X,L) be a Koszul class. Put V = H0(X,L). If
p ≥ 2 there exists a unique linear subspace W ⊂ V of minimal dimension such that
[γ] ∈ Kp,1(X,L,W ).

Proof: Using the isomorphism Kp,1(X,L) ∼= Kp−1,2(I, V ) of Proposition 1.27
we represent [γ] by an element of

∧p−1
V ⊗ I2(X). Clearly there exists a linear

subspace W ⊆ V such that γ ∈ ∧p−1
W ⊗ S2V . Given two linear subspaces W1,

W2 ⊂ V we have ∧p−1
W1 ∩

∧p−1
W2 =

∧p−1(W1 ∩W2)

if p ≥ 2. Hence there exists a unique minimal linear subspace W such that γ ∈∧p−1
W ⊗ I2(X). ¤

The following definition is taken from [vB07a, Definition 2.2].

Definition 3.2. The rank of a Koszul class [γ] ∈ Kp,1(X,L) is the dimension
of the minimal linear subspace W ⊂ V such that [γ] ∈ Kp,1(X,L,W ).

Let [γ] ∈ Kp,1(X,L) be a Koszul class represented by an element

γ ∈ ∧p
V ⊗ V.

Definition 3.3. An element γ ∈ ∧p
V ⊗ V is supported on a variety Y if

δ(γ) ∈ ∧p−1
V ⊗ I2(Y ).

Remark 3.4. Note that if [γ] ∈ Kp,1(X,L), then γ is supported on Y if and
only if [γ] belongs to the image of the natural map

Kp,1(S(Y ), V ) → Kp,1(S(X), V ) = Kp,1(X,L).

25
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In order to get a better understanding of Koszul classes, one could ask whether
it is possible to find a variety Y containing X such that [γ] is supported on Y . The
advantage of this approach is that since the ideal of Y is smaller, one expects to
have a better control over the syzygies and Koszul cohomology of Y . As before,
put I = ker(S∗V → R(L)) and use the isomorphism Kp,1(X,L) ∼= Kp−1,2(I, V ) of
Proposition 1.27 to represent γ by an element γ̃ =

∑
[J|=p−1 vJ⊗QJ ∈ Kp−1,2(I, V ).

The commutative diagram
∧p−1

V ⊗ I2(Y ) −→ ∧p−3
V ⊗ I3(Y )↪→ ↪→

∧p−1
V ⊗ I2(X) −→ ∧p−3

V ⊗ I3(X)

shows that

γ ∈ im(Kp,1(S(Y ), V ) → Kp,1(S(X), V ) ⇐⇒ QJ ∈ I2(Y ) for all J.

Definition 3.5 (M. Green). Let [γ] ∈ Kp,1(X,L) be a Koszul class represented
by an element γ ∈ ∧p

V ⊗ V , and let

γ̃ = δ(γ) =
∑

|J|=p−1

vJ ⊗QJ

be the corresponding element of
∧p−1

V ⊗ I2. The syzygy ideal of [γ] is the ideal
generated by the quadricsQJ , |J | = p−1. The syzygy scheme of [γ] is the subscheme
Syz(γ) ⊂ P(V ∨) defined by the syzygy ideal of γ.

Remark 3.6. The above discussion shows that γ is supported on Y ⊂ P(V ∨) if
and only if X ⊆ Y ⊆ Syz(γ). Note that the syzygy ideal of γ is the ideal generated
by the image of the map

δ(γ) :
∧p−1

V ∨ → S2V.

Lemma 3.7 (M. Green). Given γ ∈ Hom(V ∨,
∧p
V ) we have the following set–

theoretic description of Syz(γ):

Syz(γ) = {[x] ∈ P(V ∨) | ix(γ(x)) = 0}.
Proof: By definition, the Koszul differential δ :

∧p
V ⊗V → ∧p−1

V ⊗S2V factors
as ∧p

V ⊗ V ι⊗id−−−→ ∧p−1
V ⊗ V ⊗⊗V id⊗µ−−−−→ ∧p−1

V ⊗ S2V

where ι :
∧p
V → ∧p−1

V ⊗ V ∼= Hom(V ∨,
∧p−1

V ) sends λ ∈ ∧p
V to the map fλ

defined by fλ(x) = ix(λ). Using the identifications
∧p
V ⊗ V −→ ∧p−1

V ⊗ V ⊗ Vy∼=
y∼=

Hom(V ∨,
∧p
V ) −→ Hom(V ∨,Hom(V ∨,

∧p−1
V ))

we find that ι⊗ id sends γ ∈ Hom(V ∨,
∧p
V ) to the map

fγ ∈ Hom(V ∨,Hom(V ∨,
∧p−1

V ))

defined by fγ(x)(y) = iy(γ(x)). The image of this element in
∧p−1

V ⊗ S2V ∼=
Hom(

∧p−1
V ∨, S2V ) is the map gγ that sends ϕ ∈ ∧p−1

V ∨ to the symmetric
bilinear form Qϕ defined by

Qϕ(x, y) = 〈ϕ, iy(γ(x))〉.
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The associated quadratic form is qϕ(x) = Qϕ(x, x). By the definition of the syzygy
scheme, we have

x ∈ Syz(γ) ⇐⇒ ∀ϕ, qϕ(x) = 0
⇐⇒ ∀ϕ, 〈ϕ, ix(γ(x))〉 = 0
⇐⇒ ix(γ(x)) = 0.

¤

Example 3.8. We consider two basic examples of syzygy schemes.
(i) Let X ⊂ P3 be the twisted cubic. Its ideal is generated by the 2×2 minors

of the matrix

A =
(
x0 x1 x2

x1 x2 x3

)
.

Put

q0 =
∣∣∣∣
x1 x2

x2 x3

∣∣∣∣ , q1 = −
∣∣∣∣
x0 x2

x1 x3

∣∣∣∣ , q3 =
∣∣∣∣
x0 x1

x1 x2

∣∣∣∣ .

As ∣∣∣∣∣∣

x0 x1 x2

x0 x1 x2

x1 x2 x3

∣∣∣∣∣∣
= 0

we obtain the relation

x0.q0 + x1.q1 + x2.q2 = 0.

Hence the element

γ = x0 ⊗ q0 + x1 ⊗ q1 + x2 ⊗ q2 ∈ ker(V ⊗ I2(X) → I3(X))

defines a class [γ] ∈ K2,1(X,OX(1)) whose syzygy scheme is

Syz(γ) = V (q0, q1, q2) = X.

(ii) Let X ⊂ P3 be a canonical curve of genus 4. As X = Q∩F is the complete
intersection of a quadric Q and a cubic F , we obtain a resolution

0 → S(−5) → S(−3)⊕ S(−2) → S → S(X) → 0

with associated Betti diagram

1 − − −
− 1 − −
− 1 − −
− − 1 −.

In particular we have κ1,1 = 1. Let γ be a generator of K1,1(X,OX(1)).
Since Q is the only quadric containing X, we obtain Syz(γ) = Q.

To obtain a better understanding of the geometry of syzygy schemes it is useful
to introduce an additional tool, the so–called generic syzygy scheme. Before giving
the general definition, we discuss the construction of this scheme for Koszul classes
γ ∈ K2,1(X,L) following [ES94].
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Lemma 3.9 (Schreyer). Let q1, . . . , qn be quadratic forms in C[x0, . . . , xs], n ≤
s. Suppose that there exists linear forms `1, . . . , `n such that

`1q1 + . . .+ `nqn = 0.

Then there exists a skew–symmetric n × n matrix A = (aij) of linear forms such
that

qj =
∑

i

`iaij , j = 1, . . . , n.

Proof: Define X = V (q1, . . . , qn) ⊂ Ps = P(V ∨), and put W = 〈`1, . . . , `n〉 ⊂ V .
The linear relation between the quadrics defines an element

γ̃ =
∑

i

`i ⊗ qi ∈ K1,2(I(X),W ).

As K1,2(I(X),W ) ∼= K2,1(S(X),W ) by Corollary 2.16, there exists a class [γ] ∈
K2,1(S(X),W ) such that γ̃ = δ(γ). Write

γ =
∑

i<j

`i ∧ `j ⊗ aij ∈
∧2
W ⊗ V

and put A = (aij). We then compute

δ(γ) =
∑

i<j

`j ⊗ `iaij − `i ⊗ `jaij

=
∑

k

`k ⊗ (
∑

i 6=k
`iaik)

to obtain the desired result. ¤

Given a Koszul class γ as above, Schreyer’s idea is to study the geometry of
the syzygy scheme Syz(γ) = V (q1, . . . , qn) by passing to the generic situation. This
means that one treats the entries aij of the matrix A and the linear forms `i as
variables in a polynomial ring; to avoid confusion, we denote these new variables
by Li and Aij . The polynomial ring

R = C[L1, . . . , Ln, A12, . . . , An−1,n].

has N = n+ n(n− 1)/2 = n(n+ 1)/2 variables. One then puts

Qj =
∑

i

LiAij , j = 1, . . . , n

and defines the generic syzygy scheme

Gensyz(γ) = V (Q1, . . . , Qn) ⊂ PN−1.

The syzygy scheme Syz(γ) ⊂ P(V ∨) is obtained from Gensyz(γ) ⊂ PN−1 in the
following way. We first introduce the necessary relations among the variables Aij
and Lk, i.e., we pass to a quotient Γ of the vector space

〈L1, . . . , Ln, A12, . . . , An−1,n〉
by a number of linear relations. We then view Γ as a subspace of V , and pass from
a subscheme of P(Γ∨) to the subscheme of P(V ∨) defined by the same equations.
Geometrically, this means that Syz(γ) is a cone over a linear section of Gensyz(γ).

A coordinate–free description of the preceding construction is obtained as fol-
lows. The skew–symmetric matrix A of linear forms corresponds to a linear map
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∧2
W∨ → V . This is simply the image of γ ∈ ∧2

W ⊗ V under the isomorphism∧2
W ⊗V ∼= Hom(

∧2
W∨, V ). Taking the direct sum of this map with the inclusion

W ↪→ V , we obtain a map

γ′ : W ⊕∧2
W∨ → V.

The quadrics defining the generic syzygy scheme are obtained as follows. Recall
that dim W = n. Consider the map

ι :
∧n−1

W →W ⊗∧n−2
W

By definition,

ι(L1 ∧ . . . ∧ L̂j ∧ . . . ∧ Ln) =
∑

i<j

(−1)iLi ⊗ (L1 ∧ . . . ∧ L̂i ∧ . . . ∧ L̂j ∧ . . . ∧ Ln)

+
∑

i>j

(−1)i−1Li ⊗ (L1 ∧ . . . ∧ L̂j ∧ . . . ∧ L̂i ∧ . . . ∧ Ln).

Let {Λi} be the dual basis of W∨. The isomorphism
∧n−2

W ∼= ∧2
W∨ defined by

the duality pairing maps the element

L1 ∧ . . . ∧ L̂i ∧ . . . ∧ L̂j ∧ . . . ∧ Ln
to (−1)i+j−1Λi ∧ Λj . Writing Aij = Λi ∧ Λj , we obtain

ι(L1 ∧ . . . ∧ L̂j ∧ . . . ∧ Ln) =
∑

i<j

(−1)j−1Li ⊗Aij +
∑

i>j

(−1)jLi ⊗Aji

= (−1)j−1
∑

i

Li ⊗Aij .

Hence the map
W ⊗∧2

W∨ → S2(W ⊕∧2
W∨)

sends ι((−1)j−1L1 ∧ . . . ∧ L̂j ∧ . . . ∧ Ln) to the quadric

Qj =
∑

i

LiAij .

We conclude that the ideal of Gensyz(γ) ⊂ P(W∨ ⊕ ∧2
W ) is generated by the

image of the composed map
∧n−1

W → ∧n−2
W ⊗W ∼= ∧2

W∨ ⊗W → S2(W ⊕∧2
W∨).

The preceding discussion generalizes in an obvious way. Consider a Koszul
class [γ] ∈ Kp,1(X,L,W ) represented by γ ∈ ∧p

W ⊗V . Write dim W = p+ r, and
let i : W → V be the inclusion map. Put

γ′ = (i, γ) : W ⊕∧r
W → V

and define Γ = im(γ′) ⊂ V . Consider the natural map

ψ :
∧r+1

W →W ⊗∧r
W ↪→ S2(W ⊕∧r

W ).

Definition 3.10. Given a linear subspace W ⊂ V of dimension p + r, the
generic syzygy ideal IGensyz(W ) is the ideal in S∗(W ⊕ ∧r

W ) generated by the
image of ψ. The generic syzygy scheme of W is the subscheme

Gensyzr(W ) ⊂ P(W∨ ⊕∧r
W∨)

defined by IGensyz(W ).
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Remark 3.11. We have adopted the notation Gensyzr(W ) in stead of Gensyz(γ).
This is justified sinceW is uniquely determined by γ, and for fixed p the geometry of
the generic syzygy scheme is determined essentially by the integer r = rank (γ)−p;
see the examples in the next section.

Remark 3.12. The relationship between Gensyzr(W ) and Syz(γ) is given by
the commutative diagram

∧r+1
W ψ−→ S2(W ⊕∧r

W )
‖

y∧p−1
W∨ δ(γ)−−−→ S2V.

The factorization ∧r+1
W → Γ ↪→ V

then shows that if W is the minimal linear subspace associated to a Koszul class
[γ] ∈ Kp,1(X,L) then Syz(γ) ⊂ P(V ∨) is a cone over a subscheme Y ⊂ P(Γ∨) which
is a linear section of Gensyzr(W ) ⊂ P(W∨ ⊕∧r

W∨).

Remark 3.13. Given x ∈ X, put γ′x = evx ◦γ′ : W ⊕∧r
W → k. We obtain a

rational map
X −− > P(W∨ ⊕∧r

W∨)
that sends x to [γ′x]. By construction, the (closure of the) image of this map is
contained in Gensyzr(W ).

Example 3.14. Let us determine the generic syzygy scheme associated to the
class

γ =
2∑

i=0

`i ⊗ qi

defined in Example 3.8 (i). As `i = xi (i = 0, 1, 2) and

q0 = x1x3 − x2
2, q1 = x1x2 − x0x3, q2 = x0x2 − x2

1

the relations
qj =

∑

i

xiaij

show that

A =




0 −x3 x2

x3 0 −x1

x2 x1 0


 .

The generic syzygy scheme lies in the projective space P5 with coordinates (X0 :
X1 : X2 : A10 : A20 : A21). The change of variables

A10 = Y2, A20 = −Y1, A21 = Y0

realizes the generic syzygy scheme Gensyz(γ) = Gensyz1(W ) as the subscheme of
P5 defined by the 2× 2 minors of the matrix

B =
(
X0 X1 X2

Y0 Y1 Y2

)
.

Hence Gensyz1(W ) is the Segre threefold, the image of the Segre map P1 × P2 →
P5 [Ha92]. Note that Gensyz1(W ) is a rational normal scroll of degree 3 and
codimension 2; the syzygy scheme Syz(γ) (which is a twisted cubic) is a linear
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section of Gensyz1(W ). See Lemmas 3.20 and 3.21 for a generalization of this
example.

Proposition 3.15. Let L be a globally generated line bundle on a projective
variety X. Put V = H0(X,L). Given [x] ∈ P(V ∨), let Wx ⊂ V be the kernel of the
map evx = 〈x, .〉 : V → C and let Y ⊂ P(W∨

x ) be the image of the rational map

X −− > P(W∨
x )

given by projection with center x. For all [γ] ∈ Kp,1(X,L) = Kp,1(S(X), V ) we
have

x ∈ Syz(γ) ⇐⇒ prx(γ) ∈ Kp−1,1(S(Y ),Wx).

Proof: By Lemma 3.7 we have

Syz(γ) = {[x] ∈ P(V ∨ | ix(γ(x)) = 0}.
Note that

prx(γ) ∈ Kp−1,1(S(Y ),Wx) ⇐⇒ ∃γ′ : W∨
x →

∧p−1
Wx such that the diagram

C.x

²²
V ∨

γ //

ι

²²

∧p
V

prx // ∧p−1
Wx

W∨
x

∃γ′
55kkkkkkkkkkkkkkkkk

commutes. The latter condition is satisfied if and only if prx◦γ factors through ι,
which is equivalent to prx◦γ|C.x ≡ 0. Hence

prx(γ) ∈ Kp−1,1(S(Y ),Wx) ⇐⇒ prx(γ(x)) = 0
⇐⇒ ix(γ(x)) = 0 (cf. 3.7)
⇐⇒ x ∈ Syz(γ).

¤

Remark 3.16. A precursor of this result was proved in [Ehb94]. Ehbauer
showed that

x ∈ X ⇒ prx(γ) ∈ Kp−1,1(S(Y ),Wx).

Lemma 3.17. Let X be a projective variety, and let γ ∈ Kp,1(X,L) be a Koszul
class.

(i) We have Syz(γ) ∩H ⊆ Syz(γ|H) for every hyperplane H ⊂ Pr;
(ii) We have prx(Syz(γ)) ⊆ Syz(prx(γ)) for every point x ∈ Pr.

Proof: For the first statement, write

δ(γ) =
∑

|I|=p−1

xI ⊗QI .

By a suitable choice of coordinates we may assume that H = V (X0). We then have

δ(γ|H) =
∑

0/∈I
xI ⊗QI .
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Hence we obtain

Syz(γ) ∩H = ∩IV (QI |H) ⊆ ∩0/∈IV (QI |H) = Syz(γH).

To prove (ii), recall that Syz(γ) = {[y] ∈ P(V ∨ | iy(γ(y)) = 0} (3.7). Put
Wx = ker(evx) ⊂ V , and let z ∈ W∨

x be the image of y ∈ V ∨. The commutative
diagram

V ∨ γ−→ ∧p
V iy−−→ ∧p−1

Vy
x

x
W∨
x

prx(γ)−−−−−→ ∧p
Wx

iz−−→ ∧p−1
Wx

shows that iy(γ(y)) = 0 ⇒ iz(prx(γ)(z)) = 0, hence prx(Syz(γ)) ⊆ Syz(prx(γ)).
¤

Remark 3.18. The inclusion of Lemma 3.17 (i) need not be an equality; for
instance, if dim X = 0 equality fails for trivial reasons. It is possible to show
that equality holds under additional hypotheses. Specifically, one can prove the
following result using the ideas of [NP94].

Proposition 3.19. Given γ ∈ Kp,1(X,L) = Kp,1(S(X), V ) and a hyperplane
H defined by t ∈ S(V ), write Y = X ∩ H and let γ ∈ Kp,1(S(Y ),W ) be the
restriction of γ. Put

Σ = Syz(γ), Σ = Syz(γ).
Suppose that there exists a linear subspace Λ′ such that, writing W ′ = V/Λ′, the
restriction maps

f : Kp−1,1(S(Σ),W ′) → Kp−1,1(S(Σ ∩ Λ′),W ′)

g : Kp−1,1(S(Σ ∩ Λ′),W ′) → Kp−1,1(S(Y ∩ Λ′),W ′)

induced by the inclusions Y ∩Λ′ ⊂ Σ∩Λ′ ⊂ Σ are isomorphisms. Then Σ∩H = Σ.
More precisely, I(Σ) = I(Σ) + (t)/(t).

3.2. Koszul classes of low rank

We discuss the geometry of generic syzygy schemes for Koszul classes of low
rank. Let [γ] ∈ Kp,1(X,L,W ) be a Koszul class of rank p+ r.

The case r = 0. Let t ∈ V be the image of γ under the isomorphism
∧p
W⊗V ∼= V .

The ideal of Gensyz0(W ) is generated by the image of the map

W ∼−→ W ⊗ C ↪→ S2(W ⊕ C) = S2W ⊕W ⊗ C,
hence it consists of reducible quadrics of the form t.w, w ∈W , and

Gensyz0(W ) = P(W∨) ∪ [t] ⊂ P(W∨ ⊕ C)

is the union of a hyperplane and a point. To describe Syz(γ), let Γ ⊂ V be the
image of the map

γ′ : W ⊕ C→ V.

We have either Γ = W (if t ∈W ) or Γ = W ⊕C (if t /∈W ). Put Y = Gensyz(W )∩
P(Γ∨). As the syzygy scheme Syz(γ) is a cone with vertex P(V/Γ)∨ over Y , we find
that

Syz(γ) = V (t) ∪ P(V/W )∨

is the union of a hyperplane and a linear subspace of codimension p.
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The case r = 1. In this case we can view γ ∈ ∧p
W ⊗ V ∼= W∨ ⊗ V as a

homomorphism γ : W → V . The ideal of Gensyz1(W ) is generated by the image
of the map ∧2

W →W ⊗W ↪→ S2(W ⊕W ).

As the first map is injective, we obtain IGensyz = 〈∧2
W 〉 ⊂ S∗(W ⊕W ).

Lemma 3.20. Under the identification W∨ ⊕W∨ ∼= W∨ ⊗ C2, Gensyz1(W ) is
isomorphic to the image of the Segre embedding P(W∨)× P1 ↪→ P(W∨ ⊗ C2).

Proof: The injective map
∧2
W ↪→ S2(W ⊕W ) = S2W ⊕W ⊗W ⊕ S2W sends

u∧v to the element u⊗v−v⊗u in the middle component. Hence the ideal generated
by

∧2
W is the ideal of 2× 2 minors of the corresponding 2× (p+ 2) matrix, which

is the ideal defining the space of decomposable tensors, i.e., the Segre variety; cf.
[Ha92]. ¤

The following result is classical and appears in several sources; see e.g. [Sch86]
or [vB07a, Corollary 5.2], [Ei06].

Lemma 3.21. The syzygy scheme Syz(γ) of a nonzero Koszul class of rank p+1
is a rational normal scroll of codimension p and degree p+ 1.

Proof: Note that Gensyz1(W ) is a rational normal scroll. By the classification of
varieties of minimal degree [EH87a], it suffices to show that P(Γ∨) intersects every
fiber F of the morphism π : Gensyz1(W ) → P1 transversely. The isomorphism
W ⊕W → W ⊗ C2 sends (w1, w2) to the element w ⊗ (λ, µ) determined by the
conditions w1 = λ.w, w2 = µ.w. Hence the intersection of P(Γ∨) with the fiber F
over (λ : µ) ∈ P1 is the projectivisation of the kernel of the map

fλ,µ : W → V

defined by fλ,µ(w) = λ.w + µ.γ(w), and

P(Γ∨) ∩ F = F ⇔ fλ,µ|W ≡ 0
⇔ ∃ν ∈ C, γ(w) = ν.w ∀w ∈W.

By definition, the latter condition is equivalent to the vanishing of the Koszul class
γ. This finishes the proof. ¤

Definition 3.22. A Koszul class is called of scrollar type if it is supported on
a rational normal scroll.

By Lemma 3.21, [γ] ∈ Kp,1(X,L) is of scrollar type if and only if it is of rank
p+ 1.

The case r = 2. Let [γ] ∈ Kp,1(X,L,W ) be a Koszul class of rank p + 2. Put
T = C ⊕ W . By definition Gensyz2(W ) ⊂ P(W∨ ⊕ ∧2

W∨) = P(
∧2
T∨). The

projective space P(
∧2
T∨) contains the subschemes G(2, T ) (the Plücker embedded

Grassmannian of 2–dimensional quotients of T ) and P(
∧2
W∨).

The following result is taken from [vB07a, Theorem 6.1].

Theorem 3.23 (von Bothmer).

Gensyz2(W ) = G(2, T ) ∪ P(∧2
W∨).
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Proof: Put G = G(2, T ), P = P(
∧2
W∨). In the symmetric algebra S∗(

∧2
T ) we

have [FH91, p. 228]
IG = 〈∧4

T 〉, IP = 〈W 〉.
By definition, the ideal of Gensyz2(W ) is generated by the image of the map

∧3
W →W ⊗∧2

W → S2(W ⊕∧2
W ).

Hence IGensyz = 〈∧3
W 〉 ⊂ S∗(

∧2
T ).

The decomposition W ⊗ (W ⊕∧2
W ) = S2W ⊕∧2

W ⊕∧3
W ⊕ S2,1W shows

that IGensyz ⊂ IP, hence P ⊂ Gensyz2(W ). As 〈∧4
T 〉 = 〈∧3

W 〉+ 〈∧4
W 〉, we have

IGensyz ⊂ IG and G ⊂ Gensyz2(W ). The union G∪P ⊂ P(
∧2
T∨) is defined by the

ideal

IG ∩ IP = 〈W 〉 ∩ 〈∧3
W,

∧4
W 〉

= 〈W 〉 ∩ 〈∧3
W 〉+ 〈W 〉 ∩ 〈∧4

W 〉.
The decomposition of W⊗∧2

T shows that 〈W 〉∩〈∧3
W 〉 = 〈∧3

W 〉. For the second
intersection we have

〈W 〉 ∩ 〈∧4
W 〉 = 〈W 〉.〈∧4

W 〉 = 〈W ⊗∧4
W 〉.

The decompositions ([FH91])

W ⊗∧4
W =

∧5
W ⊕ S4,1W∧3

W ⊗ (W ⊕∧2
W ) =

∧4
W ⊕ S3,1W ⊕∧5

W ⊕ S4,1W ⊕ S3,2W

imply that 〈W 〉 ∩ 〈∧4
W 〉 ⊆ 〈∧3

W 〉. Hence we obtain

IG ∩ IP = 〈∧3
W 〉 = IGensyz

and Gensyz2(W ) = G ∪ P. ¤

3.3. The Kp,1 theorem

Proposition 3.24. Let X ⊂ Pn be a nondegenerate irreducible variety. Given
0 6= γ ∈ Kp,1(X,L), the image of the map δ(γ) :

∧p−1
V ∨ → S2V has dimension at

least
(
p+1
2

)
.

Proof: Choose a linear subspace Λ ⊂ Pn such that C = X ∩Λ is a smooth curve.
Let

I = {(x, ξ) ∈ C × (Pn)∨ | x ∈ Hξ}
be the incidence correspondence, and let U ⊂ (Pn)∨ be the Zariski open subset
of hyperplanes that intersect X transversely. By the uniform position principle
[ACGH85] the monodromy group of I → U is the full symmetric group. Given
t ∈ U , the set X ∩Ht contains a subset Σt = {p0, . . . , pn} ⊂ X of n + 1 points in
general position. Choose coordinates (X0 : . . . : Xn) on Pn such that

{p0, . . . , pn} = {(1 : 0 : . . . : 0), . . . , (0 : . . . : 0 : 1)}
We then have

δ(γ) =
∑

|I|=p−1

λI ⊗QI
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with
QI =

∑

i,j /∈I
aijXiXj .

Given c ∈ π1(U, t), let Φ = ρ(c) : Σ → Σ be the corresponding monodromy trans-
formation. Let it : Σt ↪→ X be the inclusion map. The commutative diagram

Σt
Φ //

it

ÃÃA
AA

AA
AA

A Σt

it

²²
X

induces a commutative diagram

Kp,1(S(Σt),Wt)
Φ∗ // Kp,1(S(Σt),Wt)

Kp,1(S(X), V ).

i∗t

OO
i∗t

55lllllllllllll

As i∗t is injective (Theorem 2.19), we can view an element γ ∈ Kp,1(S(X), V ) as
an element of Kp,1(S(Σt),Wt) that is invariant under the action of the monodromy
group. This implies that the symmetric group permutes the quadrics QI , |I| = p−1,
via the action

QI 7→ σ(QI) =
∑

i,j /∈I
aijXσ(i)Xσ(j).

In particular we have σ(QI) = Qσ(I) for all I.

Note that QI 6≡ 0 for all I. Indeed, suppose that there exists I such that
QI ≡ 0. Then Qσ(I) ≡ 0 for all σ ∈ Sn+1 and γ = 0, contradiction.

We claim that in the expression

QI =
∑

i,j /∈I
ai,jXiXj

all the coefficients ai,j are nonzero. Indeed, ai,j = 0 if and only if the restriction of
QI to the line `ij = pipj vanishes identically. If there exists a pair (i, j) such that
ai,j = 0 we obtain

QI |σ(`ij) = σ(QI)|`ij ≡ 0
for all σ ∈ Sn+1, hence Q ≡ 0. This contradicts the previous step.

Fix a set I0 of cardinality p+ 1, for example I0 = {0, . . . , p}, and consider the
subsets I(λ, µ) = I0 \ {λ, µ}. As XλXµ occurs with nonzero coefficient in QI(λ,µ),
and does not occur in the quadrics QI(λ′,µ′) with (λ′, µ′) 6= (λ, µ) we obtain

(
p+1
2

)
linearly independent quadrics in the ideal of Syz(γ). ¤

Corollary 3.25. Let C ⊂ Pr be a rational normal curve. For all 0 6= γ ∈
Kr−1,1(C,OC(1)) we have Syz(γ) = C.

Proof: As the ideal of C is generated by the 2× 2 minors of the matrix(
X0 . . . Xr−1

X1 . . . Xr

)

we have dim I2(C) ≤ (
r
2

)
. The result then follows from the inclusion ISyz(γ) ⊂ I2(C)

and the inequality of Proposition 3.24. ¤
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Lemma 3.26. Let ξ ⊂ Pr be a finite set of points. Then

ξ is contained in a rational normal curve ⇐⇒ Kr−1,1(ξ) 6= 0.

If deg ξ ≥ r + 3 then Syz(γ) is a rational normal curve for every nonzero Koszul
class γ ∈ Kr−1,1(ξ).

Proof: If ξ is contained in a rational normal curve Γ, we obtain an inclusion
Kr−1,1(Γ) → Kr−1,1(ξ). then Kr−1,1(ξ) 6= 0 since Kr−1,1(Γ) 6= 0. More precisely,
Proposition 2.4 implies that Kr−1,1(Γ,OΓ(1)) ∼= H1(P1,

∧r
M) where M is the

kernel of the evaluation map V ⊗OP1 → OP1(r). As rank (M) = r the latter group
is isomorphic to H1(P1,OP(−r)) = H0(P1,OP(r − 2)) = Cr−1.

The converse statement is classically known if deg ξ ≤ r + 3. If deg ξ ≥ r + 3,
we choose a subset ξ′ = {p1, . . . , pr+3} ⊂ ξ. There exists a unique rational normal
curve Γ such that ξ′ ⊂ ξ. By Corollary 2.41 we have Kr−1,1(ξ′) ∼= Kr−1,1(Γ,OΓ(1)).
Combining this isomorphism with the inclusion Kr−1,1(ξ) ⊂ Kr−1,1(ξ′), we obtain
an injective map from Kr−1,1(ξ) to Kr−1,1(Γ,OΓ(1)). The statement then follows
from Corollary 3.25. ¤

Corollary 3.27 (strong Castelnuovo lemma). Let X ⊂ Pr = P(V ∨) be a
projective variety. Suppose that X contains a set of d ≥ r + 3 points in general
position. Then

Kr−1,1(S(X), V ) 6= 0 ⇐⇒ X is contained in a rational normal curve.

Proof: We may assume that X is nondegenerate. If X is contained in a rational
normal curve Γ we obtain an inclusion Kr−1,1(S(Γ), V ) → Kr−1,1(S(X), V ). The
result then follows since Kr−1,1(S(Γ), V ) = Kr−1,1(Γ,OΓ(1)) 6= 0.

For the converse, note the map Kr−1,1(S(X), V ) → Kr−1,1(Σ) is injective and
apply Lemma 3.26 and Proposition 2.42. ¤

We have seen that if X ⊂ PH0(X,L)∨ is a subvariety of dimension n, then
Kp,1(X,L) = 0 for all p > r − n; see Proposition 2.42. The following result,
known as the Kp,1–theorem, classifies the varieties X such that Kr−n,1(X,L) 6= 0
or Kr−n−1,1(X,L) 6= 0.

Theorem 3.28 (Green). Let X ⊂ Pr = PH0(X,L)∨ be a nondegenerate, irre-
ducible subvariety of dimension n.

(i) If Kr−n,1(X,L) 6= 0 then X is a variety of minimal degree;
(ii) If Kr−n−1,1(X,L) 6= 0 and degX ≥ r − n + 3 then there exists a variety

Y of minimal degree such that X ⊂ Y is a subvariety of codimension one.

Proof: Put c = codim (X) = r−n, and note that degX ≥ c+1. IfKc,1(X,L) 6= 0,
then X ∩ Λ is contained in a rational normal curve for a general linear subspace
Λ ∼= Pc by Lemma 3.26. Hence degX ≤ c+ 1 and X has minimal degree.

To treat the second case, we need the following auxiliary result.

Sublemma. Let γ ∈ Kc−1,1(X,L) be a nonzero Koszul class, and let H0, . . . ,Hn ⊂
Pr be general hyperplanes. Then

Syz(γ|
H0∩...∩cHi...∩Hn

) ∩Hi = Syz(γ|
H0∩...∩cHj ...∩Hn

) ∩Hj

for all i, j.



3.3. THE Kp,1 THEOREM 37

To prove the sublemma, put

Λi = H0 ∩ . . . ∩ Ĥi . . . ∩Hn
∼= Pc,Λ = H0 ∩ . . . ∩Hn

∼= Pc−1.

Since Λi is general, we have γ|Λi
6= 0 by Theorem 2.19. As degX ≥ c+ 3, Lemma

3.26 shows that that Syz(γ|Λi
) is a rational normal curve. Hence

ξi = Syz(γ|Λi
) ∩Hi ⊂ Λ

is a set of c points in general position.

By a suitable choice of coordinates (x0 : . . . : xr), we may assume that Hi =
V (xi), i = 0, . . . , n. As before, we write

δ(γ) =
∑

|I|=c−2

xI ⊗QI .

Put Σ = ∩I∩{0,...,n}=∅V (QI) ∩ Λ. By definition we have ξi ⊆ Σ for all i. To prove
that ξi = Σ, it suffices to show that the inclusion I2(Σ) ⊂ I2(ξi) is an equality, since
the ideals of both sets are generated by quadrics. Put J = {n+1, . . . , r}, and write
I(λ, µ) = J \ {λ, µ}. The monodromy argument of Proposition 3.24 shows that the
quadrics QI(λ,µ)|Λ are linearly independent. Hence dim I2(Σ) ≥ (

c
2

)
. On the other

hand, the number of quadrics in Λ ∼= Pc−1 containing c points in general position
is

(
c+1
2

)− c =
(
c
2

)
. Hence the desired equality of ideals follows.

We now finish the proof of part (ii). Consider n general pencils of hyperplanes
{Hλi}λi∈P1 . Let U be the open subset of the n–fold product of P1 corresponding to
the hyperplanes Hλi such that Hλ1 ∩ . . . ∩Hλn is in general position with respect
to X. Using the natural map

(λ1, . . . , λn) 7→ [Syz(γ|Hλ1∩...∩Hλn
)]

we identify U with an irreducible subset of the Hilbert scheme H of rational curves
in Pr of degree c. Consider the incidence correspondence

I = {(x,C) ∈ Pr ×H|x ∈ C} q−→ Hyp
Pr

and let Y ⊂ Pr be the Zariski closure of p(q−1U). Since the fibers of q are irre-
ducible, Y is irreducible. To show that Y is a variety of minimal degree containing
X as a subvariety of codimension one, we consider the Zariski open subset

V = ∪(λ1,...,λn)∈UHλ1 ∩ . . . ∩Hλn ⊂ Pr.
By Lemma 3.17 we have

Syz(γ|Hλ1∩...∩Hλn
) ⊃ Syz(γ) ∩Hλ1 ∩ . . . ∩Hλn .

Hence we obtain Y ⊃ Y ∩ V ⊃ Syz(γ) ∩ V ⊃ X ∩ V . Since X is irreducible, this
implies that Y ⊃ X.

Let H1, . . . , Hn be general hyperplanes. Using the sublemma and induction on
n, we obtain

Syz(γ|Hλ1∩...∩Hλn
) ∩H1 ∩ . . . ∩Hn = Syz(γ|H1∩...∩Hn)

for all (λ1, . . . , λn) ∈ U . Hence

Y ∩H1 ∩ . . . ∩Hn ∩ V = Syz(γ|H1∩...∩Hn) ∩ V,
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and we obtain Y ∩H1 . . . ∩Hn = Syz(γ|H1∩...∩Hn) since both Y ∩H1 . . . ∩Hn and
the rational normal curve Syz(γ|H1∩...∩Hn

) are irreducible. Hence Y is a variety of
minimal degree and dimension n+ 1 = dim X + 1. ¤

3.4. Rank-2 bundles and Koszul classes

The aim of this Section is to give a more geometric approach to the problem
of describing Koszul classes of low rank.

3.4.1. The method of Voisin. The starting point is the following construc-
tion due to Voisin.

Let E be a rank two vector bundle on a smooth projective variety X defined
over an algebraically closed field k of characteristic zero. Write L = detE and
V = H0(X,L), and let

d :
∧2
H0(X,E) → V

be the determinant map. Given t ∈ H0(X,E), define a linear map

dt : H0(X,E) → V

by dt(u) = d(t ∧ u), and choose a subspace U ⊂ H0(X,E) with U ∩ ker(dt) = 0.
Suppose that dim (U) = p+2 with p ≥ 1, and put W = dt(U) ∼= U . The restriction
of d to

∧2
U defines a map

∧2
U → V , which we can view as an element of

∧2
U∨ ⊗ V ∼= ∧p

U ⊗ V.

Let
γ ∈ ∧p

W ⊗ V ⊂ ∧p
V ⊗ V

be the image of this element under the map dt.

Following Voisin [V05, (22)], we prove that γ defines a Koszul class inKp,1(X,L).
To this end, we make the previous construction explicit using coordinates. If we
choose a basis {e1, . . . , ep+3} of 〈t〉 ⊕ U ⊂ H0(X,E) such that e1 = t, we have

(3.1) γ =
∑

i<j

(−1)i+jd(t ∧ e2) ∧ . . . î . . . ĵ . . . ∧ d(t ∧ ep+3)⊗ d(ei ∧ ej).

As in [V05] one shows that the image of the γ by the Koszul differential

δ :
∧p
V ⊗H0(X,L) → ∧p−1

V ⊗ S2H0(X,L)

equals
∑

i<j<k

(−1)i+j+kd(t ∧ e2) ∧ . . . î . . . ĵ . . . k̂ . . . ∧ d(t ∧ ep+3)(3.2)

⊗{d(t ∧ ei)d(ej ∧ ek)− d(t ∧ ej)d(ei ∧ ek) + d(t ∧ ek)d(ei ∧ ej)}.
Lemma 3.29 (Voisin). Given four elements w1, w2, w3, w ∈ H0(X,E) we have

the relation

d(w ∧ w1)d(w2 ∧ w3)− d(w ∧ w2)d(w1 ∧ w3) + d(w ∧ w3)d(w1 ∧ w2) = 0

in H0(X,L2).

Proof: See [V05, Lemma 5]. ¤
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The previous lemma shows that γ belongs to the kernel of the Koszul differential

δX :
∧p
V ⊗H0(X,L) → ∧p−1

V ⊗H0(X,L2),

hence γ defines a class in the Koszul cohomology group.

Definition 3.30. The Koszul class [γ] ∈ Kp,1(X,L,W ) ⊆ Kp,1(X,L) associ-
ated to the triple (E, t, U) as before is denoted by γ(U, t).

In general, the given class will depend on the choice of the lifting U . This
dependence appears specifically if ker(dt) contains elements other than multiples of
t. The ambiguity disappears if we map the class to an appropriate Koszul group.

First we introduce some notation. Let OX .t
↪→ E be the morphisms induced by

t, and let B be the divisorial component of the zero scheme of t. Then there exist
a codimension-2 subscheme ξ of X such that E lies in a short exact sequence:

0 → OX(B) .t→ E
dt→ L(−B)⊗ Iξ → 0,

hence ker(dt) = H0(X,OX(B)).

Proposition 3.31. Notation as above. There exists a natural surjective map

π : Kp,1(X,L,W ) → Kp,1(X,OX(B), L(−B),W ).

The image of γ(U, t) under this map is independent of the choice of the lifting U
of W ; we denote it by γ(W, t). Moreover, any lifting of a given class γ(W, t) ∈
Kp,1(X,OX(B), L(−B),W ) is of the form γ(U ′, t) ∈ Kp,1(X,L,W ) for some U ′ ⊂
H0(X,E) with dt(U ′) = W .

Proof: The commutative diagram
∧p+1

W ⊗H0(OX(B)) −→ ∧p
W ⊗H0(L) −→ ∧p−1

W ⊗H0(L2(−B))x.t ‖ ↪→

∧p+1
W −→ ∧p

W ⊗H0(L) −→ ∧p−1
W ⊗H0(L2)

induces a short exact sequence

0 → ∧p+1
W ⊗ ker(dt)

C.t
→ Kp,1(X,L,W ) π→ Kp,1(X,OX(B), L(−B),W ) → 0.

This exact sequence implies the first statement.
For the second statement, let γ ∈ Kp,1(X,L,W ) be a lifting of γ(W, t), and

choose a basis e1, . . . , ep+2 of U . The exact sequence shows that the classes γ and
γ(U, t) differ by an element

∑

j

e1 ∧ . . . ∧ êj ∧ . . . ∧ ep+2 ⊗ tj

with tj ∈ ker(dt), hence γ is of the form γ(U ′, t) with

U ′ = 〈e1 + t1, . . . , ep+2 + tp+2〉.
¤

Remark 3.32. If U ′ ⊂ 〈t〉⊕U ⊂ d−1
t (W ) is another lifting of W , then γ(U, t) =

γ(U ′, t). In particular, if ker(dt) = C.t the given class only depends on t and W .
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3.4.2. The method of Green–Lazarsfeld. The following nonvanishing re-
sult was a source of inspiration for several important conjectures on Koszul coho-
mology.

Theorem 3.33 (Green-Lazarsfeld). Let X be a smooth projective variety, and
let L be a line bundle on X that admits a decomposition L = L1 ⊗ L2 with ri =
dim |Li| ≥ 1 for i = 1, 2. Then Kr1+r2−1,1(X,L) 6= 0.

We shall prove this result in the curve case in section 3.5. For the general case,
see [GL84] or [V93].

The Koszul classes appearing in this result are constructed in the following
way. Write Li = Mi + Fi with Mi the mobile part and Fi the fixed part. Let B
be the divisorial part of F1 ∩ F2. It is possible to choose si ∈ H0(X,Li) such that
V (s1, s2) = B ∪ Z with codim (Z) ≥ 2. Set L = L1 ⊗ L2, and put t = (s1, s2) ∈
H0(X,L1 ⊕ L2), W = im(dt) ⊂ H0(X,L(−B)). By construction h0(X,OX(B)) =
1, hence ker(dt) = C.t and dim W = r1 + r2 + 1. By the previous discussion,
we obtain a Koszul class γ(W, t) ∈ Kr1+r2−1,1(X,L). We call such classes Green–
Lazarsfeld classes.

Note that the rank of a Green–Lazarsfeld class is either p+ 1 or p+ 2. It is of
scrollar type if and only if it comes from a pencil.

3.4.3. The method of Koh–Stillman. Voisin’s method produces syzygies
of rank ≤ p + 2. As we have seen in the previous subsection, rank p + 1 syzygies
are Green–Lazarsfeld syzygies of scrollar type. Rank p+2 syzygies can be obtained
in the following way. Suppose that L is a globally generated line bundle on a
projective variety X, and let [γ] ∈ Kp,1(X,L) be a nonzero class represented by
an element γ ∈ ∧p

W ⊗ V with dim W = p + 2. We view γ as an element in∧2
W∨ ⊗ V ∼= Hom(

∧2
W,V ). As before we consider the map

γ′ :
∧2(C⊕W ) = W ⊕∧2

W → V

W ↪→ V . If we choose a generator e1 for the first summand and a basis {e2, . . . , ep+3}
for W , we obtain a skew–symmetric (p+ 3)× (p+ 3) matrix A by setting

aij = γ′(ei ∧ ej).
By construction, the inclusion W → V corresponds to the map γ′(e1 ∧ −). This
allows us to identify a1j and ej , 2 ≤ j ≤ p+ 3. Let α be the image of γ under the
Koszul differential

δ :
∧p
V ⊗ V → ∧p−1

V ⊗ S2V.

Writing this out, we obtain

(3.3) α =
∑

i<j<k

(−1)i+j+ka12 ∧ . . . â1,i . . . â1,j . . . â1,k . . . ∧ a1,p+3 ⊗ Pf1ijk(A)

where
Pf1ijk(A) = a1iajk − a1jaik + a1kaij

is a 4 × 4 Pfaffian of A. As the elements {a12, . . . , a1,p+3} = {e2, . . . , ep+3} are
linearly independent, this expression is nonzero if and only if at least one of the
Pfaffians Pf1ijk(A) is nonzero. Furthermore, since α maps to zero in

∧p−1
V ⊗

H0(X,L2) the Pfaffians Pf1ijk(A) have to vanish on the image of X.
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The preceding discussion shows that every rank p + 2 syzygy arises from a
skew–symmetric (p+ 3)× (p+ 3) matrix A such that

(i) the elements {a12, . . . , a1,p+3} are linearly independent;
(ii) there exists a nonzero Pfaffian Pf1ijk(A);
(iii) the Pfaffians Pf1ijk(A) vanish on the image of X in P(V ∨).

This is exactly the method used by Koh and Stillman to produce syzygies; see
[KS89, Lemma 1.3].

3.5. The curve case

In this section we give a complete characterization of Koszul classes of rank
p+ 2 on a curve. The following two results simplify the presentation of [AN07].

Lemma 3.34. We have isomorphisms

Kp,1(X,B,L(−B),W ) ∼= ker(δ : H1(X,L∨(2B)) →W∨ ⊗H1(X,OX(B)))
∼= EW = {ξ ∈ Ext1(L(−B),OX(B)) |W ⊂ ker δξ}.

Proof: Consider the exact sequence

(3.4) 0 →MW →W ⊗OX → L(−B) → 0.

By Proposition 2.4 and Remark 2.6 Kp,1(X,B,L(−B),W ) is isomorphic to

ker(H1(X,
∧p+1

MW ⊗OX(B)) → H1(X,
∧p+1

W ⊗OX(B)))
∼= ker(δ : H1(X,L∨(2B)) →W∨ ⊗H1(X,OX(B))).

For the second statement, note that δ is induced by the multiplication map

µ : W ⊗H1(X,L∨(2B)) → H1(X,OX(B)).

The formula
δξ(w) = µ(w ⊗ ξ)

shows that
ξ ∈ ker δ ⇐⇒ µ(w ⊗ ξ) = 0 ∀w ∈W,

that is, if and only if W ⊂ ker δξ. ¤

Proposition 3.35. Let W ⊂ H0(X,L(−B)) be a base–point free linear sub-
space of dimension p+2, and let t ∈ H0(X,E) be the image of the canonical section
of OX(B). Let

ψ : EW → Kp,1(X,B,L(−B),W )

be the isomorphism defined in the previous Lemma. We have ψ(ξ) = γ(W, t).

Proof: Choose a linear subspace U ⊂ H0(X,E) such that dt : U ∼−→ W , and
consider the commutative diagram

(3.5)
0 → MU → U ⊗OX α−→ L(−B) → 0yβ

y ‖
0 → OX(B) → E → L(−B) → 0
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where MU is by definition the kernel of α. If we dualise this diagram and twist by
OX(B), we obtain a commutative diagram

0 → L∨(2B) → U∨(B) −→ M∨
U (B) → 0

‖
x

x
0 → L∨(2B) → E∨(B) → OX → 0.

By construction, ψ(ξ) is obtained by taking the image of 1 ∈ H0(X,OX) under the
map ϕ in the commutative diagram

H0(X,M∨
U (B)) → H1(X,L∨(2B)) → U∨ ⊗H1(X,OX(B))xϕ ‖

H0(X,OX) → H1(X,L∨(2B)).

If we take the second exterior power in the rows of diagram (3.5), we obtain a
commutative diagram

0 → ∧2
MU → ∧2

U ⊗OX → MU ⊗ L(−B) → 0y
yβ⊗id

0 → ∧2
E ∼−→ L → 0.

Dualising and twisting by L, we obtain a commutative diagram

M∨
U (B) −→ ∧2

U∨ ⊗ Lxβ
x

OX −→ ∧2
E∨ ⊗ L.

After taking global sections, we obtain

H0(X,M∨
U (B)) −→ ∧2

U∨ ⊗ V ∼= Hom(
∧2
U, V )xϕ

x
C −→ H0(X,

∧2
E∨)⊗ V.

By construction, the image of ψ(ξ) = ϕ(1) in Hom(
∧2
U, V ) is the restriction of the

determinant map d|∧2
U

. Hence we can identify ψ(ξ) and γ(W, t). ¤

Proposition 3.35 yields a short, geometric proof of the Green–Lazarsfeld non-
vanishing theorem for curves.

Corollary 3.36. (Green–Lazarsfeld) Let X be a smooth curve, and let L be
a line bundle on X that admits a decomposition L = L1⊗L2 with ri = dim |Li| ≥ 1
for i = 1, 2. Then Kr1+r2−1,1(X,L) 6= 0.

Proof: We define s1, s2, t, W , B and γ(W, t) as in section 3.4.2. Let C be the
base locus of W , seen as a subspace of H0(X,L(−B)). We prove that γ(W, t) 6= 0.
Suppose that γ(W, t) = 0. Consider the extension

0 → OX(B) → L1 ⊕ L2 → L(−B) → 0.

Pulling back this extension along the injective homomorphism L(−B − C) →
L(−B), we obtain an induced extension

0 → OX(B) → E → L(−B − C) → 0.
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Applying Proposition 3.35 to the line bundle L(−C), we find that this extension
splits. Hence there exists an injective homomorphism

OX(B)⊕ L(−B − C) → L1 ⊕ L2.

In particular there exists i ∈ {1, 2} such that Hom(L(−B − C), Li) 6= 0. This
implies that

ri + 1 = h0(X,Li) ≥ h0(X,L(−B − C)) ≥ dim W = r1 + r2 + 1,

and this is impossible since r1 ≥ 1 and r2 ≥ 1. ¤

Theorem 3.37. Let X be a smooth curve, and let α 6= 0 ∈ Kp,1(X,L) be
a Koszul class of rank p + 2 represented by an element of

∧p
W ⊗ H0(X,L) with

dim W = p+2. There exist a rank 2 vector bundle E on X, a section t ∈ H0(X,E)
and a subspace W ∼= U ⊂ H0(X,E) such that α = γ(U, t).

Proof: Put T = C⊕W . By Remark 3.13 and Theorem 3.23 we obtain a rational
map

ψ : X 99K P(∧2T∨)

such that the closure of the image of X is contained in Gensyz2(W ) = G(2, T ) ∪
P(∧2W∨). Since X is a curve, we may remove the base–locus C of this map, by
replacing L by L(−C). By construction, the resulting morphism ψ is given by the
skew-symmetric matrix A = (aij), introduced in section 3.4.3, such that

(a) The linear forms in the first row of A span W ;
(b) There exists a nonzero 4 × 4 Pfaffian of A involving the first row and

column;
(c) The 4× 4 Pfaffians involving the first row and column of A vanish on the

image of X in PH0(X,L)∨.

Put Y = ψ(X). Condition (a) shows that Y is not contained in P(
∧2
W∨). As Y

is irreducible, this implies that Y is contained in G(2, T ).

Put E = ψ∗Q. Twisting the exact sequence

0 → IY → OG → ψ∗OX → 0

by the universal quotient bundle Q and taking global sections, we obtain an exact
sequence

0 → H0(G,Q⊗ IY ) → H0(G,Q) ψ∗−−→ H0(G,ψ∗OX ⊗Q) ∼= H0(X,E).

Condition (a) implies that Y is not contained in G(2,W ) = G(2, T ) ∩ P(
∧2
W∨),

hence t does not vanish identically on X and defines a global section of E. The
zero locus of this section is given by the equations a12 = · · · = a1,p+3 = 0, hence it
coincides with B. Consequently the line bundle E is given by an extension

(3.6) 0 → OX(B) → E → L(−B) → 0.
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Consider the commutative diagram

0 0y
y

H0(G,OG) .t−→ H0(X,OX(B))y∧t
y∧t

H0(G,Q) ψ∗−−→ H0(X,E)y
ydt

W i−→ H0(X,L(−B)).

Note that ker i = W ∩ H0(G,OG(1) ⊗ IY ) = 0 by condition (a). As the map
H0(G,Q) → W is surjective, we find that W is contained in the image of the
map dt : H0(X,E) → H0(X,L(−B)). The embedding W ⊂ H0(G,Q) = 〈t〉 ⊕W
composed with ψ∗ is a section of dt. Put U = ψ∗(W ). By construction we obtain
γ = γ(U, t). ¤

Remark 3.38. This result is a refinement of [vB07a, Theorem 6.7], where it
was shown that a rank p+2 syzygy gives rise to a rank 2 vector bundle if L is very
ample and the ideal of X is generated by quadrics.

Theorem 3.37 shows that Voisin’s method may produce nontrivial Koszul classes
that are not contained in the subspace of Kp,1(X,L) spanned by Green–Lazarsfeld
classes.

Example 3.39. By [ELMS89, Theorem 3.6 and Theorem 4.3] there exists a
smooth curve of genus 14 and Clifford index 5 (see section 4.2 for the definition)
whose Clifford index is computed by a unique line bundle L such that L2 = KX .
The line bundle L embeds X in P4 as a projectively normal curve of degree 13,
and the ideal of X is generated by the 4× 4 Pfaffians of a skew–symmetric matrix
(aij)1≤i,j≤5 with

deg(aij) =
{

2 if i = 1 or j = 1
1 if i ≥ 2 and j ≥ 2

such that the quadric Q = a23a45 − a24a35 + a25a34 has rank 5. The Koszul
class [Q] ∈ K1,1(X,L) has rank 3, since it is represented by the linear subspace
W = 〈a23, a24, a25〉. Hence [Q] comes from Voisin’s method by Theorem 3.37.

Suppose that K1,1(X,L) contains a Green–Lazarsfeld class. This class would
be of scrollar type, since it necessarily comes from two pencils |L1|, |L2|. The
equality deg(L1) + deg(L2) = 13 implies that L1 and L2 contribute to the Clifford
index. This is impossible, since the previous equality implies that there exists i
such that deg(Li) ≤ 6, hence Cliff(Li) ≤ 4.

Remark 3.40. A more geometric description of a subspace W representing
[Q] is the following. A smooth intersection of the quadric V (Q) ⊂ PH0(X,L)∨

with one of the cubic Pfaffians is a K3 surface in PH0(X,L)∨ containing a line `
which is disjoint from X by [ELMS89, Prop. 4.1]. The line ` corresponds to a
3-dimensional linear subspace W ⊂ H0(X,L), which is base-point-free since ` does
not meet X.
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One could ask whether the syzygies constructed in section 3.4.1 spanKp,1(X,L).
In principle it may be possible to obtain higher rank syzygies as linear combinations
of rank p+2 syzygies. However, if Kp,1(X,L) is spanned by a single syzygy of rank
≥ p+ 3 this is not possible.

Example 3.41 (Eusen–Schreyer). Eusen and Schreyer [ES94, Theorem 1.7 (a)]
have constructed a smooth curve X ⊂ P5 of genus 7 and Clifford index 3 embedded
by the linear system |KX(−x)| such that K2,1(X,KX(−x)) ∼= C is spanned by a
syzygy s0. The explicit expression for s0 given on p.8 of [loc. cit.] shows that s0 is a
rank 5 syzygy. Hence s0 cannot be obtained by the Green–Lazarsfeld construction
or the method of section 3.4.1.

3.6. Notes and comments

As mentioned before, the notion of syzygy scheme emerged from Green’s Kp,1

theorem, and was introduced for studying the Arbarello-Sernesi modules⊕
q

H0(X,KX ⊗ Lq).

The first application was an improvement of a result of Arbarello-Sernesi, see
[Gre84a, Theorem (4.b.2)] and [Gre82, Theorem 2.14]. The core of the proof
is the Strong Castelnuovo Lemma 3.26. It generalizes the classical Castelnuovo
Lemma which states that if a subvariety X of Pr imposes ≤ 2r + 1 conditions on
quadrics, then either it is contained in a rational normal curve, or else no more
than 2r + 2 points of X are in general position.

In the curve case, theKp,1 theorem has another nice consequence. It shows that
if L is a nonspecial very ample line bundle on a curve C with h0(C,L) = r+1, and
0 6= γ ∈ Kr−2,1(C,L), then C is hyperelliptic, and the g1

2 is induced by the ruling on
Syz(γ). The proof idea is the following. Note that Syz(γ) is two-dimensional, hence
its desingularization is a Hirzebruch surface Σe. A small cohomological computation
using the embedding C ⊂ Σe, based on the nonspeciality of L, shows that the ruling
of Σe cannot restrict to a pencil of degree larger than two.

Ehbauer analyzed the further case of a line bundle L on a genus-g curve C
with g ≥ 13, deg(L) ≥ 2g + 3, h0(C,L) = r + 1, and Kr−3,1(C,L) 6= 0. He shows
that the intersection of all the syzygy schemes of classes in Kr−3,1(C,L) is a 3-
dimensional rational normal scroll, and the ruling planes cut out a g1

3 on C. The
hyperelliptic case that follows from the Kp,1 theorem, and the trigonal case treated
by Ehbauer are two entry cases for a more general conjectural statement that will
be thoroughly discussed in the next chapters, see Conjecture 4.21. Ehbauer’s proof
relies on a generalization of the Strong Castelnuovo Lemma; see [Ehb94] for details.





CHAPTER 4

The conjectures of Green and Green–Lazarsfeld

4.1. Brill-Noether theory

We are interested in studying the following stratification of the Jacobian of C

Picd(C) ⊃W 0
d (C) ⊃W 1

d (C) ⊃ . . .

where
W r
d (C) := {A ∈ Picd(C), h0(C,A) ≥ r + 1},

for all r. This problem only makes sense for d ≤ 2g − 2, as h0(C,A) is completely
determined by d for any A if d ≥ 2g − 1.

The strata W r
d (C) are called Brill-Noether loci; they are determinantal subvari-

eties of Picd(C) i.e. are given locally by the vanishing of minors of suitable matrices
of functions. This structure is obtained in the following way [ACGH85]. Fix E
an effective divisor of degree m ≥ 2g − d − 1. Then for any element A ∈ Picd(C),
the bundle A(E) is nonspecial, hence we have an exact sequence

(4.1) 0 → H0(C,A) → H0(C,A(E)) → H0(E,A(E)|E) → H1(C,A) → 0.

Obviously A ∈W r
d (C) if and only if

rk(ker(H0(C,A(E)) → H0(E,A(E)|E))) ≥ r + 1.

Remark that both n = h0(C,A(E)) = d+m−g+1 and h0(E,A(E)|E) = m do
not depend on the choice of A. This elementary observation allows the construction
of the determinantal structure. Let Γ = E × Picd(C) ⊂ C × Picd(C) be the
product divisor, and denote by L a Poincaré bundle on C × Picd(C) [ACGH85],
and π : C × Picd(C) → Picd(C) the projection on the second factor. By the
considerations above, the sheaves

π∗(L(Γ)), and π∗(L(Γ)|Γ)

are locally free of rank n, respectively m. If

γ : π∗(L(Γ)) → π∗(L(Γ)|Γ)

denotes the sheaf morphism induced by the sequence (4.1), then W r
d (C) is the locus

where
dim (ker γ) ≥ r + 1.

By the general theory, we obtain a determinantal structure on W r
d (C), which

is independent on the choice of the Poincaré bundle L, and of the divisor E
[ACGH85] p. 179. In local coordinates, it is given by the vanishing of the minors
of order k = d+m− g− r of a matrix n×m of functions provided, of course, that
k ≤ m, which is equivalent to

(4.2) g − d+ r ≥ 0.

47



48 4. THE CONJECTURES OF GREEN AND GREEN–LAZARSFELD

Note that g − d+ r = h0(C,KC ⊗A∨) for any A having precisely r + 1 global
sections. Inequality (4.2) is therefore a necessary condition for the existence of
elements in W r

d (C) \W r+1
d (C). If W r

d (C) is non-empty, then one can prove that
(4.2) is also a sufficient condition, in a stronger sense.

Proposition 4.1. If r ≥ d − g then no component of W r
d (C) is entirely con-

tained in W r+1
d (C).

Another numerical restriction is given by the Clifford Theorem.

Theorem 4.2 (Clifford). Suppose r ≥ d− g and W r
d (C) 6= ∅. Then 2r ≤ d.

If condition (4.2) is satisfied, and if W r
d (C) is non-empty, then all its compo-

nents have dimension at least

dim (Picd(C))− (n− k)(m− k) = g − (r + 1)(g − d+ r).

A complete proof can be found in [ACGH85], Ch. II. Section 4. However, the
problem of non-emptiness of Brill-Noether loci is a very hard one, see Theorem 4.4
below.

The integer

(4.3) ρ(g, r, d) = g − (r + 1)(g − d+ r)

which represents the expected dimension of the Brill-Noether locus W r
d (C) is called

the Brill-Noether number. Since h0(C,A) = r+ 1 and h0(C,KC ⊗A∨) = g − d+ r
for any A ∈W r

d (C) \W r+1
d (C), we obtain

ρ(g, r, d) = h0(C,KC)− h0(C,A)h0(C,KC ⊗A∨).

The Brill-Noether number is related to the multiplication map

(4.4) µ0,A : H0(C,A)⊗H0(KC ⊗A∨) → H0(C,KC).

If µ0,A is injective, then ρ(g, r, d) = codim µ0,A. A curve is called Brill-Noether-
Petri generic if the multiplication maps µ0,A are injective for all A. This condition
is usually referred to as the Brill-Noether-Petri condition. Its geometric meaning
is given by the following theorem, see [ACGH85].

Theorem 4.3. Suppose r ≥ d − g and W r
d (C) 6= ∅. Given A ∈ W r

d (C) \
W r+1
d (C), the tangent space to W r

d (C) at A is

TA(W r
d (C)) = Ann(im(µ0,A))

where Ann(im(µ0,A)) ⊂ H0(C,KC)∨ denotes the annihilator of the subspace

im(µ0,A) ⊂ H0(C,KC).

In particular, W r
d (C) is smooth of dimension ρ(g, r, d) at A if and only if µ0,A is

injective.

All the results mentioned above assume non-emptiness of Brill-Noether loci.
This is realized effectively when ρ is non-negative.

Theorem 4.4 (Existence Theorem). Let C be a smooth curve of genus g, and d,
r be integers such that d ≥ 1, r ≥ 0 with ρ(g, r, d) ≥ 0. Then W r

d (C) is non-empty.

Under stronger assumptions, one can prove more.
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Theorem 4.5 (Connectedness Theorem). Let C be a smooth curve of genus
g, and d, r be integers such that d ≥ 1, r ≥ 0 with ρ(g, r, d) ≥ 1. Then W r

d (C) is
connected.

The importance of the Brill-Noether-Petri condition is made clear by the fol-
lowing fundamental result, [ACGH85]

Theorem 4.6. If C is Brill-Noether-Petri generic, then for any r and d, with
r ≥ d − g the variety W r

d (C) is of expected dimension ρ(g, r, d) and smooth away
from W r+1

d (C).

In particular, for a Brill-Noether-Petri generic curve C the Brill-Noether locus
W r
d (C) is empty if ρ(g, r, d) < 0.

In Chapter 7, we shall need upper-bounds for the dimensions of the Brill-
Noether loci. Two basic results in this direction are the following

Theorem 4.7 (Martens). Let C be a smooth curve of genus g ≥ 3, d and r be
integers with 2 ≤ d ≤ g − 1, and 0 < 2r ≤ d. If C is hyperelliptic then

dim W r
d (C) = d− 2r,

and if C is non-hyperelliptic

dim W r
d (C) ≤ d− 2r − 1.

Theorem 4.8 (Mumford). Let C be a smooth curve of genus g ≥ 4, d and r
be integers with 2 ≤ d ≤ g − 2, and 0 < 2r ≤ d. If C is none of the following:
hyperelliptic, trigonal, bi-elliptic, smooth plane quintic, then

dim W r
d (C) ≤ d− 2r − 2.

Recall that a trigonal curve admits a cover of degree three on the projective
line (see section 4.2), and a bielliptic curves is a double cover of an elliptic curve.

The next case, dim W r
d (C) ≤ d− 2r − 3 was treated by Keem, [Ke90].

4.2. Numerical invariants of curves

Linear systems on curves can be used to define natural numerical invariants.
Theses invariants measure “how special” the curve is, and yield stratifications of
the moduli space of curves.

The first invariant of this type is the gonality:

gon(C) := min{deg(A), h0(C,A) ≥ 2} = min{d, W 1
d (C) 6= ∅}.

Elements in W 1
d (C) are called pencils; the gonality computes the minimal degree of

a surjective morphism from C to the projective line. By lower semi-continuity of
the gonality, we obtain a stratification of the moduli space Mg of genus-g curves;
the resulting strata are irreducible, since they are covered by Hurwitz schemes. The
Existence Theorem 4.4 applied to pencils gives the inequality

gon(C) ≤
[
g + 3

2

]
,

and the maximal value is realized on an open set of Mg.

The second important invariant is the Clifford index. The origin of this notion is
in the proof of Clifford’s Theorem 4.2. The proof of the statement (see [ACGH85,
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p. 108]) uses the Riemann-Roch Theorem, and the addition map of effective divisors
(the additive version of the multiplication map of sections):

|A| × |KC ⊗A∨| → |KC |.
Note that this map is injective, and finite onto its image. Therefore, the codi-

mension of the image equals

dim |KC | − dim |A| − dim |KC ⊗A∨| = d− 2h0(C,A) + 2 ≥ 0.

The quantity appearing above is called the Clifford index of A:

Cliff(A) = d− 2h0(C,A) + 2.

The addition maps that are significant for the geometry of the curve are the
non-trivial ones, and the addition map will be non-trivial only if both linear systems
|A| and |KC⊗A∨| are at least one-dimensional. We arrive at the following definition.

Definition 4.9. A line bundle A is said to contribute to the Clifford index of
C if h0(C,A) ≥ 2 and h1(C,A) ≥ 2.

Note that this notion is auto-dual, i.e., a line bundle A contributes to the
Clifford index if and only if its residual bundle KC ⊗A∨ contributes to the Clifford
index, and the Clifford indices of the two bundles coincide. The Clifford index of
the curve is obtained by taking the minimum of all Clifford indices that contribute:

Definition 4.10 (Martens).

Cliff(C) := min{Cliff(A), h0(C,A) ≥ 2, h1(C,A) ≥ 2}.
For g ≤ 3 this definition has to be modified slightly, see [La89].
A line bundle A that contributes to the Clifford index of the curve, and whose

Clifford index is minimal is said to compute the Clifford index of C.
By the Clifford Theorem, we have Cliff(C) ≥ 0, and equality holds only for

hyperelliptic curves. Similarly, Cliff(C) = 1 if and only if C is trigonal or plane
quintic, and Cliff(C) = 2 if and only if C is tetragonal, or plane sextic. Martens
[Ma82] has gone one step further, and proved that Cliff(C) = 3 if and only if C is
pentagonal, or a plane septic, or a complete intersection of two cubics in P3. In the
general case, we have the following conjecture made by Eisenbud, Lange, Martens
and Schreyer, [ELMS89, p. 175].

Conjecture 4.11 (Eisenbud, Lange, Martens, Schreyer). Cliff(C) = p if and
only if either

(i) gon(C) = p+ 2;
(ii) C is a plane curve of degree p+ 4;
(iii) p is odd, and C is a half-canonical curve of even genus 2p + 4 embedded

in P
p+3
2 .

The Existence Theorem 4.4 gives the following upper bound for the Clifford
index:

Cliff(C) ≤
[
g − 1

2

]
.
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As the Clifford index is lower semi-continuous, it produces a stratification of Mg.
The dimensions of linear systems that contribute to the Clifford index yield to a
new invariant, the Clifford dimension:

Cliffdim(C) := min{dim |L|, L computes the Clifford index of C}.
The Clifford index is intimately related to the gonality; a straightforward ar-

gument gives the inequality

gon(C) ≥ Cliff(C) + 2,

and equality holds only for curves of Clifford dimension one. Since there exist curves
of arbitrary Clifford dimensions larger than three [ELMS89], the inequality above
can be strict. However, it was proved by Coppens and Martens [CM91] that the
two invariants cannot differ too much:

Cliff(C) + 3 ≥ gon(C).

By what we have said above, Cliff(C) = gon(C)+3 if and only if C is of Clifford
dimension at least two. For Clifford dimension two we obtain plane curves, hence
the hard cases to analyze start with Clifford dimension three. A current research
topic is to understand the true meaning of the Clifford index, and of the differences
between the Clifford index and the gonality. As we shall see in the next section,
Koszul cohomology provides a conjectural tool for computing the Clifford index
and gonality of a curve.

4.3. Statement of the conjectures

In this sections we discuss two important conjectures on Koszul cohomology of
curves.

4.3.1. Green’s conjecture. Given a line bundle L on a smooth projective
curve C, put

r(L) = dim |L| = h0(C,L)− 1.

Proposition 4.12. Let A be a line bundle that contributes to Cliff(C). Then

Kp,1(C,KC) 6= 0 for all p ≤ g − Cliff(A)− 2.

Proof: Put L1 = A, L2 = KC ⊗ A∨, ri = r(Li) (i = 1, 2), d = deg(A). By
Riemann–Roch we have r2− r1 = g−d− 1, hence r1 + r2− 1 = g−d+2r(A)− 2 =
g − Cliff(A)− 2. Using Theorem 3.33 we obtain

Kg−Cliff(A)−2,1(C,KC) 6= 0.

The assertion then follows from Corollary 2.13. ¤

The strongest nonvanishing result of this type is obtained by taking the minimal
value of Cliff(L). This gives the implication

(4.5) p ≥ g − Cliff(C)− 2 =⇒ Kp,1(C,KC) 6= 0.

Green [Gre84a] conjectures that the converse of (4.5) holds.

Conjecture 4.13 (Green). Let C be a smooth projective curve. Then

Kp,1(C,KC) = 0 ⇐⇒ p ≥ g − Cliff(C)− 1.
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Remark 4.14. In view of Corollary 2.13, Green’s conjecture holds if and only
if

Kg−Cliff(C)−1,1(C,KC) = 0.

In the literature Green’s conjecture is sometimes stated in another form; to
state it, we need the following definition.

Definition 4.15. A line bundle L on a smooth projective variety X satisfies
property (Np) if

Ki,j(X,L) = 0 for all i ≤ p, j ≥ 2.

Remark 4.16. For curves it is enough to ask for the vanishing of Ki,2(C,L)
for all i ≤ p, since the groups Ki,j(C,L) automatically vanish if j ≥ 3 [Gre84a].

By the duality theorem 2.24 we have

Kg−c−1,1(C,KC)∨ ∼= Kc−1,1(C,KC ;KC) = Kc−1,2(C,KC)

for all c. Hence Green’s conjecture is equivalent to the following statement.

Conjecture 4.17 (Green’s conjecture, version II).

KC satisfies property (Np) ⇐⇒ Cliff(C) > p.

Remark 4.18. If Green’s conjecture holds, the Clifford index is computed by
the formula

Cliff(C) = min{p | KC does not satisfy (Np)}.
Remark 4.19. Put c = Cliff(C). The Green conjecture predicts the following

shape of the Betti table of a canonical curve C, see Definition 1.15:

1

...

... 1

...

...

0 1 ... ... g−2

3

2

1

0

g−c−2

The only non-zero entries in the Betti table are in in shaded region. Note that
this table is symmetric with respect its center; apply Theorem 2.24. For canonical
curves of odd genus and maximal Clifford index, the minimal resolution must be
pure, i.e. on each column there is at most one non-zero entry.

4.3.2. The Green–Lazarsfeld conjecture. Recall that the gonality of a
curve C is the minimal number k such that C carries a pencil of degree k.

Proposition 4.20. If C carries a linear system g1
k, then

Kp,1(C,L) 6= 0 for all p ≤ r(L)− k

for every line bundle L such that deg(L) À 0.
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Proof: Given a pencil |M | of degree k, put L1 = M and L2 = L ⊗M−1. If
deg(L) À 0 then L2 is nonspecial and r2 = r(L)− k by Serre’s vanishing theorem
and Riemann–Roch. The statement then follows from Theorem 3.33. ¤

The strongest nonvanishing statement of this form is

(4.6) p ≤ r(L)− gon(C) =⇒ Kp,1(C,L) 6= 0.

Again one could ask whether the converse holds.

Conjecture 4.21 (Green–Lazarsfeld). Let C be a smooth projective curve.
For every line bundle L on C of sufficiently large degree we have

Kp,1(C,L) = 0 ⇐⇒ p ≥ r(L)− gon(C) + 1.

Remark 4.22. In the statement of Proposition 4.20 it suffices to assume that

deg(L) ≥ 2g + k − 1

or, more generally, that L is k–spanned in the sense of Beltrametti–Sommese (see
Definition 6.6). At present it is not clear what conditions should be imposed on
deg(L) for the converse statement.

Again there is an equivalent version of this conjecture, which is stated using
the following definition.

Definition 4.23. Let L be a line bundle on a smooth projective curve C. We
say that L satisfies property (Mk) if

Kp,1(C,L) = 0 for all p ≥ r(L)− k.

Conjecture 4.24 (Green–Lazarsfeld, version II). For every line bundle L such
that deg(L) À 0 we have

L satisfies (Mk) ⇐⇒ gon(C) > k.

Remark 4.25. If the Green–Lazarsfeld conjecture holds, the gonality of a
smooth projective curve C is computed by the formula

gon(C) = min{k | (Mk) fails for every line bundle L such that deg(L) À 0 }.

Remark 4.26. In terms of the property (Mk), Green’s conjecture is equivalent
to the statement

KC satisfies (Mk) ⇐⇒ Cliff(C) ≥ k.

Hence if Green’s conjecture is valid, the Clifford index can be computed by the
formula

Cliff(C) = max{k | KC satisfies (Mk)}.
Even though the statement of the Green-Lazarsfeld conjecture is about any line

bundle of large degree, one can actually reduce to the case of one suitably chosen
line bundle.

Theorem 4.27. If L is a nonspecial line bundle on a smooth curve C, which
satisfies Kp,1(C,L) = 0, for an integer p ≥ 1, then, for any effective divisor E of
degree e ≥ 1, one has Kp+e,1(C,L(E)) = 0.
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Proof: Using induction, we reduce to the case e = 1; remark that if L is nonspecial,
so is L(E) for any effective divisor E.

Consider x0 ∈ C a point, and suppose Kp+1,1(C,L⊗OC(x0)) 6= 0. Define the
following open subset of C

U = {x ∈ C, H1(C,L⊗OC(x0 − x)) = 0};
it is non-empty, as x0 ∈ U .

Proposition 2.14 shows that for x a generic point of C, we have

Kp,1(C,L⊗OC(x0 − x)) 6= 0.

By semi-continuity, Proposition 1.29, and irreducibility of U , we conclude that for
any x ∈ U , Kp,1(C,L ⊗ OC(x0 − x)) 6= 0. In particular, for x = x0, we obtain
Kp,1(C,L) 6= 0, contradiction. ¤

Corollary 4.28. Suppose that there exists a non-special line bundle L on X
such that

Kh0(L)−gon(C),1(C,L) = 0.
Then the Green-Lazarsfeld conjecture holds for X.

4.4. Generalizations of the Green conjecture.

In the sequel, we work on a curve C of genus g ≥ 1. An obvious generalization
of the Green conjecture (see conjecture 4.17) is the following.

Conjecture 4.29. Let p ≥ 0 be an integer number. Any special very ample
line bundle L on the curve C with

deg(L) ≥ 2g − 1 + p− Cliff(C)

satisfies property (Np).

Observe that the inequality in the hypothesis implies h1(C,L) = 1. This will
be explained in greater generality in Remark 4.32. For non-hyperelliptic curves, the
Green conjecture is a special case of Conjecture 4.29, obtained for L = KC . The
two conjectures are actually equivalent, [KS89].

Proposition 4.30. Green’s conjecture implies Conjecture 4.29.

Proof: Using the Duality Theorem 2.24, we obtain

Ki,j(C,L)∨ ∼= Kh0(L)−2−i,2−j(C,KC , L).

Note that L⊗n is of degree larger than 2g for n ≥ 2, hence h0(KX ⊗ L⊗q) = 0 for
q ≤ −2. It implies that

Kp,q(C,KC , L) = 0,
for q ≤ −2. Property (Np) for L will then be equivalent to

(4.7) Kh0(L)−2−i,2−j(C,KC , L) for i ≤ p and j = 2, or j = 3.

By hypothesis, there exists a non-zero generator of H0(C,KC⊗L∨). Using the
resulting identification H0(C,L) with a subspace W ⊂ H0(C,KC), and applying
the definition of Koszul cohomology, we obtain canonically induced isomorphisms

Kp,q(C,KC , L) ∼= Kp,q+1(C,KC ,W ),
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for q = −1 or q = 0. Since Kp,q+1(C,KC ,W ) ⊂ Kp,q+1(C,KC) for q = −1 or
q = 0, the condition (4.7) will be implied by

Kh0(L)−2−i,2−j(C,KC) for i ≤ p and j = 1, or j = 2.

For j = 2, the vanishing is straightforward. For j = 1 we use the Green conjecture,
which predicts that

Kp,1(C,KC) = 0, for all p ≥ g − 1− Cliff(C).

Simply note that

h0(L)− 2− i ≥ h0(L)− (p+ 2) = deg(L)− g − p ≥ g − 1− Cliff(C)

to conclude. ¤

The following more sophisticated generalization of the Green conjecture was
introduced by Green and Lazarsfeld; see [La89] for a discussion of the origins of
this conjecture.

Conjecture 4.31 (Green-Lazarsfeld [GL86]). Let L be a very ample line
bundle on the curve C such that

(4.8) deg(L) ≥ 2g + 1 + p− 2h1(L)− Cliff(C),

where p ≥ 0. Then L satisfies property (Np) unless L embeds C with a (p+2)-secant
p-plane.

Let us make a few remarks on the conditions appearing in the statement of
Conjecture 4.31.

Remark 4.32. A very ample line bundle L satisfying (4.8) will necessarily have
h1(L) ≤ 1. Indeed, if h1(L) ≥ 2, then L contributes to the Clifford index of C,
hence Cliff(L) ≥ Cliff(C), i.e.

g + 1− h0(L)− h1(L) ≥ Cliff(C).

Applying Riemann-Roch and replacing h0(L) by deg(L)+ 1+h1(L)− g, we obtain

2g − 2h1(L)− Cliff(C) ≥ deg(L) ≥ 2g + p+ 1− 2h1(L)− Cliff(C).

This is clearly impossible.
The condition (4.8) will become either

deg(L) ≥ 2g − 1 + p− Cliff(C),

or
deg(L) ≥ 2g + 1 + p− Cliff(C),

according to whether L is special or not.

Remark 4.33. The image of C in PH0(L)∨ has a (p+ 2)-secant p-plane if and
only if there exists an effective divisor D of degree (p+ 2) such that

h0(L(−D)) ≥ h0(L)− (p+ 1),

the p-plane in question being contained in (H0(L)/H0(L(−D))∨. Hence having
no secant (p + 2)-secant p-plane means that for any effective divisor D of degree
≤ p+ 2, h0(L(−D)) ≤ h0(L)− deg(D). If p = 0, this means that L is very ample.

The next result shows that the condition on secant planes is automatically
satisfied for special bundles. In fact, we can prove a little bit more.
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Proposition 4.34. Suppose that L is a special line bundle on C with deg(L) ≥
2g + 1 + p− gon(C). Then L cannot embed C with a (p+ 2)-secant p-plane.

Proof: Write L = KC(−E) with E an effective divisor on C of degree at most
gon(C) − p − 3; in particular, we have gon(C) ≥ p + 3. Suppose that there exists
another effective divisor D such that deg(D) = p + 2 and h0(L(−D)) ≥ h0(L) −
(p+1). The sum D+E is of degree at most gon(C)−1, and applying the definition
of the gonality, we obtain h0(O(D + E)) ≤ 1. Then

deg(L(−D)) + 1− g = h0(KC(−D − E))− h0(OC(D + E)) ≥
≥ h0(L)− (p+ 1)− h0(OC(D + E)) ≥ h0(L)− (p+ 2),

which implies, using deg(D) = p+ 2

h0(L)− h1(L)− (p+ 2) ≥ h0(L)− (p+ 2),

contradicting the fact that L was special. ¤

Using the inequality Cliff(C) ≤ gon(C)−2, it follows directly from Proposition
4.34 that if L is a special line bundle on C with deg(L) ≥ 2g− 1 + p−Cliff(C) i.e.
satisfying condition (4.8), then L cannot embed C with a (p+2)-secant p-plane, see
[KS89], Corollary 3.4. Applying Remark 4.32 and Proposition 4.30, we see that
the case of special bundles in conjecture 4.31 reduces to the Green conjecture.

For non-special bundles, Conjecture 4.31 becomes

Conjecture 4.35. Let p ≥ 0 be an integer number. Any non-special very
ample line bundle L on the curve C with

deg(L) ≥ 2g + 1 + p− Cliff(C),

satisfies property (Np), unless L embeds C with a (p+ 2)-secant p-plane.

As in the case of Green’s conjecture, one can state a generic version of Conjec-
ture 4.35, in which case Cliff(C) is replaced by [(g − 3)/2].

For the moment, one can prove one direction in Conjecture 4.35; this can be
regarded as an analogue of the Green-Lazarsfeld non-vanishing Theorem.

Theorem 4.36 (Koh-Stillman [KS89], Green-Lazarsfeld [GL86]). Let L be a
non-special line bundle on C with deg(L) ≥ 2g + 1 + p − Cliff(C). If L embeds C
with a (p+ 2)-secant p-plane, then L does not satisfy property (Np).

Proof: Applying Remark 4.33, we can find an effective divisor E of degree ≤ p+1
and a point p ∈ C (E + p will be a subdivisor of the divisor D in question) such
that L(−E) is non-special, and L(−E − p) is special. Hence h0(L(−E − p)) = 1.
Put i = deg(D)− 1 ≤ p. We prove that

Kh0(L)−(i+2),0(C,KC , L) 6= 0;

by the duality Theorem 2.24, it will imply Ki,2(C,L) 6= 0, which will finish the
proof. Note that Kh0(L)−(i+2),0(C,KC , L) is isomorphic to the kernel of Koszul
map, as L is nonspecial, hence we need to construct a non-zero element in the
kernel of the Koszul differential defined on

∧h0(L)−(i+2)
H0(L)⊗H0(KC).
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Consider a generator t of H1(C,L(−D − p))∨ ∼= H0(C,KC(D + p)⊗ L∨), and
a non-zero section s of OC(D+ p) vanishing along D+ p. We obtain an embedding
∧h0(L)−(i+2)

H0(L(−D − p))⊗H0(L(−D − p))
s⊗t
↪→ ∧h0(L)−(i+2)

H0(L)⊗H0(KC)

Since h0(L(−D − p)) = h0(L)− (p+ 1), we have
∧h0(L)−(i+1)

H0(L(−D − p)) ∼= C.
The Koszul differential maps the generator of

∧h0(L)−(i+1)
H0(L(−D − p)) to

a non-zero element of
∧h0(L)−(i+2)

H0(L(−D − p))⊗H0(L(−D − p))

which is the element we were looking for. ¤

Remark 4.37. In the case of a line bundle L of degree 2g + p, C is embedded
with a (p+ 2)-secant p-plane if and only if h0(L⊗K∨

C) 6= 0. Indeed, let us suppose
that there exists an effective divisor D of degree (p + 2) such that h0(L(−D)) ≥
h0(L)−(p+1). By Riemann-Roch we have h0(L) = g+p+1, hence h0(L(−D)) ≥ g.
Again by Riemann-Roch, using deg(L(−D)) = 2g − 2, we obtain h0(L(−D)) −
h1(L(−D)) = g − 1, implying h1(L(−D)) = 1. It follows that L(−D) = KC , and
thus h0(L⊗K∨

C) = h0(OC(D)) 6= 0.

4.5. Notes and comments

In the course of this book, we worked exclusively over the complex number
field. Many results quoted here hold in full generality. The Green conjecture,
however, is only valid in characteristic zero. In positive characteristic, there are
several counter-examples; see [Sch03] for a thorough discussion on the subject.

There are several (stronger) versions of the Green conjecture, that imply the
original statement. The so-called geometric Green conjecture predicts that the
Koszul cohomology groups of a canonical curve C are generated by the Green-
Lazarsfeld classes; see [vB07a] and [vB07b] for a discussion and some evidence.
Another reformulation was made by Paranjape and Ramanan [PR88]; it states
that for all p ≤ Cliff(C) the spaces of global sections of all the bundles

∧p
Q are

generated by the locally decomposable sections; Q denotes here the dual of the
kernel bundle, see section 2.1. Note that the problem to decide whether or not
locally decomposable sections generate all the sections of an wedge product is of
interest in its own right; Eusen and Schreyer found examples of non-canonical curves
where this question has a negative answer; see [ES94].

Green and Lazarsfeld observed that normal generation of line bundles can be
read off from Koszul cohomology, [Gre84a], [La89]. Specifically, a globally gen-
erated ample line bundle is normally generated if and only if it satisfies property
(N0). Along these lines, the formulation of the Green conjecture in terms of the
(Np) property is very natural. For example, the first case, p = 0 translates to the
following statement: a canonical curve C is projectively normal unless C is hyperel-
liptic. This classical result was proved by M. Noether [Noe80]. Similarly, the next
case p = 1 predicts that the ideal of a non-hyperelliptic canonical curve is generated
by quadrics unless the curve is trigonal or plane quintic (in which case the genus is
6). This statement is precisely the Enriques-Petri Theorem [En19], [Pe23]. The
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case p = 2 of the conjecture indicates that the ideal of a curve is generated by
quadrics and the relations between generators are linear, except for the cases: go-
nality ≤ 4, plane sextic, or curve of genus 9 with a g3

8 . This fact was independently
proved by F.-O. Schreyer [Sch91] Theorem 4.1 and C. Voisin [V88a] (for genus at
least 11). Schreyer described the possible Betti diagrams, whereas Voisin used ker-
nel bundles. Kernel bundle techniques were successfully used also by M. Teixidor
to prove the Green-Lazarsfeld conjecture for curves of small gonality, see [Tei07].

Several other special cases where the Green conjecture is known to be verified
are: plane curves [Lo89], curves on Hirzebruch surfaces [Ap02], curves of genus
≤ 8, [Sch86]. There are similar results for the Green-Lazarsfeld conjecture. The
most significant cases will be discussed in the next chapters.



CHAPTER 5

Koszul cohomology and the Hilbert scheme

5.1. Voisin’s description

Lemma 5.1. Let X be a smooth, complex projective variety, let E and F be
vector bundles on X with rank (E) = rank (F ) and let ϕ : E → F be an injective
homomorphism of vector bundles such that D = Supp(coker f) is a divisor. We
have

detE ∼= detF ⊗OX(−D).

Proof: Taking determinants, we obtain an injective map detE detϕ−−−−→ detF whose
cokernel is isomorphic to detF ⊗OD. Hence the assertion follows. ¤

Let X [n] be the Hilbert scheme parametrising zero–dimensional length n sub-
schemes of X. Recall that a zero–dimensional subscheme ξ ⊂ X is called curvilinear
if for all x ∈ X there exists a smooth curve C ⊂ X such that ξx is contained in
C. Equivalently, this means that Oξ,x ∼= C[t]/(t`), ` = `(ξx) or dim Txξ ≤ 1. Let
X

[n]
curv be the open subscheme parametrising curvilinear length n subschemes. Let

Ξn ⊂ X [n]
curv ×X

be the incidence subscheme. It fits into a diagram

Ξn q−→ X
[n]
curvyp

X.

Let L be a line bundle on X. As q is a flat morphism of degree n, the sheaf

L[n] = q∗p∗L

is locally free of rank n. Its fiber over ξ ∈ X [n]
curv is H0(ξ, L⊗Oξ).

There is a natural evaluation map

evn : H0(X,L)⊗O
X

[n]
curv

→ L[n].

On the fiber over ξ ∈ X [n]
curv, this map is given by s 7→ s|ξ.

The following result appears in several places; cf. [EGL01], [V02].

Lemma 5.2. We have

H0(X [n]
curv,detL[n]) ∼= ∧n

H0(X,L).

59
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Proof: Let X(n) be the n–fold symmetric product of X. Let π : Xn → X(n)

be the quotient map, and let ρ : X [n]
curv → X(n) be the Hilbert–Chow morphism.

Consider the open subset X(n)
∗ ⊂ X(n) of zero–cycles of degree n whose support

consists of at least n− 1 points, and put

X
[n]
∗ = ρ−1(X(n)

∗ ), Xn
∗ = π−1(X(n)

∗ ), Bn∗ = X
[n]
∗ ×

X
(n)
∗

Xn
∗ .

Put ∆i,j = {xi = xj} ⊂ Xn
∗ , ∆ = ∪i,j∆i,j . The scheme Bn∗ is the blow-up of Xn

∗
along ∆, and X

[n]
∗ is the quotient of Bn∗ by the action of the symmetric group Sn

[Fo73, Lemma 4.4]. Consider the commutative diagram

Bn∗
q−→ Xn

∗yp
yπ

X
[n]
∗ ρ−→ X

(n)
∗ .

There is a natural homomorphism

ϕ : p∗L[n] → q∗(
⊕

ip
∗
iL)

whose restriction to the fiber over a point x ∈ Bn∗ with p(x) = ξ, q(x) = (x1, . . . , xn)
is the restriction map

H0(ξ, L⊗Oξ) →
⊕

iH
0(xi, L⊗Oxi).

The homomorphism ϕ is injective (since its restriction to the open subset corre-
sponding to subschemes consisting of n distinct points is obviously injective), and
its cokernel is supported on the exceptional divisor E = q−1(∆). Hence

p∗ detL[n] ∼= q∗L£n(−E)

by Lemma 5.1. As codim (X [n]
curv \X [n]

∗ ) ≥ 2 we have

H0(X [n]
curv,detL[n]) ∼= H0(X [n]

∗ , detL[n])
∼= H0(Bn∗ , p

∗ detL[n])Sn

∼= H0(Bn∗ , q
∗L£n(−E))Sn .

As the Sn–action on q∗L£n is induced by the Sn–action on ⊕ip∗iL that permutes
the factors and passage to the determinant, it is given by

σ(p∗1s1 ⊗ . . .⊗ p∗nsn) = sgn(σ).p∗1sσ(1) ⊗ . . .⊗ p∗nsσ(n).

Hence we obtain an injective map

H0(X [n]
curv, detL[n]) ∼= H0(Bn∗ , q

∗L£n(−E))Sn
i
↪→ H0(Bn∗ , q

∗L£n)Sn =
∧n

H0(X,L).

Conversely, the evaluation map

H0(X,L)⊗O
X

[n]
curv

→ L[n]

induces a map
j :

∧n
H0(X,L) → H0(X [n]

curv, detL[n]).
Using the definitions of the maps i and j, one checks that i◦j = id. Hence i induces
an isomorphism

H0(X [n]
curv,detL[n]) ∼−→ ∧n

H0(X,L).
¤
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Remark 5.3. The definition of curvilinear subschemes shows that subscheme of
length n whose support consists of at least n−1 points is curvilinear. HenceX [n]

curv ⊃
X

[n]
∗ . This implies that X [n]

curv ⊂ X [n] is a large open subset, i.e., codim (X [n] \
X

[n]
curv) ≥ 2. Furthermore, X [n]

curv is connected if X is connected, since every curvi-
linear subscheme of length n is a flat limit of zero–dimensional subschemes whose
support consists of n distinct points.

AsX [n]
curv is a large open subset ofX [n] by the previous remark, the conclusion of

Lemma 5.2 also holds on X [n]. The reason for working with curvilinear subschemes
is that every subscheme of a curvilinear subscheme admits a well–defined residual
subscheme. In particular, there exists a map

τ : Ξn+1 → X [n]
curv ×X

that sends (ξ, x) ∈ Ξn to (ξ′, x), with ξ′ the residual subscheme of x in ξ. Consider
the open subset

U = {(ξ, x) ∈ Ξn | x is a simple point of ξ}.
The map τ contracts the divisor Dτ = Ξn+1 \ U to Ξn.

Lemma 5.4. There is an injective map

H0(Ξp+1, detL[p+1] £ Lq−1) ↪→ ∧p
H0(X,L)⊗H0(X,Lq)

whose image is isomorphic to the kernel of the Koszul differential δ. This map fits
into a commutative diagram

H0(X [p+1]
curv ×X, detL[p+1] £ Lq−1) −→ H0(Ξp+1, detL[p+1] £ Lq−1|Ξp+1)y∼= ↪→

∧p+1
H0(X,L)⊗H0(X,Lq−1) δ−→ ∧p

H0(X,L)⊗H0(X,Lq).

Proof: Consider the map

ψ : q∗L[p+1] → τ∗(L[p] ¢ L)

whose restriction to the fiber over a point ξ with τ(ξ) = (ξ′, x) is given by the map

H0(ξ, L⊗Oξ) → H0(ξ′, L⊗Oξ′)⊕H0(x, L⊗Ox).
The map ψ is injective, and its cokernel is supported on D. Hence

(5.1) q∗ detL[p+1] ∼= τ∗(detL[p] £ L)(−Dτ )

by Lemma 5.1. Taking the tensor product with p∗Lq−1 and using the equality
p∗ = τ∗p∗1, we obtain

detL[p+1] £ Lq−1 ∼= τ∗(detL[p] £ Lq)(−Dτ ).

Hence we have an isomorphism

H0(Ξp+1, q
∗ detL[p+1]) ∼=

∼= ker
(
H0(X [p]

curv ×X, detL[p] £ L) → H0(Ξp, detL[p] £ L|Ξp)
)
.

Using Lemma 5.2 we obtain the desired injection.

For all m and n the Sn–equivariant map

detL[n+1] £ Lm → τ∗(detL[n] £ Lm+1)
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is given by

s1 ∧ . . . ∧ sn+1|ξ ⊗ t 7→
∑

i

(−1)is1 ∧ . . . ∧ ŝi ∧ . . . ∧ sn+1|ξ′ ⊗ t⊗ si|x.

Hence the induced map
∧n+1

H0(X,L)⊗H0(X,Lm) → ∧n
H0(X,L)⊗H0(X,Lm+1)

sends s1 ∧ . . .∧ sn+1 to
∑
i(−1)is1 ∧ . . .∧ ŝi ∧ . . .∧ sn+1⊗ (t⊗ si). Hence the latter

map coincides with the Koszul differential. ¤

Corollary 5.5. For all integers p and q, the Koszul cohomology Kp,q(X,L)
is isomorphic to the cokernel of the restriction map

H0(X [p+1]
curv ×X, detL[p+1] £ Lq−1)−→ H0(Ξp+1,detL[p+1] £ Lq−1|Ξp+1).

In particular,

Kp,1(X,L) ∼= coker (H0(X [p+1]
curv , detL[p+1]) q∗−−→ H0(Ξp+1, q

∗ detL[p+1]|Ξp+1)).

Remark 5.6. The group Kp,q(X;F , L) is obtained by replacing Lq−1 by F ⊗
Lq−1 in Corollary 5.5.

5.2. Examples

In this section we consider the case where X = C is a smooth curve. As the
Hilbert scheme coincides with the symmetric product in this case, the previous
description simplifies.

Lemma 5.7. We have Ξp+1
∼= C(p)×C. Under this isomorphism the projection

map q : Ξp+1 → C(p+1) corresponds to the addition map µ : C(p) × C → C(p+1).

Proof: The map ν : C(p)×C → C(p+1)×C defined by ν(ξ, x) = (x+ξ, x) induces
an isomorphism C(p) × C ∼−→ Ξp+1 that fits into a commutative diagram

C(p) × C ν−→ Ξp+1yµ
yq

C(p+1) = C(p+1).

¤

The symmetric product C(p) carries two natural divisors. Given a base point
x ∈ C, we write D = Dp = x+C(p−1). The choice of a base point defines an Abel–
Jacobi map C(p) → J(C). Let F be the pullback of the theta divisor Θ ⊂ J(C)
under this map.

Lemma 5.8. The first Chern class of the tautological bundle L[p] belongs to the
subgroup 〈[D], [F ]〉 ⊆ NS(C(p)). More precisely, let g be the genus of C. We have

c1(L[p]) = [F ] + (d− p− g + 1)[D].

Proof: This follows from the Grothendieck–Riemann–Roch formula; [ACGH85,
p. 340, Lemma 2.5]. ¤
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Lemma 5.9. We have q∗Dp+1 = C(p) × {x}+Dp × C.

Proof: This follows immediately from the definition of D and Lemma 5.7. ¤

5.2.1. Rational normal curves. It is classically known how to compute the
numbers κp,1(P1,OP(d)) using the Eagon–Northcott complex; see e.g. [Sch86]. As
an example, we calculate these numbers using Voisin’s method.

Proposition 5.10. We have

κp,1(P1,OP(d)) = p.

(
d

p+ 1

)
.

Proof: Put C = P1, L = OP1(d). Note that C(p) ∼= Pp for all p. Lemma 5.8
implies that

det(L[p+1]) ∼= OPp+1(d− p).

Hence q∗ detL[p+1] ∼= OPp+1×P1(d − p, d − p) by Lemma 5.9. By Corollary 5.5 we
obtain

κp,1(P1,OP(d)) = (d− p+ 1)
(
d

p

)
−

(
d+ 1
p+ 1

)

=
d!

(p+ 1)!(d− p− 1)!
.
(p+ 1)(d− p− 1)− d− 1

d− p

= p

(
d

p+ 1

)
.

¤

5.2.2. Elliptic normal curves. Let E be an elliptic curve with origin u ∈ E.
Put D = Dp = u+E(p−1). As E is isomorphic to its Jacobian, we have the Abel–
Jacobi map ψ : E(p) → E and F = ψ−1(u).

Remark 5.11. To distinguish between the sum in the symmetric product and
the addition on E, we write elements in the symmetric product in the form (x1) +
. . .+ (xr). With this notation, we have

ψ((x1) + . . .+ (xr)) = x1 + . . .+ xr.

Proposition 5.12 (Ciliberto–Catanese). Let Z be a divisor on E(p) such that
Z ≡ mD + nF (≡ denotes algebraic equivalence). If m+ np > 0 and m ≥ 0 then

(i) Hi(E(p),OE(Z)) = 0 for all i > 0;
(ii) h0(E(p),OE(Z)) = m+np

p!

∏p−1
i=1 (m+ i).

Proof: See [CC93, Thm. (1.17)]. ¤
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Lemma 5.13. Write

Γ = q∗F = {((y1) + . . .+ (yp), x) | x+ y1 + . . .+ yp = u}.
The projection map E(p) × E → E(p) induces an isomorphism Γ ∼= E(p) and
OΓ(Γ) ∼= OΓ.

Proof: The first assertion follows from the definition of Γ. Using the adjunction
formula and the triviality of ωE we obtain

ωE(p) ∼= ωΓ
∼= ωE(p)×E(Γ)×OΓ

∼= ωE(p) ⊗OΓ(Γ).

¤

Proposition 5.14. Put L = OE(d.u), d ≥ 3. We have

κp,1(E,L) = d

(
d− 2
p

)
−

(
d

p+ 1

)
.

Proof: As H0(E(p+1),detL[p+1]) ∼= ∧p+1
H0(E,L) by Lemma 5.2, we obtain

h0(E(p+1), detL[p+1]) =
(

d

p+ 1

)
.

By Lemmas 5.8 and 5.9 we have

detL[p+1] ≡ (d− p− 1)D + F

q∗ detL[p+1] ≡ (d− p− 1)(E × {u}+Dp × E) + Γ.

To calculate h0(E(p) × E, q∗ detL[p+1]) we consider the exact sequence

0 → q∗ detL[p+1](−Γ) → q∗ detL[p+1] → q∗ detL[p+1] ⊗OΓ → 0.

Using the Künneth formula and Proposition 5.12 we compute

h0(E(p) × E, q∗ detL[p+1](−Γ)) = (d− p− 1)
d− p− 1

p!
(d− p) . . . (d− 2)

= (d− p− 1)
(
d− 2
p

)
.

To study q∗ detL[p+1]⊗OΓ, we determine the intersection of Dp×{u} and Dp×E
with Γ. Using the definitions we obtain

(E(p) × {u}) ∩ Γ = {((y1 + . . .+ (yp), u) | y1 + . . .+ yp = u}
(Dp × E) ∩ Γ = {((u) + (y1) + . . .+ (yp−1), x) | x+ y1 + . . .+ yp−1 = u}.

Hence E(p) × {u} ∩ Γ ∼= F via projection to the second factor and

(Dp × E) ∩ Γ ∼= {u}+ E(p−1) = D.

Using Lemma 5.13 and Proposition 5.12 we obtain

h0(Γ, q∗ detL[p+1] ⊗OΓ) = h0(E(p),O((d− p− 1)D + (d− p− 1)F ))

=
d− p− 1 + p(d− p− 1)

p!
(d− p) . . . (d− 2)

= (p+ 1)
(
d− 2
p

)
.
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As H1(E(p) × E, q∗ detL[p+1](−Γ)) = 0 by the Künneth formula and Proposition
5.12, we find

h0(E(p) × E, q∗ detL[p+1]) = d

(
d− 2
p

)

and the result follows from Corollary 5.5. ¤

Remark 5.15. It is known that

κp,1(A,L) = p

(
d− 2
p+ 1

)
+ (d− p− 2)

(
d− 2

d− p− 1

)
,

see for example [HvB04, Cor. 8.13], with κp,1 = β−(p+1),2. This coincides with
our result; a small computation shows that

d

(
d− 2
p

)
−

(
d

p+ 1

)
= p

(
d− 2
p+ 1

)
+ (d− p− 2)

(
d− 2

d− p− 1

)

=
(d− 2)!p(d− p− 2)d
(d− p− 1)!(p+ 1)!

.

Remark 5.16. If L = OC(d.x), x ∈ C, then p∗L ∼= O(Dp+1)⊗d. Hence the
same method can be used to compute the numbers

κp,q(C,L) = κp,1(C,Lq−1, L)

for all q if g(C) ≤ 1.

5.2.3. Projection map on Koszul cohomology of curves. Let C be a
curve, L be a line bundle on C, p be an integer, and x ∈ C be a point. In section
2.2 we have defined the projection map

Kp+1,1(C,L⊗OC(x)) → Kp,1(C,L)

Using the description of Koszul cohomology in terms of symmetric products,

Kp,1(C,L) ∼= H0(Ξp+1, q
∗ detL[p+1]|Ξp+1)/q

∗H0(C(p+1), detL[p+1]).

the projection map can be interpreted in the following way. Note first that we have
the following identifications

det(L⊗OC(x))[p+2] ∼= detL[p+2] ⊗OC(p+2)(x+ C(p+1))

and

(5.2)
(
det(L⊗OC(x))[p+2]

)
|x+C(p+1) ∼= detL[p+1].

The last isomorphism is obtained by exterior product with a section of L⊗OC(x)
that does not vanish at x.

Denoting jx : C(p+1) → C(p+2) the map ξ 7→ ξ+x, we obtain an exact sequence

(5.3) 0 → detL[p+2] → det(L⊗OC(x))[p+2] → jx,∗ detL[p+1] → 0

The above discussion immediately leads to

Proposition 5.17 (Voisin). The projection map

Kp+1,1(C,L⊗OC(x)) → Kp,1(C,L)

identifies with the restriction map from

H0(Ξp+2, q
∗ det(L⊗OC(x))[p+2])/q∗H0(C(p+2), det(L⊗OC(x))[p+2])
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to
H0(Ξp+1, q

∗ detL[p+1])/q∗H0(detL[p+1]),

where Ξp+1 is embedded in Ξp+2 as a component of q−1(x+ C(p+1)).

5.3. Koszul vanishing via base change

Voisin’s description of Koszul cohomology (Corollary 5.5) shows thatKk,1(S,L) =
0 if the map

q∗ : H0(S[k+1]
curv , detL[k]) → H0(Ξk+1, q

∗ detL[k+1])

is surjective. The surjectivity of this map can be proved via a suitable base change,
as explained below.

The general setup is the following: X and Y are complex algebraic varieties,
f : X → Y is a finite (flat) morphism of degree d, and L is a line bundle on Y . As
the map f is finite and flat, there exists a trace map

f∗ : H0(X, f∗L) → H0(Y,L)

such that
f∗ ◦ f∗ = d. id .

Since we work over the complex numbers, the pullback map

f∗ : H0(Y,L) → H0(X, f∗L)

is injective. Moreover, the trace map induces a natural splitting

H0(X, f∗L) ∼= f∗H0(Y,L)⊕ coker (f∗).

Proposition 5.18. Suppose there exists a cartesian diagram

T = U ×Y X j−→ Xyg
yf

U i−→ Y

such that
(i) j∗ : H0(X, f∗L) → H0(T, j∗q∗L) is injective;
(ii) g∗ : H0(U, i∗L) → H0(T, g∗i∗L) is surjective.

Then f∗ is surjective.

Proof: As T is a fibered product, the map g is also finite and flat of degree d, and
the associated trace map

g∗ : H0(T, j∗f∗L) → H0(U, i∗L)

satisfies the conditions
g∗◦g∗ = d. id,

and

(5.4) i∗◦f∗ = g∗◦j∗.

It suffices to show that
α =

1
d
f∗f∗α

for all α ∈ H0(X, f∗L). To this end, put

α̃ = α− 1
d
f∗f∗α.
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As g∗ is surjective, there exists β ∈ H0(U, i∗L) such that j∗α = g∗β. Hence

j∗α̃ = j∗α− 1
d
j∗f∗f∗α

= j∗α− 1
d
g∗i∗f∗α

= j∗α− 1
d
g∗g∗j∗α

= j∗α− 1
d
g∗g∗g∗β

= j∗α− g∗β = 0.

The result then follows from the injectivity of j∗. ¤

Remark 5.19. The existence of the trace map shows that f∗ is injective. Hence
the conditions of Proposition 5.18 imply that f∗ is an isomorphism.

Remark 5.20. Explanation of the proof. The fact that the diagram considered
in the statement was cartesian resulted into the relation (5.4) which eventually
shows that the induced j∗ behaves naturally on the induced splittings

H0(X, f∗L) ∼= f∗H0(Y,L)⊕ coker (f∗)

H0(T, j∗f∗L) ∼= g∗H0(U, i∗L)⊕ coker (g∗),

that is f∗H0(Y,L) is mapped toH0(T, j∗f∗L) and coker (f∗) is mapped to coker (g∗).
If j∗ is injective, we obtain an induced injective map coker (f∗) → coker (g∗). The
other hypothesis coker (g∗) = 0 implies then the vanishing of coker (f∗).

In the sequel we shall need a refinement of Proposition 5.18. The new setup
is the following. We start with X and Y two equidimensional complex algebraic
varieties, f : X → Y is a finite (flat) morphism of degree d, and L is a line bundle
on Y . Consider an equidimensional complex variety U that admits a morphism
h : U → X. Put i = f ◦ h, T = U ×Y X, and let j : T → X be the induced
morphism.

T
j //

g

²²

X

f

²²
U

i //

h

>>~~~~~~~
Y

By the universal property of the fibered product, for the pair of morphisms
id : U → U and h : U → X, we obtain a section iU : U → T of the morphism
g. It is not hard to see that iU is an closed embedding – since f and g are affine
morphisms, we can argue locally, and the embedding will be induced by a natural
surjective ring morphisms defined on a tensor product of two algebras.

Let V be the Zariski closure of T \ iU (U). By equidimensionality of V , and by
the dimension equality of T and U , we can write T = U∪V , with dim (U) = dim (V )
(the scheme T will be however equidimensional). By finiteness of g, the induced
map gV : V → U is finite of degree d − 1. Denote by D the scheme-theoretical
intersection of U and V inside T – it is defined as the fibered product D = U ×T V .
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Proposition 5.21. Notation as above. If

g∗V : H0(U, i∗L) → H0(V, g∗V L)

is surjective and the restriction map

rD : H0(U, i∗L) → H0(D, i∗L|D)

is injective, then the map

g∗ : H0(U, i∗L) → H0(T, g∗i∗L)

is surjective.

Proof: By hypothesis, coker (g∗V ) = 0. Hence

H0(V, g∗V i
∗L) ∼= H0(U, i∗L).

Note that we can identify H0(T, j∗f∗L) with the subspace{
(α, β) ∈ H0(U, i∗L)⊕H0(V, g∗V i

∗L) | α|D = β|D
}
.

Via this identification, the pullback

g∗ : H0(U, i∗L) → H0(T, g∗i∗L)

coincides with the diagonal map

H0(U, i∗L) → H0(U, i∗L)⊕H0(U, i∗L) ∼= H0(V, g∗V i
∗L)

If (α, β) is a pair of sections of i∗L whose restrictions over D coincide, i.e. we
are given a global section of g∗V i

∗L, by injectivity of rD we obtain α = β. This
proves that (α, β) is in the image of the diagonal map, which identified with g∗.

¤

Remark 5.22. With some extra work, one can prove that the converse is also
true.

Corollary 5.23. Notation as above. If
(i) g∗V is surjective;
(ii) rD is injective;
(iii) h∗ is injective

then f∗ is surjective.

Proof: Applying Proposition 5.21, it follows that g∗ is an isomorphism. Hence
injectivity of h∗ and of j∗ are equivalent. We then apply Proposition 5.18 to
conclude. ¤



CHAPTER 6

Koszul cohomology of a K3 surface

This chapter is devoted to the discussion of two beautiful results due to C.
Voisin [V02], [V05], which imply the generic Green conjecture.

Sections 6.1 and 6.2 contain some preparatory material for these results. Specif-
ically, we recall the Brill-Noether theory of curves on K3 surfaces.

In section 6.3 we discuss the even genus case. We explain how the proof can be
reduced to a number of cohomological calculations, which shall not be carried out
in detail here.

In the last section we give a short outline of the proof of the generic Green con-
jecture in the odd genus case; it proceeds along similar lines, but involves additional
technical complications for which we refer to Voisin’s paper [V05].

6.1. The Serre construction, and vector bundles on K3 surfaces

The Serre construction provides an effective method to construct a rank-2 bun-
dle starting from a locally complete intersection (lci) 0-dimensional subscheme of a
surface. Throughout this section, we fix the following data:

- a K3 surface S;
- a 0-dimensional lci subscheme ξ ⊂ S;
- a line bundle L on S;
- a non-zero element t ∈ H1(S,L⊗ Iξ)∗.

By the Grothendieck-Serre duality Theorem, we have

H1(S,L⊗ Iξ)∗ ∼= Ext1(L⊗ Iξ,OS),

hence to each t ∈ H1(S,L⊗Iξ)∗ we may associate a sheaf E is given by an extension

0 → OS → E → L⊗ Iξ → 0.

Remark that the global section s of E coming from the inclusion OS ↪→ E
vanishes on ξ.

The precise criterion for an extension as above to be locally free is the following:

Theorem 6.1 ([GH78]). There exist a rank two vector bundle E on S with
det(E) = L, and a section s ∈ H0(S,E) such that V (s) = ξ if and only if every
section of L vanishing at all but one of the points in the support of ξ also vanishes
at the remaining point.

An immediate consequence of Theorem 6.1 is the following result.

Corollary 6.2. Let S be a K3 surface, and L a line bundle on S. Then, for
any 0-dimensional subscheme ξ of S, such that h0(S,L ⊗ Iξ′) = 0, for all ξ′ ⊂ ξ
with lg(ξ′) = lg(ξ) − 1, there exists a rank two vector bundle E on S given by an
extension

0 → OS → E → L⊗ Iξ → 0.

69
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6.2. Brill-Noether theory of curves on K3 surfaces

For curves suitably embedded in a surface with special geometry, the Brill-
Noether theory will be determined by objects globally defined on the surface. We
shall discuss in this section curves on K3 surfaces. The interest for this situation
is extremely high, by reasons that we will try to explain below. To mention one
of them, examples of curves on K3 surfaces of any Clifford dimension r were con-
structed in [ELMS89], and for large r these are the only concrete examples known
so far.

Let S be a (smooth, projective) K3 surface, L a globally generated line bundle
on S. To any pair (C,A) with and C a smooth curve in the linear system |L|, and
A a base-point-free line bundle in W r

d (C)\W r+1
d (C) one associates a vector bundle

E := E(C,A) of rank r + 1 on S, called the Lazarsfeld-Mukai bundle; cf. [La86]
and [M89]. This is done in the following way. Define the rank-(r+1) vector bundle
F (C,A) as the kernel of the evaluation of sections of A

(6.1) 0 → F (C,A) → H0(C,A)⊗OS ev→ A→ 0.

Dualizing the sequence (6.1) and setting E := E(C,A) := F (C,A)∨ we obtain
the short exact sequence

(6.2) 0 → H0(C,A)∨ ⊗OS → E → KC ⊗A∨ → 0.

In other words, the bundle E is obtained from the trivial bundle by modifying
it along the curve C. The properties of E are summarized in the following:

Proposition 6.3. One has
(1) det(E) = L;
(2) c2(E) = d;
(3) h0(S,E) = h0(C,A) + h1(C,A) = 2r − d+ 1 + g(C);
(4) h1(S,E) = h2(S,E) = 0;
(5) χ(S,E ⊗ E∨) = 2(1− ρ(g, r, d)), where g = g(C).
(6) E is globally generated outside the base locus of KC ⊗A∨.

Conversely, if E is a rank-(r + 1) bundle that is generated outside a finite set,
and if det(E) = L, then there is a natural rational map from the Grassmanniann
of (r + 1)-dimensional subspaces of H0(S,E) to the linear system |L|:
(6.3) dE : Gr(r + 1,H0(S,E)) 99K |L|.

A generic subspace Λ ∈ Gr(r+1, H0(S,E)) is mapped to the degeneracy locus
of the evaluation map:

evΛ : Λ⊗OS → E;

note that, generically, this degeneracy locus cannot be the whole surface, since E
is generated outside a finite set. For a generic element Λ in the Grassmannian, the
image dE(Λ) is a smooth curve C, and the cokernel of evΛ is a line bundle KC⊗A∨
of C, where deg(A) = c2(E).

Coming back to the original situation C ∈ |L|, A a base-point-free line bundle
in W r

d (C)\W r+1
d (C), and E the associated Lazarsfeld-Mukai bundle, one can prove
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that the multiplication map

µ0,A : H0(C,A)⊗H0(C,KC ⊗A∨) → H0(C,KC),

which plays a key role in the Brill-Noether theory, coincides to the differential of
dE at the point Λ = H0(C,A)∨ ⊂ H0(C,E). Moreover, its kernel can be described
explicitly as follows. Put MA the rank-r vector bundle on C defined by the kernel
of the evaluation map of global sections

(6.4) 0 →MA → H0(C,A)⊗OC ev→ A→ 0.

Twisting (6.4) with KC ⊗A∨, we obtain the following identification:

ker(µ0,A) = H0(C,MA ⊗KC ⊗A∨).

Note that there is a natural surjective map from F (C,A)|C to MA, and, by
determinant reason, we have

(6.5) 0 → A⊗K∨
C → F (C,A)|C →MA → 0.

The Lazarsfeld-Mukai bundles have proved to be extremely useful in a number
of problems concerning curves on K3 surfaces. They are key objects, for instance,
in the proof of the following modified version of the Harris-Mumford conjecture:

Theorem 6.4 (Green-Lazarsfeld). For any smooth irreducible curve D ∈ |C|
we have Cliff(D) = Cliff(C). Moreover, if Cliff(C) is different from the maximal
value [(g−1)/2], then there exists a line bundle L on S with h0(S,L), h1(S,L) ≥ 2,
whose restriction to any smooth D ∈ |C| computes the Clifford index of D.

Lazarsfeld’s original motivation for considering the bundles E(C,A) was to use
them for proving the following cornerstone result:

Theorem 6.5 (Lazarsfeld). Let C be a smooth curve of genus g ≥ 2 on a
K3 surface S, and assume that any divisor in the linear system |C| is smooth and
irreducible. Then a generic element in the linear system |C| is Brill-Noether-Petri
generic.

The following special case will be used in Chapter 6. Consider S a K3 surface
with cyclic Picard group generated by an ample line bundle L, and suppose that
L2 = 4k − 2 with k a positive integer. By Theorem 6.5, a generic smooth curve
C ∈ |L| is Brill-Noether-Petri generic, hence it has gonality k + 1. Moreover, since
the Brill-Noether number is zero, a generic curve C will carry finitely many g1

k+1’s.
Put E = E(C,A) the Lazarsfeld-Mukai bundle, where A is a g1

k+1 on C. From
Proposition 6.3, it follows that c1(E) = L, h0(S,E) = k + 2, and E is globally
generated. The exact sequence (6.2) shows that h0(S,E(−L)) = 0. Since the
Picard group is cyclic, this vanishing proves the stability of E. A remarkable fact
is that E does not depend on the choice of the pair (C,A). Indeed, if E′ is another
Lazarfeld-Mukai bundle associated to a pair as above, using χ(E,E′) = 2 [La86],
we conclude that either Hom(E,E′) 6= 0 or Hom(E′, E) 6= 0. By stability, the two
bundles are isomorphic. This shows that the bundle E is rigid (this fact is not
surprising: a dimension calculation shows that the moduli space of stable bundles
with given invariants is zero). An alternate way to construct the bundle E is via
Serre’s construction. Note that a zero-dimensional subscheme ξ of length k + 1
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supported on a smooth curve C is associated to a g1
k+1 if and only if the restriction

map

rξ : H0(S,L) → H0(ξ, L|ξ)
is not surjective. By Brill-Noether-Petri genericity, the corank of rξ is 1 in this
case, and for any subscheme ξ′ ( ξ, the map rξ′ is surjective. Applying Theorem
6.1, we obtain a rank 2 bundle E on S given by an extension

0 → OS → E → L⊗ Iξ → 0.

One immediately proves the stability of this bundle and, arguing as before, we
conclude that it is isomorphic to the unique Lazarsfeld-Mukai bundle.

The determinant map dE , see (6.3), is defined everywhere. Indeed, if dE is
not defined at a point in G(2,H0(E)) corresponding to a two dimensional space
Λ ⊂ H0(S,E), then im(evΛ) is of rank one. This contradicts the stability of E.

Definition 6.6 (Beltrametti–Sommese). A line bundle L on S is called k–very
ample if the restriction map

rξ : H0(S,L) → H0(ξ, L⊗Oξ)

is surjective for all ξ ∈ S[k+1]. If rξ is surjective for all ξ ∈ S[k+1]
curv we say that L is

k–spanned.

Remark 6.7. Note that L is 0–very ample if and only if L is globally generated,
and L is 1–very ample if and only if L is very ample. The preceding discussion shows
that if S is a K3 surface whose Picard group is generated by an ample line bundle
L such that L2 = 4k − 2, then L is (k − 1)–very ample, but not k–very ample.

The notion of k–very ampleness admits the following geometric interpretation.
Let G(k + 1,H0(S,L)) be the Grassmann variety of (k + 1)–dimensional quotients
of H0(S,L), and consider the rational map

ϕk : S[k+1] −−− > G(k + 1, H0(S,L))

defined by ϕk(ξ) = H0(ξ, L⊗Oξ). If L is k–very ample then ϕk is a morphism.

Proposition 6.8. If L is k–very ample, then detL[k+1] is globally generated.

Proof: Let

ψk : S[k+1] → PH0(S,
∧k+1

H0(S,L)∨)

be the composition of ϕk and the Plücker embedding. As L[k+1] is the pullback of
the universal quotient bundle on the Grassmannian, we have

detL[k+1] ∼= ψ∗kOP(1).

Hence the result follows. ¤
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6.3. Voisin’s proof of Green’s generic conjecture: even genus

The aim of this section is to prove the following result

Theorem 6.9 (C. Voisin). Let S be a K3 surface endowed with a ample line
bundle L such that L generates Pic(S) and L2 = 2g − 2, with g = 2k. Then

Kk,1(S,L) = 0.(6.6)

This result is particularly interesting from the point of view of the Green con-
jecture.

Corollary 6.10. The Green conjecture holds for generic curves of even genus.

Proof: Recall that Green’s conjecture for a curve C predicts that

Kg−Cliff(C)−1,1(C,KC) = 0.

Since the generic curve of genus g = 2k has Clifford index k−1, we have to show
that Kk,1(C,KC) = 0. By semicontinuity (Corollary 1.31) it suffices to produce
one smooth curve C with the given invariants that satisfies the desired vanishing.
Since the curves appearing in the statement of Theorem 6.9 have this property, it
suffices to apply Theorem 2.20. ¤

To apply the results of section 5.3, we need a suitable cartesian diagram. This
diagram is constructed in [V02]; we follow the presentation of [V01].

Let E be the Lazarsfeld–Mukai bundle on S (section 6.2). There exists a
morphism PH0(S,E) → S[k+1] that sends a global section s ∈ H0(S,E) to its zero
set Z(s). By restriction to a an open subset P ⊂ PH0(S,E), we obtain a morphism
P→ S[k+1]

curv . Define P′ = P×
S

[k+1]
curv

Ξk+1. Set–theoretically

P′ = {(Z(s), x)|s ∈ H0(S,E), x ∈ Z(s)}.
Consider the cartesian diagram

P′ −→ Ξk+1yq′
yq

P −→ S[k+1]
curv .

The following result implies that the map j∗ arising from this diagram is not injec-
tive. Hence cannot apply Proposition 5.18 or 5.21 to this diagram.

Lemma 6.11. The restriction map

i∗ : H0(S[k+1]
curv ,detL[k+1]) → H0(P, i∗ detL[k+1])

is identically zero.

Proof: Recall that H0(S[k+1]
curv , detL[k+1]) ∼= ∧k+1

H0(S,L), Lemma 5.2. Given
ξ ∈ P, let

rξ : H0(S,L) → H0(ξ, L⊗Oξ)
be the restriction map. Given s ∈ ∧k+1

H0(S,L), we have

i∗s(ξ) =
∧k+1

rξ(s) ∈
∧k+1

H0(ξ, L⊗Oξ).
If ξ ∈ P then h1(S,L ⊗ Iξ) = 1. Hence, if ξ ∈ P then rank rξ ≤ k and

∧k+1
rξ is

identically zero. ¤
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Voisin’s idea is to modify the previous construction by considering zero–cycles
of the form

Z(s)− x+ y

with [s] ∈ P, x ∈ Supp(Z(s)) and y ∈ S. To make this more precise, consider the
difference map

τ : Ξk+1 → S[k]
curv × S

and let ψ : P′ → S[k]
curv be the composed map

P′−→ Ξk+1
τ−→ S[k]

curv × S−→ S[k]
curv.

By the Cayley-Bacharach property, section 6.2, ψ is injective. Set ψS = ψ×idS :
P′ × S → S[k]

curv × S. We have ψS(Z(s), x, y) = (Z(s)− x, y). Consider the rational
map

µ : S[k]
curv × S 99K Ξk+1

given by addition of zero–cycles. Composing with ψS , we obtain a rational map
P′ × S 99K Ξk+1. We can resolve the indeterminacy of this map by blowing up
along ψ−1

S (Ξk) to obtain a scheme U and a morphism h : U → Ξk+1. This leads to
a commutative diagram

U h−→ Ξk+1yε
yτ

P′ × S ψS−−→ S[k]
curv × S.

Composing the map h : U → Ξk+1 with the projection to S[k+1]
curv , we obtain

a morphism i : U → S[k+1]
curv that sends (Z(s), x, y) to Z(s) − x + y. Put T =

U ×
S

[k+1]
curv

Ξk+1. We obtain a cartesian diagram

T
j //

g

²²

Ξk+1

q

²²
U

i //

h

<<zzzzzzzzz
S[k+1]

curv .

Set–theoretically

T = {((Z(s), x, y), (ξ′, x′)) | x ∈ Z(s), x′ ∈ ξ′, ξ′ = Z(s)− x+ y}.
There are two possibilities for the choice of x′.

a) x′ = y. This component maps isomorphically to U ;
b) x′ ∈ Z(s)− x+ y, x′ 6= y. This leaves k possibilities for x′. The resulting

degree k covering of U is called V .

The intersection D of the two components coincides with the exceptional locus
of the blowup ε : U → P′×S. Note that D is the pullback of the divisor Dτ ⊂ Ξk+1

under the map h : U → Ξk+1.

The second component V can be constructed in the following way. Define P′′
by the cartesian diagram

P′′ −→ Ξkyπ
yq

P′ ψ−→ S[k]
curv.
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As before, there exists a rational map P′′ × S 99K Ξk+1. Blowing up along the
inverse image of Ξk in P′′ × S, we obtain a scheme V and a morphism V → Ξk+1

that fits into a diagram
V −→ Ξk+1y

yτ
P′′ × S −→ S[k]

curv × S.

The varieties appearing in the proof and the maps between them are drawn in
the following diagrams:

V
blowup // P′′ × S

²²

(π,id)

''PPPPPPPPPPPPP ψ−1
S (Ξk)Ä _

²

Do
Ä _

²
P′′ = P′ ×

S
[k]
curv

Ξk
π

(PPPPPPPPPPPPPP
P′ × S

²²

ψS

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

U

h

²²
i

¡¡

ε

blowupoo

Dτ
Â Ä /

²²

Ξk+1

τ

²²

P′

ψ

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

Â Ä /

q′

²²

Ξk+1

q

²²
Ξk

Â Ä / S[k]
curv × S

²²

P Â Ä / S[k+1]
curv

S
[k]
curv

# // (Z(s), x, x′, y)

²²

(π,id)

((QQQQQQQQQQQQQ
(Z(s), x, x′′)

²

#o

²
(Z(s), x, x′)

π

(QQQQQQQQQQQQQ
(Z(s), x, y)

²²

ψS

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

#

h

²²
i

ww

ε

blowupoo

# /

²²

(Z(s)− x+ y, y)

τ

²²

(Z(s), x)

ψ

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

/

q′

²²

(Z(s)− x+ y, y)

q

²²
# / (Z(s)− x, y)

²²

Z(s) / Z(s)− x+ y

Z(s)− x

To prove the vanishing of Kk,1(S,L), it suffices to show that the diagram

T = U ∪ V j //

g

²²

Ξk+1

q

²²
U

i //

h

88rrrrrrrrrrrr
S[k+1]

curv .
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satisfies the conditions (i), (ii) and (iii) of Corollary 5.23. Specifically, this means
that we have to verify

(i) g∗V : H0(U, i∗ detL[k+1]) → H0(U, g∗V i
∗ detL[k+1]) is surjective;

(ii) rD : H0(U, i∗ detL[k+1]) → H0(D, i∗ detL[k+1]|D) is injective;
(iii) h∗ : H0(Ξk+1, q

∗ detL[k+1]) → H0(U, i∗ detL[k+1]) is injective.
The proof proceeds via a number of reduction steps.

Step 1. We start with condition (ii) of Corollary 5.23, i.e., injectivity of the
restriction map rD. This is obtained by restricting to a smooth curve C ∈ |L| and
using Petri’s theorem. Put L = i∗(detL[k+1]). Recall that a generic element of U
is of the form (Z(s), x, y), with x ∈ Z(s). Given a smooth curve C ∈ |L|, put PC
be the projectivization of the vector space of global sections in E whose support is
contained in C, and put P′C be the fibered product of PC with the incidence scheme
C(k) × C, and UC = P′C × C. Put DC = D ∩ UC ⊂ UC , and let |L|0 ⊂ |L| be the
open subset parametrizing smooth curves that are Brill-Noether-Petri generic.

A dimension count shows that if k ≥ 2, there exists a smooth curve C ∈ |L|
such that Z(s) ∪ {y} ⊂ C. Hence the commutative diagram

H0(U,L) −→ ∏
C∈|L|0 H

0(UC ,L|UC )yrD

y
H0(D,L|D) −→ ∏

C∈|L|0 H
0(DC ,L|DC

)

shows that rD is injective if the restriction map

H0(UC ,L|UC ) → H0(DC ,L|DC )

is injective for all C ∈ |L|0. Fix C ∈ |L|0. We give a more concrete description of the
varieties UC and DC . By Brill-Noether-Petri genericity we have dim W 1

k+1(C) = 0
if C ∈ |L|0, [ACGH85]. Write W 1

k+1(C) = {L1, . . . , LN}. The map

PC → C(k+1), s 7→ Z(s)

identifies PC with a disjoint union of N projective lines P1
i , where P1

i ⊂ C(k+1)

corresponds to the pencil |Li|.
Similarly, the induced map

ψC : P′C → C(k)

identifies P′C with a disjoint union of N curves Ci ∼= C. The divisor DC ⊂ P′C is a
disjoint union of divisors Di ⊂ C × Ci. Let ϕi : Ci → P1

i be the map induced by
Li. By construction, the fiber of the map Di → P1

i over a point x ∈ P1
i is the set

{(ϕ−1
i (x)− y, y), y ∈ ϕ−1

i (x)}.
Hence,

Di = (ϕi × ϕi)−1(diag(P1))− diag(C),

where diag(P1) ⊂ P1 × P1
i
∼= P1 × P1, and diag(C) ⊂ C × Ci ∼= C × C are the

diagonals. Hence

(6.7) O(Di) ∼= (Li £ Li)(−diag(C)).

By the formula (5.1), we have

L = h∗(τ∗(detL[k] £ L))(−D).



6.3. VOISIN’S PROOF OF GREEN’S GENERIC CONJECTURE: EVEN GENUS 77

Write Ai = detL[k]|Ci . Since L|C = KC , the preceding discussion shows that it
suffices to prove that the maps

H0(C × Ci, (KC £Ai)(−Di)) → H0(Di, (KC £Ai)(−Di)|Di
)

are injective for all i, i.e.

H0(C × Ci, (KC £Ai)(−2Di)) = 0,

for all i. Rewriting this using (6.7), we reduce to the vanishing of

H0(C × Ci,
(
(KC ⊗ L−2

i ) £ (Ai ⊗ L−2
i )

)
(2diag(C))).

As C is Brill-Noether-Petri generic, we obtain

(6.8) H0(C,KC ⊗ L−2
i ) = 0,

using the base-point free pencil trick [ACGH85, p. 126]. If x ∈ C is a general
point, the restriction map

H0(C,L2
i ) → H0(L2

i |2x)
is surjective. Hence, we obtain

H0(C,KC ⊗ L−2
i ⊗OC(2x)) = 0,

using (6.8). Consider the projection pr2 : C ×Ci → C. The previous result implies
that the direct image of

(
(KC ⊗ L−2

i ) £ (Ai ⊗ L−2
i )

)
(2diag(C)) is zero on a non-

empty open subset of C. Hence, the bundle
(
(KC ⊗ L−2

i ) £ (Ai ⊗ L−2
i )

)
(2diag(C))

has no sections over this inverse image of this set. It implies that
(
(KC ⊗ L−2

i ) £ (Ai ⊗ L−2
i )

)
(2diag(C))

has no sections at all.

Step 2. Condition (iii) is satisfied if the map

ψ∗ : H0(S[k]
curv, detL[k]) → H0(P′, ψ∗ detL[k])

is injective.

Indeed, let D be the exceptional divisor of ε : U → P′ × S. We have

q∗ detL[k+1] = τ∗(detL[k] £ L)(−Dτ )

where Dτ is the divisor contracted by τ : Ξk+1 → S[k]
curv×S; see the proof of Lemma

5.2. Hence
h∗q∗ detL[k+1] = ε∗(detL[k] £ L)(−D).

Let I be the ideal sheaf of ψ−1
S (Ξk) ⊂ P′ × S. By the above result, the map

ε∗ : H0(P′ × S, ψ∗S(detL[k] £ L)⊗ I) → H0(U, h∗q∗ detL[k+1])

is an isomorphism. The commutative diagram

H0(Ξk+1, q
∗ detL[k+1]) h∗−−→ H0(U, h∗q∗ detL[k+1])xτ∗

xε∗
H0(S[k]

curv × S, (detL[k] £ L)⊗ IΞk
) ψ∗S−−→ H0(P′ × S, ψ∗S(detL[k] £ L)⊗ I)

then shows that h∗ is injective if ψ∗S is injective. Since ψS = ψ × id, the injectivity
of ψ∗S follows from the injectivity of ψ∗.
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Step 3. Consider the map q′ : P′ → P obtained by base change from q : Ξk+1 →
S[k+1]

curv .

Lemma 6.12. [V02, Lemma 2] We have

ψ∗ detL[k] ∼= (q′)∗OP(k).
Proof: [of Lemma 6.12] By construction, the line bundle L has the following
property: for all ξ ∈ P, the restriction map

rξ : H0(S,L) → H0(ξ, L|ξ)
is not surjective, whereas rξ′ is surjective for any ξ′ ( ξ, Section 6.2. This property
implies that given ζ ∈ P′, we have

H0(S,L⊗ Iψ(ζ)) ∼= H0(S,L⊗ Iq′(ζ)).
Hence the fiber of the vector bundle ψ∗L[k] at ζ ∈ P′ is isomorphic to

H0(S,L)/H0(S,L⊗ Iq′(ζ)),
and ψ∗ detL[k] ∼= (q′)∗(detF )−1, where F is the coherent sheaf on P whose fiber
over a point [s] ∈ P is H0(S,L ⊗ IZ(s)). This isomorphism is obtained from the
short exact sequence

0 → (q′)∗F → H0(S,L)⊗OP′ → ψ∗L[k] → 0.

Recall that for any section s ∈ H0(S,E), we have the short exact sequence

0 → OS .s−→ E ∧s−−→ L⊗ IZ(s) → 0,

and the associated sequence

0 → C.s .s−→ H0(S,E) ∧s−−→ H0(S,L⊗ IZ(s)) → 0.

Consider the Koszul complex

0 → OP(−2) → H0(E)⊗OP(−1) → ∧2
H0(E)⊗OP → . . .

on P = PH0(S,E), and put

F ′ = coker (OP(−2) → H0(E)⊗OP(−1)).

Taking global sections, we obtain F ′s ∼= Fs for all s ∈ P, hence F ∼= F ′. The
resulting exact sequence

0 → OP(−2) → H0(E)⊗OP(−1) → F → 0

shows that detF ∼= OP(−k). ¤

By Lemma 6.12, (q′)∗ induces a natural injective morphism

SkH0(S,E)∨ ↪→ H0(P′, ψ∗ detL[k]).

Step 4.

Lemma 6.13. The map ψ : P′ → S[k]
curv induces an isomorphism

ψ∗ : H0(S[k]
curv, detL[k]) =

∧k
H0(S,L) ∼=−→ SkH0(S,E)∨ ⊂ H0(P′, ψ∗ detL[k]).
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Proof: Since the determinant map

dE :
∧2
H0(S,E) → H0(S,L)

does not vanish on decomposable elements, we obtain a morphism

d : G(2,H0(S,E)) → PH0(S,L).

Note that d is a finite morphism whose fiber over a point C ∈ |L| is W 1
k+1(C).

Put G = G(2, H0(S,E)) and consider the map

d∗ : H0(S,L)∨ → H0(G,OG(1)) =
∧2
H0(S,E)∨.

As d is finite, d∗ is injective by the existence of the trace map, hence we obtain
a base-point free linear subspace V ∨ ⊂ H0(G,OG(1)). Let

(6.9) 0 → ∧2k+1
V ∨ ⊗OG(−2k − 1) → . . .→ V ∨ ⊗OG(−1) → OG → 0

be the associated exact Koszul complex. Consider the tautological exact sequence

0 → S → H0(S,E)⊗OG → Q→ 0

and note that
H0(G,SkS∨) ∼= SkH0(S,E)∨.

Twisting the Koszul complex (6.9) by SkS∨ and chasing through the associated
spectral sequence of hypercohomology, using suitable vanishing theorems, one ob-
tains an isomorphism

dk+1 :
∧k

H0(S,L) ∼=−→ SkH0(S,E)∨.

It remains to show that this map coincides (up to scalar) with ψ∗. This is done
using representation theory. Consider the map

α : P′ → G(k + 1,H0(S,L))

defined by α(ζ) = H0(S,L⊗ Iψ(ζ)). As we have seen in the proof of Lemma 6.12,
we have H0(S,L⊗ Iψ(ζ)) ∼= H0(S,L⊗ Iq′(ζ)), hence α factors through a map

β : P→ G(k + 1, H0(S,L))

defined by

β(s) = im(ds : H0(S,E) → H0(S,L)) = H0(S,L⊗ IZ(s)).

The factorization ds = dE ◦(−∧s) shows that β is the composition of the maps

P γ−→ G(k + 1,
∧2
H0(S,E)) 99K G(k + 1,H0(S,L))

Applying a similar spectral sequence argument to the base-point free linear
system |OG(1)|, we obtain a surjective map

Dk+1 :
∧k+1(

∧2
H0(S,E)∨) → SkH0(S,E)∨,

whose restriction to
∧k+1

V ∨ equals dk+1. Since ψ∗ is a restriction map and
since detL[k] is globally generated by Proposition 6.8 and Remark 6.7, the map
ψ∗ is not identically zero. Note that the maps Dk+1, and γ∗ are SL(k + 2)-
equivariant. The desired statement then follows by decomposing the SL(k + 2)–
module

∧k+1(
∧2
H0(S,E)∨) into irreducible submodules.

¤
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Steps 2 to 4 show that the condition (iii) is satisfied. It remains to verify
condition (i).

Step 5. To verify condition (i), the surjectivity of g∗V , recall that U is a blowup
of S × P′ and V is a blowup of S × P′′. These blowups are related via the map
π : P′′ → P′. It follows that g∗V is surjective if the map

π∗ : H0(P′, (q′)∗ detL[k]) → H0(P′′, π∗(q′)∗ detL[k])

is surjective. The commutative diagram

H0(P,OP(k)) //

(q′)∗

²²

H0(P′′, π∗(q′)∗ detL[k])

H0(P′, (q′)∗ detL[k])

π∗
44jjjjjjjjjjjjjjjj

shows that it suffices to prove the surjectivity of the map

H0(P,OP(k)) π∗◦(q′)∗−−−−−−→ H0(P′′, π∗(q′)∗ detL[k]).

Step 6. Let B be the blowup of S × S along the diagonal. There exist a vector
bundle E2 on B and a global section

σ ∈ H0(B × P, E2 £OP(1))

such that P′′ = Z(σ) ⊂ B×P. The bundle E2 is obtained as follows. Let S̃ × S be
the blowup of S × S along the diagonal, and consider the commutative diagram

S̃ × S ρ−→ S[2]y
y

S × S −→ S(2).

Let E[2] be the tautological rank 4 bundle on S[2] with fiber H0(η,E ⊗ Oη) over
η, and put E2 = ρ∗E[2]. Under the isomorphism P′′ ∼= Z(σ), the map π∗◦(q′)∗ is
identified with the restriction map

H0(B × P, pr∗2OP(k)) → H0(P′′,pr∗2OP(k)|P′′).
Hence it suffices to show that

(6.10) H1(B × P, pr∗2OP(k)⊗ IP′′) = 0.

Using the Koszul complex

0 → ∧4
E∨2 £O(−4) → . . .→ E∨2 £O(−1) → IP′′ → 0,

this vanishing follows from the study of the groups

Hi(S̃ × S × P,∧i
E∨2 £OP(k − i)) ∼= Hi(S̃ × S,

∧i
E∨2 )⊗ Sk−iH0(S,E)∨

for i = 1, . . . , 4. Voisin shows that these groups are zero if i is odd, [V02, Proposi-
tion 6]. A spectral sequence argument then shows that condition (6.10) is verified
if the maps

(6.11) H2(S̃ × S × P,∧2
E∨2 £OP(k − 2)) → H2(S̃ × S × P, E∨2 £OP(k − 1))

and

(6.12) H4(S̃ × S × P,∧4
E∨2 £OP(k − 4)) → H4(S̃ × S × P,∧3

E∨2 £OP(k − 3))
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are injective. We outline the proof of the injectivity of the map (6.11). The injectiv-
ity of (6.12) is obtained by similar, but more complicated, calculations. Dualizing
and rewriting using [loc.cit, Prop. 6], we reduce to the surjectivity of the map

(H0(E)⊕H0(E))⊗ Sk−1H0(E) → (H0(L)⊕H0(L))⊗ Sk−2H0(E).

This map is the direct sum of two copies of the map µ defined via the commutative
diagram

H0(E)⊗ Sk−1H0(E) //

µ

**VVVVVVVVVVVVVVVVVV
H0(E)⊗H0(E)⊗ Sk−2H0(E)

²²
H0(L)⊗ Sk−2H0(E).

Since the morphism d : G → PH0(L) is finite and surjective, the induced map∧2
H0(E) → H0(L) is surjective. Hence every element t ∈ H0(L) is of the form

t = dE(s1 ∧ s2), with s1, s2 ∈ H0(E). Write W = 〈s1, s2〉 ⊂ H0(E). We have

t⊗ Sk−2W ∈ im(µ),

because the composition

W ⊗ Sk−1W →W ⊗W ⊗ Sk−2W → ∧2
W ⊗ Sk−2W

is surjective (as one sees by writing out this map in terms of the basis). Hence, it
suffices to prove that the family of subspaces

{Sk−2W}W∈d−1
E (t)

generates Sk−2H0(E), for general t.
If t ∈ H0(L) is general, then Z(t) = C ∈ |L| is smooth and the fibre of d−1

E (t)
consists of N distinct g1

k+1’s W1, . . . ,WN on C. After dualizing, it is sufficient to
show that the map

Sk−2H0(E)∨ →
N⊕

i=1

Sk−2W∨
i

is injective. This map is identified with the restriction map

H0(G,Sk−2S∨) → H0(d−1
E (t), Sk−2S∨|d−1

E (t)).

Since the finite subscheme d−1
E (t) ⊂ G is a complete intersection of hyperplanes,

we have once more a Koszul resolution for its ideal sheaf. Using this resolution and
suitable vanishing theorems on the Grassmannian, we conclude.

6.4. The odd-genus case (outline)

In the odd-genus case, a natural thing to do would be to try and mimic the proof
of Theorem 6.9. Consider aK3 surface with cyclic Picard group by a very ample line
bundle L, with L2 = 4k, where k is a positive integer. By Theorem 6.5, a generic
smooth curve C ∈ |L| is Brill-Noether-Petri generic, of genus 2k + 1 and gonality
k + 2, hence it is a good candidate for verifying the Green conjecture. However,
this strategy turns out to be a cul-de-sac. Compared to the even-genus case treated
in the previous section, the Lazarsfeld-Mukai bundles are not unique, and depend
on the choice of the curve and of the pencil. These bundles are parametrized by
another K3 surface Ŝ, which is a moduli space for stable vector bundles on S
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[M84]. The unicity of the Lazarsfeld-Mukai bundle was a crucial point in the proof
of Theorem 6.9, hence it cannot be adapted directly to the odd-genus setup.

Voisin found an ingenious way to circumvent these difficulties and to reduce
to the even-genus case. The situation is as follows. We take the genus g = 2k +
1. Green’s conjecture predicts the vanishing of Kk,1(C,KC) for a generic genus-g
curve.

Theorem 6.14 (C. Voisin). Consider a smooth projective K3 surface S, such
that Pic(S) is isomorphic to Z2, and is freely generated by L and OS(∆), where ∆
is a smooth rational curve such that deg L|∆ = 2, and L is a very ample line bundle
with L2 = 2g − 2, g = 2k + 1. Then Kk+1,1(S,L+ ∆) = 0 and

(6.13) Kk,1(S,L) = 0.

By Theorem 2.20 and Corollary 1.31, Green’s generic conjecture follows from
Theorem 6.14. Here, one has to remark that smooth curves in the linear system
|L| are Brill-Noether-Petri generic. To reduce to the case of even genus, put L′ =
L⊗OS(∆). A smooth curve in C ′ ∈ |L′| has genus 2k + 2, and does not meet ∆.

The proof of Theorem 6.14 proceeds in several steps.

By a modification of the techniques of [V02] outlined in section 6.3, one proves

Kk+1,1(S,L′) = 0.

By Green’s duality theorem 2.24,

Kk,1(S,L)∨ ∼= Kk−1,2(S,L).

To obtain the desired vanishing, consider the multiplication map

µ : Kk−1,0(S,L(−∆), L)⊗H0(S,L′)→Kk−1,2(S,L) ∼= Kk−1,0(S,L2, L).

Voisin first proves that µ is surjective; see [V05, Proposition 6]. Put V = H0(S,L),
define

K := ker
(
δ′ :

∧k−1
V ⊗H0(S,L(−∆)) → ∧k−2

V ⊗H0(S,L2(−∆))
)

and note that
Kk−1,0(S,L(−∆), L) ∼= K.

The next step is to calculate dim (K). To this end, Voisin [V05, Lemma 4] shows
that

Kk−i,i−1(S,L(−∆), L) = 0, for all i ≥ 2.
An Euler-characteristic calculation [V05, Corollary 1] shows that

dim (K) =
(

2k + 1
k − 1

)
.

Consider the Lazarsfeld-Mukai bundle E associated to a smooth curve C ′ ∈ |L′|.
The construction from section 6.3 provides us with a map

ϕ : Sk−1H0(S,E) → K.

The proof is now finished by showing that
(i) ϕ is an isomorphism, and
(ii) im(ϕ) ⊂ ker(µ).

The main technical difficulty consists in proving (i). Since the spaces Sk−1H0(S,E)
and K have the same dimension, it suffices to prove that ϕ is injective. This is ac-
complished in [V05, Proposition 8].
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Corollary 6.15. The Green conjecture is verified for a generic curve of odd
genus.

Proof: The proof proceeds as in Corollary 6.10, with one modification. One has to
check that smooth curves in the linear system |L| are Brill-Noether-Petri generic.
This is done using Theorem 6.4; see Voisin [V05, Proposition 1]. ¤

When combined with the Hirschowitz-Ramanan result [HR98], Corollary 6.15
gives a very strong result that will be used throughout the next chapter; see 7.1.

The next result will be used in section 7.2, and follows from Theorem 2.20.

Corollary 6.16. Notation as in Theorem 6.14. Let Y ∈ |L| be a singular
curve with one node. Then Kk,1(Y, ωY ) = 0.

Other versions of this result lead to the proof of the conjectures of Green and
Green-Lazarsfeld for generic curves of large gonality; see [AV03] and [Ap04]. In
the next chapter we shall discuss some refined versions.

6.5. Notes and comments

Curves on K3 surfaces as in the statement of Lazarsfeld’s Theorem 6.5 were the
first concrete examples of Brill-Noether-Petri generic curves. (Before Lazarsfeld’s
paper the existence of Brill-Noether-Petri generic curves was proved by degeneration
techniques.) The condition appearing in Lazarsfeld’s theorem holds, for example,
if the Picard group of S is cyclic. Since K3 surfaces with cyclic Picard group
form a 19-dimensional family, the Gieseker-Petri Theorem follows. An important
argument of Lazarsfeld’s proof is to show that the associated Lazarsfeld-Mukai
bundle is simple, i.e. does not have any endomorphisms besides the homotheties;
cf. [La89], [P96]. Then one applies the description of the moduli space of simple
bundles, due to Mukai.





CHAPTER 7

Specific versions of the syzygy conjectures

7.1. The specific Green conjecture

In this Section, we discuss a remarkable result that follows from Voisin’s The-
orem 6.14 and the work [HR98].

Theorem 7.1. Any smooth curve C of genus g = 2k+1 ≥ 5 with Kk,1(C,ωC) 6=
0 carries a pencil of degree k + 1.

It represents the solution in the odd genus case to the following conjecture.

Conjecture 7.2 (specific Green conjecture). Let C ⊂ Pg−1 be a canonically
embedded curve of genus g with maximal Clifford index [(g − 1)/2], and let Q
be the universal quotient bundle on Pg−1. Then H0(

∧j
Q ⊗ IC(1)) vanishes if

j = [(g + 1)/2].

Remark 7.3. Proposition 2.7 shows that this statement is indeed the Green
conjecture for curves of maximal Clifford index.

Proof: (of Theorem 7.1) Let Mg be the moduli space of curves of genus g. The
statement of the Theorem is equivalent to the equality of the supports of the two
subvarieties of Mg:

Dk+1 = {[C] ∈Mg, there exists a g1
k+1on C}

and
D′k+1 = {[C] ∈Mg, Kk,1(C,KC) 6= 0}.

The computations of [HM82] show that Dk+1 is a reduced divisor with re-
spect to the natural structure induced by the Brill-Noether theory. It is moreover
irreducible, as is any other gonality stratum; cf. [AC81a]. A consequence of the
Green-Lazarsfeld nonvanishing Theorem 3.33, is a set-theoretical inclusion

Dk+1 ⊂ D′k+1.

Observe that the locus corresponding to hyperelliptic curves is completely con-
tained in both Dk+1 (by definition) and D′k+1 (by the Green-Lazarsfeld nonva-
nishing Theorem), Therefore, we can work directly over the complement of the
hyperelliptic locus in Mg.

Step 1. We show that D′k+1 is of pure codimension one; this will be a consequence
of Voisin’s Theorem 6.14. To this end, consider a covering

π : S →Mg

on which a universal curve C → S exists (see for example [Loo94]). By definition,
for any point x ∈ S, the fibre Cx is the curve of genus g whose isomorphism class is
given by the image of x in Mg. Put ωπ the relative canonical bundle and let E be

85
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its direct image on S. Restricting over the non-hyperelliptic locus, the morphism
π factors through a natural canonical embedding of C in the projective bundle
p : P(E) → S. Let I be the ideal sheaf of C in P(E), and OP(E)(1) be the relatively
ample (hyperplane) line bundle along the fibres.

Let C be a non-hyperelliptic curve of odd genus g = 2k + 1, and denote by IC
the ideal sheaf of C in Pg−1, and by Q the tautological quotient bundle of rank
g− 1 on Pg−1. Applying Proposition 2.7, we see that the restriction of D′k+1 to the
non-hyperelliptic locus coincides with

{[C] | H0(
∧k

Q⊗ IC(1)) 6= 0}.
Let Q be the universal quotient bundle on P(E); it fits into an exact sequence

0 → OP(E)(1) → p∗(E)∨ → Q→ 0.

Note that E = p∗(
∧lQ(1)) is a vector bundle of rank

(
g
l

)
g −

(
g

l − 1

)
.

Similarly, F = p∗(
∧lQ(1)⊗OC) is a vector bundle of rank

(
g − 1
l

)
(2l + g − 1)

for each l > 0. To this end, we apply the Riemann-Roch Theorem, and the Serre
duality on each fibre Cx to the bundle

∧lQCx⊗ωCx to obtain h1(Cx,
∧lQCx⊗ωCx) =

h0(Cx,∧lQ∗Cx
). The latter vanishes, see Remark 2.5.

The restriction from P(E) to C yields a morphism p∗(
∧k+1Q(1)) → p∗(

∧k+1Q(1)⊗
OC). Voisin’s Theorem 6.14 implies that this sheaf morphism is injective. Observe
next that the two vector bundles have the same rank, namely(

2k
k + 1

)
(4k + 2) =

(
2k + 1
k

)
2k,

hence the above map defines a degeneracy divisor in S whose image in Mg is D′k+1,
by definition.

Step 2. We compare two classes of divisors on the moduli space of curves.

It is convenient to work over the large open subvariety M0
g of the moduli space

Mg corresponding to smooth curves with trivial automorphism group. Since the
complement in Mg is of codimension at least two, it is clear that if the restrictions
of Dk+1 and D′k+1 to M0

g coincide set-theoretically, then we obtain equality over
the whole moduli space.

A fundamental property of the variety M0
g is that its Picard group (and hence

the Picard group of Mg, too) is cyclic. The generator is obtained in the following
way. Consider the universal curve C over M0

g, and π : C → M0
g the natural

morphism. By definition, for any point x ∈ M0
g, the fibre Cx is the curve of genus

g whose isomorphism class is given by x. Put ωπ the relative canonical bundle and
let E be its direct image on M0

g. Then Pic(M0
g) ∼= Z.λ, where λ = c1(E) [Har83];

cf. [HM82]. Moreover, since M0
g admits a compactification to a projective variety

such that that boundary is of codimension two [Ar71], it follows that any effective
divisor on M0

g which is rationally equivalent to zero is indeed zero.
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Curves with trivial automorphism group are clearly non-hyperelliptic, and it
follows that the morphism π factors through a natural canonical embedding of C in
the projective bundle p : P(E) → M0

g. Following ad-litteram the argument given
in Section 1, we endow (the restriction of) D′k+1 (to M0

g a natural Cartier divisor
structure, as a jump locus.

Now, we compare the rational classes

v = [D′k+1] = c1(p∗(
∧lQ(1)⊗OC))− c1(p∗(

∧lQ(1)))
c = [Dk+1]

of D′k+1 and the (k+1)-gonal locus Dk+1 in the Picard group of M0
g; cf. [HM82].

Put λ = c1(E). Using Grothendieck-Riemann-Roch and the Porteous formula,
Hirschowitz and Ramanan showed that

v = 6(k + 2)k
(2k − 2)!

(k − 1)!(k + 1)!
λ.

In [HM82, Section 6] it was proved that the class of the (k + 1)-gonal locus Dk+1

is

c = 6(k + 2)
(2k − 2)!

(k − 1)!(k + 1)!
λ.

Hence v = kc in Pic(M0
g).

Step 3. To conclude, use the fact that a curve corresponding to a generic point in
Dk+1 satisfies

dim Kk,1(C,KC) ≥ k.

The idea of proof (that can be found in [HR98]) is to show that Green-
Lazarsfeld classes generate a vector space of dimension at least k. These classes
are scrollar and the Koszul cohomology of the scroll is contained in the Koszul
cohomology of the curve. For details, see [HR98]. ¤

7.2. Stable curves with extra-syzygies

The main result discussed in this section is a degenerate version of Theorem 7.1.
This result will be obtained via a deformation to the smooth case. For technical
reasons, we restrict ourselves to stable curves with trivial automorphism group and
very ample canonical bundle; see [C82, Theorem F] and [CFHR99, Theorem 3.6]
for precise criteria of very ampleness.

Hirschowitz and Ramanan used the term with extra-syzygies to designate smooth
curves C of genus 2k + 1 for which Kk,1(C,KC) 6= 0. We adopt this terminology
and extend it to singular stable curves with the same property. In the smooth case,
extra-syzygies produce pencils. In the singular case, extra-syzygies will produce
suitable torsion-free sheaves rather than line bundles, since the Jacobian of a sin-
gular curve is not necessarily compact. Recall that a coherent sheaf on a stable
curve X is torsion-free if it has no non-zero subsheaf with zero-dimensional support
[Se82].

We study the Koszul cohomology of a stable singular curve X of arithmetic
genus g = 2k+1, with k ≥ 2. Recall that stable curves are reduced connected curves
with finite group of automorphisms, and with only simple double points (nodes) as
possible singularities. They have been introduced by Deligne and Mumford with the
aim of compactifying the moduli space Mg of smooth curves of genus g. Singular
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stable curves of arithmetic genus g lie on a normal-crossing divisor ∆0∪· · ·∪∆[g/2]

in Mg, on the boundary of Mg, and the general element in ∆0 is irreducible,
whereas a general element in ∆i is the union of two curves of genus i and g − i
respectively, meeting in one point.

It is known that the Picard group of Mg is generated over Q by the classes
δi = [∆i] and by the Hodge class λ; see, for example [HaM98]. Intuitively, λ is the
class of the line bundle over Mg whose fibre over [C] is

∧g
H0(C,ωC). The bundle

in question is nef and big (see, for example, [Ar71], [HaM90, Introduction]).

Definition 7.4. The open subspace in Mg of points corresponding to stable
curves of genus g with very ample canonical bundle, is denoted by Mω

g .

Remark 7.5. It is easy to show that Mω
g is contained in Mg ∪∆0.

The Riemann-Roch Theorem implies that the degree of a line bundle A on a
smooth curve C equals χ(C,A)−χ(C,OC). Given a rank 1 torsion-free sheaf F on
a stable curve X, one can view the quantity χ(X,F ) − χ(X,OX) as a substitute
for the degree. Hence the degenerate analogue of a g1

k+1 will be a sheaf with
χ(X,F ) = 1− k.

The degenerate version of Theorem 7.1 is the following statement

Theorem 7.6. Let X be a singular stable curve of genus g = 2k + 1 with very
ample canonical bundle and trivial automorphism group. If

Kk,1(X,ωX) 6= 0,

then there exists a torsion-free, ωX-semistable sheaf F of rank one on X with
χ(X,F ) = 1− k and h0(X,F ) ≥ 2.

We refer to [Se82] for a precise definition of semi-stability.

Proof: (of Theorem 7.6) Put Dω
k+1 = Dk+1 ∩Mω

g , and ∆ω
0 = ∆0 ∩Mω

g .

Step 1. We prove that the locus of curves with extra-syzygies in Mω
g is a divisor.

It amounts to proving that its inverse image on a covering Sω → Mω
g is a

divisor. We choose a smooth Sω on which an universal curve exists.
Let [X] ∈ Mω

g , and denote, for simplicity P := PH0(X,ωX)∨, which contains
the image of X, set Q = TP(−1) the universal quotient bundle, and QX = M∨

ωX

the restriction of Q to X. As in the smooth case, the Koszul cohomology of X with
values in ωX has the following description

Kp,1(X,ωX) ∼= ker
(
H0(P,∧2k−p+1Q(1)) → H0(X,∧2k−p+1QX ⊗ ωX)

)
.

For the choice p = k, and for a smooth curve X, the two spaces appearing in
the description above, namely H0(P,∧k+1Q(1)) and H0(X,∧k+1QX ⊗ ωX), have
the same dimension, see the proof of Theorem 7.1. Applying the Riemann-Roch
Theorem and Serre duality, we observe that the two spaces in question are still
of the same dimension if X is a singular stable curve with very ample canonical
bundle, since H0(X,∧k+1Q∨X) = 0. The vanishing of H0(X,∧m+1Q∨X) for any
m ≥ 0 follows from Proposition 2.4, and from the vanishing of Kp,0(X,ωX) for
p ≥ 1.

By semi-continuity, the locus of curves in Mω
g with extra-syzygies is closed.

Similarly to the proof of Theorem 7.1, the locus of points on Sω corresponding to
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curves with extra-syzygies is the degeneracy locus of a morphism of vector bundles
of the same rank. Then this locus is a divisor, since we know that it is not the
whole space by Theorem 6.14.

Step 2. We prove that the condition Kk,1(X,ωX) 6= 0 holds if and only if [X]
belongs to the closure Dk+1 in Mω

g of the locus Dk+1 of (k + 1)-gonal smooth
curves.

Imitating the argument given in the smooth case, we see that on Mω
g , the

divisor of curves with extra-syzygies is equal to a multiple of Dω
k+1 plus, possibly,

a multiple of ∆ω
0 (recall that ∆0 is irreducible, and so is ∆ω

0 ). The possibility that
the whole ∆ω

0 be contained in the locus of curves with extra-syzygies is ruled out
by Corollary 6.16. In particular, it follows that a curve in ∆ω

0 has extra syzygies if
and only if it belongs to Dω

k+1; this is what we wanted to prove.

Step 3. We show that the condition of having extra-syzygies yields the existence
of the desired torsion-free sheaves.

From Step 1, we know that a singular stable curve X with ωX very ample and
with extra-syzygies lies in a one-dimensional flat family C → T of curves such that
Ct0 ∼= X, and Ct are smooth, and belong to Dk+1 for t 6= t0. By shrinking T if
needed, we can make the same hypothesis for the curves Ct. By the compactification
theory of the generalized relative Jacobian, see [Ca94] and [P96], there exists a
family J1−k(C/T ), flat and proper over T , whose fiber over t 6= t0 is the Jacobian
variety of line bundles of degree k + 1, whereas the fiber over t0 parametrizes gr-
equivalence classes of torsion-free, ωX -semistable sheaves F of rank one on X with
χ(X,F ) = 1 − k; see [P96], [Se82] for precise definitions. It follows that the
subspace of pairs {(Ft, Ct) ∈ J1−k(C/T ) ×T C, h0(Ct,Ft) ≥ 2} is closed in the
fibered product, and, since [Ct] ∈ Dk+1 for all t 6= t0, we conclude. ¤

7.3. Curves with small Brill-Noether loci

In this section we show that the degenerate version of Theorem 7.1 obtained
in the previous section implies the conjectures of Green and Green-Lazarsfeld for
specific open subsets of every gonality stratum

{[C] ∈Mg, gon(C) = d}
subject to the numerical condition

(7.1) d <
[g
2

]
+ 2.

Note that this inequality excludes exactly one case, namely the case of odd
genus and maximal gonality. In this case, the Green conjecture is known by The-
orem 7.1. The Green-Lazarsfeld conjecture for this case will be proved in the next
section.

The idea of the construction is as follows. Starting from a smooth curve C
of genus g and gonality d satisfying (7.1), we produce a stable curve X to which
one can apply Theorem 7.6. This curve X is obtained by repeatedly identifying
points on C to create nodes. Before passing to the general case, we illustrate this
technique in the simplest case.
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Special case: g = 2k, d = k + 1. In this case, Green’s conjecture states that
Kk,1(C,KC) = 0. Suppose that this is not the case. Choose two general points
x and y on C, and let X be the nodal curve obtained by identifying these two
points. Let f : C → X be the normalization map. The morphism f∗ induces an
isomorphism between H0(X,ωX) and H0(C,KC(x+ y)), hence H0(C,KC) can be
viewed as a subspace of H0(X,ωX) and

Kp,1(C,KC) ⊂ Kp,1(X,ωX)

for all p. The previous assumption implies that Kk,1(X,ωX) 6= 0. Hence, there
exists a torsion-free rank 1 sheaf F on X, such that h0(X,F ) ≥ 2 and χ(X,F ) =
1− k. We now distinguish two cases:

(1) F is not locally free. Then there exists a line bundle A on C such that
F = f∗A, by [Se82]. This leads to a contradiction, since deg(A) = k, and
h0(C,A) ≥ 2.

(2) F is a line bundle. Put A = f∗F . Then A has the following properties:
h0(C,A) ≥ 2, deg(A) = k + 1 and it is impossible to separate the points
x and y by using sections of A.

Suppose that C satisfies the following additional condition (which is satisfied
by a generic curve):

(7.2) dim W 1
k+1(C) = 0.

Consider the subvariety

{(x, y), there exists g1
k+1 passing through x+ y} ⊂ C × C.

The fibers of the first projection are finite since we assumed (7.2), showing that
this variety is one-dimensional. Hence we obtain a contradiction by the genericity
of x and y.

Since H0(X,ωX) ∼= H0(C,KC(x + y)), the argument given above shows that
Kk,1(C,KC(x + y)) = 0. This condition implies the Green-Lazarsfeld conjecture
for C, see Corollary 4.28.

The crucial ingredients of the above example were condition (7.2), and the
vanishing

Kk,1(C,KC(x+ y)) = 0.
This generalizes as follows.

Theorem 7.7. Let d ≥ 3 be an integer, and C be a smooth d-gonal curve of
genus g with d < [g/2] + 2, satisfying the following condition

(7.3) dim (W 1
d+n(C)) ≤ n for all 0 ≤ n ≤ g − 2d+ 2.

Then
Kg−d+1,1(C,KC(x+ y)) = 0

for general points x, y of C.

Proof: Let ν ≥ 0 be an integer and let X be the stable curve obtained by
identifying (ν + 1) pairs of generic points (xi, yi), with 0 ≤ i ≤ ν, on A. Let |A| be
a minimal pencil on C, and f : C → X be the normalization morphism. The sheaf
F = f∗A is torsion-free of rank 1. In order to apply Theorem 7.6, we want to have
the arithmetic genus of X equals 2k+1, and χ(X,F )−χ(X,OX) = k+2 (the idea
is that F deforms to a g1

k+2 under any smooth flat deformation).
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The integers k and ν are determined as follows. Since χ(X,F ) − χ(X,OX) =
d+ν+1, and 2k+1 = g+ν+1 we obtain k = g−d+1 ≥ 1 and ν = g−2d+2 ≥ 0.
The case ν = 0 corresponds to the previous example.

By genericity, we can assume that for any choice of n+ 1 pairs (xij , yij ), with
0 ≤ j ≤ n and 0 ≤ n ≤ ν, among the points (xi, yi), there exists no An ∈W 1

d+n(C)
such that h0(X,An(−xij − yij )) ≥ 1 for all 0 ≤ j ≤ n. The (ν + 1)-tuple of cycles
(x0 + y0, . . . , xν + yν) can be chosen to be generic in the space C(2) × · · · × C(2).
This is possible since for any n, the incidence variety

{(x0 + y0, . . . , xn + yn, An), h0(An(−xi − yi)) ≥ 1 for all i}
is at most (2n+ 1)-dimensional, whereas dim

(
C(2) × · · · × C(2)

)
= 2n+ 2.

Since the cycles xi + yi are generic, the curve X has no non-trivial automor-
phisms and its canonical bundle is very ample (apply [C82, Theorem F], [CFHR99,
Theorem 3.6]).

We prove first that Kk,1(X,ωX) = 0. Suppose that Kk,1(X,ωX) 6= 0. From
Proposition 7.6, we obtain a torsion-free sheaf F of rank one on X with χ(X,F ) =
1−k, and h0(X,F ) ≥ 2. The sheaf F is either a line bundle, or the direct image of a
line bundle on a partial normalization of X. Observe that this partial normalization
cannot be C itself. Indeed, if F = f∗A with A a line bundle on C, then χ(C,A) =
χ(X,F ) = 1 − k, and h0(C,A) = h0(F ) ≥ 2, which means that A is a g1

d−1 on C,
contradicting the hypothesis. Let us consider then ϕ : Z → X the normalization of
the (ν−n) points pn+1, . . . , pν , for some 0 ≤ n ≤ ν. Let furthermore ψ : C → Z be
the normalization of the remaining (n+1) points p0, . . . , pn, and suppose F = ϕ∗A,
for a line bundle A on Z. Under these assumptions, we obtain χ(A) = χ(F ) = 1−k,
and so χ(ψ∗A) = 2 − k + n, which implies that deg(ψ∗A) = d + n. Besides, ψ∗A
has at least two independent sections. Since for any node pi with 0 ≤ i ≤ n there is
a non-zero section of F vanishing at pi, it follows that h0(C, (ψ∗A)(−xi − yi)) ≥ 1
for all 0 ≤ i ≤ n, which contradicts the choice we made.

We proved Kk,1(X,ωX) = 0. Since Kk,1(C,KC(xi+yi)) ⊂ Kk,1(X,ωX), [V02,
p. 367], we obtain Kk,1(C,KC(xi + yi)) = 0, for all i. ¤

Remark 7.8. The condition (7.3) is satisfied by the generic d-gonal curve; see
[Ap05].

Corollary 7.9. Notation as in Theorem 7.7. Then Cliff(C) = d − 2, and C
satisfies the conjectures of Green, and Green-Lazarsfeld.

Proof: The statement of Theorem 7.7 is the Green-Lazarsfeld conjecture for the
bundle KC(x + y). Using Corollary 4.28 it follows that the Green-Lazarsfeld con-
jecture holds for the curve C (and is verified for any line bundle of degree at least
3g),

It was observed by Voisin that Kk,1(C,KC) ⊂ Kk,1(C,KC(x + y)), [AV03];
hence Kk,1(C,KC) = 0. The vanishing Kk,1(C,KC) = 0 is the statement of the
Green conjecture for C, the fact that Cliff(C) equals d − 2 being implied by the
Green-Lazarsfeld non-vanishing theorem, Corollary 3.36. ¤

For small d, one can use classical results due H. Martens, Mumford and Keem
on the dimensions of the Brill-Noether loci, cf. [ACGH85], [HMa67], [Mu74],
[Ke90] to obtain the following.
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Corollary 7.10. Let C be a non-hyperelliptic smooth curve of gonality d ≤ 6,
with d < [gC/2] + 2, and suppose that C is not one of the following: plane curve,
bielliptic, triple cover of an elliptic curve, double cover of a curve of genus three,
hexagonal curve of genus 10 or 11. Then Cliff(C) = d − 2 and C verifies both
Green, and Green-Lazarsfeld conjectures.

Proof: For a trigonal curve C, one has to prove that dim (W 1
n+3(C)) ≤ n for

all 0 ≤ n ≤ gC − 4. This follows from [HMa67, Theorem 1], as we know that
dim (W 1

n+3(C)) ≤ n+1 and equality is never achieved, since C is non-hyperelliptic.
If d = 4, one has to prove dim (W 1

n+4(C)) ≤ n for all 0 ≤ n ≤ gC − 6. In this
case, we apply Mumford’s refinement to the Theorem of H. Martens, cf. [Mu74],
which shows that dim (W 1

n+4(C)) ≤ n+ 1, and equality could eventually hold only
for trigonal (which we excluded), bielliptic curves or smooth plane quintics. The
other cases d = 5 and d = 6 are similar, and follow from [Ke90, Theorem 2.1], and
[Ke90, Theorem 3.1], respectively.

Remark 7.11. For trigonal curves, Green’s conjecture was known to hold by
the work of Enriques and Petri, and the Green-Lazarsfeld conjecture was verified
by Ehbauer [Ehb94]. For tetragonal curves, the Green conjecture was verified by
Schreyer [Sch91] and Voisin [V88a]. All the other cases are new. Plane curves,
which were excepted from the statement, also verify the two conjectures, cf. [Lo89],
and [Ap02]. Note that in a number of other cases for which the previous result does
not apply, Green’s conjecture is nonetheless satisfied; for instance, for hexagonal
curves of genus 10 and Clifford index 3, complete intersections of two cubics in P3,
see [Lo89].

For large d we cannot give similar precise results, but we still obtain a number
of examples for which Theorem 7.7 can be applied. For instance, curves of even
genus which are Brill-Noether-Petri generic satisfy the hypothesis of Theorem 7.7,
so they verify the two syzygy conjectures. Other cases are obtained by looking at
curves on some surfaces, when the special geometry of the pair (curve, surface) is
used, as in the following.

Corollary 7.12. Let C be a smooth curve of genus 2k and maximal Clifford
index k − 1, with k ≥ 2 abstractly embedded in a K3 surface. Then C verifies the
Green conjecture.

Proof: Since the Clifford index of C is maximal, and Clifford index is constant in
the linear system |C|, [GL87], the gonality is also maximal, and thus constant for
smooth curves in |C|. Then the hypotheses of [CP95, Lemma 3.2 (b)] are verified,
which implies that a general smooth curve in the linear system |C| has only finitely
many pencils of degree k+1. From Theorem 7.7 it follows that the Green conjecture
is verified for a general smooth curve C ′ ∈ |C|, that is Kk,1(C ′,KC′) = 0. By apply-
ing Green’s hyperplane section theorem 2.20 (ii) twice, we obtain Kk,1(C,KC) = 0,
which means that C satisfies Green’s conjecture, too. ¤

Note that Corollary 7.12 does not apply to the particular curves considered by
Voisin in [V02], [V05], as they are implicitly used in the proof.
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7.4. Further evidence for the Green-Lazarsfeld conjecture

In the last section, we verified the conjectures of Green, and Green-Lazarsfeld
for generic d-gonal curves, with one exception. In this section, we treat this case,
which needs a slightly more complicated degeneration; see Remark 7.14.

Theorem 7.13. The Green-Lazarsfeld conjecture is valid for any smooth curve
C of genus gC = 2k − 1 and gonality k + 1, with k ≥ 2.

Proof: Note that dim (W 1
k+1(C)) = 1, see [FHL84], [ACGH85, Lemma IV.(3.3)

p. 181 and Ex. VII.C-2, p. 329]. Then one can find three distinct points x, y and
z of C which do not belong at the same time to a pencil of degree k + 1. Since
the incidence variety {(x + y + z,A) ∈ C(3) ×W 1

k+1(C), h0(A(−x − y − z)) ≥ 1}
is two-dimensional, and hence the image of its projection to C(3) is a surface, the
cycle x+ y + z can be generically chosen in C(3); cf. the proof of Theorem 7.7,.

For these three generic points we prove that Kk,1(C,KC(x+ y+ z)) = 0. This
fact, together with Theorem 4.27, shows that the Green-Lazarsfeld conjecture is
verified for any line bundle of degree at least 3gC + 1 on C.

We suppose to the contrary that Kk,1(C,KC(x + y + z)) 6= 0, and reach a
contradiction. To this end, we introduce a curve X with two irreducible compo-
nents: the first one is C, and the second one is a smooth rational curve E which
passes through the points x, y and z. The curve X is stable, and of arithmetic
genus g = 2k + 1, and Kk,1(X,ωX) ∼= Kk,1(C,KC(x + y + z)). As in the proof of
Theorem 7.7, from the genericity of the cycle x + y + z, we can suppose X is free
from non-trivial automorphisms and with very ample canonical bundle.

From Proposition 7.6, we obtain a torsion-free, ωX -semistable sheaf F of rank
one on X with χ(F ) = 1− k and h0(X,F ) ≥ 2. We show that F yields either to a
pencil of degree k+1 on C which passes through x, y, and z or to a pencil of degree
at most k. Let FE , and FC be the torsion-free parts of the restrictions of F to E
and C, respectively. It is known that there is a natural injection F → FE ⊕ FC
whose cokernel is supported at the points among x, y and z where F is invertible,
[Se82]. We distinguish four cases according to the number of nodes where F is
invertible.

Suppose F is invertible at all three x, y, and z. In this case, F|E = FE ,
F|C = FC , and we have two exact sequences

(7.4) 0 → FE(−3) → F → FC → 0,

and, respectively,

(7.5) 0 → FC(−x− y − z) → F → FE → 0.

The subsheaves FE(−3) and FC(−x − y − z) are of multiranks (1, 0) and,
respectively (0, 1), and, since deg(ωX|E) = 1, and deg(ωX|C) = 2gC + 1, their
ωX -slopes are equal to

µ(FE(−3)) = χ(FE(−3)) = deg(FE)− 2,

and, respectively,

µ(FC(−x− y − z)) =
χ(FC(−x− y − z))

2gC + 1
=

deg(FC)− 2− gC
2gC + 1

,
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see, for example [P96, Definition 1.1]. The ωX -slope of F equals

µ(F ) =
1− k

2gC + 2
.

From the ωX -semistability of F , we obtain deg(FE) ≤ 1 and deg(FC) ≤ k + 2.
The exact sequence (7.4) implies χ(FC) = χ(F ) − χ(FE(−3)) = 3 − k − deg(FE),
hence deg(FC) = k + 1 − deg(FE). These numerical relations force deg(FC) ∈
{k, k + 1, k + 2}.

If deg(FC) = k+ 2, then FE ∼= OE(−1) hence any global section of F vanishes
along E. Then any global section of F vanishes at all the three points x, y, and z.
Since F has at least two sections, the sublinear system H0(F ) ⊂ H0(FC) on C has
x, y, and z as base-points, in particular h0(FC(−x− y− z)) ≥ 2. Then C carries a
g1
k−1, fact which contradicts the hypothesis.

If deg(FC) ≤ k + 1, from (7.4) we obtain h0(C,FC) ≥ h0(X,F ) ≥ 2. Since C
does not carry a g1

k, it follows that FE = OE , and FC is a base-point-free g1
k+1 on

C. Let σ be a non-zero global section of FC which vanishes at x; such a σ exists as
h0(C,FC) = 2. Then σ is the restriction of global section σ0 of F , as the restriction
morphism on global sections is in this case an isomorphism. Since FE = OE , the
restriction of σ0 to E is a constant function. The section σ0 vanishes at x, hence
it vanishes on the whole E. In particular, σ0 vanishes at y and z, and hence σ
vanishes at y and z as well. This is a contradiction, as we supposed that there was
no such a σ.

The other three remaining cases (F is invertible at y, and z, and is not invertible
at x, or F is invertible at x, and is not invertible at y and z, or F ∼= FE ⊕ FC) are
solved in a similar manner. The idea is always to use semi-stability, which means
briefly that the slopes of the restrictions to the two components cannot differ too
much; we refer to [Ap05] for a complete proof. ¤

Remark 7.14. The stable curves considered in this section are limits of irre-
ducible curves with two nodes. The limit is obtained by blowing up the point (x, x)
on C ×C, and identifying the strict transforms of the diagonal and of y×C on the
one hand, and the strict transforms of x× C and of z × C on the other hand (see
the figures below). This fact indicates that this case is “more degenerate” than the
others.

We obtain directly from Theorem 7.13 a version of the Hirschowitz-Ramanan-
Voisin Theorem for syzygies of pluricanonical curves.

Corollary 7.15. If C is a smooth curve of genus 2k − 1, where k ≥ 2, with

K2(2n−1)(k−1)−(k+1),1(C,K⊗n
C ) 6= 0



7.5. EXCEPTIONAL CURVES 95

x x

p

x

projection

identify

identifyidentify

zy

x

x

x

x
E

∆ C

C   {x}=C

C   {p}

{z}   C{x}   C{y}   C

for some n ≥ 2, then C carries a g1
k.

7.5. Exceptional curves

It was proved in the previous Sections that Green conjecture is valid for curves
with small Brill-Noether loci. It remains to verify the Green conjecture for curves
which do not verify condition (7.3). One result in this direction was proved in
[AP06].

Theorem 7.16. Let S be a K3 surface with Pic(S) = Z.H ⊕ Z`, with H very
ample, H2 = 2r− 2 ≥ 4, and H.` = 1. Then any smooth curve in the linear system
|2H + `| verifies the Green conjecture.

Smooth curves in the linear system |2H + `| count among the few known ex-
amples of curves whose Clifford index is not computed by pencils, i.e. Cliff(C) =
gon(C)−3, as was shown in [ELMS89] (other obvious examples are given by plane
curves, for which the Green conjecture was checked in [Lo89]). Such curves are the
most special ones in the moduli space of curves from the point of view of the Clifford
dimension; for this reason, some authors call them exceptional curves. Hence, the
case of smooth curves in |2H+`| may be considered as opposite to that of a generic
curve of fixed gonality. Note that these exceptional curves carry a one-parameter
family of pencils of minimal degree (see [ELMS89]), hence the condition (7.3) of
Theorem 7.7 is not satisfied.

The idea of the proof is to look at the family of pairs (C,A), with C ∈ |2H|
smooth and A ∈ W 1

2r−2+n(C), and to give a bound on the dimension of the irre-
ducible components dominating |2H|, then apply a version of Theorem 7.7. Thanks
to the work of Lazarsfeld and Mukai, to the data (C,A) (for simplicity we assume
here that A is a complete and base-point-free pencil) one can attach a rank-2 vec-
tor bundle E(C,A) on the surface S. If this bundle is simple, then the original
argument of Lazarsfelds [La86], or the variant provided by Pareschi [Pare95], al-
lows one to determine these dimensions. In the non-simple case a useful lemma
(see [GL87], [DM89] and [CP95]), leads to a very concrete description of the
parameter space for such bundles. This description, together with the infinitesimal
approach of Pareschi [Pare95], allows us to conclude.
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Another consequence of the argument given is that the Green-Lazarsfeld con-
jecture holds for the generic curves in the linear system |2H|, see [AP06, Corollary
4.5].

7.6. Notes and comments

The proof of Theorem 7.1 relies on a comparison of the two divisors Dk+1 and
D′k+1 in the moduli space M2k+1. The hardest part is to show that the latter is
a genuine divisor, and does not cover the whole moduli space; this is implied by
Theorem 6.14.

Starting from Theorems 6.9 and 6.14, C. Voisin had the idea to degenerate a
smooth curve on a K3 surface to an irreducible nodal curve X in the same linear
system, in order to make the Koszul cohomology of X vanish. The aim was to verify
the Green conjecture for the normalisation of X; see [V02]. This resulted into a
very short and elegant solution for the Green conjecture for generic curves C of
non-maximal gonality larger than gC/3. A previous result of M. Teixidor [Tei02],
using completely different methods, implied the Green conjecture for generic d-
gonal curves with d bounded from above in the range gC/3. The obstruction to
an extension of Voisin’s approach is given by the existence of nodal curves with a
prescribed number of nodes.

Along the same lines, C. Voisin remarked that the degeneration method to
nodal curves leads, in combination with Theorem 4.27, to a solution for the Green-
Lazarsfeld conjecture for generic curves of fixed gonality in the same order range;
cf.[AV03, Theorem 1.3] and [AV03, Theorem 1.4]. This strategy did much better
than the partial result [Ap02, Theorem 3]; see [AV03, Remark 2] for some related
comments.

At the other end of the spectrum, normalizations of irreducible nodal curves
on P1 × P1 have been used to verify the two conjectures for generic curves C in
any stratum of gonality bounded in the order

√
gC , see [Sch89, Theorem], and

[Ap02, Theorem 4], the vanishing of the Koszul cohomology having been proved,
in contrast to Voisin, directly on the normalizations. Further connections between
Green and Green-Lazarsfeld conjectures are discussed in [Ap02, Appendix and II].

The two conjectures seem to be intricately related to each other, altough the
precise relation between them remain unclear for the moment. However, section
7.3 gives clear evidence pleading for unity. The idea there was to use degeneration
to nodal curves, and to apply Theorem 7.1. Voisin’s degenerations on K3 surfaces
indicate that the right method is to compute the Koszul cohomology directly on
nodal curves, instead of normalising them first as in [Ap02] and [Sch89]. The
proof of Theorem 7.7 shows that this is a very natural thing to do.

The case considered in section 7.4 is somewhat different. Two points x and y
added to the canonical bundle KC will never suffice to verify the Green-Lazarsfeld
conjecture. The reason is that the Brill-Noether locus of pencils of minimal de-
gree on C is one-dimensional, hence through any two points on the curve passes a
minimal pencil. By the Green-Lazarsfeld nonvanishing (Corollary 3.36) we cannot
obtain the desired vanishing for KC(x+ y). A similar phenomenon occurs for any
curve carrying infinitely many minimal pencils. For any such curves, we need to add
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at least three points to the canonical bundle in order to verify the Green-Lazarsfeld
conjecture.





CHAPTER 8

Applications

8.1. Koszul cohomology and Hodge theory

In this section we discuss the relationship between Koszul cohomology and
infinitesimal computations in Hodge theory.

8.1.1. Variations of Hodge structure. We present a brief introduction to
the theory of variations of Hodge structure and infinitesimal variations of Hodge
structure, including only the basic definitions; see [CMP] or [V02b] for a more de-
tailed treatment. A short introduction to infinitesimal variations of Hodge structure
is given in [Ha85].

Let X and S be smooth quasi–projective varieties over C, and let f : X → S be
a smooth, projective morphism of relative dimension n. Given a simply connected
open subset U ⊂ S and a base point 0 ∈ U , Ehresmann’s fibration theorem provides
us with a diffeomorphism f−1(U) ' X0 × U that allows us to identify Hn(Xs,Z)
with Hn(X0,Z) for all s ∈ U . Taking the Hodge filtration F • on the cohomology
of the fibers, we locally obtain a family of filtrations {F pHn(Xs,C)}s∈U on a fixed
vector space Hn(X0,C) ∼= Hn(Xs,C). The groups Hn(Xs,Z) (s ∈ S) glue together
to give a locally constant sheaf Rnf∗Z. The associated holomorphic vector bundle

H = Rnf∗Z⊗Z OS
is called the Hodge bundle. It admits a decreasing filtration by holomorphic sub-
bundles

H = F0 ⊃ F1 ⊃ . . . ⊃ Fn−1 ⊃ Fn
such that the fiber of Fp over s ∈ S is F pHn(Xs,C). The Hodge bundle comes
equipped with a natural connection, the Gauss–Manin connection

∇ : H → Ω1
S ⊗H

whose flat sections are the sections of the local system Rnf∗Z. This connection
satisfies the Griffiths transversality property

∇(Fp) ⊆ Ω1
S ⊗Fp−1.

Hence ∇ induces maps

∇ : Fp/Fp+1 → Ω1
S ⊗Fp−1/Fp

for all p. These maps are OS–linear. The data (H,F•,∇) is called a variation of
Hodge structure.

Fix a base point 0 ∈ S, and put HZ = Hn(X0,Z). The abelian group HZ carries
a Hodge structure of weight n, i.e., HC = HZ ⊗ C admits a Hodge decomposition

HC =
⊕

p+q=nH
p,q, Hp,q = Hq,p.

99
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Cup product defines a polarisation

Q : HZ ×HZ → H2n(X0,Z) ∼= Z

such that QC : Hp,q × Hn−p,n−q → C is a perfect pairing. Let T = T0S be the
holomorphic tangent space to S at 0. The fiber of ∇ at 0 provides us with maps

∇0 : Hp,q → Hom(T,Hp−1,q+1)

for all p and q. Hence we obtain a map

δ : T → ⊕
p Hom(Hp,q,Hp−1,q+1)

defined by δ(v)(ξ) = ∇0(v)(ξ); this map is called the differential of the period map.
Griffiths showed that the map δ is given by cup product with the Kodaira–Spencer
class, i.e., we have δ(v)(ξ) = κ(v) ∪ ξ with

κ : T → H1(X0, TX0)

the Kodaira–Spencer map. Furthermore the operators δ(v1) and δ(v2) commute
for all v1, v2 ∈ T and one has the relation

(8.1) Q(δ(v)ξ, η) = −Q(ξ, δ(v)η)

for all v ∈ T , ξ ∈ Hp,q, η ∈ Hn−p+1,n−q+1. The data (HZ, F •, Q, T, δ) constitute an
infinitesimal variation of Hodge structure (IVHS). We shall present several examples
where calculations with infinitesimal variations of Hodge structures can be reduced
to vanishing theorems for Koszul cohomology.

An important ingredient used in the first two examples is Griffiths’s description
of the primitive cohomology of hypersurfaces in projective space using Jacobi rings
[Gri69]. Given a smooth hypersurface X = V (f) ⊂ Pn+1 of degree d, consider the
Jacobi ideal J = ( ∂f∂x0

, . . . , ∂f
∂xn+1

) in the polynomial ring S = C[x0, . . . , xn+1] and
define R = S/J . The ring R is a graded ring called the Jacobi ring, and Griffiths
proved that

Hn−p,p
prim (X) ∼= R(p+1)d−n−2.

8.1.2. Explicit Noether–Lefschetz. Let

SU = {(x, [F ]) | F (x) = 0}
be the universal family of smooth surfaces of degree d in P3, with

U ⊂ H0(P3,OP (d))/PGL(4)

the open subset parametrising smooth surfaces. Recall that the Noether–Lefschetz
locus is the subset

NLd = {t ∈ U | Pic(St) 6= Z[OS(1)]} ⊂ U.

It is known to be a countable union of closed subvarieties of U . The Noether–
Lefschetz problem asks for which values of d we have NLd ( U . By the Lefschetz
(1,1)–theorem, t belongs to NLd if and only if there exists a primitive Hodge class
λt ∈ H1,1

prim(St) ∩ H2(St,Z). Let Σ be an irreducible component of NLd, and let
0 ∈ Σ be a base point which is chosen outside the singular locus of Σ. Put H =
H2

prim(S0,C) = H2,0⊕H1,1⊕H0,2, and let λ ∈ H1,1
prim(S0)∩H2(S0,Z) be a nonzero

primitive Hodge class. Let T0 be the tangent space to U at 0, and consider the map

δ : T0 → Hom(H1,1,H0,2)
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induced by the differential of the period map. The Hodge class λ remains of
Hodge type (1,1) under an infinitesimal deformation with direction v if and only if
δ(v)(λ) = 0. Let Q be the polarisation on H. Using the relation (8.1) we obtain

δ(v)(λ) = 0 ⇐⇒ ∀µ ∈ H2,0, Q(δ(v)(λ), µ) = 0
⇐⇒ ∀µ ∈ H2,0, Q(λ, δ(v)(µ)) = 0.

Let T ′0 ⊂ T0 be the tangent space to Σ at 0. The preceding discussion shows that
the image of the map

ψ : T ′0 ⊗H2,0 → H1,1, ψ(v ⊗ µ) = δ(v)(µ)

is contained in the orthogonal complement λ⊥ of λ. In particular, the map ψ cannot
be surjective. We now translate this problem into the language of Jacobi rings. It
can be shown that T0

∼= Rd [Gri69], hence T ′0 can be identified with a subspace of
Rd. Under this identification, the map ψ is induced by the multiplication map

Rd ⊗Rd−4 → R2d−4.

Let W be the inverse image of T ′0 under the projection from Sd to Rd. Then W
is a base–point free linear subspace of Sd (since it contains the Jacobi ideal J , and
the surface S0 is smooth) with the property that the map W ⊗ Rd−4 → R2d−4 is
not surjective. It follows that the multiplication map W ⊗ Sd−4 → S2d−4 is not
surjective. Hence codim W ≥ d− 3 by Corollary 2.40, and we obtain the following
result due to Green [Gre84b], [Gre88] and Voisin [V88b].

Theorem 8.1 (Explicit Noether–Lefschetz theorem). Every irreducible compo-
nent of NLd has codimension at least d− 3.

This result is a refinement of the classical Noether–Lefschetz theorem. Note
that the degree estimate is sharp, since the component of surfaces in P3 containing
a line has codimension d− 3.

8.1.3. The image of the Abel-Jacobi map. Let X = V (f) ⊂ P4 be a
smooth hypersurface of degree d. Griffiths constructed a complex torus

J2(X) = H2(X,C)/F 2H3(X,C) +H3(X,Z) ∼= F 1H3(X,C)∨/H3(X,Z),

the intermediate Jacobian, and an Abel–Jacobi map

AJX : CH2
hom(X) → J2(X)

from the Chow group of homologically trivial codimension two cycles to this com-
plex torus. This map is defined as follows. Given a codimension two cycle Z with
zero homology class, choose a topological 3–chain γ such that ∂γ = Z, and let ψZ
be the integration current that sends a 3–form ω to

∫
γ
ω. One then shows that the

class of ψZ is well–defined in J2(X).

Let f : XT → T be a family of hypersurfaces in P4. To this family we can
associate a holomorphic fiber space of complex tori

J2(XT /T ) = ∪t∈TJ2(Xt).

Let H = R3f∗Z⊗Z OT be the Hodge bundle. The sheaf

J = H3/F2 +R3f∗Z
is the sheaf of holomorphic sections of the fiber space J2(XT /T ). A holomorphic
global section of J is called a normal function. (If T is not projective, one should
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add growth conditions at infinity; cf. [Z84] for a discussion of this issue.) Given a
family {Zt}t∈T of homologically trivial codimension two cycles, we obtain a normal
function ν of J by setting ν(t) = AJ(Zt). Using the Griffiths transversality property
of the Gauss–Manin connection ∇ on H, we obtain a commutative diagram

F2 +R3f∗Z ∇−−→ Ω1
T ⊗F1 ∇−−→ Ω2

T ⊗F0y
y ‖

H ∇−−→ Ω1
T ⊗H ∇−−→ Ω2

T ⊗Hy
y

J ∇−−→ Ω1
T ⊗H/F1.

A normal function coming from a family of algebraic cycles has the additional
property of being horizontal. This means that it is a section of the sheaf

Jhor = ker(∇ : J → Ω1
T ⊗H/F1).

To a horizontal normal function one can associate an infinitesimal invariant. This
is done in the following way. Since ∇ is a flat connection, the commutative diagram
above defines a short exact sequence of complexes of sheaves

0 → F• → H• → J • → 0.

The connecting homomorphism associated to this short exact sequence gives a map
from Jhor to the first cohomology sheaf H1(F•) of the complex F•. Taking the
induced map on global sections, we obtain a map

δ : H0(T,Jhor) → H0(T,H1(F•)).
The image of a horizontal normal function ν under this map is called the infinites-
imal invariant δν. This invariant enables us to decide whether a normal function
has a locally constant lifting to H. Specifically, if ν̃ is a local lifting of ν to the
Hodge bundle H, horizontality of ν implies that ∇ν̃ is a section of Ω1

T ⊗ F1. If
δν = 0, there exists locally a section ν̂ of F2 such that ∇ν̂ = ∇ν̃, hence ν̃ − ν̂ is a
flat local lifting of ν.

The existence of locally constant liftings implies strong rigidity properties of
the normal function. In the case at hand, a monodromy argument due to Voisin
[V94, Prop. 2.6] shows that if δν = 0 then ν is a torsion section of J . It remains
to see when the condition δν = 0 is satisfied. Using semicontinuity and a little
homological algebra, one shows that δν = 0 if the complexes

H2,1(Xt) ∇t−−→ Ω1
T,t ⊗H1,2(Xt) ∇t−−→ Ω2

T,t ⊗H0,3(Xt)

H3,0(Xt) ∇t−−→ Ω1
T,t ⊗H2,1(Xt) ∇t−−→ Ω2

T,t ⊗H1,2(Xt)

are exact at the middle term.

Consider the universal family XT → T of hypersurfaces in P4 (more precisely,
an étale base change of this family). Dualising the above complexes and rewriting
them using the Jacobi ring, we obtain complexes

∧2
Rd ⊗Rd−5 → Rd ⊗R2d−5 → R3d−5∧2

Rd ⊗R2d−5 → Rd ⊗R3d−5 → R4d−5.

The exactness of these complexes is governed by the following result due to Donagi,
with subsequent refinements by Green [DG84].
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Lemma 8.2 (Symmetrizer Lemma). The complex
∧2
Rd ⊗Rk−d → Rd ⊗Rk → Rk+d

is exact at the middle term if k ≥ d+ 1.

Proof: A diagram chase shows that it suffices to show that the complex
∧2
Sd ⊗Rk−d → Sd ⊗Rk → Rk+d

at the middle term. The commutative diagram
∧2
Sd ⊗ Jk−d −→ Sd ⊗ Jk −→ Jk+dy

y
y∧2

Sd ⊗ Sk−d −→ Sd ⊗ Sk −→ Sk+dy
y

y∧2
Sd ⊗Rk−d −→ Sd ⊗Rk −→ Rk+d

shows that it suffices to have exactness of
∧2
Sd ⊗ Sk−d → Sd ⊗ Sk → Sk+d

at the middle term and surjectivity of the map Sd ⊗ Jk → Jk+d. The second
condition is satisfied if k ≥ d − 1, since the ideal J is generated in degree d − 1.
Using Theorem 2.39, we find that the first condition holds if k ≥ d+ 1. ¤

Using the symmetrizer Lemma, one obtains the following result due to Green
[Gre89] and Voisin (unpublished).

Theorem 8.3 (Green–Voisin). Let X ⊂ P4 be a very general hypersurface of
degree d. If d ≥ 6, then the image of the Abel–Jacobi map

AJX : CH2
hom(X) → J2(X)

is contained in the torsion points of J2(X).

8.1.4. Hodge theory and Green’s conjecture. The following reformula-
tion of Green’s conjecture in terms of variations of Hodge structure is due to Voisin.
Recall that the generic Green conjecture states that

Kk,1(C,KC) = 0

if C is a general curve of genus g ∈ {2k, 2k+1}, conjecture 4.13. The starting point
of Voisin’s construction is to rewrite the complex
∧k+1

H0(C,KC) → ∧k
H0(C,KC)⊗H0(C,KC) → ∧k−1

H0(C,KC)⊗H0(C,K2
C)

in terms of the cohomology of the Jacobian of C. As the Jacobian J(C) is an abelian
variety, we have an isomorphism of Hodge structures Hk(J(C)) ∼= ∧k

H1(C) for all
k ≥ 0. Hence

Hp,q(J(C)) ∼= ∧p
H1,0(C)⊗∧q

H0,1(C)
∼= ∧p

H0(C,KC)⊗∧q
H1(C,OC).

Using Serre duality we can rewrite this as

Hp,q(J(C)) ∼= ∧p
H0(C,KC)⊗∧g−q

H0(C,KC).
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In particular, we obtain the isomorphisms
∧k+1

H0(C,KC) ∼= H0,g−k−1(J(C)),
∧k

H0(C,KC)⊗H0(C,KC) ∼= H1,g−k(J(C))

for the first two groups appearing in the Koszul complex. Let M0
g be the open

subset of the moduli space Mg parametrising smooth curves of genus g with trivial
automorphism group, and consider the variation of Hodge structure associated to
the Jacobian fibration f : J →M0

g. Put Hk = Rkf∗Z⊗Z OM0
g
, and write

Hp,q = FpHp+q/Fp+1Hp+q.

By Griffiths transversality, the Gauss–Manin connection induces OM0
g
–linear maps

∇ : Hp,q → Ω1
M0

g
⊗Hp−1,q+1.

Given [C] ∈ M0
g, we have T[C]Mg

∼= H1(C, TC) ∼= H0(C,K2
C)∨. Taking (p, q) =

(1, g − k) and restricting to the fiber over [C], we obtain (using the previous iden-
tifications) a map

∇C : H0(C,KC)⊗∧k
H0(C,KC) → H0(C,K2

C)⊗∧k−1
H0(C,KC)

which can be identified with the Koszul differential. The map
∧k+1

H0(C,KC) → ∧k
H0(C,KC)⊗H0(C,KC)

is identified with the map

θ : H0,g−k−1(J(C)) → H1,g−k(J(C))

given by cup product with the class θ ∈ H1,1(J(C)) of the theta divisor. The cok-
ernel of this map is isomorphic to the primitive cohomology H1,g−k

prim (J(C)). Hence
we obtain the following reformulation of the generic Green conjecture in terms of
Hodge theory.

Proposition 8.4 (Voisin). Green’s conjecture holds for a general curve C of
genus g ∈ {2k, 2k + 1} if and only if the map

∇C : H1,g−k
prim (J(C)) → Ω1

Mg,[C] ⊗H0,g−k+1
prim (J(C))

induced by the Gauss–Manin connection is injective.

8.2. Koszul divisors of small slope on the moduli space.

In this Section we discuss briefly the slope conjecture, and the counter-examples
found recently by G. Farkas and M. Popa. We begin by recalling the statement and
the motivation behind this conjecture.

Let Mg be the moduli space of stable curves. In order to study the birational
geometry of Mg, one could ask for a description of the cones

Ample(X) ⊂ Eff(X) ⊂ Pic(Mg)⊗ R
of ample and effective divisors on Mg. This question goes back to Mumford
[Mu77]. The effective cone describes the rational contractions of Mg, i.e., ra-
tional maps from Mg to projective varieties with connected fibers. Furthermore,
it gives information about the Kodaira dimension of Mg; see Remark 8.7. The
description of the full ample and effective cones turns out to be a difficult problem.
(Gibney, Keel and Morrison [GKM02] have proposed a conjectural description of
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the ample cone.) Hence one often pursues a more modest goal, the description of
the intersection of these cones with a suitable plane in Pic(Mg)⊗ R.

It is known that Pic(Mg) is generated by the Hodge class λ (which is nef and
big) and the boundary classes δi, i = 0, . . . , [ g2 ]. Given a class γ which is an effective
linear combination of the boundary divisors, let

Λγ = R.λ+ R.(−γ)
be the plane inside Pic(Mg) spanned by λ and −γ. The only interesting part of
the intersection of Ample(X) and Eff(X) with this plane is the first quadrant; cf.
[Ha87]. Specifically, if we define the slope of aλ− bγ (a > 0, b > 0) as the number
s = a/b, both cones will be bounded from below by a ray of given slope sample resp.
seff (see the figure).

δ

tan = slope

Effective divisors

0

λ

In practice, one usually works with the plane Λδ spanned by λ and the class
δ =

∑
i δi of the boundary divisor ∆ = Mg \Mg; we shall exclusively work with

this plane in the sequel. Cornalba and Harris [CH87] showed that in this case
sample = 11.

The description of Eff(X) ∩ Λδ is more delicate. The constant seff is usually
denoted by sg and is called the slope of Mg. By what we have said before, we have

sg = inf
{a
b
| aλ− bδ is effective , a, b > 0

}
.

To obtain a lower bound for sg, consider an effective divisor D whose support does
not contain any boundary divisor ∆i. The class of such a divisor has the form

[D] = aλ−
∑

i

biδi

with a ≥ 0, bi ≥ 0 for all i. Put b = min
{
bi|i = 0, . . . , [ g2 ]

}
, and define the slope of

D by the formula
s(D) = a/b.

By construction aλ− bδ belongs to Eff(Mg) ∩ Λδ, hence sg ≤ s(D).

Consider the Brill–Noether locus

BNr
d = {[C] ∈Mg | C carries a grd}.
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Eisenbud and Harris [EH87b] have shown that for positive r and d with ρ(g, r, d) =
−1 (this condition implies that g + 1 is composite) the locus BNr

d is a divisor, the
Brill–Noether divisor; they showed that the class of its compactification is given by

[BNr
d] = c


(g + 3)λ− g + 1

6
δ0 −

∑

i≥1

i(g − i)δi


 .

Hence we obtain the upper bound

sg ≤ 6 +
12
g + 1

if g + 1 is composite. Based on the idea that Brill–Noether divisors should be
the divisors of minimal slope, Harris and Morrison [HaM90] made the following
conjecture.

Conjecture 8.5 (Slope Conjecture). For any g ≥ 3 we have sg ≥ 6 + 12
g+1 ,

with equality if and only if g + 1 is composite.

Remark 8.6. One finds two different versions of this conjecture in the lit-
erature: in the work of Farkas and the paper of Harris–Morrison [HaM90] the
conjecture is stated in the version above, whereas in [HaM98] and [V07] the con-
jecture is stated using the δ0– slope. Both versions of the conjecture should be
closely related; see [FP05, Thm. 1.4 and Conj. 1.5].

Remark 8.7. The slope of mKMg
equals 13/2 [HM82, p. 52] for all m. Note

that
13
2
< 6 +

12
g + 1

⇐⇒ g < 23.

Hence the slope conjecture would imply that if g < 23 the ray spanned by KMg
is

ineffective and κ(Mg) = −∞.

Farkas and Popa [FP05] found a counter-example in genus 10 using the fol-
lowing result.

Proposition 8.8. Denote

Kg = {[C] ∈Mg | C lies on a K3 surface}.
The support of any effective divisor D with s(D) < 6 + 12/(g + 1) contains Kg.

In [FP05], Farkas and Popa show that K10 is a divisor on M10 and calculate
its class. Their computation shows that s(K10) = 7 < 6+ 12

11 , hence the divisor K10

provides a counterexample to the slope conjecture for g = 10.

For g ≤ 9 and g = 11 we have Kg = Mg, since for these values of g the moduli
space Mg is swept out by Lefschetz pencils of curves on K3 surfaces of degree
2g−2 in Pg by results of Mukai [M92]. Hence the Slope Conjecture holds for g ≤ 9
and for g = 11; this result had been obtained in [HaM90], [Tan98] using similar
methods. For g ≥ 12 the K3 locus Kg is not a divisor in Mg. Proposition 8.8
suggests that one could obtain counterexamples for the slope conjecture by looking
for a divisorial condition on curves of genus g that is weaker than the condition of
lying on a K3 surface. The starting point is the following characterization of the
divisor K10.
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Theorem 8.9 (Farkas-Popa, [FP05]). The divisor K10 admits the following
set-theoretical description.

K10 = {[C] ∈M10 | ∃L ∈W 4
12(C), S2H0(C,L) → H0(C,L2) is not surjective}.

The condition in the statement of Theorem 8.9 is equivalent to the existence
of a pencil A ∈W 1

6 (C) such that the multiplication map

S2H0(C,KC ⊗A∨) → H0(C, (KC ⊗A∨)2)

is not surjective. In terms of Koszul cohomology, Theorem 8.9 says that [C] ∈ K10

if and only of there exists A ∈ W 1
6 (C) such that the property (N0) (see Definition

4.15) fails for KC ⊗A∨. Starting from this observation, G. Farkas found a series of
interesting cycles on the moduli space of curves defined using Koszul cohomology.

A first general series of examples was given in [Fa06a]. Fix g = 6i + 10 and
d = 3i+6, and denote by σ : G1

k →Mg the Hurwitz scheme of k-sheeted coverings
of P1 of genus g parametrising pairs (C,A) with C ∈ Mg and A ∈ W 1

k (C). For
each i ≥ 0 one introduces the cycle Ug,i consisting of pairs (C,L) ∈ G1

k such that
the Green-Lazarsfeld property (Ni) fails for KC ⊗A∨. By taking the push-forward
σ∗(Ug,i) and restricting to the open subvariety M0

g,k of Mg parametrising k-gonal
curves with trivial automorphisms group, one obtains a stratification

Zg,0 ⊂ Zg,1 ⊂ . . . ⊂ Zg,i ⊂ . . . ⊂M0
g,k.

In [Fa06b] Farkas generalised the previous construction in the following way.
Given integers i ≥ 0 and s ≥ 1, put

g = rs+ s, r = 2s+ si+ i, d = rs+ r.

Under these numerical assumptions ρ(g, r, d) = 0, hence there exists a unique com-
ponent of Grd which dominates Mg, and the restriction of Grd σ−→ Mg over that
component is generically finite. Define

Ug,i = {(C,L) ∈ Grd | L does not satisfy (Ni)}.
As Kp,q(C,L) = 0 for all q ≥ 3 one has

Ug,i = {(C,L) ∈ Grd | Ki,2(C,L) 6= 0}.
Lemma 8.10. Let L be a very ample line bundle on C, and let

C ↪→ P = PH0(C,L)∨

be the associated embedding. Let ML be the kernel bundle associated to L, and let
MP be the kernel bundle associated to OP(1). We have Ki,2(C,L) = 0 if and only
if the restriction map

H0(P,
∧i
MP ⊗OP(2)) → H0(C,

∧i
ML ⊗ L2)

is surjective.

Proof: Put V = H0(C,L), and note that ML = MP ⊗ OC . By Proposition 2.4
Ki,2(C,L) = 0 if and only if the map

α :
∧i+1

V ⊗H0(C,L) → H0(C,
∧i
ML ⊗ L2)
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is surjective. Consider the commutative diagram
∧i+1

V ⊗H0(C,L) α−→ H0(C,
∧i
ML ⊗ L2)x∼=
xβ∧i+1

V ⊗H0(P,OP(1)) γ−→ H0(P,
∧i
MP(2)).

The Euler sequence shows that MP ∼= Ω1
P(1), hence H1(P,

∧i+1
MP(1)) = 0 by the

Bott vanishing theorem. This implies that γ is surjective, hence

α is surjective ⇐⇒ β is surjective.

¤

Farkas constructs vector bundles A and B over Grd whose fibers over (C,L) are
given by

A(C,L) = H0(P,
∧i
MP(2)), B(C,L) = H0(C,

∧i
ML ⊗ L2).

and a homomorphism of vector bundles ϕ : A → B. The previous Lemma shows
that

Ug,i = {(C,L) | ϕ(C,L) is not surjective}
is the degeneracy locus of ϕ. With the given numerical hypotheses, one checks that
rank A = rank B. Hence Ug,i is a virtual divisor, i.e., its expected codimension is
one, and its image Zg,i = σ∗Ug,i is also a virtual divisor.

In [Fa06b] Farkas shows that ϕ extends to a morphism of torsion free sheaves
ϕ : A → B of the same rank over the compactification of Grd given by limit linear
series. His main result of is the computation of the class σ∗c1(B−A) of the virtual
degeneracy locus of ϕ; see [Fa06b, Theorem 1.1]. One remarkable fact about
this result is that for suitable choices of s and i, it specializes to the divisor class
calculations carried out in [HM82], [EH87b], [Kh06], [FP05] and [Fa06a].

If the map ϕ is generically nondegenerate, then Zg,i is a genuine divisor. As
pointed out in [Fa06b], the problem of deciding whether the loci Zg,i are genuine
divisors is extremely difficult. For example, the statement that Z2i+3,i is a divisor
on M2i+3 is essentially Green’s Conjecture for a generic curve of odd genus, [V05].
Below we list a number of special cases where it is known that Zg,i is a divisor.

• The case s = 1. In this case g = 2i + 3 and grd = gg−1
2g−2 = KC (note

that the canonical bundle is the only gg−1
2g−2 on a curve of genus g). The

generic Green conjecture [V05], [HR98] gives a set-theoretic identifica-
tion between Z2i+3,i and the locus of (i+2)-gonal curves (the two divisors
coincide actually up to some factor). In this case [Fa06b, Theorem 1.1]
provides a new way of determining the class of the compactification of the
Brill-Noether divisor first computed by Harris and Mumford [HM82].

• The case s = 2. Here the numerical invariants are

g = 6i+ 10, r = 3i+ 4, d = 9i+ 12.

In this case we recover the case discussed earlier in this section, since
h1(KC⊗L∨) = 2 and Grd is isomorphic to a Hurwitz scheme parametrising
covers of P1. For i = 0 one recovers the class of the K3 divisor K10 treated
in [FP05]. In [Fa06a] Farkas has verified that Z6i+10,i is a divisor for
i = 1 and i = 2. In general, one has to show that if [C] ∈ M6i+10 is a
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general curve, then one (or, equivalently, all) of the finitely many linear
systems g3i+4

9i+12 = KC(−g1
3i+6) satisfies property (Ni). This is the analogue

of the Green-Lazarsfeld Conjecture 4.31 for the case of line bundles L with
h1(C,L) = 2.

• The case i = 0. This gives the numerical invariants

g = s(2s+ 1), r = 2s, d = 2s(s+ 1).

Farkas [Fa06b, Thm. 1.5] has shown that Zg,0 is a divisor f or all s ≥ 2.
The cases s = 2 and s = 3 were treated in [FP05] and [Kh06].

These cases provide infinitely many counterexamples to the Harris-Morrison
Slope Conjecture.

8.3. Slopes of fibered surfaces

Let f : S → B be a fibered smooth projective surface over a smooth projective
curve B. Let us suppose that the fibration is relatively minimal (i.e. there are
no (−1)–curves contained in the fibers of f), not isotrivial, and that the genus of
the fibers is at least 2. Using the relative canonical bundle KS/B , one defines two
invariants of the fibration. The first one is

χ(f) = deg f∗(KS/B) = χ(OS)− χ(OB)χ(OF ),

where F is a general fiber of f . It is known that χ(f) ≥ 0; see for example [Xi87].
The second invariant is defined by

λ(f) =
K2
S/B

χ(f)
.

In [Xi87], Xiao proved that the following inequalities hold:

4− 4
g
≤ λ(f) ≤ 12

The equality λ(f) = 4− 4/g holds if and only if the general fiber is hyperelliptic.
Over the years, several authors tried to improve this bound. To this end, one

needs another invariant: the Clifford index of f , denoted Cliff(f), which is by
definition the Clifford index of a general fibre. For fibrations of Clifford index one,
(i.e. the general fiber of f is a trigonal curve, or plane quintic) the lower bound
was improved to

λ(f) ≥ 14
g − 1
3g + 1

.

It is expected that the optimal lower bound depends on the Clifford index of the
fibration.

The generic Green conjecture for curves of odd genus has the following conse-
quence; see [Ko99] for details.

Theorem 8.11 (Konno). Notation as above. Suppose that g ≥ 3 is odd, and
Cliff(f) = (g − 1)/2. Then

λ(f) ≥ 6(g − 1)
g + 1

.
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Any non–isotrivial fibration f induces a curve B ⊂ Mg. Applying Theorem
8.11 and arguing as in [Xi87, Corollary 1], one obtains the inequality

(8.2)
B · δ
B · λ ≤ 6 +

12
g + 1

.

This bound is related to the Slope Conjecture in the following way. If D ≡ aλ− bδ
is an effective divisor on Mg and f is a general fibration, then D · B ≥ 0; hence
s(D) = a/b ≥ (B ·δ)/(B ·λ). If there exists a curve B inMg for which the inequality
(8.2) is an equality, then the Slope Conjecture holds; this was the approach used in
[Tan98].

8.4. Notes and comments

As Green explains in the introduction of [Gre89], his original motivation for
studying Koszul cohomology comes from Hodge theory; specifically, he cites the
paper [LPW] on the infinitesimal Torelli problem as a source of inspiration. The
theory of infinitesimal variations of Hodge structure was developed by Griffiths and
his co–workers in the influential paper [CGGH83]. The idea is that by working at
the infinitesimal level, certain Hodge–theoretic questions can be rephrased in terms
of multilinear algebra; they can then frequently be solved using vanishing theorems
for Koszul cohomology.

As we have seen, the explicit Noether–Lefschetz theorem and the theorem of
Green–Voisin on the image of the Abel–Jacobi map follow from vanishing theorems
for the Koszul groups K0,2(P3,OP(−4),OP(d);W ) and K1,2(P4,OP(−5),OP(d)).
Nori found a beautiful generalization of these results, which provides a Hodge–
theoretic interpretation of the vanishing of the Koszul groups Kp,2(Pn,KP,OP(d))
in terms of a Lefschetz–type connectivity theorem for the cohomology of the uni-
versal family of hypersurfaces in projective space [No93]. See [CMP], [V02b] or
[Gre94, Lecture 8] for a more detailed discussion of this result. More generally,
Nori’s theorem is valid for the universal family of complete intersections of suffi-
ciently high multidegree in an arbitrary polarised variety. A proof of this theorem
using Koszul cohomology computations was obtained in [Na02]; cf. also [Na04].
One of the key points is the description of the variable cohomology of such complete
intersections using a generalized Jacobi ring. Specifically, if Y is a smooth projec-
tive variety, the variable cohomology of a smooth divisor X ∈ |L| of dimension n
with inclusion i : X ↪→ Y is defined by

Hn
var(X) = coker (Hn(Y ) i∗−−→ Hn(X));

this coincides with the usual primitive cohomology if Y is a projective space. In
[Gre85], Green showed that if L is sufficiently ample, Hn−p,p

var (X) is isomorphic to
the quotient of H0(Y,KY ⊗ Lp+1) by a suitably defined generalized Jacobi ideal.
This generalizes Griffiths’s description of the primitive cohomology of hypersurfaces
in projective space. Using this description, the exactness of the complexes appearing
in the infinitesimal study of this problem can be reduced to vanishing theorems for
the groups Kp,q(Y,ΩiY , L).

The problem of determining the effective cone of the moduli space Mg remains
a hard open problem. Even though the slope conjecture was disproved, we can
still ask about the possible lower bounds for slopes. Using inequalities of type
s(D) = a/b ≥ (B · δ)/(B · λ) (cf. section 8.3), one can try to find good families
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of curves, parametrized by bases B with suitable B · δ/B · λ. Along these lines,
it was proved that if D is an effective divisor with s(D) < 8 then D contains
the hyperelliptic locus, and if s(D) < 7 + 6

g then D contains the trigonal locus,
[HaM90], [Tan98]. The question remains to know if the slope of any effective
divisor is at least 6, or close to this bound. This question is related to the Schottky
problem; cf. [Mo].

Moduli spaces of pointed curves are also of high interest. In genus zero, the
effective cone has been explicitly described in [KeM96]. Their main result shows
that in this case the effective cone is generated by the boundary classes; in particular
it is simplicial.
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[EGL01] Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme
of a surface. J. Algebraic Geom. 10, no. 1, 81–100 (2001)

[En19] Enriques, F.: Sulle curve canoniche di genere p dello Spazio a p− 1 dimensioni. Rend.
dell’Acc. di Bologna, vol. XXIII pp. 80–82 (1919)

[ES94] Eusen, F., Schreyer, F.-O.: A remark on a conjecture of Paranjape and Ra-
manan (1994). Unpublished preprint, avalaible at http://www.math.uni-sb.de/ ag-
schreyer/PS/eus.ps

[FP05] Farkas, G., Popa, M.: Effective divisors on Mg , curves on K3 surfaces, and the slope
conjecture. J. Algebraic Geom. 14, 241–267 (2005)

[Fa06a] Farkas, G.: Syzygies of curves and the effective cone of Mg . Duke Math. J., 135, No.
1, 53–98 (2006)

[Fa06b] Farkas, G.: Koszul divisors on moduli space of curves. Preprint arXiv:0607475 (2006),
to appear in American J. Math.

[Fo73] Fogarty, J.: Algebraic families on an algebraic surface. II. The Picard scheme of the
punctual Hilbert scheme. Amer. J. Math. 95 660–687 (1973)

[Fu69] Fulton, W.: Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. of
Math., 90, 541–575 (1969)

[FH91] Fulton, W., Harris, J.: Representation theory. A first course. Graduate Texts in Math-
ematics, 129. Springer-Verlag, New York, 1991.

[FHL84] Fulton, W., Harris, J., Lazarsfeld, R.: Excess linear series on an algebraic curve. Proc.
Amer. Math. Soc. 92, 320–322 (1984)

[FL85] Fulton, W., Lang, S.: Riemann-Roch algebra. Grundlehren der Mathematischen Wis-
senschaften 277. Springer-Verlag, New York, (1985)

[FL81] Fulton, W., Lazarsfeld, R.: On the connectedness of degeneracy loci and special divi-
sors. Acta Math., 146, 271-283 (1981)

[GKM02] Gibney, A., Keel, K., Morrison, I.: Towards the ample cone of Mg,n J. Amer. Math.
Soc. 15, 273-294 (2002)
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Soc. (3) 67 no. 3, 493–515 (1993).

[V94] Voisin, C.: Transcendental methods in the study of algebraic cycles. Algebraic cycles
and Hodge theory (Torino, 1993), 153–222, Lecture Notes in Math., 1594, Springer,
Berlin, 1994.

[V01] Voisin, C.: Green’s conjecture. Notes by H. Clemens, available at
http://www.math.utah.edu/∼bertram/lectures/VoisinGC.tex.pdf

[V02] Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a K3
surface. J. Eur. Math. Soc., 4, 363–404 (2002).



118 BIBLIOGRAPHY

[V02b] Voisin, C.: Hodge theory and complex algebraic geometry. I, II. Translated from the
French original by Leila Schneps. Cambridge Studies in Advanced Mathematics 76,
77. Cambridge University Press, Cambridge, 2002.

[V05] Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Com-
positio Math., 141 (5), 1163–1190 (2005).
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