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1. Introduction

1.1. Parabolic-singular duality. Let g ⊃ b ⊃ h be a complex semisimple Lie
algebra, a Borel subalgebra and a Cartan subalgebra contained in it, respectively.
Let U = U(g) be the universal enveloping algebra of g. Let O be the category
of all finitely generated U-modules which are locally finite over b and semisimple
over h, see for example [BG80]. For λ ∈ h∗ consider in O the Verma module
M(λ) = U⊗U(b) Cλ, its simple quotient L(λ) and the (indecomposable) projective
cover P (λ) of L(λ) in O.

Let Z ⊂ U be the center. Let L ∈ O be the direct sum of all simple highest
weight modules L(λ) which have trivial infinitesimal character, i.e. which have the
same annihilator in Z as the trivial representation C = L(0). There are but finitely
many of those, parametrized by the Weyl group. Let P ∈ O be the direct sum of
their respective projective covers. The first statement of the following theorem is
the main result of [Soe90].

Theorem 1.1.1. There exists an isomorphism of finite dimensional C-algebras

EndOP ∼= Ext•O(L,L),

where Ext• stands for the direct sum of all Exti, made into a ring via the cup
product. Furthermore, Ext•O(L,L) is a Koszul ring.

We have to explain what a Koszul ring is.
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474 A. BEILINSON, V. GINZBURG, AND W. SOERGEL

Definition 1.1.2. A Koszul ring is a positively graded ring A =
⊕

j≥0Aj such

that (1) A0 is semisimple and (2) A0 considered as a graded left A-module admits
a graded projective resolution

· · · → P 2 → P 1 → P 0 � A0

such that P i is generated by its degree i component, i.e., P i = AP ii .

Morally a Koszul ring is a graded ring that is “as close to semisimple as a
Z-graded ring possibly can be”. This statement will be made more precise by
Proposition 2.1.3.

We explain next the meaning of the ring E = EndOP. If A is an abelian category
whose objects have finite length and P ∈ A a projective generator of A (i.e. a
projective object surjecting onto each simple object in A), then there is a canonical
standard (see, e.g., [Bas68], the exercise following Theorem 1.3 from Chapter II)
equivalence of categories

HomA(P, ) : A →Mof-E, E = EndAP,

where Mof- stands for the category of finitely generated right modules. Now let
Z+ = AnnZC ⊂ Z be the augmentation ideal of the center. Apply the considera-
tions above to the category O0 = {M ∈ O | (Z+)nM = 0 for n� 0}. Thus we get
an equivalence of categories

O0
∼= Mof-(EndOP ).

So the theorem says in particular that the category O0 is governed by a Koszul
ring, i.e. that it is in some sense “graded semisimple”. We hope to convince our
readers that this is a good way to formalize the beauty of this part of representation
theory, and we believe that similar results should hold for all kinds of representation
theories associated to root systems.

As a first step we explain how to generalize the above to other infinitesimal
characters. Let ρ ∈ h∗ be the half sum of positive roots, i.e. of the roots in b. Let
(W,S) be the Coxeter system of g ⊃ b and let w◦ be the longest element of the
Weyl group W. For w ∈ W, λ ∈ h∗ we put w · λ = w(λ + ρ) − ρ. For any subset
Sι ⊂ S—here ι is a variable index—let Wι ⊂ W be the subgroup generated by Sι,
wι ∈ Wι its longest element and Wι ⊂ W the set of longest representatives of the
cosets W/Wι.

For λ ∈ h∗ integral dominant but perhaps singular (in other words, λ is integral
and λ + ρ lies in the closure of the dominant Weyl chamber) define the category
Oλ ⊂ O to consist of all objects of O whose (generalized) infinitesimal character
coincides with the one of L(λ). Set Sλ = {s ∈ S | s · λ = λ}. Then {L(x · λ)}x∈Wλ

represents the isomorphism classes of simple objects in Oλ. The P (x · λ) are the
projective covers of L(x · λ) in Oλ as well.

For q ⊂ g a parabolic subalgebra containing b define the subcategory Oq ⊂ O0

to consist of all q-locally finite objects. Let Sq ⊂ S be the simple reflections
corresponding to q. For all x ∈ Wq we set Lq

x = L(x−1w◦ · 0) ∈ Oq. The Lq
x

represent the isomorphism classes of simple objects in Oq. Any Lq
x has a projective

cover P q
x in Oq.

We will prove in section 3
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KOSZUL DUALITY PATTERNS 475

Theorem 1.1.3. Let λ, q be as above and suppose Sλ = Sq. Then there are iso-
morphisms of finite dimensional C-algebras

EndOλ(
⊕
P (x · λ)) ∼= Ext•Oq(

⊕
Lq
x,
⊕
Lq
x),

EndOq(
⊕
P q
x ) ∼= Ext•Oλ(

⊕
L(x · λ),

⊕
L(x · λ)),

where the sums go over x ∈ Wλ =Wq. Both algebras on the right are Koszul rings
and, moreover, these rings are Koszul dual to one another.

Remarks. (1) We have to explain when two Koszul rings are dual to one another.
For every positively graded ring A we may consider A0 as a left A-module
A0 = A/A>0 and form the positively graded ring E(A) = Ext•A(A0, A0).
For a Koszul ring A satisfying a suitable finiteness condition we prove as
Theorem 2.10.2 that E(A) is Koszul as well and E(E(A)) = A canonically.
Motivated by this equality, we call E(A) the dual of A.

(2) Remark that Ob = O0. So the theorem tells us in particular that the Koszul
ring from Theorem 1.1.1 is selfdual.

(3) All sums go over x ∈ Wq = Wλ. Let 1x be the obvious pairwise orthogonal
idempotents in our four algebras. The isomorphisms of the theorem can (and
will) be chosen so that the 1x correspond to each other under the isomorphisms
above.

(4) From what we explained before it is clear that the endomorphism algebras
of projectives appearing in the theorem govern the categories Oλ and Oq

respectively.
(5) The projective covers appearing in the theorem are unique only up to non-

unique isomorphism, hence we cannot expect the isomorphisms predicted by
the theorem to be canonical. We can however construct without choices a
collection of possible P (x · λ) along with a canonical isomorphism as in the
theorem for this special collection.

(6) Morally we should rather consider categories Oλ and Oq for Langlands-dual
Lie algebras. In fact one might then view Oλ as a category of Harish-Chandra
modules for a complex group and Oq as a category of perverse sheaves on the
corresponding space of Langlands parameters, more precisely its modified
version defined by Adams-Barbasch-Vogan [ABV92]. Our theorem can then
be understood as a refinement of Langlands’ philosophy in the case of complex
groups. More details on this point of view can be found in [Soe92].

This article is the result of our efforts to join the two partially wrong and quite
incomplete preprints [Soe89b] and [BG86] into one readable article.

First we approach the above results in as elementary a way as possible. The
only facts relying on “mixed” geometry we really use are the computation of the
intersection cohomology of Schubert varieties and Lemma 3.5.4. In the last section
we adopt the more powerful technique of mixed geometry.

1.2. Koszul duality. The results described here and proved in section 2 are essen-
tially not new but rather generalizations of results of Priddy [Pri70], Löfwall [Löf86],
Backelin [Bac82], Backelin-Fröberg [BF85], Bernstein-Gelfand-Gelfand [BGG78]
and specializations of results from [BGS88]. We start by repeating our definition
of a Koszul ring.

Definition 1.2.1. A Koszul ring is a positively graded ring A =
⊕

j≥0Aj such

that (1) A0 is semisimple and (2) A0 considered as a graded left A-module admits
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476 A. BEILINSON, V. GINZBURG, AND W. SOERGEL

a graded projective resolution

· · · → P 2 → P 1 → P 0 � A0

such that P i is generated by its component of degree i, P i = AP ii .

Remarks. (1) A complex of graded A-modules

· · · → P 2 → P 1 → P 0 � A0

as in the definition is unique up to unique isomorphism and has a natural right
A0-action. This follows from the obvious fact that if Q• is another resolution
of A0 as in the definition, then any chain map P • → Q• which respects the
grading on the P i, Qi and is homotopic to zero must itself be zero.

(2) Let V be a finite dimensional vector space over a field k. Then the symmetric
algebra SV is Koszul, as can be seen from the Koszul complex

· · · → SV ⊗
2∧
V → SV ⊗ V → SV � k.

(3) We will prove in section 2.2 that A is Koszul if and only if Aopp is.

Definition 1.2.2. A quadratic ring is a positively graded ring A =
⊕

j≥0 Aj such
that A0 is semisimple and A is generated over A0 by A1 with relations of degree
two.

This may be spelled out as follows: Let

TA0A1 = A0 ⊕A1 ⊕ (A1 ⊗A0 A1)⊕ . . . =
⊕

i≥0A
⊗i
1

be the free tensor algebra of the A0-bimodule A1. Then the canonical map can :
TA0A1 → A is required to be a surjection and ker(can) is required to be generated,
as a two-sided ideal, by its component R = ker(can) ∩ (A1 ⊗A0 A1) of degree two,
ker(can) = (R), so that TA0A1/(R) = A. In section 2.3 we show:

Proposition 1.2.3. Any Koszul ring is quadratic.

Let us remark that for any semisimple ring k and any k-bimodule V the quadratic
ring with no relations, TkV , is Koszul. To have duality we need some finiteness
conditions.

Definition 1.2.4. A graded ring A = ⊕iAi is called “left finite” (resp. “right
finite”) if and only if all Ai are finitely generated as left (resp. right) A0-modules.

For any positively graded ring A =
⊕

j≥0 Aj consider now the left A-module A0

and form the graded ring E(A) = Ext•A(A0, A0) of self-extensions of A0. We will
prove as Theorem 2.10.2

Theorem 1.2.5. Suppose A is a left finite Koszul ring. Then E(A) is a left finite
Koszul ring as well, and E(E(A)) = A canonically.

In the situation of the theorem we say that the Koszul rings A and E(A) are
“dual to each other”. For example, the Koszul dual of the symmetric algebra SV
above is the exterior algebra

∧
V ∗ on the dual space of V, and for a bimodule V

over a semisimple ring k that is finitely generated for the left k-action the Koszul
dual of TkV is (k ⊕ Homk(V, k))opp. The theorem is proved by identifying E(A)
with the opposed ring of the more elementary quadratic dual ring A! of A, which
we will however not define in this introduction.
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Next we explain Koszul duality at the level of derived categories. To do so
we need more notations. For a graded ring A =

⊕
j Aj let A-Mod denote the

category of all left A-modules M and A-mod the category of all graded left A-
modules M =

⊕
jMj. Let HomA (resp. homA) denote homomorphisms in A-Mod

(resp. A-mod). So homA(M,N) = {f ∈ HomA(M,N) | f(Mj) ⊂ Nj}. We define
the grading shifts 〈n〉 by (M〈n〉)j = Mj−n. The respective subcategories of finitely
generated (graded) modules will be denoted A-Mof and A-mof. These are abelian
categories provided A is left noetherian.

For any abelian category A let Db(A) be the corresponding bounded derived
category. It comes equipped with the structure of a triangulated category, in par-
ticular with a shift functor [1] : Db(A) → Db(A). It also comes with a canonical
degree zero embedding A → Db(A).

Now let A be a Koszul ring that satisfies the following two finiteness conditions:
(1) A is a finitely generated A0-module from the left as well as from the right, in
particular Ai = 0 for all i � 0; (2) E(A) is right noetherian. Put A! = E(A)opp.
Then A!

0 = A0 canonically, and we will denote this semisimple ring by k. We will
also need the injective graded A-module A∗ = Homk(A, k). Remark that it comes
with a right k-action.

Under the above assumptions (1) and (2) we will construct in section 2.12 (in
particular Theorem 2.12.6) an exact functor between triangulated categories

K : Db(A-mof)→ Db(A!-mof)

(the “Koszul duality functor”) and prove:

Theorem 1.2.6. The functor K is an equivalence of triangulated categories. We
have K(M〈n〉) = (KM)[−n]〈−n〉 canonically for M ∈ Db(A-mof). Furthermore,
for all p ∈ k we have K(A0p) = A!p, K(A∗p) = A!

0p.

Remarks. (1) The last statement is to be understood via the embeddingsA-mof →
Db(A-mof), A!-mof → Db(A!-mof). Note also that any simple object of A-mof
(resp. A!-mof) has up to a grading shift the form A0p (resp. A!

0p) for suitable
p ∈ k. Furthermore, A!p is the projective cover of A!

0p and A∗p the injective
hull of A0p for any p ∈ k. So roughly speaking Koszul duality transforms sim-
ples to indecomposable projectives and indecomposable injectives to simples.

(2) For a Koszul ring A one might interpret E(A) as being RHomA(k, k), and
then the Koszul duality functor K is just the functor RHomA(k, ). We will
however not pursue this perspective in our paper. More details on this point
of view can be found in [Kel92].

(3) In the case of the symmetric algebra the equivalence

Db(
∧
V ∗-mof) ∼= Db(SV -mof)

was established in [BGG78].

1.3. Parabolic-singular duality and Koszul duality. Let us start with an
application. As explained in section 2.4, every module of finite length M has a
radical filtration

M = rad0M ⊃ rad1M ⊃ rad2M ⊃ . . .
with semisimple subquotient radiM = radiM/radi+1M called the i-th layer of the
radical filtration. For x ∈ Wq let Mq

x ∈ Oq be the corresponding parabolic Verma
module, i.e. the maximal locally q-finite quotient of M(x−1w◦ · 0).
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Proposition 1.3.1. Let λ, q be as in Theorem 1.1.3 and x, y ∈ Wq = Wλ. Then
we have

dimC ExtiO(M(x · λ), L(y · λ)) = [radiMq
x : Lq

y],

dimC ExtiOq(Mq
x , L

q
y) = [radiM(x · λ) : L(y · λ)].

This can be proved without much trouble by expressing both sides in terms of
coefficients of Kazhdan-Lusztig polynomials. Our approach is different, however.
Not only it is independent of the combinatorics of the Kazhdan-Lusztig polynomials,
but it provides a concrete meaning to the numerical formulas above.

Namely, fix λ, q as in Theorem 1.1.3 and denote the graded algebras there by
AQ and AQ respectively. Using the ordinary duality on the category O, it is easy
to see that both AQ and AQ are their own opposed algebras, and even to construct
isomorphisms AQ = Aopp

Q , AQ = (AQ)opp. Now by Theorem 1.1.3 we know that

AQ and AQ are Koszul dual to one another, AQ ∼= E(AQ). So the Koszul duality
functor gives us an equivalence of triangulated categories

Db(AQ-mof) ∼= Db(AQ-mof).

But we know also from Theorem 1.1.3 and Remark 4 following it that

Oq ∼= AQ-Mof,
Oλ ∼= AQ-Mof.

In view of that we consider AQ-mof and AQ-mof as “graded versions” of Oλ and
Oq respectively, and to emphasize this we denote them by

OQ = AQ-mof,
OQ = AQ-mof.

With this change in notation our equivalence reads

Db(OQ) ∼= Db(OQ).

As any Koszul duality, this transforms indecomposable injectives to simples and
simples to indecomposable projectives. We prove that it also transforms (graded
versions of) dual Vermas in OQ to (graded versions of) parabolic Vermas in OQ. In
this framework the equalities of the proposition can then be understood as mani-
festations of Koszul duality. These ideas are developed section 3.11.

1.4. Koszul rings arising from mixed geometry. The purpose of the third
chapter is to show how Koszul rings arise naturally in the framework of “mixed”
geometry. The latter stands either for the theory of “mixed complexes” on an
algebraic variety over a finite field, as introduced in [BBD82], or for the theory
of “mixed Hodge modules” on a complex algebraic variety, as developed by Saito
[Sai90]. To make this part of the introduction accessible to a non-expert, we shall
formulate our results without the language of mixed geometry first, and then explain
how the mixed geometry enters the game.

Thus, we start with a complex algebraic variety X equipped with an algebraic
Whitney stratification X =

⋃
Xw, w ∈ W, where W is a finite set indexing the

strata. In the rest of the introduction we assume that each stratum Xw is a locally-
closed algebraic subvariety of X isomorphic to an affine linear space. Let Db(X)
denote the bounded derived category of algebraically constructible complexes of C-
sheaves on X , Db(X,W) ⊂ Db(X) the full triangulated subcategory whose objects
are all complexes F such that the cohomology sheaves H•F are constant along
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KOSZUL DUALITY PATTERNS 479

the strata, and P(X,W) ⊂ Db(X,W) the subcategory of all perverse sheaves in
Db(X,W). Thus, P(X,W) is an abelian subcategory of Db(X,W). The strata
being affine, it follows that for each w ∈ W, the imbedding jw : Xw ↪→ X is
affine. Hence, ∆w = (jw)!(CXw )[dimXw],∇w = (jw)∗(CXw )[dimXw] are well-
defined objects of P(X,W). We first prove the following result, which was obtained
earlier, in [MV87], by different methods.

Proposition 1.4.1. (1) Each object of P(X,W) has a finite projective resolu-
tion. In particular, the category P(X,W) has enough projectives.

(2) The category P(X,W) is equivalent to the category of finite-dimensional mod-
ules over a finite-dimensional C-algebra.

(3) Any projective in P(X,W) has a finite filtration with all successive subquo-
tients being isomorphic to ∆w for various w ∈ W.

Let X̄w denote the closure of a stratum Xw, w ∈ W, and Lw = IC(CXw )
the intersection cohomology complex. The intersection complexes Lw, w ∈ W
(extended by zero to the whole ofX), are precisely the simple objects of the category
P(X,W). For y ∈ W, the restriction j∗y(Lw) is a complex with constant cohomology

sheaves Hi(j∗yLw[− dimXy]) = niy,w ·CXy where niy,w ∈ N are certain multiplicities
which vanish for positive i. Hence, we may introduce a Z[t]-valued W ×W-matrix
IC with entries ICy,w =

∑
i≤0 n

i
y,w · t−i.

From now on we make the following additional assumption on the stratification
X =

⋃
Xw:

(∗): For each w ∈ W, there exists a resolution of singularities X̂w � X̄w (of the

closure of Xw) such that the rational homology of X̂w is spanned by algebraic
cycles.

The main results of the chapter are summarized in the following theorem.

Theorem 1.4.2. If the condition (*) holds, then:

(1) The category P(X,W) is equivalent to A-Mof, the category of finite dimen-
sional modules over a finite dimensional graded Koszul C-algebra A =⊕

i≥0Ai where A0 = C⊕ . . .⊕ C (#W times).

(2) There is a graded algebra isomorphism

A! = Ext•Db(X)(L,L), L :=
⊕
w∈W

Lw.

In particular, the Ext-algebra above is Koszul.
(3) There is a matrix identity: P (A!, t) = ICT · IC.

Observe that we claim that P(X,W) = A-Mof is the category of non-graded A-
modules. Now we may explain how the mixed geometry enters the game. Namely,
the mixed version of the category P(X,W) is equivalent to the category A-mof of
graded A-modules. This gives a geometric explanation of the graded setting.

2. Koszul rings

2.1. An alternative definition of Koszul rings. Recall that A-mod denotes
the category of graded modules, as opposed to A-Mod for the category of ordinary
modules over A. Both of these are abelian categories, and we will denote morphisms
and extensions in the graded category by homA, extA as opposed to HomA, ExtA.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Definition 2.1.1. A graded module M over a graded ring is called “pure of weight
m” if and only if it is concentrated in degree −m, i.e. M = M−m.

Suppose A is a positively graded ring such that A0 is semisimple. Then any
simple object of A-mod is pure, and any pure object is semisimple. We will use
later

Lemma 2.1.2. Let A be a positively graded ring such that A0 is semisimple. Let
M,N ∈ A-mod be pure of weights m,n. Then extiA(M,N) = 0 for i > m− n.

Proof. Without restriction we may assumem = 0.Now suppose even more generally
that M lives only in positive degrees, M =

⊕
j≥0 Mj. We may easily prove by

induction that M admits a graded projective resolution

. . .→ P 2 → P 1 → P 0 �M

such that P i lives only in degrees ≥ i, P i =
⊕

j≥i P
i
j . We may use this resolution

to compute our ext-groups, and the lemma follows.

Now comes an alternative characterization of Koszul rings.

Proposition 2.1.3. Let A =
⊕

j≥0Aj be a positively graded ring and suppose A0

is semisimple. The following conditions are equivalent:

(1) A is Koszul.
(2) For any two pure A-modules M,N of weights m,n respectively we have

extiA(M,N) = 0 unless i = m− n.
(3) extiA(A0, A0〈n〉) = 0 unless i = n.

Remark. One may interpret this proposition as saying that a Koszul ring is a pos-
itively graded ring that is “as close to semisimple as it can possibly be”.

Proof. (1) ⇒ (2) : Suppose A is Koszul. Then by definition A0 admits a graded
projective resolution

. . .→ P 2 → P 1 → P 0 � A0

such that P i = AP ii .
Now let M,N be as above. By shifting the grading of M and N we may assume

M to be pure of weight zero, hence a direct summand of a free A0-module, so with-
out restriction we may assume M = A0. Then extiA(M,N) is the i-th cohomology

group of the complex homA(P j , N). But since P j = AP jj and N = N−n, all terms

of this complex other then homA(P−n, N) vanish. Thus extiA(M,N) = 0 unless
i = −n.

(2)⇒ (3) is trivial.
(3)⇒ (1) : To find the graded projective resolution of A0 required in the defini-

tion of a Koszul ring we proceed by induction. Certainly A will do as P 0. Suppose
now a resolution

P i → . . .→ P 2 → P 1 → P 0 � A0

as required has already been constructed up to step i, such that P i is projective,
P i = AP ii and the differential is injective on P ii . Put

K = ker(P i → P i−1).

Then for pureN exti+1
A (A0, N) = homA(K,N) and (3) implies that homA(K,A0〈n〉)

= 0 unless n = i + 1. But this means precisely that K = AKi+1, so we may put
P i+1 = A⊗A0 Ki+1 and thus complete the induction step.
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KOSZUL DUALITY PATTERNS 481

2.2. The opposed ring of a Koszul ring is Koszul. Denote by Mod-R (resp.
mod-R) the categories of (resp. graded) right modules over a (graded) ring R.
Morphisms and extensions in these categories will be denoted by Hom−R,Ext−R
and hom−R, ext−R respectively. Now let A, k be rings and X an A-k-bimodule.
Then for M ∈ Mod-A, N ∈Mod-k we have a standard isomorphism

Hom−A(M,Hom−k(X,N)) = Hom−k(M ⊗A X,N).

For V ∈ Mod-k put ∗V = Hom−k(V, k) ∈ k-Mod. Now consider k as a graded
ring concentrated in degree zero. Then for V ∈ mod-k define ~V ∈ k-mod by
(~V )i = ∗(V−i).

Suppose next that A is a graded ring, k a graded ring concentrated in degree
zero, M ∈ mod-A a graded A-module and X a graded A-k-bimodule. Then ~X is
a graded k-A-bimodule, and it is easy to see that our standard isomorphism above,
when applied to N = k, induces an isomorphism

hom−A(M,~X) = ∗((M ⊗A X)0)

with (M ⊗A X)0 the degree zero component of the graded space (M ⊗A X). In
particular, if k is semisimple and X projective as a left A-module, then ~X is an
injective object of mod-A. Now we can prove

Proposition 2.2.1. The opposed ring of a Koszul ring is Koszul.

Proof. Let A be our Koszul ring, and put A0 = k. Consider a resolution

. . .→ P 2 → P 1 → P 0 � k

of k ∈ A-mod such that P i = AP ii . By the first remark following Definition 1.2.1
of a Koszul ring we know that this is in fact a complex of graded A-k-bimodules.
The arguments above now show that

k ↪→ ~P 0 → ~P 1 → ~P 2 → . . .

is an injective resolution of k in mod-A. Furthermore,

hom−A(k〈−n〉,~P i) = ∗((k ⊗A P i)n) = ∗((P ii )n) = 0 if i 6= n.

This in turn shows that exti−A(k〈−n〉, k) = 0 for i 6= n, and hence Aopp is Koszul.

2.3. Any Koszul ring is quadratic. Let us fix from now on a semisimple ring
k and put ⊗ = ⊗k. Let A =

⊕
i≥0Ai be a positively graded ring, and suppose

A0 = k.

Proposition 2.3.1. The following conditions are equivalent: (1) ext1
A(k, k〈n〉) 6= 0

only for n = 1, and (2) A is generated by A1 over k.

Proof. Put I = A>0 and consider the short exact sequence I ↪→ A� k. Then

(2) ⇔ I = AA1

⇔ homA(I, k〈n〉) = 0 for n 6= 1
⇔ ext1

A(k, k〈n〉) = 0 for n 6= 1
⇔ (1).

Theorem 2.3.2. Suppose A is generated by A1 over k. If ext2
A(k, k〈n〉) 6= 0 implies

n = 2, then A is quadratic.
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Proof. Put W = ker(m), so that we have an exact sequence

0→W → A⊗A1 → A→ k → 0.

Certainly W ⊂ I ⊗A1. Hence

ext2
A(k, k〈n〉) = homA(W,k〈n〉)

= homk(W/I ·W,k〈n〉).
So our assumption implies that W/I ·W is concentrated in degree 2. Now write
A as a quotient of TkA1, and let x ∈ A⊗n1 be a relation of A of degree > 2,
not contained in the two-sided ideal of TkA1 generated by all relations of smaller
degrees. Consider the natural surjections

A⊗n1 = A⊗n−1
1 ⊗A1

p→ An−1 ⊗A1
m→ An.

Certainlym(p(x)) = 0; thus p(x) ∈W. We claim that p(x) 6∈ I ·W. Let Rn ⊂ A⊗n1 be
the relations, i.e. the kernel of the multiplication map to An. Certainly p(x) ∈ I ·W
implies p(x) ∈ A1 ·W, hence p(x) = p(y) for suitable y ∈ A1 ⊗ Rn−1. But then
p(x − y) = 0, hence x − y ∈ Rn−1 ⊗ A1. So from p(x) ∈ I · W it follows that
x ∈ A1 ⊗ Rn−1 + Rn−1 ⊗ A1, contrary to our assumptions on x. Thus indeed
p(x) 6∈ I ·W. But then p(x) gives an element of degree > 2 in W/I ·W , and this
contradiction proves the theorem.

Corollary 2.3.3. Any Koszul ring is quadratic.

Proof. This follows from the above proposition and theorem along with the char-
acterization of a Koszul ring given in Proposition 2.1.3.

2.4. Filtrations on modules. Let M be a module over a ring. Then M has
a biggest semisimple submodule socM, the socle of M . We put 0 = soc0M and
define the socle filtration onM inductively by sociM = π−1soc(M/soci−1M), where
π : M � M/soci−1M is the projection. If M has finite length, then the set of
submodules {N ⊂M |M/N is semisimple} contains a smallest element, called the
radical radM of M. We put M = rad0M and define the radical filtration on M
inductively by radiM = rad(radi−1M).

Now let A be a positively graded ring and M ∈ A-mod a gradedA-module. Then
M has a filtration by the submodules GjM =

⊕
i≥jMi. We call this the “grading

filtration”. If A0 is semisimple, the sucessive subquotients of the grading filtration
are semisimple.

Proposition 2.4.1. Let A be a graded ring. Suppose that (1) A0 is semisimple,
and (2) A is generated by A1 over A0. Let M ∈ A-mod be a graded A-module of
finite length.

If socM (resp. M/radM) is simple, then the socle (resp. radical) filtration on
M coincides with the grading filtration, up to shift.

Proof. Put I = A>0. Certainly InM = 0 for n � 0; thus IN = 0 for any simple
subquotient of M. We thus have socM = {m ∈ M | Im = 0} (resp. radM = IM)

and more generally sociM = {m ∈M | Iim = 0} (resp. radiM = IiM). But since
A is generated by A1 over A0, we have Ii = A≥i. So sociM = {m ∈M | A≥im = 0}
(resp. radiM = A≥iM).

Suppose now that M/radM is simple or, more generally, concentrated in one

degree j. Then M = AMj , and hence radiM = A≥iM = A≥iMj =
⊕

n≥i+jMn.
Suppose dually that socM is simple or, more generally, concentrated in one degree
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j. Then for any m ∈Mj−ν , m 6= 0, there exists a ∈ Aν such that 0 6= am ∈Mj . In
other words,

⊕
n≥j−iMn = {m ∈M | A≥im = 0} = sociM.

2.5. Unicity of gradings.

Proposition 2.5.1. Let A be a positively graded ring such that A is generated by
A1 over A0. Put I = A>0. Then we have a canonical isomorphism of graded rings

A ∼=
⊕
i

Ii/Ii+1.

Proof. This is clear.

Let A be a ring. By a “Koszul grading on A” we mean a grading such that the
corresponding graded ring is Koszul.

Corollary 2.5.2. Let A be an artinian ring. Then any two Koszul gradings on A
give rise to isomorphic graded rings.

Proof. They both give rise to graded rings that are canonically isomorphic to the
graded ring

⊕
i(radiA/radi+1A).

Let A be a graded ring. We have the functor forgetting the grading

v : A-mod→ A-Mod.

By a “lift” of M ∈ A-Mod we mean an object M̃ ∈ A-mod together with an
isomorphism vM̃ ∼= M.

Lemma 2.5.3. Suppose M ∈ A-Mod is indecomposable and of finite length. Then,
if M admits a lift, this lift is unique up to grading shift and isomorphism.

Proof. Since M is indecomposable, its endomorphism ring is local, i.e. the non-au-
tomorphisms form an ideal. If M̃ ′ is another lift of M, we have HomA(M,M) =⊕

n homA(M̃ ′, M̃〈n〉) and can decompose id =
∑

idn. Since id is an automorphism
of M, one of the idn has to induce an automorphism of M, and one sees easily that
this idn has to be an isomorphism M̃ ′ → M̃〈n〉.

2.6. The Koszul complex. Recall our fixed semisimple ring k. Let V be a k-
bimodule, R ⊂ V ⊗ V a sub-bimodule and A = TkV/(R) the corresponding qua-
dratic ring. We want to define its Koszul complex . . .→ K2 → K1 → K0. This is
to be a complex in A-mod. Let us define the k-sub-bimodules

Ki
i =

⋂
ν

V ⊗ν ⊗R⊗ V ⊗i−ν−2 ⊂ V ⊗i.

In particular K0
0 = k, K1

1 = V, K2
2 = R. Then put Ki = A⊗Ki

i (with the grading
Ki =

⊕
Ki
j defined in such a way that Ki

i = Ki
i). Define the differential d : Ki →

Ki−1 to be the restriction of A⊗ V ⊗i → A⊗ V ⊗i−1, a⊗ v1 ⊗ . . . vi 7→ av1 ⊗ . . . vi.
Clearly d2 = 0, so here is our Koszul complex. Clearly K0 = A.

Theorem 2.6.1. Let A = TkV/(R) be a quadratic ring. Then A is Koszul if and
only if its Koszul complex is a resolution of k = A/A>0.

Proof. If the Koszul complex is a resolution of k, then A is Koszul by definition.
On the other hand supposeA is Koszul, so by Proposition 2.1.3 extiA(k, k〈n〉) = 0

if i 6= n. Certainly K1 → K0 � k is right exact. Thus we need only show that
Hp(K•) = 0 for all p ≥ 1. We use induction on p. Let Zp = ker(d) ⊂ Kp be the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



484 A. BEILINSON, V. GINZBURG, AND W. SOERGEL

submodules of cycles. Since the differential d induces an injection Kp
p ↪→ Kp−1

p , we
find that Zp lives only in degrees ≥ p+ 1. Using induction we get

extp+1
A (k, k〈n〉) = coker{homA(Kp, k〈n〉)→ homA(Zp, k〈n〉)}.

Hence extp+1
A (k, k〈n〉) = homA(Zp, k〈n〉), and by Koszulity this doesn’t vanish only

for n = p+ 1. In particular Zp ∈ A-mod is generated by Zpp+1.

But it is easy to see directly that Zpp+1 is precisely the image of Kp+1
p+1 under the

differential of the Koszul complex. Thus Zp = im(d) and Hp(K•) = 0.

Remark. Generalizing the arguments of [Bac82] (see also [BGS88]), one can prove
in the above setting that A is Koszul if and only if for all n ≥ 1 the set {V ⊗n−i−1⊗
R⊗ V ⊗i−1}n−1

i=1 generates a distributive lattice of submodules of V ⊗n.

2.7. Some linear algebra. Let k be a fixed semisimple ring. All the claims below
are easily checked on free modules and follow for arbitrary modules. For V ∈ k-Mod
define V ∗ = Homk(V, k) ∈ Mod-k via (fa)(v) = (f(v))a ∀f ∈ V ∗, v ∈ V, a ∈ k.
For W ∈ Mod-k define ∗W = Hom−k(W,k) ∈ k-Mod via (ag)(w) = a(g(w)) ∀g ∈
∗W,w ∈ W,a ∈ k. For finitely generated V,W the canonical maps V → ∗(V ∗) and
W → (∗W )∗ given by evaluation are isomorphisms. If V1 ⊂ V (resp. W1 ⊂W ) is a
submodule, we put V ⊥1 = {f ∈ V ∗ | f(V1) = 0} (resp. ⊥W1 = {g ∈ ∗W | g(W1) =
0}). These are submodules.

For a k-bimodule V ∈ k-Mod-k both V ∗ and ∗V are bimodules defined as follows:
Define (af)(v) = f(va) ∀f ∈ V ∗, v ∈ V, a ∈ k and (ga)(v) = g(av) ∀g ∈ ∗V, v ∈
V, a ∈ k. Both canonical maps V → ∗(V ∗) and V → (∗V )∗ are now morphisms
of bimodules. If V1 ⊂ V is a sub-bimodule, both V ⊥1 ⊂ V ∗ and ⊥V1 ⊂ ∗V are
sub-bimodules.

Recall that ⊗ = ⊗k always. For V ∈ k-Mod-k,W ∈ k-Mod define a map
W ∗ ⊗ V ∗ → (V ⊗ W )∗ by (g ⊗ f)(v ⊗ w) = f(vg(w)). This is an isomorphism
for W = k, hence for any finitely generated W ∈ k-Mod. If W ∈ k-Mod-k this is
actually a morphism of k-bimodules. More generally, if V1, . . . , Vn ∈ k-Mod-k are
finitely generated as left k-modules, then canonically V ∗1 ⊗. . .⊗V ∗n = (Vn⊗. . .⊗V1)∗

as k-bimodules, where the isomorphism is given by (f1 ⊗ . . .⊗ fn)(vn ⊗ . . .⊗ v1) =
fn(vnfn−1(vn−1 . . . f1(v1) . . . )).

Dually, for V ∈ Mod-k, W ∈ k-Mod-k define a map ∗W ⊗ ∗V → ∗(V ⊗W )
by (g ⊗ f)(v ⊗ w) = g(f(v)w). This is an isomorphism for finitely generated V ∈
Mod-k. If V ∈ k-Mod-k, the above morphism is actually a morphism of k-bimodules.
Again if V1, . . . , Vn ∈ k-Mod-k are finitely generated as right k-modules, then
∗V1⊗. . .⊗∗Vn = ∗(Vn⊗. . .⊗V1) as k-bimodules, where (f1⊗. . .⊗fn)(vn⊗. . .⊗v1) =
f1(. . . fn−1(fn(vn)vn−1) . . . v1).

For V,W ∈ k-Mod define a map V ∗⊗W → Homk(V,W ) by (f⊗w)(v) = f(v)w.
This is an isomorphism if V or W is finitely generated. If V (resp. W ) is a k-
bimodule, then our map is compatible with the resulting left (resp. right) k-actions
on both spaces. For V,W ∈ Mod-k define a map W ⊗ ∗V → Hom−k(V,W ) by
(w ⊗ f)(v) = wf(v). This is an isomorphism if V or W is finitely generated. If
V (resp. W ) is a k-bimodule, then our map is compatible with the resulting right
(resp. left) k-actions on both spaces.

Suppose V ∈ k-Mod-k. Then there are canonical bimodule homomorphisms V ⊗
V ∗ → k and ∗V ⊗ V → k given by v ⊗ f 7→ f(v) and g ⊗ v 7→ g(v) respectively.
Dually there are canonical bimodule homomorphisms k → V ∗ ⊗ V = Homk(V, V )
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and k → V ⊗ ∗V = Hom−k(V, V ), where a ∈ k is mapped to right (resp. left)
multiplication on V.

2.8. The quadratic dual rings and the Koszul complex. Call a graded ring
A with A0 = k a graded ring “over k”. We begin by defining the quadratic dual
rings. Recall Definition 1.2.4 of a left (resp. right) finite graded ring.

Definition 2.8.1. Let A be a left finite quadratic ring over k, say A = TkV/(R).
Then its left dual A! is the right finite quadratic ring over k given by A! =
Tk(V ∗)/(R⊥) with R⊥ ⊂ V ∗ ⊗ V ∗ = (V ⊗ V )∗.

Analogously if A is a right finite quadratic ring over k, say A = TkV/(R), then
its right dual !A is the left finite quadratic ring over k given by !A = Tk(∗V )/(⊥R)
with ⊥R ⊂ ∗V ⊗ ∗V = ∗(V ⊗ V ).

Remark. Obviously !(A!) = A and (!A)! = A for a left, resp. right finite quadratic
ring A.

Now let A = TkV/(R) be a left finite quadratic ring over k. Then its Koszul
complex is (isomorphic to) the complex

. . .→ A⊗ ∗(A!
2)→ A⊗ ∗(A!

1)→ A,

where we abreviate (A!)i = A!
i. The differentials d : A ⊗ ∗(A!

i+1) → A ⊗ ∗(A!
i)

may be described as follows: Observe that A⊗ ∗(A!
i) = Hom−k(A!

i, A). Under the
canonical isomorphism Homk(V, V ) = V ∗⊗V let idV =

∑
v̌α⊗vα. Then (df)(a) =∑

f(av̌α)vα for f ∈ Hom−k(A!
i+1, A), a ∈ A!

i. We may also write this without

coordinates. Namely, use the obvious maps A ⊗ V → A and A!
i = A!

i ⊗ k → A!
i ⊗

V ∗⊗V → A!
i+1⊗V to give the differential as the composition Hom−k(A!

i+1, A)→
Hom−k(A!

i+1 ⊗ V,A ⊗ V ) → Hom−k(A!
i, A). To see that this is really our Koszul

complex from section 2.6, write

A!
i = (V ∗)⊗i/

∑
ν

(V ∗)⊗i−ν−2 ⊗R⊥ ⊗ (V ∗)⊗ν .

We deduce that

∗(A!
i) =

⋂
ν

V ⊗ν ⊗R⊗ V ⊗i−ν−2 = Ki
i ⊂ V ⊗i.

Thus A⊗ ∗(A!
i) = Ki, and the reader may check that the differentials correspond.

2.9. The quadratic dual of a Koszul ring is Koszul.

Proposition 2.9.1. Let A be a left finite Koszul ring. Then A! is Koszul as well.

Proof. The total space of the Koszul complex A⊗~A! is an A-A!-bimodule, and the
differential commutes with the action of both A and A!. In fact we have a bigraded
space

A⊗ ~A! =
⊕
i,j

Ai ⊗ ∗A!
−j

concentrated in the lower right quadrant, the differential has bidegree (1, 1), and
the only cohomology appears in bidegree (0, 0).

If we apply Homk( , k) to every component of this bigraded space, we obtain a
bigraded space

A! ⊗A~ =
⊕
i,j

A!
j ⊗A∗−i
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concentrated in the upper left quadrant with differential of bidegree (1, 1) com-
muting with the left A!-action, and again the only cohomology appears in bidegree
(0, 0). But we may also read this as a graded projective resolution

. . .→ A! ⊗A∗2 → A! ⊗A∗1 → A! ⊗A∗0 � k

of k ∈ A!-mod, and this then shows that A! is Koszul.

2.10. The quadratic dual and cohomology. Let R be a ring and M ∈ R-Mod.
We will repeat the definition of Ext•R(M,M) in a form suitable for our purposes.
For two complexes P •, Q• of R-modules consider the graded space Hom•R(P •, Q•)
with

Homi
R(P •, Q•) =

⊕
n

HomR(Pn, Qn−i).

The differentials d of degree (−1) on P • and Q• give rise to a differential of degree

(+1) on Hom•R(P •, Q•) by df = d ◦ f − (−1)|f |f ◦ d for f ∈ Hom|f |R (P •, Q•). For

f, g ∈ End•R(P •) we have the Leibniz rule d(fg) = (df)g + (−1)|f |f(dg). Thus the
cohomology H•End•R(P •) has the structure of a graded ring. If now P • �M is a
projective resolution of M ∈ R-Mod, then more or less by definition

H•End•R(P •) = Ext•R(M,M).

Theorem 2.10.1. Let A be a left finite Koszul ring over k. Then Ext•A(k, k) =
(A!)opp canonically.

Proof. Consider the Koszul complex (K•, d) and form the complex (K̃•, d̃) with

K̃i = Ki, d̃ = (−1)id : Ki → Ki−1. Then K̃• is also a projective resolution of k.
The right action of A! on K• = A⊗ ~A! gives us a homomorphism of graded rings

(A!)opp → End•A(K•).

Since this right action commutes with the differential d of the Koszul complex, the
image of

(A!)opp → End•A(K̃•)

even consists of cycles. (This is the reason we work with K̃• and not with K•.)
Hence our morphism above induces a morphism

(A!)opp → H•End•A(K̃•)

and we just have to show that this is an isomorphism. For this, consider the
composition

(A!)opp → End•A(K̃•)→ Hom•A(K̃•, k),

where k is considered as a complex concentrated in degree zero. We consider (A!)opp

as a complex with zero differential, and then both these maps are chain maps. The
second map certainly induces an isomorphism on cohomology, and the composition
is just the identity from A! to

Hom•A(K̃•, k) =
⊕
i

HomA(A⊗ ∗(A!
i), k) = A!.

Hence the first map has to induce an isomorphism on cohomology as well.

We can now prove Theorem 1.2.5 from the introduction.

Theorem 2.10.2. Suppose A is a left finite Koszul ring. Then E(A) is also a left
finite Koszul ring, and E(E(A)) = A canonically.
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Proof. E(A) = (A!)opp is obviously left finite, and is Koszul by Propositions 2.2.1
and 2.9.1. Then E(E(A)) = (((A!)opp)!)opp = !(A!) = A.

2.11. A numerical Koszulity criterion. Fix a field F and suppose that (1) the
positively graded ring A is an F -algebra, i.e. there is a central embedding F ⊂ A.
Suppose in addition that (2) dimF Ai <∞ for all i, and (3) A0 = k =

⊕
x∈W F1x

for pairwise orthogonal idempotents 1x indexed by a finite set W, so in particular
kopp = k.

Then we may form the Hilbert polynomial P (A, t) of A, a W ×W-matrix with
entries in power series Z[[t]] given by

P (A, t)x,y =
∑

ti dim (1xAi1y).

To simplify notation, set dim(1xM1y) = [M ]x,y for any M ∈ k ⊗F k-Mod ⊂
k-Mod-k. The following lemma motivates our criterion.

Lemma 2.11.1. Suppose a positively graded F -algebra A satisfying conditions (1)-
(3) above is Koszul. Then the matrix equation P (A, t)P (A!,−t)T = 1 holds.

Remark. We do not know whether for a quadratic ring A as in the proposition the
matrix equation P (A, t)P (A!,−t)T = 1 implies that A is Koszul.

Proof. The Euler-Poincaré principle for the Koszul complex yields∑
i,j

(−1)iti+j [Ai ⊗ ∗(A!
j)]x,y = [A0]x,y.

Now the result follows from the identities [A0]x,y = δx,y, [∗M ]x,y = [M ]y,x and
[M ⊗N ]x,y =

∑
z[M ]x,z[N ]z,x. (Recall that ⊗ = ⊗k always!)

Now forget the grading on A and form the positively graded F -algebra E =
E(A) = Ext•A(k, k). Certainly E0 = kopp = k, and if A is left noetherian then
dim Ei <∞ for all i, so we can form the Hilbert polynomial P (E, t) of E.

Theorem 2.11.1. Suppose A is a left noetherian F -algebra satisfying the condi-
tions (1)-(3) above. Form the graded F -algebra E = E(A). Then the following
conditions are equivalent:

(i) A is Koszul.
(ii) The matrix equation P (A, t)P (E,−t) = 1 holds.

Remark. Löfwall [Löf86] calls (ii) a “Fröberg condition”.

Proof. (i) ⇒ (ii). If A is Koszul we know by Theorem 2.10.1 that E ∼= (A!)opp.
Now apply the lemma.

(ii) ⇒ (i). Certainly k is a graded A-module and a graded right k-module,
and these two actions commute and induce the same F -action. In other words,
k ∈ A⊗F k-mod. We are going to construct inductively a resolution

. . .→ P 2 → P 1 → P 0 � k

of k in A ⊗F k-mod as follows: Take P 0 = A. If P i is already constructed, put
Ki = ker(P i → P i−1) and choose a complement V i in k⊗F k-mod of A>0 ·Ki ⊂ Ki.
So V i is a graded k-bimodule V i =

⊕
V ij , and we put P i+1 = A⊗V i. Take V 0 = k

for convenience. So we get a resolution of k of the form

. . .→ A⊗ V 2 → A⊗ V 1 → A⊗ V 0 � k
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with the V i some graded k-bimodules V i =
⊕
V ij such that all differentials of

the resolution are compatible with the right k-action. By construction P i+1 gets
mapped to A>0 · P i, hence the differential on the complex of the HomA(P •, k)
vanishes. Also by construction all P i are projective in A-mod, hence ExtiA(k, k) =
(V i)∗, extiA(k, k〈j〉) = (V ij )∗, and the reader may check that even [Ei]x,y = [V i]x,y.

We form the matrix of power series P (V, t) with P (V, t)x,y =
∑

[V i]x,yt
i and

deduce from (ii) the equation P (A, t)P (V,−t) = 1. Thus, in the Grothendieck
group of a suitable category of k-bimodules,

n∑
i=0

(−1)iAi ⊗ V n−i = 0

for n ≥ 1. To prove that A is Koszul we have to check that V nj = 0 for all n ≥ 1, j 6=
n. From Lemma 2.1.2 we deduce that extiA(k, k〈j〉) = 0 for j < i. Thus V ij = 0 for

j < i. We need V ij = 0 for j 6= i.
We proceed by induction on i. For i = 0 the statement is clear. Now take the

degree n component of the above resolution. Clearly (A⊗V i)n =
⊕

j An−j⊗V ij . By

induction we know that V i = V ii for i < n, hence (A⊗V i)n = An−i⊗V ii = An−i⊗V i
for i < n. By Lemma 2.1.2 (or by construction) we know that V nj = 0 for j < n,
hence (A⊗ V n)n = A0 ⊗ V nn . We find an exact sequence

0→ A0 ⊗ V nn → . . .→ An−1 ⊗ V 1 → An ⊗ V 0 → 0.

Thus we get an equation

n−1∑
i=0

(−1)iAi ⊗ V n−i + (−1)nA0 ⊗ V nn = 0

in the same Grothendieck group as above. Comparing the two equations, we find
that V nn = V n, and the induction step is complete.

2.12. Koszul duality. Let B =
⊕

j≥0 Bj be a positively graded ring. Write

C(B) for the homotopy category of complexes in B-mod. An object M ∈ C(B) is a

complex . . .→M i ∂→ M i+1 → . . . of graded B-modules M i =
⊕

jM
i
j . Let C↑(B)

(resp. C↓(B)) be the full subcategories of C(B) whose objects M =
⊕
M i
j satisfy

the conditions

M i
j = 0 if

{
i� 0 or i+ j � 0 for C↑(B),
i� 0 or i+ j � 0 for C↓(B).

Thus all nonzero components M i
j of an object of C↑(B) (resp. C↓(B)) are concen-

trated in a region as indicated in the picture.
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Let D↑(B), D↓(B) denote the localisations of C↑(B), C↓(B) at quasi-isomor-
phisms. These are also triangulated categories. We want to prove

Theorem 2.12.1. Let A be a left finite Koszul ring. Then there exists an equiva-
lence of triangulated categories

D↓(A) ∼= D↑(A!).

Proof [Theorem]. The existence of this equivalence could be deduced from [Kel92].
We explicitly construct such an equivalence. This will be done in several steps.
Assume A0 = k.

Step 1. Construction of a functor DF : D↓(A)→ D↑(A!).

For M ∈ C(A) consider the bigraded k-module

FM = A! ⊗M =
⊕
l,i

A!
l ⊗M i =

⊕
l,i

HomA(A⊗ ∗(A!
l),M

i)

with anticommuting differentials coming, up to signs, from the differentials of the
Koszul complex and of the complex M respectively, and given by

d′(a⊗m) = (−1)i+j
∑
av̌α ⊗ vαm,

d′′(a⊗m) = a⊗ ∂m
for a ∈ A!

l, m ∈ M i
j . Here v̌α and vα are as in 2.8. Consider on FM the total

differential d = d′ + d′′. We can interpret FM as an object of C(A!), letting

(FM)pq =
⊕

p=i+j,q=l−j
A!
l ⊗M i

j .

It is easy to check that M ∈ C↓(A) implies FM ∈ C↑(A!). Furthermore, for
M ∈ C↓(A) the spectral sequence with first term H•(FM, d′′) associated to the
bicomplex (FM ; d′, d′′) converges to the cohomology H•(FM, d), i.e. M ∈ C↓(A)
acyclic implies FM ∈ C↑(A!) acyclic. Hence F induces a functor DF : D↓(A) →
D↑(A!).

Step 2. Construction of a functor DG : D↑(A!)→ D↓(A).

For N ∈ C(A!) consider the bigraded k-module GN given by

(GN)l,i = Homk(A−l, N
i)
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with anticommuting differentials d′, d′′ given by

(d′f)(a) = (−1)i
∑
v̌αf(vαa),

(d′′f)(a) = ∂(f(a))

for f ∈ Homk(A−l, N
i). The reader may check that d′ is well defined and is a

differential. Consider on GN the total differential d = d′ + d′′. We can interpret
GN as an object of C(A), letting

(GN)pq =
⊕

p=i+j,q=l−j
Homk(A−l, N

i
j).

It is easy to check that N ∈ C↑(A!) implies GN ∈ C↓(A). Furthermore, for N ∈
C↑(A!) the spectral sequence with first term H•(GN, d′′) associated to the bicom-
plex (GN ; d′, d′′) converges to the cohomology H•(GN, d), i.e. N ∈ C↑(A!) acyclic
implies GN ∈ C↓(A) acyclic. Hence G induces a functor DG : D↑(A!)→ D↓(A).

Step 3. Adjointness of our functors.

Consider the functors F : C↓(A) → C↑(A!) and G : C↑(A!) → C↓(A). We
define an adjointness (F,G). In general, for any M ∈ A-Mod, N ∈ A!-Mod we have
canonically

HomA!(A! ⊗M,N) = Homk(M,N) = HomA(M,Homk(A,N)).

If for all m ∈M there exists l such that Aim = 0 for i ≥ l, then even

HomA!(A! ⊗M,N) = Homk(M,N) = HomA(M,
⊕
l

Homk(Al, N)).

Lemma 2.12.2. This canonical isomorphism establishes an adjointness (F,G) of
functors between C↓(A) and C↑(A!).

Proof. Choose M ∈ C↓(A), N ∈ C↑(A!). Choose corresponding homomorphisms

f̃ , f, f̂ in HomA!(FM,N) = Homk(M,N) = HomA(M,GN). It is easy to see that

f̃((FM)ij) ⊂ N i
j for all i, j if and only if f̂(Mp

q ) ⊂ (GN)pq for all p, q. Suppose

from now on that f̃ satisfies this condition. We just have to show that f̃ commutes
with the differentials if and only if f̂ does. But both f̃ and f̂ commute with the
differentials if and only if

(−1)i+j
∑

v̌αf(vαm) + f(∂m)− ∂(f(m)) = 0.

This proves the lemma. Let us perform the calculation for f̂ . Suppose m ∈ M i
j .

Then d(f̂ (m)) = f̂(∂m) if and only if they have the same value at 1 ∈ A, i.e. if

and only if (d(f̂(m)))(1) = (f̂(∂m))(1). By definition (f̂(∂m))(1) = f(∂m). On the

other hand, f̂(m) =
∑
l f̂l(m) with f̂l(m) ∈ Homk(Al, N

i+l+j
−l−j ). Then

(d(f̂(m)))(1) =
∑
l(d(f̂l(m)))(1)

= ∂((f̂0(m))(1)) − (−1)i+j
∑
v̌α((f̂1(m))(vα))

= ∂(f(m))− (−1)i+j
∑
v̌αf(vαm).

Thus indeed f̂ commutes with the differentials if and only if the above equation on
f holds.

Step 4. We construct an equivalence DF ◦DG→ id.
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More precisely, we prove

Lemma 2.12.3. For any N ∈ C↑(A!) the canonical surjection (F ◦ G)(N) → N
from the adjointness is a quasi-isomorphism.

Proof. Consider the splitting over k of our surjection, given by

N = k ⊗Homk(k,N)→
⊕
l

A! ⊗Homk(Al, N).

It is sufficient to show that this is a quasi-isomorphism. Consider N as a bicomplex
(Np,q; d

′, d′′) with N0,q =
⊕

i+j=q N
i
j , Np,q = 0 if p 6= 0, d′ = 0, d′′ = ∂. Recall

from Step 1 how F (GN) is a bicomplex with (F (GN))p,q = A!
p ⊗ (GN)q . In fact

our splitting map is a morphism of bicomplexes. Since the spectral sequences in
question converge, we need only show that our splitting induces isomorphisms

H•(N, d′)→ H•(F (GN), d′).

But F (GN) =
⊕

Homk(Al ⊗ ∗(A!
p), N

i
j), and the differential d′ can be described

as d′f = (−1)i+l(f ◦ dK), where dK : Al ⊗ ∗(A!
p+1)→ Al ⊗ ∗(A!

p) is the differential
of the Koszul complex. Now the fact that the Koszul complex is a resolution of k
implies that indeed our splitting induces isomorphisms on H•( , d′).

Step 5. We construct an equivalence id→ DG ◦DF.

More precisely, we prove

Lemma 2.12.4. For any M ∈ C↓(A) the canonical injection M → (G ◦ F )(M)
from the adjointness is a quasi-isomorphism.

Proof. Consider the splitting G(FM)→M over k of our canonical injection given
by ⊕

Homk(Al, A
! ⊗M)→ Homk(k, k ⊗M) = M.

It is sufficient to show that this is a quasi-isomorphism. Consider M as a bicomplex
(Mp,q; d

′, d′′) with M0,q =
⊕

i+j=qM
i
j , Mp,q = 0 if p 6= 0, d′ = 0, d′′ = ∂. Recall

from Step 2 how G(FM) is a bicomplex with (G(FM))p,q = Homk(A−p, (FN)q). In
fact our splitting map is a morphism of bicomplexes. Since the spectral sequences
in question converge, we need only show that our splitting induces isomorphisms

H•(G(FM), d′)→ H•(M,d′).

But G(FM) =
⊕

Homk(Al, A
! ⊗M) =

⊕
(A∗l ⊗ A!) ⊗M , and the differential d′

can be described as being up to signs the differential of the right Koszul complex of
A! tensor the identity on M. Now the fact that the Koszul complex is a resolution
of k implies that indeed the above maps on cohomology are isomorphisms.

The theorem is now proven.

As usual, for a complex X = (Xi, ∂) denote by X [n] the shifted complex

(X [n])i = Xi+n with differentials (−1)n∂. For a graded ring B put B-mod↑ =

{M ∈ B-mod | Mj = 0 for j � 0} and B-mod↓ = {M ∈ B-mod | Mj = 0 for

j � 0} We will consider these categories as full subcategories B-mod↑ ⊂ D↑(B),

B-mod↓ ⊂ D↓(B) of complexes concentrated in degree zero.
Suppose B0 = k is semisimple. Then any simple object of B-mod is up to a

grading shift isomorphic to B0p for some p ∈ k. For any p ∈ k the surjection
Bp � B0p is a projective cover in B-mod↑ (and B-mod, B-Mod.) Define the
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“continuous dual” B~ =
⊕

lB
∗
l ∈ B-Mod-k. Then B0p ↪→ B~p is an injective hull

in B-mod↓ for all p ∈ k.
Let us from now on denote by

K : D↓(A)→ D↑(A!)

the “Koszul duality functor” K = DF constructed in step 1.

Theorem 2.12.5. Let A be a left finite Koszul ring over k.

(i) The functor K : D↓(A) → D↑(A!) together with the obvious canonical iso-
morphism K(M [1]) = (KM)[1] is an equivalence of triangulated categories.

(ii) We have K(M〈n〉) = (KM)[−n]〈−n〉, canonically.
(iii) For any p ∈ k we have K(A0p) = A!p and K(A~p) = A!

0p.

Proof. (i) has been done already. (ii) is left to the reader. Just note that the
isomorphism is given in essence by (−1)nq : A! ⊗M q → A! ⊗M q. In (iii) the first
equality is evident, and the second follows from the fact that the Koszul complex
is a resolution of k = A0.

Remark. As can be seen from (ii) already, the standard t-structures on our two
triangulated categories do not correspond under K. In section 2.13 we discuss the
non-standard t-structure on D↑(A!) coming from the standard one on D↓(A) via
K, and in section 2.14 we will define the notion of a “Koszul module” and see that
A!-mod↑ ∩K(A-mod↓) consists exactly of the Koszul modules for A!.

Recall that for a graded ring B we let B-mof be the category of finitely gener-
ated graded modules. We want to give a version of Koszul duality involving only
standard derived categories.

Theorem 2.12.6. Let A be a Koszul ring over k. Suppose A is a finitely generated
k-module both from the left and from the right, so that Ai = 0 for i � 0. Suppose
in addition that A! is left noetherian. Then Koszul duality induces an equivalence
of triangulated categories

K : Db(A-mof)→ Db(A!-mof).

Proof [Theorem]. We must first make precise the meaning of “induces”. For this we
will characterize Db(A-mof) and Db(A!-mof) as certain full subcategories of D↓(A)
and D↑(A!) respectively.

Namely, define full subcategories D↓e(A) ⊂ D↓(A) (resp. C↓e (A) ⊂ C↓(A)) to
consist of all objects with only finitely many nonvanishing cohomology groups which
are in addition finitely generated A-modules. We may also interpret D↓e(A) as the
localization of C↓e (A) at quasi-isomorphisms.

Lemma 2.12.7. Suppose A is finitely generated as a left k-module, so in particular
is left noetherian. Then the obvious functor Db(A-mof)→ D↓e(A) is an equivalence.

Proof. First note that by [Har66, exercise to Prop. 4.8 of Chapter I] the canonical
functor D−(A-mof)→ D−A-mof(A-mod) is an equivalence. Thus there is an equiva-
lenceDb(A-mof)→ Db

A-mof(A-mod). NowDb
A-mof(A-mod) can be interpreted as the

localization of a suitable homotopy category of complexes CbA-mof(A-mod) at quasi-
isomorphisms. Also D↓e(A) is the localization of C↓e (A) at quasi-isomorphisms.

Now define a functor C↓e (A)→ Db
A-mof(A-mod) by X 7→ lim τ≤iX with τ≤i the

usual truncation functors. The inductive system stabilizes, so there is no problem.
This gives a functor D↓e(A)→ Db

A-mof(A-mod).
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In the other direction we have the functor CbA-mof(A-mod) → D↓e(A) given by
X 7→ limX/GjX, using the notation Gj from section 2.4. The projective system
stabilizes, and we get a functor Db

A-mof(A-mod)→ D↓e(A).
One may check that these are inverse of one another and that the canoni-

cal functor from the lemma is the composition of equivalences Db(A-mof) →
Db
A-mof(A-mod)→ D↓e(A).

Define further the full subcategories D↑e(A!) ⊂ D↑(A!) (resp. C↑e (A!) ⊂ C↑(A!))
to consist of all complexes with only finitely many nonvanishing cohomology groups
which are in addition finitely generated A!-modules. We may also interpret D↑e(A!)
as the localization of C↑e (A!) at quasi-isomorphisms.

Lemma 2.12.8. Suppose A! is left noetherian. Then the obvious functor from
Db(A!-mof) to D↑e(A!) is an equivalence.

Proof. First of all we have as before Db(A!-mof) = Db
A!-mof(A

!-mod). Now we

may define a functor C↑e (A!) → Db
A!-mof(A

!-mod) by X 7→ lim τ≥iX with τ≥i the
usual truncation functors. The projective system stabilizes and we get a functor
D↑e(A!)→ Db

A!-mof(A
!-mod).

In the other direction we have the functor CbA!-mof(A
!-mod)→ D↑e(A!) given by

X 7→ limGiX. The injective system stabilizes and gives a functor Db
A!-mof(A

!-mod)

→ D↑e(A!).
One may check that these are inverse of one another and that the canoni-

cal functor from the lemma is the composition of equivalences Db(A!-mof) →
Db
A!-mof(A

!-mod)→ D↑e(A!).

Now we actually prove the theorem. The equivalence Db(A-mof) → D↓e(A)
makes it clear that K : D↓(A)→ D↑(A!) maps D↓e(A) to D↑e(A!) and thus induces
a fully faithful functor K : Db(A-mof)→ Db(A!-mof). The only problem is to show
that here K is essentially surjective. Since we know that KA0 = A!, this will follow
once we show that A!-mof has finite homological dimension. So let us prove this.

Since KA∗ = A!
0 = k, we have extiA!(k, k〈j〉) = homDb(A

∗, A∗[i− j]〈−j〉). Since

A∗ ∈ A-mof is the injective hull of A0 = k, we actually find that extiA!(k, k〈j〉)
vanishes for i 6= j, and extiA!(k, k〈i〉) = homA(A∗, A∗〈−i〉) = homk(A∗〈i〉, k) =

(A∗i )
∗. In particular, there exists d such that for all M,N ∈ A!-mod which are

finitely generated over k we have extiA!(M,N) = 0 if i ≥ d.
Now let M ∈ A!-mof be arbitrary. By Lemma 2.1.2, extiA!(G1M,k) = 0 ∀i. But

M/G1M is finitely generated over k, so extiA!(M,k) = 0 if i ≥ d.
Now choose a minimal projective resolution

. . .→ P2 → P1 → P0 �M

of M in A!-mof. This means precisely that homA!(Pi, k〈j〉) = extiA!(M,k〈j〉). We
deduce that Pi = 0 for all i ≥ d. The theorem is proven.

2.13. t-structures. Let A be a left finite Koszul ring and consider the Koszul
duality functor

K : D↓(A)→ D↑(A!)

defined in section 2.12. Here both sides have standard t-structures with cores
A-mod↓ and A!-mod↑ respectively, but under K these do not correspond. So trans-
porting our standard t-structures via K, we obtain non-standard t-structures on
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both D↓(A) and D↑(A!). We will describe this new t-structure on D↑(A!) quite
explicitly. The case of D↓(A) is very similar and will be left to the reader.

First let B be any positively graded ring such that B0 is semisimple. In D↑(B)
consider the subcategories D↑(B)≤0,g, resp. D↑(B)≥0,g, of all objects isomorphic
to complexes of graded projective modules

. . .→ P i → P i+1 → . . .

in C↑(B) such that P i is generated by its components of degree ≤ −i, resp. ≥ −i,
for all i.

Proposition 2.13.1. The pair (D↑(B)≤0,g, D↑(B)≥0,g) is a t-structure on D↑(B).

Remark. An analogous definition is used to obtain a non-standard t-structure on
D−(B-mod). This is the “geometric” t-structure in [Soe92], hence the notation.

Proof [Proposition]. Most of this is straightforward and left to the reader. Let
us just prove that every Y ∈ D↑(B) decomposes into a distinguished triangle
(Y <0, Y, Y ≥0). Using Lemma 2.1.2 or more precisely its proof, we see that every
object of D↑(B) can be represented by a complex of projective objects in C↑(B),
say

. . .→ P i → P i+1 → . . . .

Now we need

Lemma 2.13.2. This complex can be choosen such that the induced maps

P i/B>0P
i → P i+1/B>0P

i+1

all vanish.

Proof. Let us simplify notation and put M = M/B>0M, k = B0, ⊗ = ⊗k. Remark
that for any projective P ∈ B-mod every splitting in k-mod of the surjection P � P
defines an isomorphism P ∼= B⊗P . Consider now the maps ∂̄ : P i → P i+1. Choose
decompositions

P i = Ii ⊕Hi ⊕Ri

in k-mod such that Ii = ∂̄(P i) and Ii⊕Hi = ker(∂̄), so that ∂̄ induces isomorphisms
Ri → Ii+1. Now choose splittings of graded k-modules Ri → P i. This leads to
splittings Ii+1 → P i+1, and we can extend these splittings from Ii ⊕ Ri to all of
P i. Thus we can decompose

P i = (B ⊗ Ii)⊕ (B ⊗Hi)⊕ (B ⊗Ri)
in such a way that our differentials induce isomorphisms from (B⊗Ri) to (B⊗Ii+1).
It is then clear that our complex P • is quasi-isomorphic to the complex (B ⊗H•)
with the induced differentials, and that this complex satisfies the conditions of the
lemma.

So now let Y ∈ D↑(B) be represented by a complex of projective objects

. . .→ P i → P i+1 → . . .

in C↑(B) such that if we apply k⊗B all differentials become zero. Consider the
submodules BP i<−i ⊂ P i generated by the homogeneous components of degree less

than −i. They are projective, and the quotients P i/BP i<−i are projective as well.

Furthermore, the differential has to map BP i<−i to BP i+1
<−i−1, by our assumption

on the complex. Now we just let Y <0 be the complex of the BP i<−i and Y ≥0 the

complex of the P i/BP i<−i, and we are done. The proposition is proved.
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As a corollary of this proof, we give a more direct description of the core of our
non-standard t-structure.

Corollary 2.13.3. Any object of the core of our non-standard t-structure on D↑(B)
is quasi-isomorphic to a complex of projectives

. . .→ P i → P i+1 → . . .

in C↑(B) such that P i = BP i−i ∀i.
Now we prove that this is the t-structure we were looking for.

Proposition 2.13.4. The Koszul duality functor K transforms the standard t-
structure on D↓(A) into our non-standard t-structure (D↑(A!)≤0,g, D↑(A!)≥0,g) on
D↑(A!).

Proof. Certainly

D↓(A)≤0 = {X ∈ D↓(A) | Hom(X,A~[i]〈n〉) = 0 ∀i < 0, ∀n}
and K transforms this into

{Y ∈ D↑(A!) | Hom(Y,A~[i− n]〈−n〉) = 0 ∀i < 0, ∀n}.
It is clear that all Y ∈ D↑(A!)≤0,g satisfy this condition. It is equally clear that if
Y ∈ D↑(A!)≥0,g satisfies this condition, then any complex of projectives isomorphic
to it in the derived category has to be exact, i.e. Y = 0. Decomposing an arbitrary
Y ∈ D↑(A!) into a distinguished triangle (Y <0, Y, Y ≥0) according to our t-structure,
we find then that indeed K(D↓(A)≤0) ⊂ D↑(A!)≤0,g.

Similar arguments show the other inclusion K(D↓(A)≥0) ⊂ D↑(A!)≥0,g.

2.14. Koszul modules. Let A be a positively graded ring over the semisimple
ring k = A0.

Definition 2.14.1. A graded A-module M ∈ A-mod is called “Koszul” if and only
if M admits a graded projective resolution

. . .→ P 2 → P 1 → P 0 �M

such that P i is generated by its component of degree i, P i = AP ii .

Proposition 2.14.2. Let M ∈ A-mod be bounded from below, i.e. M ∈ A-mod↑.
Then the following are equivalent:

(1) M is Koszul.
(2) extiA(M,N) = 0 for any pure module N whose weight is not (−i).
(3) extiA(M,k〈n〉) = 0 unless i = n.

Proof. Almost identical to the proof of Proposition 2.1.3, and so we leave it to the
reader.

Definition 2.14.3. A graded A-module M ∈ A-mod is called “quadratic” if and
only if it is generated in degree zero with relations in degree one.

We may spell this out as follows: The multiplication m : A ⊗ M0 → M is a
surjection, and ker(m) is generated as a left A-module by its component of degree
one S = ker(A1 ⊗M0 →M), so that M = A⊗M0/AS.

Proposition 2.14.4. Any Koszul module is quadratic.

Proof. This is trivial.
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Suppose from now on that A is a quadratic ring, A = TkV/(R). Extending the
considerations of section 2.6, we may define the Koszul complex

. . .→ K2M → K1M → K0M

of a quadratic A-module M by setting

KiM = A⊗ (
⋂
ν

V ⊗ν ⊗ R⊗ V ⊗i−ν−2 ⊗M0 ∩ V ⊗i−1 ⊗ S).

Proposition 2.14.5. A quadratic module M over a quadratic ring A is Koszul if
and only if its Koszul complex K•M is a resolution of M.

Proof. Almost the same as the proof of Theorem 2.6.1, and so we leave it to the
reader.

If A is a left finite quadratic ring and M a finitely generated quadratic module
over A, we may form the quadratic dual M ! ∈ mod-A! given by S⊥ ⊂ (A1⊗M0)∗ =
M∗0 ⊗A∗1 as M ! = M∗0 ⊗ A!/S⊥A!. Just as in section 2.8 we may then identify the
Koszul complex of M with the complex

. . .→ A⊗ ∗(M !
2)→ A⊗ ∗(M !

1)→ A⊗ ∗(M !
0),

where we leave the definition of the differential to the reader. In case A is Koszul,
Theorem 2.10.1 generalizes to a canonical isomorphism M ! = Ext•A(M,k) of left
modules over (A!)opp = Ext•A(k, k).

There also is an analog of the distributivity criterion (explained in the remark
closing subsection 2.6) for Koszul modules over Koszul rings. It shows in particular
that the dual M ! of a finitely generated Koszul module over a left finite Koszul ring
is also Koszul.

3. Parabolic-singular duality and Koszul duality

3.1. Notation from algebraic geometry. Let X be a complex algebraic vari-
ety. Then we denote by D(X) = Db

const(Sh(Xan)) the bounded derived category
with algebraically constructible cohomology of the category Sh(Xan) of sheaves of
complex vector spaces on the analytic space Xan defined by X. Let P(X) ⊂ D(X)
be the perverse sheaves (for the middle perversity) and Hi : D(X) → P(X) the
perverse cohomology functors. For any F ,G ∈ D(X) we may form the derived
RHom-sheaf RHom(F ,G) ∈ D(X). Any morphism f : X → Y gives adjoint pairs
of exact functors (f∗, f∗) and (f!, f

!) relating D(X) and D(Y ). More classically f∗,
f∗, f! would be written f−1, Rf∗, and Rf! respectively. Let X ∈ Shconst(Xan) ⊂
D(X) be the constant sheaf C. Let HomD denote homomorphisms in D(X), and
put Homi

D(F ,G) = HomD(F ,G[i]) for all F ,G ∈ D(X). For any F ∈ D(X) its
hypercohomology H•F =

⊕
HiF is a graded C-vectorspace and even a graded

module over the cohomology ring H•(X) of X (which should really be denoted
H•(X) or even End•D(X,X)). More details on these notions may be found in
[Bor84, KS90, BBD82].

3.2. Existence of projective objects in some abelian categories. To prove
that suitable categories of perverse sheaves have enough projectives, we first work
in an abstract context. The results in this and the next section can also be found
in a paper by Cline, Parshall, and Scott [CPS91]. Let k be a field and A an abelian
k-category. Suppose that

(1) Every object of A has finite length.
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(2) There are only finitely many simple isomorphism classes in A. To simplify the
exposition, suppose furthermore

(3) The endomorphisms of simple objects in A are reduced to scalars. Let
{L(s)}s∈S represent the simple isomorphism classes in A. Assume a partial
order ≤ is given on S and S is equipped with the order topology, i.e. closed
subsets T ⊂ S are characterized by s ∈ T, s′ ≤ s ⇒ s′ ∈ T. For any closed
T ⊂ S let AT be the full subcategory of A of objects “supported on T”, i.e.
all of whose simple subquotients have parameter in T.

Assume we are given for all s ∈ S objects ∆(s), ∇(s) and morphisms
∆(s)→ L(s), L(s)→∇(s) in A such that

(4) Whenever T ⊂ S is closed and s ∈ T is maximal, ∆(s)→ L(s) is a projective
cover and L(s) → ∇(s) an injective hull of L(s) in AT . (In particular, both
∆(s) and ∇(s) are indecomposable.)

(5) ker(∆(s) → L(s)) and coker(L(s) → ∇(s) lie in A<s ∀s ∈ S. Assume fur-
thermore

(6) Ext2
A(∆(s),∇(t)) = 0 ∀s, t ∈ S.

We call the ∆(s) the standard modules and ∇(s) the costandard modules.

Theorem 3.2.1. Let A be an abelian category satisfying all of the above conditions
(1)-(6). Then A has enough projective objects, and each projective has a finite
filtration with standard subquotients.

Remarks. (1) If we let P (s)� L(s) be the projective cover and (P (s) : ∆(t)) the
multiplicity of ∆(t)) as a subquotient in a standard filtration of P (s), then
the so-called reciprocity formula (P (s) : ∆(t)) = [∇(t) : L(s)] holds. Indeed,
it is easy to see that both sides are just dimk HomA(P (s),∇(t)).

(2) Dual results hold for injectives.
(3) As Ringel explained to one of the authors, the conditions (1)–(5) are already

sufficient to ensure the existence of enough projectives. His argument goes as
follows. Choose s ∈ S maximal and assume by induction that the statement
is known for AS−{s}. For any t ∈ S we need to show that there is a bound
N(t) on the possible length of an object X with unique simple quotient L(t).
For t = s this is clear, so suppose t 6= s. Consider the short exact sequence

0→ K → X → X̄ → 0,

where X̄ is the maximal quotient of X which lies in AS−{s}. Then X̄ is a
quotient of the projective cover of L(t) in AS−{s}, so its length is bounded.
Furthermore, we have an inclusion

Hom(K,L(s)) ↪→ Ext1(X̄, L(s)),

and K/radK is a direct sum of copies of L(s), hence K is a quotient of a
direct sum of at most dim Ext1(X̄, L(s)) copies of ∆(s). This does the job.

Proof. We start the proof by deriving further properties of A. Let us henceforth
abreviate HomA,ExtiA,EndA by Hom,Exti,End.

(7) End(∆(s)) = k = End(∇(s)) follows from (3), (4) and (5).
(8) For all M,N ∈ A the space Hom(M,N) is of finite dimension, as follows from

(3) and (1).
(9) For all M,N ∈ A the space Ext1(M,N) is of finite dimension. To prove

this, we may assume without restriction that M,N are simple. First assume
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M = L(s), N = L(t) with t 6> s. Then there exists a closed subset T ⊂ S such
that s, t ∈ T and s is maximal in T. Now the short exact sequence ker ↪→
∆(s) � L(s) in AT gives us a surjection Hom(ker, L(t)) � Ext1(L(s), L(t)),
and we are done by (8). If t > s we proceed dually.

To prove Theorem 3.2.1, we prove more generally for any closed subset T ⊂ S :

Claim (T ) . There are enough projectives in AT , and each one of those has a finite
filtration with standard sucessive quotients.

For this we proceed by induction on |T |. So let T ⊂ S be closed and s ∈ S such
that T ′ = T ∪{s} is closed as well. We assume claim (T ) and try to construct for all
t ∈ T ′ a projective cover PT ′(t)� L(t) of L(t) in AT ′ . If t = s, then ∆(s)→ L(s)
is the sought-for cover by (4). If t 6= s, then t ∈ T and claim (T ) gives at least a
projective cover PT (t)� L(t) of L(t) in AT .

Let us abbreviate PT (t) = P. Put E = Ext1(P,∆(s)). Remark that for any finite
dimensional k-vectorspace F and any object M of a k-category we may formally
define the object F ⊗M . The canonical element in E∗⊗E = E∗⊗Ext1(P,∆(s)) =

Ext1(P,E∗ ⊗∆(s)) gives rise to an extension E∗ ⊗ ∆(s) ↪→ P̃ � P such that, if
we take the long exact sequence . . .→ Hom(E∗ ⊗∆(s),∆(s)) → Ext1(P,∆(s)) →
Ext1(P̃ ,∆(s))→ Ext1(E∗ ⊗∆(s),∆(s))→ . . . , then the diagram

E
can ↙ ↘ id

. . .→ Hom(E∗ ⊗∆(s),∆(s)) → Ext1(P,∆(s))→ . . .

commutes. Since can is an isomorphism by (7), the above boundary map is actually

an isomorphism. Since Ext1(∆(s),∆(s)) = 0 by (4), we get Ext1(P̃ ,∆(s)) = 0. We

want to prove that P̃ is a projective cover of L(t) in AT ′ . This would establish
claim (T ′). To achieve this we only have to prove that, for r ∈ T ′ = T ∪ {s},

dim Hom(P̃ , L(r)) =

{
1, r = t,
0, else,

Ext1(P̃ , L(r)) = 0.

Suppose first that r ∈ T.We consider the short exact sequence E∗⊗∆(s) ↪→ P̃ � P.
Applying Exti( , L(r)), we get a long exact sequence. Since

Hom(E∗ ⊗∆(s), L(r)) = Ext1(E∗ ⊗∆(s), L(r)) = 0

by (4), this settles the case r ∈ T.
So we are left with the task of proving that

Hom(P̃ , L(s)) = Ext1(P̃ , L(s)) = 0.

Consider the short exact sequence ker ↪→ ∆(s) � L(s). It gives rise to two long
exact sequences

Hom(P, ker) ↪→ Hom(P,∆(s)) → Hom(P,L(s)) → Ext1(P, ker)
↓ ↓ ↓ ↓

Hom(P̃ , ker) ↪→ Hom(P̃ ,∆(s)) → Hom(P̃ , L(s)) → Ext1(P̃ , ker).

By the case r ∈ T the first vertical is an isomorphism and both Ext-groups vanish.
By construction of P̃ the second vertical is an isomorphism. Thus the third vertical
is an isomorphism and Hom(P̃ , L(s)) = Hom(P,L(s)) = 0.
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Next we prove Ext1(P̃ , L(s)) = 0. The short exact sequence ker ↪→ ∆(s) �
L(s) gives an exact sequence Ext1(P̃ ,∆(s)) → Ext1(P̃ , L(s)) → Ext2(P̃ , ker).

We deduced already from the definition of P̃ that Ext1(P̃ ,∆(s)) = 0. To get

Ext2(P̃ , ker) = 0 it is sufficient to prove that Ext2(P̃ , L(r)) = 0 for all r ∈ T.
But this follows via the short exact sequence L(r) ↪→ ∇(r) � coker since we

know already that Ext1(P̃ , coker) = 0, and since Ext2(P̃ ,∇(r)) = 0 by (6) be-

cause P̃ has a filtration with standard subquotients. So Ext2(P̃ , ker) = 0, and thus

Ext1(P̃ , L(s)) = 0.

Corollary 3.2.2. Let A be an abelian category satisfying (1)– (6). Then A has
finite cohomological dimension.

Proof. We have to prove that every object admits a projective resolution of finite
length. It is clear (at least from the point of view of derived categories) that if this
holds for two objects in a short exact sequence, then it also holds for the third one.
Hence it is enough to prove this for simple objects, and using (5) and induction
over S from below we see that it is also enough to prove it for standard objects.
But then we may use induction over S from above, because the projectives P (s) we
just constructed have filtrations with a single subquotient ∆(s) and all the other
subquotients of the form ∆(t), t > s.

To check for condition (6), sometimes the following lemmas from folklore are
helpful.

Lemma 3.2.3. Let A be an abelian category and B ⊂ A a full abelian subcategory,
closed under extensions and such that the inclusion is an exact functor. Then for
all M,N ∈ B the canonical map

Ext2
B(M,N)→ Ext2

A(M,N)

is an injection.

Proof. Suppose given e ∈ Ext2
B(M,N), e 6= 0. Certainly there exists a surjection

P � M in B such that the pull-back Ext2
B(M,N) → Ext2

B(P,N) maps e to zero.
The short exact sequence ker ↪→ P �M gives a commutative diagram with exact
rows

Ext1
B(P,N) → Ext1

B(ker, N) → Ext2
B(M,N) → Ext2

B(P,N)
↓ ↓ ↓

Ext1
A(P,N) → Ext1

A(ker, N) → Ext2
A(M,N)

and a diagram chase proves the lemma.

Now consider any triangulated category D with t-structure and let P ⊂ D be the
core. In general one cannot extend the embedding P ⊂ D to a triangulated functor
Db(P) ⊂ D in a canonical way. However we have for all M,N ∈ P canonical maps
ExtiP(M,N) → Homi

D(M,N). This follows from the fact that for fixed M both
sides are δ-functors in N from P to the category of abelian groups, and the left
hand side is even a universal δ-functor.

Lemma 3.2.4. In the situation above, the canonical map

Ext2
P(M,N)→ Hom2

D(M,N)

is an injection.

Proof. Very similar to the proof of the previous lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



500 A. BEILINSON, V. GINZBURG, AND W. SOERGEL

3.3. Existence of projective perverse sheaves. We want to prove that suit-
able categories of perverse sheaves have enough projective objects. This is due to
[MV87]. However we think that our argument is easier. In fact, it is quite similar
to an argument of [CPS91].

Let X be a complex algebraic variety with an algebraic stratification by affine

linear spaces X =
⋃̇
w∈WXw. Let D(X,W) ⊂ D(X) consist of all objects which

are smooth along the stratification and set P(X,W) = P(X) ∩ D(X,W). Let jw :
Xw → X be the inclusions of the strata. Put |w| = dimXw, so Xw

∼= C|w|. Let
Cw = Xw[−|w|] be the constant perverse sheaf on Xw, and consider the standard
and costandard objectsMw = jw!Cw,Nw = jw∗Cw. By our assumptions jw is affine,
hence both Mw and Nw belong to P(X,W). We will need

Theorem 3.3.1. There are enough projectives in P(X,W), and each one has a
filtration with standard objects as subquotients. Dually, there also are enough in-
jectives in P(X,W), and each one has a filtration with costandard objects as sub-
quotients.

Proof. This is a direct consequence of Theorem 3.2.1.

For simplicity suppose now, in addition, that X is smooth. Then we may inter-
pret P(X) as a category of D-modules and D(X) as a category of complexes of D-
modules, and in this way get an evident extension of the embedding P(X)→ D(X)
to a triangulated functor Db(P(X)) → D(X). This in turn gives us in an obvious
way a functor Db(P(X,W))→ D(X,W), and under our assumptions we obtain

Corollary 3.3.2. The obvious functor Db(P(X,W))→ D(X,W) is an equivalence
of categories.

Proof. By Corollary 3.2.2 we see that the left hand side is generated as a trian-
gulated category by the projectives and also by the injectives in P(X,W). So we
need only show that for P, I ∈ P(X,W) a projective (resp. injective) object we
have Homi

Db(P(X,W))(P, I) = Homi
D(P, I). This is clear for i = 0, and for i 6= 0

both sides vanish: the left hand side since it is just an Ext group in P(X,W), the
right hand side since P (resp. I) has a filtration with standard (resp. costandard)
sucessive quotients and Homi

D(Mv,Nw) = 0 for i 6= 0.

3.4. Calculation of some extensions. Consider a complex algebraic variety X
filtered by closed subvarieties X = X0 ⊃ X1 ⊃ . . . ⊃ Xr = ∅ and F ∈ D(X). To
computeH•F we have to choose an injective resolution I• of F and take cohomology
of the complex of global sections Γ(I•). This is filtered by supports, 0 ⊂ ΓXr (I

•) ⊂
. . . ⊂ ΓX0(I•) = Γ(I•). So its cohomology is the limit of a spectral sequence

with E1-term Ep,q1 = Hp+qXp−Xp+1
(F), the local hypercohomology of F along Xp −

Xp+1. For v : Y ↪→ X locally closed we have H•Y (F) = H•v!F . So if we let ip :
(Xp − Xp+1) ↪→ X be the inclusion, the E1-term can also be written as Ep,q1 =
Hp+qi!pF . For L,M ∈ D(X) we then find that Hom•(L,M) = H•RHom(L,M)

is the limit of a spectral sequence with E1-term Ep,q1 = Hp+qi!pRHom(L,M) =

Hp+qRHom(i∗pL, i!pM).
Now let X be a complex variety with an algebraic stratification by affine linear

spaces X =
⋃̇
w∈WXw. Let jw : Xw → X be the inclusions of the strata. Put

|w| = dimXw, so Xw
∼= C|w|. Consider the intersection cohomology complexes

ICw ∈ P(X) of the Xw. For all i the perverse cohomology H−ij∗vICw ∈ P(Xv) is
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of the form H−ij∗vICw ∼= niv,wCv where Cv ∈ P(Xv) is the constant sheaf put in

degree −|v| and niv,w ∈ N are multiplicities. We may assemble the constants niv,w
together in a W ×W-matrix IC(t) = IC(X, t) with entries in Z[t] given by

ICv,w(t) =
∑
i

niv,wt
i.

In fact, since the j∗v are right exact for the perverse t-structure, niv,w = 0 for
i < 0. By definition the diagonal entries of our matrix IC(t) are all one, and for
an ordering of W compatible with the closure relations between strata the whole
matrix is upper triangular.

Theorem 3.4.1. Suppose we have parity vanishing, i.e. Hij∗vICw = 0 unless i ≡
|v|+ |w| (mod 2). Then∑

i

ti dim Homi
D(ICx, ICy) =

∑
z

ICz,x(t)ICz,y(t)

is just the (x, y)-entry of ICT · IC.

Remark. Instead of parity vanishing we might as well assume pointwise purity of
the ICx. The idea to use parity vanishing comes from [CPS91].

Proof. We apply the preceding considerations to L = ICx, M = ICy, and the
filtration by the Xp =

⋃
|x|+p≤dimX Xx. Thus Hom•D(ICx, ICy) is the limit of a

spectral sequence with E1-term

Ep,q1 = Hp+qRHom(i∗pICx, i!pICy)
= ⊕|z|+p=dimXHp+qRHom(j∗zICx, j!

zICy).

Our assumptions say that

j∗zICx ∼=
⊕
µ

nµz,xCz[µ]

and dually

j!
zICy ∼=

⊕
ν

nνz,yCz[−ν],

and now parity vanishing tells us that our spectral sequence vanishes “like a chess-
board”. It follows that it degenerates at the E1-term, and we deduce that

dim Homi
D(ICx, ICy) =

∑
p+q=i

dimEp+q1 =
∑

z,µ+ν=i

nµz,xn
ν
z,y.

This proves our theorem.

In the same setup we can also prove

Proposition 3.4.2. Suppose we have parity vanishing. Then hypercohomology in-
duces an injection

Hom•D(ICx, ICy)→ HomC(H•ICx,H•ICy).

Proof. By parity vanishing the spectral sequence Hp+qi!pICx ⇒ HnICx is degen-
erate. So if f ∈ Hom•D(ICx, ICy) is given such that H•f = 0, then necessarily
0 = i!pf ∈ Hom•D(i!pICx, i!pICy) for all p. Let ap : Xp ↪→ X be the inclusion. We
have a decomposition

Xp −Xp+1
u
↪→ Xp

i←↩ Xp+1
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in an open and a closed subset and a distinguished triangle (u∗u
!, id, i!i

!)a!
p, which

shows that a!
p+1f = 0 = i!p+1f ⇒ a!

pf = 0. Hence by induction i!pf = 0 ∀p implies

f = a!
0f = 0.

3.5. Localization of Oq. Let g ⊃ q ⊃ b be as in the introduction and let G ⊃ Q ⊃
B be the corresponding affine connected algebraic groups. We put SQ = Sq and
hence WQ =Wq, etc. Let PB(G/Q) ⊂ P(G/Q) be all perverse sheaves which are
smooth along B-orbits. So the simple objects of PB(G/Q) are just the intersection
cohomology complexes LQx of the closures of the B-orbits BxQ/Q, for x ∈ WQ. We
want to prove

Proposition 3.5.1. There exists an equivalence of categories Oq ∼= PB(G/Q) such
that Lq

x corresponds to LQx .
In fact, we will even construct an equivalence of triangulated categories from

Db(Oq) to the full subcategory DB(G/Q) ⊂ D(G/Q) consisting of all objects which
are smooth along B-orbits. Here the case q = b is localization [BB81].

Proposition 3.5.2. There exists an equivalence of triangulated categories LB :
Db(Ob) ∼= DB(G/B) such that the obvious t-structure on the left corresponds to the
perverse t-structure on the right and the induced equivalence Ob ∼= PB(G/B) maps
Lb
x to LBx for all x ∈ W.

Proof. For example [BB81, Soe86] and [Soe89a, Proposition 6].

We will now deduce the general case. Let π : G/B → G/Q be the projection
and d = dim(Q/B) its fibre dimension.

Theorem 3.5.3. There exists an equivalence LQ : Db(Oq) ∼= DB(G/Q) of trian-
gulated categories such that the obvious t-structure on the left corresponds to the
perverse t-structure on the right and the induced equivalence Oq ∼= PB(G/Q) maps
Lq
x to LQx for all x ∈ WQ. Furthermore, the diagram

Db(Oq) ∼= DB(G/Q)
↓ ↓ π![−d]

Db(Ob) ∼= DB(G/B)

commutes up to natural equivalence, and its vertical arrows are faithful functors.

Proof [Theorem]. We procede in several steps.

Step 1. We show that π! : D(G/Q)→ D(G/B) is faithful. More precisely, we prove

Lemma 3.5.4. There exist natural isomorphisms π!π
!F =

⊕
x∈WQ

F [2l(x)] for

F ∈ D(G/Q).

Proof. By the decomposition theorem π!G/B ∼=
⊕

x∈WQ
G/Q[−2l(x)]. Choose such

an isomorphism. Then we get

π!π
!F = π∗RHom(G/B, π!F)

= RHom(π!G/B,F)

=
⊕

x∈WQ
F [2l(x)]

where the second step is Verdier duality.

Step 2. Let PQ−1(G/B) be the category of all perverse sheaves on G/B which are

smooth along the strata BxQ/B. The simple objects of this category are the LBx
with x ∈ WQ.
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Proposition 3.5.5. The functors π![−d] and Hdπ! define an equivalence of cate-
gories PQ−1(G/B) ∼= PB(G/Q) such that LBx corresponds to LQx .

Proof [Proposition]. Let us first show how Hdπ! : P(G/B)→ P(G/Q) is the right
adjoint of π![−d] : P(G/Q) → P(G/B). Indeed for G ∈ P(G/B), F ∈ P(G/Q) we
have

HomD(G, π![−d]F) = HomD(π![d]G,F)
= HomD(Hdπ!G,F);

the latter equality follows since we know that π![d]G is concentrated in perverse
degrees ≤ 0. Next we show that for any F ∈ P(G/Q) the adjointness map going
from (Hdπ!)(π

![−d])F to F is an isomorphism. Indeed, this follows immediately
from the preceding lemma. Now we need

Lemma 3.5.5. The functor Hdπ! : PQ−1(G/B)→ PB(G/Q) is exact.

Proof. It is sufficient to show that for all G ∈ PQ−1(G/B) and all i of parity
different from d we have Hiπ!G = 0. We may even assume G simple, say G = Lx,
x ∈ WQ. But then G ∼= π![−d]LQx , and parity vanishing follows from the preceding
lemma.

Finally we show that for all G ∈ PQ−1(G/B) the adjointness map going from G
to (π![−d])(Hdπ!)G is an isomorphism. This is clear for all G of the form π![−d]F ,
in particular for all simple G. Then it follows for all G from the five lemma. The
proposition is proven.

Step 3. It is evident that the equivalence Ob ∼= PB(G/B) of Proposition 3.5.2
induces an equivalence Oq ∼= PQ−1(G/B). Together with the preceding proposition
we get now a diagram of exact functors

Oq ∼= PB(G/Q)
↓ ↓ π![−d]
Ob ∼= PB(G/B)

that commutes up to natural equivalence. Certainly we can go over to bounded
derived categories and obtain a diagram

Db(Oq) ∼= Db(PB(G/Q))
↓ ↓ π![−d]

Db(Ob) ∼= Db(PB(G/B)).

So to prove the theorem we have only to establish a commutative diagram

Db(PB(G/Q)) −→ DB(G/Q)
π![−d] ↓ ↓ π![−d]

Db(PB(G/B)) −→ DB(G/B)

such that the horizontal arrows are equivalences. For the definition of these hor-
izontal arrows, remark that for smooth X we may interpret P(X) as a category
of D-modules and D(X) as a category of complexes of D-modules, and get in this
way an evident extension of the embedding P(X) → D(X) to an exact functor
Db(P(X)) → D(X). From this point of view it is clear how to define the hori-
zontal arrows, and it is equally clear that the diagram commutes. We then apply
Corollary 3.3.2 to see that the horizontal functors are equivalences. The theorem
is proved.
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We now want to discuss standard objects. Recall the parabolic Verma modules
Mq
x ∈ Oq from the introduction, and let MQ

x = jx!Cx ∈ PB(G/Q) be the standard
objects.

Proposition 3.5.7. Our equivalence Oq ∼= PB(G/Q) identifies Mq
x and MQ

x .

Proof. This is clear, since Mq
x is the projective cover of Lq

x in Oq

≤x and MQ
x is the

projective cover of LQx in PB(G/Q)≤x (see section 3.2 for the notation).

Remarks. (1) The proposition allows us to avoid the use of sections 3.2 and 3.3
in the proof of the theorem. Namely, the only thing we used was Corollary
3.3.2 for the stratified space G/Q, and to prove this corollary we only needed
that PB(G/Q) has (1) finite homological dimension, (2) enough projectives
and injectives, and that (3) each projective (resp. injective) has a filtration
with standard (resp. costandard) subquotients. But (1)–(3) are known for
Oq, hence they follow for the equivalent category PB(G/Q).

(2) Let us mention that the theorem allows us to interpret the derived functors
of the left and right adjoint of the inclusion Oq → Ob geometrically as the
left and right adjoints of π![−d], i.e. as π![d] and π∗[−d]. This in turn allows
us to compute the effect of these “derived parabolic truncation functors” on
simple objects.

3.6. Extensions of simple objects in Oq. To any two elements x, y of the
Weyl group, Kazhdan and Lusztig [KL80a] associate the so-called KL-polynomial
Px,y(q) ∈ Z[q]. Furthermore, they prove [KL80b] that the intersection cohomology

matrix IC(G/Q, t) of the stratified space G/Q =
⋃̇
w∈WQBwQ/Q can be expressed

in terms of their polynomials as

IC(G/Q, t)x,y = Px,y(t
−2)tl(y)−l(x) ∀x, y ∈ WQ.

Let us denote this matrix by PQ = PQ(t). Remember now our algebra

AQ = Ext•Oq(⊕Lq
x,⊕Lq

x)

from section 1.3.

Proposition 3.6.1. The Hilbert polynomial of AQ is P (AQ, t) = (PQ)TPQ.

Proof. Indeed,

P (AQ, t)x,y =
∑
i t
i dim ExtiOq(Lq

y, L
q
x) by definition

=
∑
i t
i dim Homi

D(LQy ,LQx ) by the preceding section
= ((PQ)TPQ)x,y by Theorem 3.4.1.

3.7. Parabolic-singular duality. We want to establish the first isomorphism of
Theorem 1.1.3.

Theorem 3.7.1. Let λ, q be as in the introduction and suppose Sλ = Sq. Then
there is an isomorphism of C-algebras

EndOλ(⊕P (x · λ)) ∼= Ext•Oq(⊕Lq
x,⊕Lq

x)

such that the obvious idempotents 1x on both sides correspond.

Proof. We will describe both sides in a combinatorial way to see that they are the
same. In the case q = b this is done in [Soe90]. We will now reduce our more
general situation to this case.
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Step 1. The dimensions of both sides coincide.

Let (P (x · λ) : M(z · λ)) be the Verma flag multiplicities. They are related to
Jordan-Hölder-multiplicities by the so-called BGG-reciprocity formula

(P (x · λ) : M(z · λ)) = [M(z · λ) : L(x · λ)].

Now we calculate

dim EndOλ(
⊕
P (x · λ)) =

∑
x,y∈WQ[P (x · λ) : L(y · λ)]

=
∑
x,y,z∈WQ(P (x · λ) : M(z · λ))[M(z · λ) : L(y · λ)]

=
∑
x,y,z∈WQ[M(z · λ) : L(x · λ)][M(z · λ) : L(y · λ)]

=
∑
x,y,z∈WQ Pz,x(1)Pz,y(1) by the KL-conjectures

= dim Ext•Oq(⊕Lq
x,⊕Lq

x) by Proposition 3.6.1

Step 2. Combinatorial description of the left hand side.

Let S = S(h) be the symmetric algebra over h, C = C(h) = S/(S+)WS the
coinvariants for the action of the Weyl group, and Cλ = Cλ(h) = CWλ the Wλ-
invariants in C. Let Pλ = P (w◦ · λ) ∈ Oλ be a projective cover of the simple
Verma module. If θout : Oλ → O0 is the translation out of the walls, we have
θoutPλ ∼= P0. In [Soe90, Ber90] one may find the construction of isomorphisms Cλ =
EndOPλ. Under these isomorphisms the map EndOPλ → EndOθ

outPλ = EndOP0

corresponds to the inclusion Cλ ↪→ C0 = C. The isomorphisms Cλ = EndOPλ give
rise to the functors V = Vλ = HomO(Pλ, ) : Oλ → Cλ-Mof. In [Soe90] it is proved
that V induces isomorphisms HomO(P (x·λ), P (y·λ)) → HomCλ(VP (x·λ),VP (y·λ))
for all x, y ∈ Wλ. Thus EndOλ(⊕P (x · λ)) ∼= EndCλ(⊕VP (x · λ)).

Step 3. Combinatorial description of the right hand side.

Analogously to Cλ = Cλ(h) one may define Cq = Cq(h∗). Define a grading on Cq

by requiring that h∗ has degree 2. In [BGG73] one may find the construction of an
isomorphism of graded C-algebras Cq

∼= H•(G/Q), the cohomology ring of G/Q.
Under this isomorphism the pull-back H•(G/Q) → H•(G/B) corresponds to the
inclusion Cq ↪→ Cb = C. In this way the hypercohomology gives rise to a functor
H• : D(G/Q)→ Cq-mof. By Proposition 3.4.2 hypercohomology induces injections

Ext•D(LQx ,LQy )→ HomCq
(H•LQx ,H•LQy )

of graded vector spaces over C. Theorem 3.5.3 gives isomorphisms

Ext•Oq(Lq
x, L

q
y)
∼= Ext•D(LQx ,LQy ).

Hence we have an injection Ext•Oq(⊕Lq
x,
⊕
Lq
x) ↪→ EndCq

(⊕H•LQx ), which will soon
turn out to be an isomorphism.

Step 4. The isomorphism.

Choose a W-equivariant isomorphism h ∼= h∗. Since Sλ = Sq, this gives an iso-
morphismCλ ∼= Cq.We just have to prove that there exist isomorphisms VP (x·λ) ∼=
H•LQx in Cλ-Mod ∼= Cq-Mod. (Remark that by Steps 1 and 2 this implies in partic-
ular that the injection at the end of the preceding step is indeed an isomorphism.)
The existence of an isomorphism VP (x · 0) ∼= H•LBx is established in [Soe90]. The
general case then follows directly from

Lemma 3.7.2. (i) For all x ∈ Wλ there exists an isomorphism in Cλ-Mod

resCCλV0P (x · 0) ∼= ⊕z∈Wλ
VλP (x · λ).
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(ii) For all x ∈ Wq there exists an isomorphism in Cq-mod

resCCq
H•LBx ∼= ⊕z∈Wq

(H•LQx )〈2l(z)− d〉.

Proof. (i) Let θon : O0 → Oλ be the translation onto the walls. It is known that
θonθ

out is just a direct sum of |Wλ| copies of the identity functor on Oλ. Now for
all x ∈ Wλ we have θoutP (x · λ) ∼= P (x · 0), hence θonP (x · 0) ∼=

⊕
z∈Wλ

P (x · λ).

But, in addition, by the adjointness of the pair (θout, θon)

Vλ(θonM) = HomO(Pλ, θonM)
= HomO(P0,M)
= resCCλ(V0M)

for all M ∈ O0. Hence resCCλV0P (x · 0) ∼=
⊕

z∈Wλ
VλP (x · λ).

(ii) For all x ∈ WQ we have

resCCq
H•LBx = H•π∗LBx

= H•π!π
!LQx [−d]

= ⊕z∈WQH•(LQx [2l(z)− d])
= ⊕z∈WQ(H•LQx )〈2l(z)− d〉.

The theorem is proved.

Recall now the ring AQ = Ext•O(⊕L(x · λ),⊕L(x · λ)).

Corollary 3.7.3. We have a ring isomorphism AQ ∼= E(AQ) such that the obvious
idempotents 1x on both sides correspond.

Proof. As explained in section 1.3, the theorem gives an equivalence of categories

Oλ ∼= AQ-Mof

identifying L(x · λ) ∈ Oλ with A0
Q1x ∈ AQ-Mof. From this we deduce an isomor-

phism of extension rings

Ext•Oλ(⊕L(x · λ),⊕L(x · λ)) ∼= Ext•AQ(A0
Q, A

0
Q).

3.8. Canonicity of the grading on Oλ. A very annoying feature of our paper
is that at lots of places we just prove the existence of isomorphisms, instead of
really constructing them. This might be an indication that we do not yet have the
correct point of view. We want to explain in this section a part of our constructions
that is canonical. Namely, we construct (in the notation of the preceding section)
a completely canonical equivalence of categories

Mof-(End•D(⊕LQx ))→ Oλ.
This can be done as follows: First put Pλ = θoutM(−ρ). This is a projective cover
of the simple Verma module M(w◦ · λ) ∈ Oλ that doesn’t depend on any choices,
and we have canonically EndgPλ = Cλ. Then we identify h with h∗ via the Killing
form and obtain an identification Cλ ∼= Cq. Via this identification the intersection
cohomology groups H•LQx of the closures of B-orbits in G/Q can be considered as
Cλ-modules, and we may form the g-modules

P (x · λ) = HomCλ(H•LQx , Pλ)

for each x ∈ WQ. With the same arguments as in the proof of [Soe90, Proposition
6], we see that these P (x · λ) are projective covers of the L(x · λ) in Oλ. (However
we cannot canonically construct surjections P (x · λ) � L(x · λ).) Let us put P =
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P (x · λ). This is a completely canonical projective generator of Oλ, and the

obvious map

(End•D(
⊕
LQx ))→ EndgP

is an isomorphism. Now P has commuting structures as a left g-module and as a
left EndgP -module. For general reasons the functor

⊗(EndgP )P : Mof-(EndgP )→ Oλ
is an equivalence of categories, and via the above isomorphism this gives the sought-
for equivalence

Mof-(End•D(⊕LQx ))→ Oλ.
3.9. The ring AB is Koszul. The “correct” proof of this fact is geometric and
will be given in section 4. Here we give two less conceptual but easier proofs via
selfduality.

Theorem 3.9.1. AB is Koszul.

First Proof. By the numerical Koszulity criterion we only need to check the matrix
equation P (AB , t)P (E(AB),−t) = 1. Here P (AB, t) = (PB)TPB by Proposition
3.6.1. To compute the Hilbert polynomial of E(AB) we use selfduality. Namely,
the corollary above gives us an isomorphism E(AB) ∼= AB, but since Ob = O0

and Lb
x = L(x−1w◦ · 0) we have an identity AB = AB with 1x corresponding

to 1x−1w◦ . So, up to a reindexing of our idempotents, E(AB) = AB, and hence
if we define the W × W-matrix PB = PB(t) by (PB)x,y = PBw◦x−1,w◦y−1 , then

P (E(AB), t) = PTBPB. But now the inversion formulas for KL-polynomials from
[KL80a] yield PB(t)PB(−t)T = 1. Hence

P (AB , t)P (E(AB),−t) = (PB(t))TPB(t)PB(−t)TPB(−t) = 1.

Second Proof. This is due to Roman Bezrukavnikov. One deduces the theorem
from the following

Lemma 3.9.2. Suppose A is a positively graded ring over the semisimple ring A0 =
k. Suppose furthermore A is an algebra over a field F and dimF Ai <∞ for i = 0, 1.

If there is an isomorphism of graded F -algebras A ∼= E(A), then A is Koszul.

Proof. Remark first that for any V ∈ k-Mof we have dimF (V ∗) = dimF V, for
V ∗ = Homk(V, k) as in section 2.7. Remark next that if M,N ∈ A-mod are graded
A-modules and Ni = 0 for all but finitely many i, then

HomA(M,N) =
∏
ν

homA(M,N〈ν〉)

and even

ExtiA(M,N) =
∏
ν

extiA(M,N〈ν〉).

Now consider I = A>0 and the short exact sequence I ↪→ A� k. From this we get
a commutative diagram

Ext1
A(k, k) = (I/I2)∗

↑ ↑
ext1

A(k, k〈1〉) = A∗1

where the vertical arrows are inclusions. Now our selfduality assumption tells us
that both rows have the same dimension over F, hence Ext1

A(k, k) = ext1
A(k, k〈1〉)
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and (I/I2) = A1. But from (I/I2) = A1 it follows that A is generated by A1 over
k; hence, using selfduality again, E(A) is generated by Ext1

A(k, k) = ext1
A(k, k〈1〉)

over kopp. This in turn implies ExtiA(k, k) = extiA(k, k〈i〉) for all i, hence A is Koszul
by Proposition 2.1.3.

Now remark as before that there is an isomorphism of graded C-algebras AB ∼=
E(AB). The theorem follows immediately from the lemma.

Remark. We can now run the first proof backwards and deduce the inversion for-
mulas for Kazhdan-Lusztig polynomials from the selfduality of AB .

3.10. The rings AQ and AQ are Koszul. Here our argument avoiding mixed
geometry is really screwed-up. By a “Koszul grading” on a ring we mean a grading
such that the corresponding graded ring is Koszul. Consider firstAq = EndO(⊕P q

x ).

Proposition 3.10.1. The ring Aq can be given a Koszul grading.

Proof. Consider the equivalence of categories Ob ∼= Mof-AB . Since

Oq = {M ∈ Ob | [M : Lb
x] 6= 0⇒ x ∈ WQ},

this induces an equivalence of categories Oq ∼= Mof-(AB/IQ), where IQ ⊂ AB is
the two-sided ideal generated by all 1x with x ∈ W \WQ. Since both AB/IQ and
Aq are basic rings with the same category of right modules Oq, we find that they
are isomorphic.

To prove the proposition we will show that the graded ring AB/IQ is Koszul. So
we need to show that extensions between pure objects of mof-(AB/IQ) vanish unless
our objects have the correct weight. But since we know already that AB is Koszul,
it will be sufficient to show that the restriction functor Mof-(AB/IQ)→Mof-(AB)
induces injections on extensions. In other words, we have to show that the inclusion
Oq → Ob induces injections on extensions. But this is just the “faithful”-part of
Theorem 3.5.3.

Theorem 3.10.2. (1) The ring AQ is Koszul.
(2) The ring AQ is Koszul.
(3) We have Aq ∼= AQ.

Proof. (1) Under the equivalence of categories Oq ∼= Mof-Aq the objects
⊕
Lq
x and

Aq

0 correspond, both being just the direct sum of “all” simples (i.e. taking one from
each isomorphism class). Hence we get a ring isomorphism

Ext•Oq(
⊕

Lq
x,
⊕

Lq
x) ∼= Ext•−Aq(Aq

0, A
q

0),

which can be read as AQ ∼= E((Aq)opp). Hence by Proposition 2.2.1 and Theorem
2.10.2 the ring AQ is Koszul.

(2) We already know that AQ ∼= E(AQ) from Corollary 3.7.3. Hence AQ is
Koszul by Theorem 2.10.2.

(3) The isomorphism AQ ∼= E((Aq)opp) leads to E(AQ) ∼= (Aq)opp, by Theorem
2.10.2. But from Corollary 3.7.3 we deduce that E(AQ) ∼= AQ, and we know that
AQ ∼= (AQ)opp by the existence of a duality on Oλ.
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3.11. Graded representation categories and Koszul duality. Given λ, q as in
the introduction with Sλ = Sq, we constructed finite dimensional graded C-algebras
AQ, A

Q which are Koszul rings with degree zero part the semisimple ring k(Q) =⊕
x∈WQ C1x. We furthermore obtain isomorphisms (AQ)opp = AQ, (AQ)opp = AQ

over k(Q) from the dualities on Oλ, resp. Oq, and in section 1.3 we deduced the
following facts from Theorem 1.1.3 (whose proof is already complete):

(1) There exists an equivalence of C-categories AQ-Mof ∼= Oλ identifying A0
Q1x

with L(x · λ).

(2) There exists an equivalence of C-categories AQ-Mof ∼= Oq identifying AQ0 1x
with Lq

x.
(3) There exists an isomorphism A!

Q
∼= AQ of graded C-algebras over k(Q).

Let us put OQ = AQ-mof. Forgetting the grading v together with a choice of an
equivalence as in (1) gives us an exact functor v : OQ → Oλ.We have v(M〈i〉) = vM
for every M ∈ OQ, and for any M,N ∈ OQ the obvious maps⊕

ExtnOQ(M〈i〉, N)→ ExtnOλ(vM, vN)

are isomorphisms. For x ∈ WQ let us define the objects LxQ = A0
Q1x and P xQ =

AQ1x in OQ. The LxQ are simple, and every simple object of OQ is isomorphic

to exactly one of the LxQ〈i〉. The P xQ are projective covers of the LxQ. Obviously
P xQ, L

x
Q ∈ OQ are lifts of P (x ·λ), L(x ·λ) ∈ Oλ, i.e. vP xQ

∼= P (x ·λ), vLxQ
∼= L(x ·λ).

We also want to lift the Verma modules to OQ. To this end, note that M(x · λ) is
the projective cover of L(x · λ) in the truncated category

(Oλ)6<x = {M ∈ Oλ | y < x⇒ [M : L(y · λ)] = 0}.

This means that under our equivalence Oλ ∼= AQ-Mof the Verma module M(x · λ)
has to correspond to (AQ/I<x)1x, where I<x ⊂ AQ is the two-sided ideal gen-
erated by all 1y with y < x in the Bruhat order. So let us just define Mx

Q =

(AQ/I<x)1x ∈ OQ. We also define a duality d : OQ → OQ on OQ by the formula
dM = HomC(M,C), using the isomorphism AQ = Aopp

Q . Then d(M〈i〉) = (dM)〈−i〉
and dLxQ

∼= LxQ.

Analogously we define the category OQ = AQ-mof, the “forgetting of the grad-
ing” v : OQ → Oq, and the lifts PQx ,M

Q
x , L

Q
x ∈ OQ of P q

x ,M
q
x , L

q
x ∈ Oq. Note that

all of these are to a certain extent unique: Up to isomorphism there is a unique basic
algebra Aq describing the category Oq. There are several possible Koszul gradings
on Aq, but by Corollary 2.5.2 all of these give rise to a graded ring isomorphic to
AQ. And since by Lemma 2.5.3 the lifts of indecomposable objects are unique up to
shift of grading and isomorphism, LQx can be characterized (up to isomorphism) as
the unique lift of Lq

x that is pure of weight zero, and then PQx ,M
Q
x are the unique

lifts of P q
x ,M

q
x surjecting onto LQx . Similar remarks apply to OQ. In this notation,

we can state

Theorem 3.11.1. There exists a contravariant equivalence of triangulated cate-
gories over C

Kd : Db(OQ) −→ Db(OQ)

such that P xQ, M
x
Q, L

x
Q ∈ OQ get mapped to LQx , M

Q
x , P

Q
x ∈ OQ, for all x ∈ WQ,

and Kd(M [n]) = (Kd(M))[−n], Kd(M〈n〉) = (Kd(M))[n]〈n〉 for all M.
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Proof. We may define Kd as the composition

Db(OQ)
d−→ Db(OQ) = Db(AQ-mof)

K−→ Db(A!
Q-mof) ∼= Db(AQ-mof) = Db(OQ).

Then the only assertion which doesn’t follow directly from Theorem 2.12.6 and
the definitions is the formula KdMx

Q
∼= MQ

x . But this is readily deduced from the

following characterizations of MQ
x and Mx

Q.

Lemma 3.11.2. MQ
x is—up to isomorphism—the unique object M ∈ Db(OQ) such

that

(1) Hom(PQy 〈i〉,M [n]) 6= 0⇒ y ≤ x.
(2) Hom(PQx 〈i〉,M [n]) = C if i = n = 0, zero else.
(3) Hom(M〈i〉, LQy [n]) 6= 0⇒ y ≥ x.
(4) Hom(M〈i〉, LQx [n]) = C if i = n = 0, zero else.

Lemma 3.11.3. Mx
Q is—up to isomorphism—the unique object M ∈ Db(OQ) such

that

(1) Hom(P yQ〈i〉,M [n]) 6= 0⇒ y ≥ x.
(2) Hom(P xQ〈i〉,M [n]) = C if i = n = 0, zero else.

(3) Hom(M〈i〉, LyQ[n]) 6= 0⇒ y ≤ x.
(4) Hom(M〈i〉, LxQ[n]) = C if i = n = 0, zero else.

Proof. We will only prove the first lemma. Certainly M = MQ
x satisfies the stated

properties. On the other hand suppose M ∈ Db(OQ) also satisfies (1) through (4).
We deduce further properties of M.

(5) By (1) all cohomology groups Hν(M) have only composition factors LQy (i)

with y ≤ x. By (2) only H0(M) has a composition factor of the form LQx (i).
(6) From (5) and (3) we deduce that Hν(M) = 0 for ν > 0. By (4) then H0(M)

has the unique simple quotient LQx .
(7) By (5) and (6) there is a surjection MQ

x � H0(M). By (5) and (6) again this
can be lifted to a nonzero map MQ

x →M.

Now complete this map to a distinguished triangle MQ
x →M → E

[1]→ . We have
to show that E = 0. Let Hν(E) be the highest nonvanishing cohomology group.
Then there is a nonzero map E → LQy 〈i〉[ν] for suitable y, i. But y < x by (5) and
construction, and y ≥ x by (3). This contradiction shows that E = 0.

For any M ∈ O let M = rad0M ⊃ rad1M ⊃ . . . be the radical filtration and
put radiM = radiM/radi+1M. Parts (i) and (ii) of the following theorem are to be
seen as definition of the nx,yQ (i), nQx,y(i).

Theorem 3.11.4. (i)

dim ExtiO(M(x · λ), L(y · λ)) = [radiMq
x : Lq

y]
‖(1) ‖(3)

dim ExtiOQ(Mx
Q, L

y
Q〈i〉)

(2)
= [MQ

x : LQy 〈i〉]
‖ ‖(4)

nx,yQ (i) = (PQy : MQ
x 〈i〉)
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(ii)

dim ExtiOq(Mq
x , L

q
y) = [radiM(x · λ) : L(y · λ)]

‖(5) ‖(7)

dim ExtiOQ(MQ
x , L

Q
y 〈i〉)

(6)
= [Mx

Q : LyQ〈i〉]
‖ ‖(8)

nQx,y(i) = (P yQ : Mx
Q〈i〉).

(iii) If we collect the n’s into WQ×WQ-matrices PQ(t), PQ(t) with entries in Z[t]
given by (PQ(t))x,y =

∑
nQx,y(i)t

i, (PQ(t))x,y =
∑
nx,yQ (i)ti, then the matrix

equation

(PQ(t))TPQ(−t) = 1

holds (where the upper index T transposes the matrix).
(iv) In terms of the Kazhdan-Lusztig polynomials Px,y defined in [KL80a] we have

(PQ(t))x,y = Px,y(t−2)tl(y)−l(x),
(PQ(t))x,y =

∑
z∈WQ

(−1)l(z)Pxzw◦,yw◦(t
−2)tl(x)−l(y)

for all x, y ∈ WQ. Our polynomials are of degree l(y) − l(x) and l(x) − l(y)
respectively with leading coefficient one.

Remark. The equalities (1) (resp. (5)) mean that extensions of Vermas by simples
are “pure”, i.e. ExtiOQ(Mx

Q, L
y
Q〈n〉) = 0 unless i = n (resp. . . . ). This means that

our graded Vermas are “Koszul modules” in the terminology of section 2.14.

Proof. (i) We start with (3). We deduce from Proposition 2.4.1 that

[radiMq
x : Lq

y] = [MQ
x : LQy 〈i〉].

Next we prove (1) and (2) in one argument. Namely,

ExtiOQ(Mx
Q, L

y
Q〈n〉) = HomDb(OQ)(M

x
Q, L

y
Q〈n〉[i])

= HomDb(OQ)(P
Q
y ,M

Q
x [i− n]〈−n〉).

But clearly this vanishes if i 6= n, and in the case i = n it has dimension [MQ
x :

LQy 〈i〉].
To clarify the structure of the following arguments let us develop some general-

ities. For any abelian category A let [A] be its Grothendieck group. Any A ∈ A
gives [A] ∈ [A]. We often just write A instead of [A].

Now consider the Grothendieck group [OQ] of OQ. We let Z[t, t−1] act on it via
t[M ] = [M〈1〉]. Then it becomes a free Z[t, t−1]-module of rank |WQ| with three
bases [PQx ], [MQ

x ] and [LQx ]. Furthermore, [OQ] comes with a symmetric Z[t, t−1]-
bilinear form given by

〈M,N〉 =
∑
i,ν

(−1)i dim ExtiOQ(M,dN〈ν〉)tν .

With respect to this form the [PQx ] and the [LQx ] are dual bases, whereas the [MQ
x ]

form an orthonormal basis. It is then clear that

[M ] =
∑
z

〈PQz ,M〉[LQz ] =
∑
z

〈M,MQ
z 〉[MQ

z ]

for any M ∈ OQ. In other words, 〈PQz ,M〉 =
∑
i[M : LQz 〈i〉]ti and 〈M,MQ

z 〉 =∑
i(M : MQ

z 〈i〉)ti, where the “virtual Verma flag multiplicities” (M : MQ
z 〈i〉) are
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just defined by [M ] =
∑
z,i(M : MQ

z 〈i〉)[MQ
z 〈i〉] and coincide with the actual Verma

flag multiplicities in case M has a Verma flag. Now (4) follows from∑
i

[MQ
x : LQy 〈i〉]ti = 〈PQy ,MQ

x 〉 =
∑
i

(PQy : MQ
x 〈i〉)ti,

and we have established (i).
(ii) is proved the same way.
(iii) Note that (PQ(t))x,y = 〈PQy ,MQ

x 〉 and (PQ(−t))x,y = 〈MQ
x , L

Q
y 〉. This re-

duces our statement to linear algebra.
(iv) This follows from the literature [Soe89a, Irv90, Irv88, CC87, Bar83, BB86,

ES87]. The first equality is also a direct consequence of the results expounded in
section 3.5. Namely, we can compute

dim ExtiOq(Mq
x , L

q
y) = dim Homi

D(MQ
x ,LQy ) by section 3.5

= dim Homi
D(jx!Cx, ICy) in other notation

= dim Homi
D(Cx, j!

xICy) by adjointness,

and this certainly is a suitable coefficient of IC(G/Q, t)x,y = (PQ(t))x,y.

We also want to show that our graded versions of projectives admit graded Verma
flags. In the case of OQ this follows directly from the following proposition, whose
proof is stolen from [Jan87, II, 4.16]:

Proposition 3.11.5. Let M ∈ OQ be such that Ext1
OQ(M,dMx

Q〈j〉) = 0 for all

x, j. Then M has a filtration with subquotients My
Q〈j〉.

Proof. Without restriction we may suppose M 6= 0. Choose y ∈ W maximal such
that Hom(M,LyQ〈i〉) 6= 0 for some i. It follows that Hom(M,LzQ〈j〉) = 0 for all

z > y, all j. From the assumptions we know in particular that Ext1(M,dMz
Q〈j〉) = 0

for all z > y, all j. These two statements together give Ext1(M,LzQ〈j〉) = 0 for all

z > y, all j, and hence Ext1(M, radMy
Q〈i〉) = 0. Thus any nonzero morphism

M → LyQ〈i〉 lifts to a surjection M → My
Q〈i〉. But the kernel of this surjection

again satisfies the conditions of the proposition, and we are done by induction.

The case of OQ is similar. As another direct consequence of our results we obtain
a new proof of the following result from [Irv88, Bar83, BB86].

Proposition 3.11.6. Verma modules are rigid, i.e. for any µ ∈ h∗ the socle and
radical filtrations on M(µ) coincide.

Proof. We know that M(µ) has simple socle and simple top. By some equivalence of
categories [Soe90] we may suppose µ is integral, say µ = x·λ. Write M(x·λ) = vMx

Q.

By Proposition 2.4.1 both the socle and radical filtration on M(x · λ) correspond
to the grading filtration on Mx

Q.

Remark. The same argument proves that projectives in O with a simple socle are
rigid. This applies in particular to the projective covers of simple Verma modules.
In fact, the argument proves that any object in Oq or Oλ that has simple socle and
top and admits a graded version is rigid.

Continuing in the spirit of the above results one might for two parabolics P ⊂
Q define graded versions of translation functors θ!, θ∗ : OP → OQ and θ!, θ∗ :
OQ → OP . Their derived functors should correspond under Koszul duality to the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KOSZUL DUALITY PATTERNS 513

graded derived versions of the embedding Oq ↪→ Op and its adjoints, the “parabolic
truncation functors”. However we didn’t work this out.

4. Koszul rings arising from ‘mixed’ geometry

One knows that various categories of representations may be interpreted geomet-
rically as categories of perverse sheaves. For example, the category Oq (for regular
integral weight) is equivalent to the category PB(G/Q) of perverse sheaves on G/Q
which are smooth along the Schubert stratification (see 3.5). In this section we
show that the graded representation category OQ may be identified with an ap-
propriate full subcategory of the corresponding category PB(G/Q)mixed of mixed
perverse sheaves. As a bonus, we also get a natural explanation of the Koszulity of
OQ.

The categories of (mixed) sheaves do not arise naturally as the categories of
modules over some algebra. In the preliminary sections we develop some category
language to overcome this nuisance.

4.1. Mixed categories and graded algebras (see [BMS87, BGS88]). For sim-
plicity we fix a ground field F and assume that all categories are F -categories and
all functors are F -linear. By an “artinian category” we mean an abelian category
with objects of finite length. For an artinian category A we denote by IrrA the set
of isomorphism classes of irreducible objects of A.

Definition 4.1.1. A mixed category is an artinian category M equipped with a
map wM = w : IrrM → Z (called a weight) such that for any two irreducible
objects M,N one has Ext1(M,N) = 0 if w(M) ≤ w(N).

Let (M, w) be a mixed category. An object M ofM is called pure of weight i if
all its irreducible components have same weight i. Any such object is semisimple.
Denote by Mi the full subcategory of pure objects of weight i. Clearly, Mss =⊕
Mi is the full subcategory formed by all semisimple objects of M.

Lemma 4.1.2. Any object L ∈ M has a unique finite increasing filtration W• =
W•L such that grWi L = WiL/Wi−1L is a pure object of weight i for all i ∈ Z. Any
morphism in M is strictly compatible with W•.

Proof. Left to the reader.

The filtration W• is called a weight filtration. Note that any full subcategoryM′ ⊂
M closed under direct sums and subquotients is itself a mixed category (with
respect to wM′ = wM′ |M). Given any set of objects S in M, we denote by MS

the smallest such subcategory that contains S.

Definition 4.1.3. A functor π :M(1) →M(2) between mixed categories is called

pure if π is exact and sends M(1)
i to M(2)

i , for each i ∈ Z.

For example, the above embedding MS ↪→ M is pure, and any fully faithful
pure embedding comes this way. The mixed categories form a 2-category with
1-morphisms being pure functors.

Examples. (1) The category HF of polarizable F -Hodge structures is a mixed
category (we assume F ⊂ C and take the usual weight w). More generally,
the category H(X) of mixed Hodge modules on an algebraic variety X over
C is a mixed category (see [Sai90]).
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(2) The category M(X) of mixed Ql-sheaves on an algebraic variety X over a
finite field is not mixed. However, its full subcategory consisting of those
perverse sheaves F with grWi F semisimple for all i ∈ Z is mixed. Unfortu-
nately, one still does not know if this mixed category is stable with respect to
various standard functors (e.g., if the action of the Frobenius on H•(X,Ql)
is semisimple, the so-called “standard conjectures”).

Remark. The above examples explain the origin of the name mixed categories.
The still conjectural categories of mixed motivic F -sheaves on an algebraic variety
should also be mixed if charF = 0. Beware that if charF 6= 0, then these categories
are not mixed categories in the sense of 4.1.1.

Definition 4.1.4. For an integer d a degree d Tate twist on a mixed category
M is an automorphism 〈d〉 of M, written M 7→ M〈d〉, with the property that
w(M〈d〉) = w(M) + d for all M ∈ IrrM.

Then for any M one has Wi(M〈d〉) = (Wi−dM)〈d〉. For any n ∈ Z we denote
by 〈nd〉 the n-th power of 〈d〉, so that 〈−d〉 is the inverse to 〈d〉 and 〈nd〉 ◦ 〈md〉 =
〈(m + n)d〉. If n ∈ Z, then 〈nd〉 is a degree nd Tate twist. If M1,M2 are mixed
categories equipped with Tate twists 〈d〉i of the same degree d, then for any pure
functor φ :M1 →M2 the functor 〈d〉2 ◦ φ ◦ 〈−d〉1 is also pure. We’ll say that φ is
compatible with Tate twists if we are given an isomorphism ε : φ ∼= 〈d〉2 ◦ φ ◦ 〈−d〉1.
Thus the mixed categories equipped with degree d Tate twists form a 2-category
with 1-morphisms being pairs (φ, ε) as above. The mixed categories occurring in
the above examples are equipped with a standard Tate twist of degree −2. We write
F〈−2n〉 = F(n).

Sometimes it is convenient to represent 〈d〉 as d-th power of a degree 1 Tate
twist 〈1〉. One may do this in a universal manner as follows. Put M1/d :=⊕

0≤a≤d−1M(a) (the sum of d copies of M). Denote by 〈1〉 the automorphism

of M1/d that shifts M(a) ⊂ M1/d to M(a+1) for a < d − 1, and coincides with

M(d−1) = M 〈d〉→ M = M(0) on M(d−1). Let us identify M with M(0) ⊂ M1/d.
ThenM1/d is a mixed category with respect to the weight w defined as w(M〈i〉) =
w(M) + i for M ∈ IrrM⊂ IrrM1/d,M⊂M1/d is a pure fully faithful embedding,
and 〈d · 1〉 coincides with 〈d〉 on M.

The most trivial example of a mixed category with degree 1 Tate twist is the
category vectF of graded finite dimensional vector spaces over a field F. Although
this is not necessary for us from a strictly logical point of view, let us show in the
remainder of this subsection that any mixed F -category with Tate twist and finite
dimensional Hom’s is equivalent to the category of graded vector spaces equipped
with certain extra symmetries.

Definition 4.1.5. A mixed algebra A is a projective limit of a family of graded
finite dimensional algebrasA•α such that Aiα = 0 for i < 0 and the A0

α are semisimple
F -algebras.

In other words, a mixed algebra A =
∏
Ai is a ring object in the abelian tensor

category lim←−(vectF ) of graded profinite dimensional vector spaces such that Ai = 0

for i < 0 and A0 is a projective limit of semisimple algebras. For a mixed algebra
A we denote by A-mof the category of F -finite dimensional continuous A-modules,
i.e. for A = lim←−(Aα) one has A-mof =

⋃
αAα-mof. If M ∈ A-mof is an irreducible

module, then A>0M = 0, i.e. M is actually an irreducible A0 = A/A>0-module.
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It is supported in a single degree i, i.e. M j = 0 for j 6= i; set w(M) := −i. It
is clear that (A-mof, w) is a mixed category. The shift of degrees functor M 7→
M〈1〉, (M〈1〉)i = M i−1, is a degree 1 Tate twist on A-mof. Note that the category
lim−→(A-mof)0 (which is the category of all continuous non-graded A0-modules) has
a distinguished object T defined by the property Hom(T,M) = M for any M ∈
(A-mof)0; clearly T contains any irreducible object with finite non-zero multiplicity.

Proposition 4.1.6. The correspondence A 7→ (A-mof, w, 〈1〉, T ) is a one-to-one
correspondence between mixed algebras and collections (M, w, 〈1〉, T ), where (M, w)
is a mixed category, 〈1〉 is a degree 1 Tate twist onM, and T is an object of lim−→M0

such that T contains any irreducible object of M0 with finite non-zero multiplicity.

Proof. Let us construct the inverse correspondence. Take (M, w, 〈1〉, T ) as above.
To define the mixed algebra A consider the functor φ : M → vectF , φ(P )i :=
Hom(T, grw0 (P 〈−i〉)). This is a pure faithful functor compatible with Tate twist,
i.e. one has φ(M〈a〉)i = φ(M)i−a. Consider the components φi :M→ vectF . The
above compatibility shows that the space of morphisms of functors Hom(φa, φa+i)
is independent of a ∈ Z; denote it by Ai. Note that A0 = EndT and Ai = 0
for i < 0. The composition of morphisms defines a product Ai × Aj → Ai+j ,
therefore A =

∏
Ai is a ring. It acts canonically on the graded vector space φ(P )

for any P ∈ M. Clearly A coincides with the projective limit of its images AP in
Endφ(P ). Therefore A is a mixed algebra, and our φ may be considered as a pure
functor M → A-mof compatible with Tate twists. It is easy to check that this is
an equivalence of categories.

Exercises. (1) Describe the pure functors between the mixed categories in terms
of the corresponding mixed algebras.

(2) Spell out the analog of the above proposition for arbitrary mixed categories
(without Tate twists).

4.2. Projective objects in artinian categories. Below we’ll use several times
the following lemma of folklore. Its proof is left to the reader.

Let C be any artinian category. Denote by {L} a collection of representatives of
isomorphism classes of irreducible objects in C, and put FL = EndL. Let P ∈ C be
an object equipped with a filtration P = P 0⊃P 1⊃ . . . ⊃ PN = 0 for N ≥ 0, with
semisimple successive quotients.

Lemma 4.2.1. The following properties are equivalent:

(1) P is a projective object and the filtration is the radical filtration.
(2) For any i ≥ 1 and any semisimple object M ∈ C the map

Hom(P i/P i+1,M)→ Ext1(P/P i,M)

coming from the short exact sequence P i/P i+1 ↪→ P/P i+1 � P/P i is bijec-
tive.

(3) For any i ≥ 1 and L ∈ IrrC the group Ei(L) = Ext1(P/P i, L) is a finitely
generated FL-module, Ei(L) = 0 for all but finitely many L, and there exists
an isomorphism

P i/P i+1 →
⊕
L∈IrrC

Ei(L)∗ ⊗FL L
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where Ei(L)∗ := HomFL(Ei(L), FL), such that under the chain of isomor-
phisms

Ext1(P/P i, P i/P i+1) → Ext1(P/P i,
⊕

LE
i(L)∗ ⊗FL L)

=
⊕

LE
i(L)∗ ⊗FL Ei(L)

=
⊕

L EndFL(Ei(L))

the class of the extension P i/P i+1 ↪→ P/P i+1 � P/P i goes to
∑
L idEi(L).

4.3. Gradings on artinian categories. Let C be an artinian category (hence
an F -category by our conventions) with finite dimensional Hom’s, and let M be a
mixed category with a degree d Tate twist. Let v : M → C be an exact faithful
functor that sends semisimple objects of M to semisimple objects of C, and let
ε : v(M) 7→ v(M〈d〉), M ∈M, be a natural isomorphism. We call such a pair (v, ε)
a degrading functor.

For M,N ∈M consider the map

viM,N :
⊕
n

ExtiM(M,N〈nd〉)→ ExtiC(vM, vN)

defined by v and ε. We will be interested in the condition

(∗)iM,N : The map viM,N is bijective.

Definition 4.3.1. (1) A grading on an artinian category C is defined to be a pair
(M, (v, ε)), whereM is a mixed category with a Tate twist and (v, ε) :M→ C
is a degrading functor, such that (a) any irreducible object in C is isomorphic
to v(M) for some M ∈ M, and (b) the condition (∗)iM,N holds for all i and
all M,N ∈ M.

(2) An equivalence between two gradings (M, (v, ε)), and (M′, (v′, ε′)) on C is
a pure functor φ : M → M′ compatible with Tate twists together with an
isomorphism v′φ = v compatible with ε, ε′.

Remarks. (1) As follows from our definitions, any equivalence φ as above is ac-
tually an equivalence between the categoriesM and M′.

(2) If (∗)iM,N holds for all irreducible M,N and all i ∈ Z, then (∗)iM,N is true for
all M,N, i.

(3) Any degrading functor (v, ε) : M → C extends in a unique manner to a
degrading functor (v1/d, ε1/d) :M1/d → C, and (v, ε) is a grading on C if and
only if (v1/d, ε1/d) is a grading on C. Therefore we may always pass to the
situation with d = 1.

Examples. (1) Let A be a mixed F -algebra,M = A-mof, C = A-Mof the category
of all finite dimensional continuous non-graded A-modules. Then the forget-
the-grading functor v : M → C (with the obvious ε) is a grading on C.
Actually, any grading arises in this way.

(2) The functor v : HF → VectF that assigns to a Hodge structure its underlying
vector space is a degrading functor. To define ε we must fix a generator in
v(F (1)). The restriction of v to the subcategory of those Hodge structures
that are isomorphic to direct sums of Tate ones is a grading on VectF .

(3) Consider the categories of mixed perverse sheaves in either the Hodge or the
Ql version. The forgetting of mixed structure functor that sends a mixed
sheaf to the usual underlying geometric one is a degrading functor.
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Lemma 4.3.2. (1) Let (v, ε) :M→ C be a grading on C. Then:
(a) v sends irreducible objects in M to irreducible objects in C, and the cor-

responding map IrrM/〈Zd〉 → IrrC is bijective.
(b) The same holds when we replace the word “irreducible” by “indecompos-

able projective”.
(2) Assume that an artinian category C has enough projective objects and for any

L ∈ IrrC one has EndL = F . Then any degrading functor (v, ε) : M → C
that satisfies the properties (a), (b) above is a grading on C.

Proof. (1) For (a) use (∗)0
M,N for irreducible M and N . For (b), note that an

object P in M is projective if and only if v(P ) is projective in C (use (∗)1
P,N with

P our projective, N any irreducible, and (a)). An argument with (∗)0
P,P shows

that such P is indecomposable if and only if v(P ) is. It remains to show that any
indecomposable projective object PC in C can be lifted to M. To do this consider
the radical filtration PC = P 0

C ⊃ P 1
C ⊃ . . . , and lift PC/P

i
C step by step using 4.2.1

(3) and the above statement (a).
(2) We need to check (∗)iM,N . It obviously holds when M is projective. For

arbitrary M , use a projective resolution.

From now on let us assume that C admits a projective generator P , so in
particular IrrC is a finite set. Put A = (EndP )opp. This is a finite dimen-
sional F -algebra, and we have a canonical equivalence of categories C → A-Mod,
M 7→ Hom(P,M). Let θ be a positive grading, A =

⊕
Aiθ on A, such that A0

θ

is semisimple (i.e. A>0
θ = radA) or, equivalently, the graded ring Aθ is a mixed

algebra. Set C̃θ = Aθ-mof. This is a mixed category with a degree 1 Tate twist; the
forget-the-grading functor C̃θ = Aθ-mof → A-Mof = C is a grading on C.

Lemma 4.3.3. Any grading on C with a degree 1 Tate twist is equivalent to some
C̃θ. The gradings C̃θ, C̃θ′ are equivalent if and only if θ′ = a−1θa for some a ∈ A×.

Proof. Let M→ C be a grading with Tate twist of degree 1. To identify M with
some C̃θ let us choose a lifting (P̃M, α) of P (where P̃M is an object of M and

α : P → v(P̃M) is an isomorphism) such that the maximal semisimple quotient T

of P̃M is pure of weight 0. Such a lifting exists and is uniquely defined up to a
change α 7→ αa, a ∈ A× = (AutP )opp.

The ring Ã = (Endv(P̃M))opp is a mixed algebra with respect to its natural

grading Ãi = Hom(P̃M, P̃M〈−i〉). Note that Ã coincides with the mixed algebra

attached to (M, T ) by 4.1.6. The isomorphism α identifies A with Ã, hence defines

the grading θ = θ(P̃M, α) on A. It is clear from Proposition 4.1.6 that the grading

M on C is equivalent to C̃θ. This is the first statement of the lemma. The second
one follows since θ(P̃M, αa) = a−1θ(P̃M, α)a for any a ∈ A×.

Remark. In the situation of the lemma it may happen that for two gradings θ, θ′

there exists an automorphism φ of A such that φ(θ) = θ′. Such a φ defines an obvi-

ous pure equivalence C̃θ ∼= C̃θ′ which is compatible with projections to C (i.e. φ is an
equivalence of gradings) iff φ is an inner automorphism. Note that such φ always ex-
ists if we know that our graded algebras Aθ, Aθ′ are generated by their components
of degree 1 and 0: Then they are isomorphic to grA =

⊕
(radA)i/(radA)i+1.

4.4. Mixed category O: Ql-version. Let X be a variety over a finite field Fq
equipped with a stratification by smooth affine strata {Xα}. Set nα = dimXα and
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denote by iα : Xα ↪→ X the embeddings. Let Lα = iα!∗Ql,Xα [nα] be the intersection
cohomology sheaf of Xα and Mα = iα!Ql,Xα [nα] the corresponding “standard”
perverse sheaf. Note that Lα is a mixed sheaf in a natural way (actually, a pure

one of weight nα). If we regard Lα as a mixed sheaf, we denote it by L̃α.
Assume each stratum Xα is isomorphic to an affine space AnαFq . We consider the

following condition:

(∗): For any α, β and j ∈ Z the sheaf Hji∗βL̃α on Xβ, vanishes if nα + j is odd

and is isomorphic to a direct sum of copies of Ql,Xβ ((−nα− j)/2) if nα + j is
even.

To check this condition one may use:

Lemma 4.4.1. Condition (∗) is satisfied provided the following two properties hold.

(1) For each β, Hji∗βL̃α is a (geometrically) constant sheaf on Xβ; this sheaf
vanishes whenever nα + j is odd.

(2) The geometric Frobenius acts on Hj(X, L̃α) via multiplication by q(j+nα)/2.

Proof. There is a standard spectral sequence with Ep,q2 =
⊕

nβ=−pH
p+q
c (Xβ , i

∗
βL̃α)

that converges to Hp+q
c (X, L̃α) (H•c stands here for the cohomology with compact

support). Property (1) yields the parity condition: Ep,q2 = 0 whenever nα + p+ q
is odd. Hence all the differentials dr, r ≥ 2, vanish, and the spectral sequence
degenerates at the E2-term. Thus, the group Hj

c (Xβ, i
∗
βL̃α) gets identified in a

canonical way with a subquotient of

Hj
c (X, L̃α) ' Hj(X, L̃α)∗(−nα)

The property (2) ensures now that the Frobenius acts via multiplication by q(j+nα)/2

on the groups involved. Note, finally, that the first property yields an isomorphism:
Hj
c (Xβ , i

∗
βL̃α) = H0(Xβ , H

j−2nβ i∗βL̃α)(−nβ), and condition (∗) follows.

To apply the lemma in the situation we need, we prove the following result.

Lemma 4.4.2. Assume that for any α there exists a proper surjective morphism
πα : Yα → Xα such that

(1) Yα is a smooth scheme.
(2) For any Xβ ⊂ Xα the projection π−1

α (Xβ)→ Xβ is smooth.
(3) The Ql-cohomology groups of Yα are generated by classes of algebraic cycles

defined over Fq.
Then the property (2) of Lemma 4.4.1 holds.

Proof. Form the direct image complex F = πα ∗Ql,Yα [nα] ∈ Db
mixed(X,Ql). Clearly,

L̃α is a subquotient of the mixed perverse sheaf pH0F . On the other hand, the
complex F is a semisimple perverse sheaf (with Frobenius action disregarded),

due to the decomposition theorem. Hence the vector space Hj(X, L̃α) with the
Frobenius action on it is isomorphic to a subquotient ofHj(X,F ) = Hj+nα(Yα,Ql).
The claim follows.

Corollary 4.4.3. Condition (∗) holds for the stratification of the flag variety G/B
by Schubert cells.

Proof. Let U be the maximal unipotent subgroup of G so that U -orbits are the
Schubert cells. Then, clearly, L̃α is an U -equivariant perverse sheaf. Hence, for all β
and j ∈ Z, the sheafHji∗βL̃α is U -equivariant, hence, a geometrically constant sheaf.
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Now, the first property of Lemma 4.4.1 is proved by Kazhdan-Lusztig [KL80b].
The second property follows from Lemma 4.4.2 applied to the Demazure-Hansen
desingularization Yα → Xα of Schubert varieties.

From now on assume that (X, {Xα}) satisfies condition (∗) above. Let P be the
Serre subcategory of the category of Ql-perverse sheaves on X ⊗ Fq generated by

the Lα, and denote by P̃ the full subcategory of the category of mixed perverse
sheaves on X that consists of those F̃ for which any grWj F̃ is isomorphic to a direct

sum of copies of L̃α((nα−j)/2) with nα−j even. Then P is an artinian Ql-category

and P̃ is a mixed Ql-category with a degree −2 Tate twist. One has IrrP = {Lα},
IrrP̃ = {L̃α(n)}. We have the forgetting of mixed structure functor v : P̃ → P .
Choose a generator ε of Ql(1). Then (v, ε) is a degrading functor. The following
theorem is the main result of this section. Its proof will occupy the rest of it.

Theorem 4.4.4. (1) (v, ε) : P̃ → P is grading on P .
(2) P̃ is a Koszul category.

Let us start the proof with

Lemma 4.4.5. For a constructible complex G ∈ D(X ⊗ Fq,Ql) the following con-
ditions are equivalent:

(1) pHj(G) ∈ P for all j ∈ Z.
(2) The Hji∗β(G) are constant sheaves on Xβ for all β and j ∈ Z.

Proof. The sheaves that satisfy (1) or (2) form the full triangulated subcategories
D1, D2 of D(X ⊗ Fq,Ql). The category D1 is generated by the {Lα}, the category
D2 by the {Mα}. By (∗) we have Lα ∈ D2, and therefore D1 ⊂ D2. To prove the
converse inclusion it suffices to show that allMα lie in P . We do it using induction
on the number of strata. Let Xω be an open stratum. By induction we know
that any perverse sheaf G supported on X − Xω that satisfies (2) automatically
lies in P ; in particular this holds for Mα whenever α 6= ω. Consider the canonical
surjection Mω → Lω. Let Kω be its kernel. Then Kω is supported on X − Xω,
and Hji∗βKω = Hj−1i∗βLω for any β 6= ω. From (∗) we deduce that Kω ∈ P , hence
Mω ∈ P .

Remark. Actually the above arguments prove the following general statement. Let
X be any variety stratified by smooth strata Xα, put nα = dimXα, and assume
that for each Xα we picked a Serre subcategory Cα of the category of lisse sheaves
on Xα. Assume that for any α, β and F ∈ IrrCα the sheavesHji∗βiα!∗F , j ∈ Z, lie in

Cβ. Then the full triangulated subcategory of D(X,Ql) generated by the perverse
sheaves iα!∗(F), F ∈ IrrCα, consists precisely of those complexes G which satisfy
the condition Hj(i∗βG) ∈ Cβ for all β and j ∈ Z.

Lemma 4.4.6. (1) The category P has enough projectives.
(2) The obvious functor Db(P)→ D(X ⊗ Fq,Ql) is a fully faithful embedding.

Proof. The parallel statement in the situation when X is a complex variety (with
condition (∗) dropped) was proven in 3.3. The reader may easily check that the
same proof works in our present situation, provided we know that the perverse
sheavesMα lies in P . And this was the preceding lemma.
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If F ,G are perverse sheaves on X ⊗ Fq, we set

Exti(F ,G) := HomD(X⊗Fq,Ql)(F ,G[i]).

This group also coincides with the Yoneda Ext in the category of all perverse sheaves
on X . The above lemma claims, in particular, that for any F ,G ∈ P the obvious
map ExtiP(F ,G)→ Exti(F ,G) is an isomorphism. For a pair of irreducibles Lα,Lβ
consider the Ql-vector space Ext1(Lα,Lβ). The mixed structure L̃α, L̃β defines a
Frobenius action on it.

Lemma 4.4.7. If nα−nβ is even, then Ext1(Lα,Lβ) = 0. If nα−nβ is odd, then

the Frobenius acts on Ext1(Lα,Lβ) as multiplication by q(nβ−nα+1)/2.

Proof. We have a canonical isomorphism

Ext1(Lα,Lβ) = Ext1(DLβ , DLα) = Ext1(Lβ ,Lα)(nα − nβ),

the latter since DLα = L(nα). Therefore we may assume that Xα − Xα 6⊃ Xβ

(otherwise interchange α and β in the above formula). The short exact sequence
Kα ↪→ Mα � Lα provides the exact sequence Hom(Kα,Lβ) → Ext1(Lα,Lβ) →
Ext1(Mα,Lβ). Since our condition implies that Hom(Kα,Lβ) = 0, we see that

Ext1(Lα,Lβ) ↪→ Ext1(Mα,Lβ) = H1(Xα ⊗ Fq, i∗α(Lβ)[−nα]),

so it suffices to check the statement of our lemma for this larger group. Since
the Xα are supposed to be just affine linear spaces, then this coincides with
H0(Xα ⊗ Fq, H1−nαi∗αLβ), and by (∗) we are done.

Lemma 4.4.8. Let P be an indecomposable projective in P. Then:

(1) P can be lifted to P̃, i.e. there exists P̃ ∈ P̃ together with an isomorphism

v(P̃ )→ P .

(2) Any such P̃ is a projective object of P̃.

Proof. We need use the following general fact. Let F̃1, F̃2 be mixed perverse
sheaves. Then one has a canonical short exact sequence

Hom(F1,F2)Fr ↪→ Ext1(F̃1, F̃2)� Ext1(F1,F2)Fr,

where Fi = v(F̃i) are the underlying usual perverse sheaves, and the middle Ext1

is the group of extensions in the category of all mixed sheaves (not necessarily
grW• -semisimple ones).

We now prove (1). Let P = P 0 ⊃ P 1 ⊃ . . . be the radical filtration on P .

We find a lifting P̃ such that P i = v(Ww−i(P̃ )) for some w ∈ Z. To do this we

inductively define liftings P̃/P i of P/P i such that P̃/P i+1 is an extension of P̃/P i

by a pure sheaf ˜P i/P i+1 of weight w − i. To start the induction, note that P/P 1

is irreducible, hence can be lifted to some P̃/P 1. Set w = w(P̃/P 1). Now assume

we already have P̃/P i. Consider the isomorphism

P i/P i+1 →
⊕

α
Ext1(P/P i,Lα)∗⊗QlLα

from 4.2.1 (3). The mixed structure P̃/P i and the standard mixed structure

L̃α on Lα define a Frobenius action on Ext1(P/P i,Lα). Since our filtration is
the radical filtration, the restriction map Ext1(P/P i,Lα) → Ext1(P i−1/P i,Lα)

is injective. By our induction hypothesis, ˜P i−1/P i = Ww−i+1(P̃/P i) is a pure
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(hence semisimple) object of P̃ of weight w − i + 1. By 4.4.7 the Frobenius
acts on Ext1(P i−1/P i,Lα) as multiplication by q(nα−w+i)/2 (and it vanishes if
nα − w + i is an odd integer). Therefore the same is true for Ext1(P/P i,Lα), and

we may consider
⊕

αExt1(P/P i,Lα)∗ ⊗ Lα as a pure object of P̃ of weight w − i.
This defines the pure structure ˜P i/P i+1 on P i/P i+1. The class of the extension
P i/P i+1 ↪→ P/P i+1 � P/P i is invariant with respect to the Frobenius-action

on Ext1(P/P i, P i/P i+1) defined by the mixed structures P̃/P i and ˜P i/P i+1 (see

4.2.1 (3)); hence it comes from an extension ˜P i/P i+1 ↪→ P̃/P i+1 � P̃/P i. Clearly

P̃/P i+1 ∈ P̃ , and we are done.

Next we prove (2). We need to show that Ext1
P̃ (P̃ , L̃) = 0 for any L̃ ∈ IrrP̃.

Note that Ext1
P̃(P̃ , L̃) ⊂ Ext1(P̃ , L̃). Since Ext1(P,L) = 0 (by 4.4.6 (2)), we see

that Ext1
P̃ (P̃ , L̃) ⊂ Hom(P,L)Fr = Hom(P/P 1,L)Fr. This group is non-zero if

and only if P̃/P 1 ∼= L̃. In this case Ext1
P̃(P̃ , L̃) = 0 (the corresponding extensions

are not grW -semisimple), and we are done.

Proof of 4.4.4. (1) We may use the criterion 4.3.2 (2) by 4.4.6 (1). The condition
4.3.2 (a) is obvious, while 4.3.2 (b) follows from 4.4.8.

(2) We have to show that for any L̃1, L̃2 ∈ IrrP̃ of weights w1, w2 the extension

ExtiP̃(L̃1, L̃2) vanishes unless i = w1 − w2. For this it is sufficient, by 3.4.2, to

establish an injection ExtiP̃(L̃1, L̃2) ↪→ Exti(L1,L2)Fr. This we deduce from the
following commutative diagram:

ExtiP̃ (L̃1, L̃2) ↪→ ExtiP(L1,L2)
↓ ‖

Exti(L̃1, L̃2) � Exti(L1,L2)Fr ↪→ Exti(L1,L2).

Here the upper horizontal is an injection by 4.4.4 (1), the right vertical is an isomor-
phism by 4.4.6(2), the left vertical comes from the fact that the upper left corner
is a universal ∂-functor, and the left map in the lower horizontal is the end of the
short exact sequence from the proof of Lemma 4.4.8.

4.5. Mixed category O : Hodge version. Let X be an algebraic variety over
C. Fix a subfield F ⊂ R. Denote by P the category of perverse F -sheaves on X
and by PH the category of Hodge F -modules (i. e. mixed Hodge sheaves) on X .
We have the functor v : PH → P of forgetting Hodge structure. If we choose a
generator ε of the 1-dimensional vector space F (1) = F · 2π

√
−1, then (v, ε) is a

degrading functor (see 4.3).
Let C ⊂ P be a Serre subcategory. We consider the following problem: Find a

mixed subcategory C̃ ⊂ PH, closed with respect to Tate twist, such that C̃ → C
is a grading on C. This problem (for given C) seems to be quite difficult. For
example, we have no idea if C exists in the generality of 4.4 or 3.4 (i.e. in case when
C consists of sheaves smooth along a stratification by affine planes). However, in
the very particular case when X = G/B and C coincides with the category O of

perverse sheaves lisse along the Schubert stratification {Xα}, the category C̃ does
exist. We will construct it below.

Let X = G/B, {Xα}, O be as above and let OH := v−1O be the category of
Hodge modules lisse along {Xα}. Note that each Lα carries a canonical Hodge

structure (of weight nα). Denote this irreducible object of OH by L̃α.
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Lemma 4.5.1. Any Hodge structure on Lα is isomorphic to the twist L̃α(j) for
some j ∈ Z.

Proof. Let L̃1
α be a Hodge structure on Lα. Let us consider the canonical iso-

morphism Hom(Lα,Lα) ⊗ Lα ∼= Lα (note that Hom(Lα,Lα) = F ). If we put on

F = Hom(Lα,Lα) the Hodge structure F̃ defined by L̃α and L̃1
α, then this will

give the isomorphism of Hodge sheaves F̃ ⊗ L̃α ∼= L̃1
α. Since dimF = 1, the only

possible F̃ is F (j).

Recall some general facts about Hodge sheaves (see [Sai90]). If F̃ is a Hodge sheaf
on X and F is the underlying perverse sheaf, then the groups Hj(X,F) carry

a natural Hodge structure. We denote it by Hj(X, F̃) ∈ HF . More generally,

for F̃1, F̃2 the groups Extj(F1,F2) carry a natural Hodge structure. We denote

it by Extj(F̃1, F̃2) ∈ HF . We have a canonical spectral sequence converging to

Ext•H(F̃1, F̃2) (:= Ext groups in the category of Hodge sheaves) with first term

Ep,q1 = H2p+q
H (Ext−p(F̃1, F̃2)). HereHj

H is the absolute Hodge cohomology functor:

For a Hodge structure M ∈ HF we have Hj
H(M) := ExtjHF (F (0),M). Since

Hj
H = 0 for j 6= 0, 1 this spectral sequence degenerates at E2. In particular, we

have a short exact sequence

H1
HHom(F̃1, F̃2) ↪→ Ext1

H(F̃1, F̃2)� H0
HExt1(F̃1, F̃2).

Lemma 4.5.2. (1) For any α, β and j ∈ Z the sheaf Hji∗βL̃α on Xβ vanishes if

j+nα is odd. It is isomorphic to a direct sum of some copies of F ((−j−nα)/2)
if j + nα is even.

(2) The cohomology group Hj(X, L̃α) vanishes if j + nα is odd. It is isomorphic
to a direct sum of some copies of F ((−j − nα)/2) if j + nα is even.

(3) The group Extj(L̃α, L̃β) vanishes if j − nα + nβ is odd. It is isomorphic to a
direct sum of some copies of F ((−j − nα + nβ)/2) if j − nα + nβ is even.

Proof. (1) (cf. 4.4.2). Use the Demazure-Hansen desingularization Yα of Xα and
the decomposition theorem.

(2) follows from (1), since the terms of the spectral sequence for computing

Hj(X, L̃α) via the stratification {Xα} have the properties listed in (2) and any
extension between Tate (or any Hodge) structures of the same weight is trivial.
Alternatively, use the decomposition theorem directly to identify H•(X,Lα) with
pieces of the cohomology of Yα.

(3) To compute

Ext•(L̃α, L̃β) = H•(X,D(L̃α ⊗DL̃β)) = H•(X, L̃α ⊗ L̃β)∗(−nβ)

one may use, as in (2), the spectral sequence for the stratification {Xα}. Again,
by (1), its terms satisfy the properties listed in (3); hence this is true for the
Ext•-groups themselves. Alternativly, by 3.4.2 the canonical map Extj(Lα,Lβ)→
Hom(H•(X,Lα), H•+j(X,Lβ)) is injective. Since it is obviously compatible with
Hodge structures, we are done by (2).

Lemma 4.5.3. Let P � Lα be a projective cover in O and P = P 0 ⊃ P 1 ⊃ . . .
the radical filtration of P .

(1) There exists a Hodge structure P̃ on P such that P̃ � L̃α is a morphism of
Hodge sheaves.
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(2) For any such P̃ one has P i = v(Wnα−iP̃ ), and ˜P i/P i+1 := grWnα−i(P̃ ) is a

direct sum of some objects of the form L̃β(j) (of weight nα − i).

Proof. Let us start with (2). By induction on i we may assume that P j is a Hodge

subsheaf of P̃ and P j−1/P j is a direct sum of Tate twists of some L̃β of weight
nα − j + 1 for any j ≤ i. We need to show that P i+1 is a Hodge subsheaf and
P i/P i+1 is a sum of some objects of the form L̃β(j) of weight nα− i. First consider

the canonical morphism γ : P̃ →
⊕

βHom(P̃ i, L̃β)∗ ⊗ L̃β coming from the obvious

maps Hom(P̃ i, L̃β) ⊗ P̃ i → L̃β . Its kernel is P i+1; hence this is a Hodge subsheaf

of P̃ i. The canonical isomorhism 4.2.1(3)

P̃ i/P̃ i+1 →
⊕

β
Ext1(P̃ /P̃ i, L̃β)∗ ⊗F L̃β

is obviously compatible with Hodge structures. Since our filtration is the radical
one, the restriction map Ext1(P/P i,Lβ) → Ext1(P i−1/P i,Lβ) is injective. Since,

by induction, P̃ i−1/P̃ i is a direct sum of Tate twists of L̃γ ’s of weight nα − i+ 1,
we are done by part (3) of the preceding lemma.

To prove existence of P̃ we again use induction over i. Namely, we build the

P̃/Pi successively. The procedure is identical with the one used in the proof of 4.4.8
(1). We should only replace the words “Frobenius action” by “Hodge structure”
and use the short exact sequence preceding Lemma 4.5.2 instead of the one from
the beginning of the proof of 4.4.8.

Now consider the skyscraper sheaf Le supported at the point orbit. Let P̃e → L̃e
be a morphism of Hodge sheaves such that Pe → Le is a projective covering of Le.
Define ÕP̃e to be the smallest full abelian subcategory of OH containing all P̃e(j).

It consists of all subquotients of direct sums of objects of the form P̃e(j).

Theorem 4.5.4. (1) ÕP̃e → O is a grading on O.
(2) ÕP̃e is a Koszul category.

Proof. First note that (2) follows from (1) . Namely, by (1) and 4.5.1 we know

that IrrÕP̃e = {L̃α(n)}, where w(L̃α(n)) = nα − 2n; therefore Koszulity means

that ExtiÕP̃e
(L̃α(a), L̃β(b)) vanishes if i 6= nα − nβ − 2a + 2b. By (1) the map-

ping ExtiÕP̃e
((L̃α(a), L̃β(b)) → Exti(Lα,Lβ) is injective. Since it factors through

ExtiH(L̃α(a), L̃β(b)), its image lies in H0
H(Exti(L̃α(a), L̃β(b)), and we are done by

4.5.2 (3).

To prove (1) we will use the following lemma. Let C̃• be the maximal W -
invariant quotient algebra of SymH1(H,F ). Here H is a Cartan subgroup of G, and
we consider H1(H,F ) as a Hodge structure. Clearly H1(H,F ) = ΓH ⊗F (1), where

ΓH is the lattice of 1-parameter subgroups in H. Therefore C̃• is a commutative
algebra in HF , graded in an obvious manner. Consider the corresponding graded
F -algebra C• = v(C̃•). According to [Soe90] we have a canonical isomorphism
C• ∼= EndPe.

Lemma 4.5.5. This isomorphism is compatible with Hodge structures, i.e. C̃ ∼=
EndP̃e.

Proof. Proof postponed to the next subsection.
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We say that F̃ ∈ ÕP̃e is a special object if it is isomorphic to a quotient of a

direct sum of copies of P̃e(n)’s.

Step 1. Let F̃ and G̃ be objects of ÕP̃e , and suppose F̃ is special. Then Hom(F̃ , G̃)
is a direct sum of Tate structures F (i). This follows immediately from projectivity

of Pe and the preceding lemma, since our Hom(F̃ , G̃) is a subquotient of a sum of

Hodge structures isomorphic to (EndP̃e)(i).

Step 2. For any α there exists a special object Ĩα such that Iα := v(Ĩα) is an injec-
tive envelope (:= an indecomposable injective object) of Lα. Indeed, according to
[Soe90] there exists a graded C•-module V •α such that Iα := Vα⊗CPe is an injective
envelope of Lα (here Vα is V •α with its grading forgotten). Now consider the Hodge

structure Ṽα :=
⊕
V iα(i), and set Ĩα := Ṽα⊗C̃ P̃e. Note that dim Hom(Lα, Iα) = 1;

therefore we may assume, as in the proof of 4.5.1, after possible twisting of Iα, that
L̃α ⊂ Ĩα.

Step 3. The category ÕP̃e consists precisely of those sheaves F̃ ∈ OH such that

Hom(F̃ , Ĩα) is a direct sum of Tate structures for any α. Indeed, if F̃ is a special

object of ÕP̃e , then we may embed it into a special one and use injectivity of Iα to

get our claim. Conversely, assume that F̃ has the property that all Hom(F̃ , Ĩα) are

direct sums of Tate structures. The canonical embedding F̃ ↪→
⊕

α Hom(F̃ , Ĩα)∗⊗
Ĩα is compatible with Hodge structures, and the right hand side obviously lies in
ÕP̃e , so we are done.

Step 4. As follows from Step 3, the Ĩα(n) are injective objects of ÕP̃e . Since

IrrÕP̃e = {L̃α(n)} by 4.5.3 (2), our theorem follows from 4.3.2 (2). (Strictly speak-
ing, we need to apply it to C = Oopp, since in 4.3.2 (2) we spoke about projective
objects, and here we deal with injective ones.)

4.6. Monodromy actions. We still have to prove Lemma 4.5.5. We need some
general facts about monodromic sheaves. Let H be our torus, π : X → Y an
H-principal bundle, F ∈ P (X) a monodromic mixed Hodge module.

Proposition 4.6.1. The logarithm of the unipotent part of monodromy h(1) →
EndF is compatible with Hodge structures.

Proof. Recall that a perverse sheaf F ∈ P(X) is called monodromic if h∗F is
isomorphic to F for all h ∈ H. Consider the projection and the multiplication
p,m : H ×X → X and the other projection q : H ×X → H. Consider

A = AF = H−nq∗RHom(p∗F ,m!F)[−n].

If F is monodromic, this is a local system on H. The fibre A1 of this local system at
one is canonically A1 = EndF . Put Γ = X∗(H) ⊂ h. We regard this as an integral
Hodge structure, and consider also its Tate twist Γ(1) = 2πiΓ ⊂ h(1). Then
Γ(1) = π1(H, 1) acts on A1 = EndF by monodromy, and the action of γ ∈ Γ(1)
is in fact left multiplication with some M(γ) ∈ AutF . Now let N(γ) ∈ EndF be
the logarithm of the unipotent part of M(γ). Then N : Γ(1)→ EndF extends to a
homomorphism of Lie algebras NF : h(1)→ EndF , and we claim that when F has
a mixed structure this is compatible with the mixed structures.
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But it is known that if A is a smooth mixed Hodge sheaf on a torus, then the
logarithm of the monodromy NA : h(1)→ EndA1 is compatible with Hodge struc-
tures. And when A = AF (so that A1 = EndF) this factors as h(1) → EndF →
End(EndF), where the first map is NF and the second is left multiplication.

Proof of Lemma 4.5.5. Let U ⊂ B be the unipotent radical. Then we may identify

U -equivariant perverse sheaves on G/B
‖

(U ×B)-equivariant perverse sheaves on G
‖

B-equivariant perverse sheaves on U/G.

Certainly the latter are H-monodromic. Thus monodromy gives a homomorphism
S(h(1)) → EndF for all F ∈ O, and for F ∈ Õ this morphism is even compatible
with Hodge structures. Now using [BB86] one may see that under localization Ob ∼=
PB(G/B) the monodromy action of S(h(1)) on the right corresponds to the action
of the center of U on the left, via the Harish-Chandra homomorphism. In particular
for P̃e ∈ Õ a lift of the antidominant projective, by translating [Soe90, Bea83] into

geometry we get a surjection S(h(1))� EndP̃e. Thus indeed EndP̃e is a split Tate
structure.
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Abstract. The aim of this paper is to work out a concrete example as well
as to provide the general pattern of applications of Koszul duality to repre-
sentation theory. The paper consists of three parts relatively independent of
each other.

The first part gives a reasonably selfcontained introduction to Koszul rings
and Koszul duality. Koszul rings are certain Z-graded rings with particularly
nice homological properties which involve a kind of duality. Thus, to a Koszul
ring one associates naturally the dual Koszul ring. The second part is devoted
to an application to representation theory of semisimple Lie algebras. We show
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that the block of the Bernstein-Gelfand-Gelfand category O that corresponds
to any fixed central character is governed by the Koszul ring. Moreover, the
dual of that ring governs a certain subcategory of the category O again. This
generalizes the selfduality theorem conjectured by Beilinson and Ginsburg in
1986 and proved by Soergel in 1990. In the third part we study certain cate-
gories of mixed perverse sheaves on a variety stratified by affine linear spaces.
We provide a general criterion for such a category to be governed by a Koszul
ring. In the flag variety case this reduces to the setup of part two. In the more
general case of affine flag manifolds and affine Grassmannians the criterion
should yield interesting results about representations of quantum groups and
affine Lie algebras.
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