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Abstract. We consider families of operators, H,, on /, given by (H_u)(n) =
un + 1)+ um— 1)+ V, (nu(n), where V, is a stationary bounded ergodic
sequence. We prove analogs of Kotani’s results, including that for a.e.
w,0,(H,) is the essential closure of the set of E where y(E) the Lyaponov index,
vanishes and the result that if V,, is non-deterministic, then ¢__ is empty.

1. Introduction

In a beautiful paper, Kotani [10] has proved three remarkable theorems about one-
dimensional stochastic Schrodinger operators, i.e. operators of the form — d?/dx?+
V,(x) on L?(— 00,00), where V, is a stationary bounded ergodic process. It is not
completely straightforward to extend his proofs to the case where —d?/dx? is
replaced by a finite difference operator, and that is our goal in this note.
Explicitly, let (2,u) be a probability measure space, T a measure preserving
invertible ergodic transformation, and f a bounded measurable real-valued
function. We define V, (n) = f(T"w). We let H_, be the operator on ¢%(Z)

(H,w)(n)=um + 1)+ u(n — 1) + V, (n)u(n).
Integrals over w will be denoted by E( - ).
Given a subset, J, of Z, we let 2, be the sigma—algebra generated by {V,,(n)},;-

We say that the process is deterministicif ¥ _ | = ﬂ 2~ o, - jis up to sets of measure

zero, X _ , o); equivalently if V,(n) is ae, a n{eeisurable function of {V,(n)},<o-
Otherwise it is non-deterministic. Almost periodic sequences are deterministic.
Independent, identically distributed random variables are non-deterministic.

The Lyaponov index y(E) is defined, for example, in [ 1, 4]. It can be characterized
as follows: For each complex E, for a.e. w, any solution of H_u = Eu (in sequence

! ) L.
sense) has lim —In[ju@m)* + |u(n + 1)]2]%/? exists and it is either y or —y. Itis an

n— oo
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old result of Pastur [11] and Ishii [7] (see also Casher—Lebowitz [3]) that y(E) on
the real axis is related to absolutely continuous spectrum.

Theorem 0 ([7, 11]). If y(E) > 0 on some set A in R, then E%’(A) =0 for a.e. w, where
E% is the absolute component of the spectral projection for H,,.
Here we will prove the following:

Theorem 1. If y(E)=0 on a subset, A, of R with positive Lebesgue measure, then
E(A) #0 for ae. w.

Theorem 2. If y(E)=0 on an open interval, I, of R, then for ae. w, the spectral
measures are purely absolutely continuous on 1.

Theorem 3. If the hypotheses of Theorem 1 hold, then V,, is deterministic.

Theorems 0 and 1 show that o, is for a.e. w the essential closure of the set where
y(E)=0. Theorem 3, which can be viewed as a kind of generalized Furstenberg
theorem, says Thms. 1 and 2 aren’t applicable very often. Theorems 0 and 3 imply
thatif V' is non-deterministic, ¢, = J. Theorems 1 and 2 are related to recent results
of Carmona [2].

Theorems [-3 are precise analogs of the main results of Kotani [10] in the
continuous case. Kotani uses functions h,(w,E) defined for ImE>0 by the
following: If Im E >0, there are unique (up to factor) solutions, u,(x,,E),
of —u” + (V — E)u=0 which are L? at + co. Define

u'y (0,0,E)

ho(wE)=+—"".
+(@.E) 1, (0,0,E)

As is well-known, the Green’s function obeys
G®(0,0;E)= —(h, +h_)" 1. (L.1)

Since E(G) is the Borel transform of the density of states and the Thouless formula
relates y to this density of states (see e.g. [1]), one has:

E(Im([h, +h_]"1) = — dy(E)/d(Im E). (1.2)
Using the formula of Johnson and Moser [8]
E(Reh,)=E(Reh_) = — y(E), (1.3)
Kotani then proves:
E((Imh,)~')=2y(E)/ImE. (1.4)

Equations (1.2) and (1.4) then imply
E([(Imh,)™ '+ (Imh_)"*]{(Imh, —Imh_)* + (Reh, + Reh_)*}/|h, +h_|?)
=4[(ImE)™ 'y(E) — 0y(E)/0ImE]. (1.5)

The three theorems then follow from (1.4), (1.5).
The initial stages of extending Kotani’s analysis are obvious. The proper analog
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of h, are:
my (@,E) = —u, (£ 1)/u.(0),

where u, are the solutions 1> at 4 0o. The analog of (1.2) which will come from an
analog of (1.1) is

E(Im([m, + m_ +E— V()] 1)) = — &(E)/0(ImE). (1.6)
The analog of (1.3) is also easy:
E(In|m. |) = E(Injm_]) = — y(E). (1.7)

The analog of (1.4) is more subtle because Kotani’s proof does not seem to
extend. However, our first proof of (1.8) was by using the idea of Delyon—Souillard
[5] to use linear interpolation to force the discrete case to look like the continuum
case. By a more direct proof we will show, in Sect. 2, that

E(In[1 +(ImE/Imm,)])=2y(E). (1.8)
It is not completely trivial to get an analog of (1.5). The key is the inequality
In(1 +x) = x/(1 +1x).

From this and (1.8), we will get, in Sect. 2, two inequalities which are close enough to
the equalities (1.4), (1.5) to prove Thms. 1-3 in Sect. 3. In Sect. 4, we make a remark

on the connection of these results and the work of Carmona [2].
2. The m Functions
Given E with ImE >0 and o, it is easy to show that the difference equation
u(n + 1) +un — 1)+ V,(n)u(n) = Eu(n) 2.1

has unique solutions u, (n) which are /? at + oo. Moreover,

2ilm (s (O)up (£ 1) =u(Que(£ 1)) —u (£ Duy(0).

Recognizing this as a Wronskian of solutions of (2.1) for E and E, and using the fact
that u, —0 at + oo, one finds that

Im( = uy(0)uy (% 1) =ImE< )3 lui(ij)P), 2.2)
j=1
so that u,(0) # 0, and we can define
usg(x1)

my(w,E)= — ’ (2.3)
u4(0)
and by (2.2), it obeys Imm, > 0. For later purpose we note that
my (T "w)= —uy(nx 1)/uy(n), (24)

so that the equation of motion for u yields
mo(T ") = V() — E—[m (T "*'o)] ", (2.5)



230 B. Simon

and in particular

u_(1)

o™ +E —V(0). (2.6)

Asusual, (H, — E)~! has an integral kernel G (n,m;E) which is symmetric in n,m
and for n < m:

G (mm;E) =u_(n)u,(m)/[u.(Du_(0) — u_(Du,0)].
In particular, (2.3) and (2.6) yield

—G,0,0;E) ' =m, +m_+ E—V(0). 2.7
Now, G,(0,0;E) is related to the density of states by [1, 8]
E(G,(0,0;E))= | dHE) : (2.8)
E' —E
The Thouless formula [1] says that
9(E) = | In|E — E'|dk(E"). (2.9)

Equations (2.7), (2.8) and (2.9) immediately imply:

Proposition 2.1. E(Im([m, +m_+E—V_(0)]™))= — 0y(E)/0(ImE).

We let H be the operator on Z,(1,00) which is obtained from H_, by imposing
the boundary condition (bc) u(0) =0. If w(n) obeys (2.1) with the bc w(0)=0,
w(l) =1, then for n <m:

(Hg — E)™ Hmm) = w(mu , (m)/[u, (Dw , (0) — w(l)u, (0)],
and in particular

m. (w,E)=(H} — E)"1(1,1). (2.10a)

By the spectral theorem, the right side of (2.10) has the form

dp(x)
jx — (2.10b)

where [dp=1 and p is supported on [ —| fll, —2, | fl,+2]. From this
representation one easily obtains an upper bound on |m_ | and a lower bound on
Imm | and so:

Proposition 2.2. For anyfixed E with Im E > 0, there are constants ¢,(E), ¢,(E), d,(E),
d,(E) in (0,00) with

¢ (E) S Im (0, E)| = ¢y(E),

d,(E) < Imm. (0,E) < dy(E),

Sor all w.
From the bounds on |m,| and the fact that for a.e. w every solution either
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+7|

“decays” as e~ ?!"l or grows as e* 1"l we see that

1
lim —Inju., (n)/u (0) = —y.

n—o
n—1

Since In|u(n)/u  (0) = Z In|jm (T )| (by (24)), we can apply the individual

ergodic theorem (1n|m+(co)| is bounded and so in L! by Prop. 2.2) to find

Proposition 2.3. E(In|m (w,E)|) = —y(E).
Now, we come to the first result of this note that is essentially new.

Proposition 2.4. E(In(1 + [ImE/Imm_ (w,E)])) = 2y(E).

Proof. We start with (2.5). Taking imaginary parts, then dividing by Imm_ and
taking logs we find

In(1 + [ImE/Imm , (,E)]) = In(— Im[m,(Tw,E)] 1) — In(Imm , (,E)).

But —Im[m;!]=Imm,/lm,|?, so taking expectations of both sides and using the
invariance of u under T, we find that the expectation of the right side is — E(In|m , |2)
which is 2y by Prop. 2.3. [ ]

Lemma 2.5. For x 20, log(1 + x) = x/(1 +1x).

Proof. Both sides are equal at x = 0. The derivative of the left hand side is (1 + x) ™!
and that of the right is (1 +4x)72 = (1 + x + 4x?)7!, so we get the inequality by
integrating. ]

Theorem 2.6. Let b(w,E)=m, +m_+ E—V(0) and n, =Imm, +4+ImE. Then:

(@) E((n+)™") = 2y(E)ImE,
(b) E([ny' +nZ'H{(n, —n_)* +(Reb)*}/|b]*) < 4[(ImE)~ 'y(E) — &(E)/OIm E].

Proof. (a) follows immediately from Prop. 2.4 and the inequality in the lemma. To
get (b), we write (n, —n_)*=(n, +n)®>—4n,n_, and using the fact that n, +
n_ = Imb, we see the argument in the expectationisni!+n-' —4(n, +n_)/b*=
n:'+nZ'+ 4Im(l/b). We use Prop. 2.1 to get E(Im(1/b)) and (a) to bound E(n;?)
to get the required inequalities.

3. Proofs of the Theorems

Given Thm. 2.6, the proof below follows the strategy of Kotani [10] with some
changes of tactics. We begin by recalling without proofs some basic facts about
Herglotz functions. As remarked by Kotani [10], these are proven most easily by
mapping the upper half plane to the disc, taking logs and using the theory of H,
functions (see e.g. [6, 9]).

(1) F(z) defined in Imz > 0 is called Herglotz if it is analytic and has Im F(z) > 0
there. A typical example (indeed, up to linear factors, every example) is the Steiltjes
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transform of a measure, y, on R, viz:

du(x

F(z )—-—j 3.1

(2) lim F(x + ie) = F(x +i0) exists (and is finite and non-zero) for a.e. xeR.
el0
(3) If F comes from u, then dy,., the absolutely continuous part of p, obeys

dp,(x) = [Im F(x + i0)]dx. (3.2)

(4) If F comes from y, du,, =du —dpu,, is supported on {x|lim ImF(x + ie)
el0

=00}.

(5}) If F(x + i0) = G(x + i0) for xe A, a set with positive Lebesgue measure and F
and G are Herglotz, then F =G.

(6) If ReF(x+i0)=0 ae. xel, an open interval, then F has an analytic
continuation through I and F(x + i0)+# 0 for any x in I.

(7) By (4) and (6), if F is a Steiltjes transform and Re F(x +i0)=0 on I, then

W= e OD 1.

Proof of Theorem 1. By (2.8), (2.9), —y(E) is the real part of a function whose
derivative j (dh(E")JE' — E) is a Steiltjes transform. Thus, by (2) above,
lim dy(E° + ig)/de exists for a.e. E,. For any such E, where also y(E,) =0, we have
el0

that
lim y(E, + ig)/e = lim dy(E,, + ic)/de, (3.3)
el 0 el0
and in particular the limit is finite. Thus, by Thm. 2.6(a),
— 1
lim E < oo 34
8‘?3 (Immi(w,Eo + ie)) * 34)

By (2.10b), for every w,m.. (w, E + i0) exists for a.e. E so for a.e. E,m (w,E + i0) exists
for a.e. w. Thus, for a.e. E, for which y(E;) =0, we have by (3.4) and Fatou’s lemma
that

I
E(Immi(w,EO n i0)>< * (33

So, for a.e. w,E,, Imm, (w,E, +i0) > 0. Since m, +m_ + E — V(0) has a finite limit
forae. w,E, ImG >0 a.e. E,, which implies u,, has a positive component on such
E, by (3.2). [ |

Proof of Theorem 2. By (3.3), (3.5) and Thm. 2.6(b) and Fatou again, we learn that,
for a.e. pair {(w,E)|y(E)= 0}, we have that

Imm,(0,E, +i0) = Imm_(w,E, + i0), (3.6)

Re(m, + m_+ E, — V(0))(w,E, + i0) = 0. (3.7
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By (6) above, m, + m_ + E — V(0) is analytic on I and nonzero, so (by (2.7)) G is
analytic through I which, by (4) above, implies du,, =0 on I. [ ]

Proof of Theorem 3. Suppose that y(E)=0 on a set A with positive measure.
Suppose we know V,(n)on n 0. Then, {V,(n)},< _, determines m_ and so by (3.6),
(3.7),m, is determined for a.e. E,e A (and a.e. @) by { ¥, (1)}, <, and then by (5) above,
m, is determined for all E. Thus the lemma below (which we learned from P. Deift)
shows that {V,(n)},<, determines {V,(n)},>,. [ ]

Lemma 3.1. {V,(n)},, can be constructed from m(w,E).

Proof. By (2.10), m,(w,E) determines (HJ)*(1,1). But it is easy to see that
HD* ' (1L,)=V,(k+1)+a function of {V,(j)};<j<» so that inductively
(H})X1,1) determines V(). [ ]

4. A Connection with some work of Carmona

In [2], Carmona proved an interesting deterministic theorem showing that certain
conditions on {V(n)},-, imply H=H,+ V has only absolutely continuous
spectrum in some interval. Here we give another condition which is clearly closely
connected to his which yields the same conclusion. For any V yielding a limit point
situation at + oo, say [V(n)| = — Cn?, we still have functions m*(E) and m* depend
only on {V(n)}i,,gl.

Theorem 4.1. If limImm™(E +i¢)> 0 for all E in a set A, then for the spectral
el0

!
measure du associated to &,, we have ug, (A) =0.

Proof. By assertion (4) above (the theorem of de’Vallee Poussin), x;,,(C) = 0, where

C = {E|lim|G(0,0;E + ie)) < o0}. But since G=—(m, +m_+E—V(0)"!, we
el0
have that |G| < (Imm, + Imm_ +ImE)~! <(Imm™*)~! so the hypothesis implies

AcC. |
This is connected to the considerations of Kotani, in that:

Proposition 4.2. In the stochastic context of Sect. 1-3, if y(E) =0 on an interval, I,
then for a.e. w, Imm*(E +i0,w) > 0 for all Eel.

Proof. As we saw in Sect. 3, Im(m, + m_) is everywhere nonzero and Imm, =
Im@m, +m_). ]

This shows that the periodic example of Carmona [2] can be analyzed using
Thm. 4.1. Similarly, these methods extend to the continuum case and it must be true
that for the Stark problem — d?/dx? — x, Imm™* > 0 for all E. This leaves us with an
open question: Within the stochastic setting, if y(E) = 0 for all E€1, is it true that for

all w and every compact K < I, we have that  sup || Ug(x,0)|| < oo, where Ug(x,0)
EcK,x>0

is the transfer matrix from 0 to x?
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