
KQML - A Language and Protocol for

Knowledge and Information Exchange

Tim Finin and Rich Fritzson

Computer Science Department

University of Maryland, UMBC

Baltimore MD 21228

Don McKay and Robin McEntire

Valley Forge Engineering Center

Unisys Corporation

Paoli PA 19301

Abstract. This paper describes the design of and experimentation with the Knowledge Query and Manipulation

Language (KQML), a new language and protocol for exchanging information and knowledge. This work is part

a larger effort, the ARPA Knowledge Sharing Effort which is aimed at developing techniques and methodology for
building large-scale knowledge bases which are sharable and reusable. KQML is both a message format and a

message-handling protocol to support run-time knowledge sharing among agents. KQML can be used as a

language for an application program to interact with an intelligent system or for two or more intelligent systems to
share knowledge in support of cooperative problem solving.

KQML focuses on an extensible set of performatives, which defines the permissible operations that agents may

attempt on each other’s knowledge and goal stores. The performatives comprise a substrate on which to develop

higher-level models of inter-agent interaction such as contract nets and negotiation. In addition, KQML provides a

basic architecture for knowledge sharing through a special class of agent called communication facilitators which
coordinate the interactions of other agents The ideas which underlie the evolving design of KQML are currently

being explored through experimental prototype systems which are being used to support several testbeds in such
areas as concurrent engineering, intelligent design and intelligent planning and scheduling.

Introduction

Many computer systems are structured as collections of

independent processes these are frequently distributed
across multiple hosts linked by a network. Database

processes, real-time processes and distributed AI systems

are a few examples. Furthermore, in modern network

systems, it should be possible to build new programs by

extending existing systems; a new small process should be

conveniently iinkable to existing information sources and

tools (such as filters or rule based systems).

The idea of an architecture where this is easy to do is quite

appealing. (It is regularly mentioned in science fiction.)

Many proposals for intelligent user-agents such as
Knowbots [Kahn] assume the existence of this type of

environment. One type of program that would thrive in

such an environment is a mediator [Wiederhold].
Mediators are processes which situate themselves between

"provider" processes and "consumer" processes and
perform services on the raw information such as providing

standardized interfaces; integrating information from

several sources; translating queries or replies. Mediators

(also known as "middleware") are becoming increasingly

important as they are commonly proposed as an effective

method for integrating new information systems with

inflexible legacy systems.

However, networks environments which support "plug and

play" processes are still rare, and most distributed systems

are implemented with ad hoe interfaces between their

components. Many Internet resources, such as library

catalog access, finger, and menu based systems are
designed to support only process-to-user interaction.

Those which support process-to-process communication,

such as ftp or the Mosaic world wide web browser, rely on

fairly primitive communication protocols. The reason for

this is that there are no adequate standards to support

- 93 -

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

complex communication among processes. Existing

protocols, such as RPC, are insufficient for several
reasons. They are not all that standard; there are currently

several successful and incompatible RPC standards (e.g.

ONC and DCE). They are also too low level; they do not

provide high level access to information, but are intended

only as "remote procedure calls."

Nor are there standard models for programming in an
environment where some of the data is supplied by

processes running on remote machines and some of the

results are needed by other similarly distant processes.

While there are many ad hoc techniques for
accomplishing what is needed, it is important that

standard methods are adopted as early as is reasonable in

order to facilitate and encourage the use of these new

architectures. It is not enough for it to be possible to

communicate, it must be easy to communicate. Not only

should low level communication tasks such as error
checking be automatic, but using and observing protocol

should be automatic as well.

KQML is a language and a protocol that supports this type

of network programming specifically for knowledge-based
systems or intelligent agents. It was developed by the

ARPA supported Knowledge Sharing Effort [Neches 91,

Patti 92] and separately implemented by several research

groups. It has been successfully used to implement a
variety of information systems using different software

architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is

consortium to develop conventions facilitating the sharing
and reuse of knowledge bases and knowledge based

systems. Its goal is to define, develop, and test

infrastructure and supporting technology to enable

participants to build much bigger and more broadly

functional systems than could be achieved working alone.

Current approaches for building knowledge-based systems

usually involve constructing new knowledge bases from

scratch. The ability to efficiently scale up AI technology
will require the sharing and reuse of existing components.

This is equally true of software modules as well as

conceptual knowledge. AI system developers could then

focus on the creation of the specialized knowledge and
reasoners new to the task at hand. New systems could

interoperate with existing systems, using them to perform

some of its reasoning. In this way, declarative knowledge,

problem solving techniques and reasoning services could

all be shared among systems. The ability to build, manage
and use sharable and reusable knowledge resources is
thought to be a key to the realization of large-scale

intelligent systems. The definition of conventions

enabling sharing among collaborators is the essential first

step toward these goals.

The KSE is organized around four working groups each of
which is addressing a complementary problem identified

in current knowledge representation technology:

¯ The Interlingua Group is concerned with translation

between different representation languages, with
sub-interests in translation at design time and at run-

time.

¯ The KRSS Group (Knowledge Representation

System Specification) is concerned with defining

common constructs within families of representation

languages.

¯ The SRKB Group (Shared, Reusable Knowledge

Bases) is concerned with facilitating consensus on

the contents of sharable knowledge bases, with sub-
interests in shared knowledge for particular topic

areas and in topic-independent development
tools/methodologies.

¯ The External Interfaces Group is concerned with

run-time interactions between knowledge based
systems and other modules in a run-time

environment, with sub-interests in communication
protocols for KB-to-KB and for KB-to-DB.

The KQML language is one of the main results which

have come out of the external interfaces group of the KSE.

KQML

We could address many of the difficulties of

communication between intelligent agents described in the

Introduction by giving them a common language. In

linguistic terms, this means that they would share a
common syntax, semantics and pragmatics.

Getting information processes, especially AI processes, to

share a common syntax is a major problem. There is no

universally accepted language in which to represent

information and queries. Languages such as KIF
[Genesereth et. al. ’92], extended SQL, and LOOM

[McGreggor] have their supporters, but there is also a

strong position that it is too early to standardize on any

representation language. As a result, it is currently
necessary to say that two agents can communicate with

.94-

Query

Reply

or a reasoner which can produce a sequence of

instantiations in response to a query. Although this

exchange requires that the server maintain some internal

state, the individual transactions are each the same as in
the single reply case. I.e., each transaction is a "send-a-

query / wait / receive-a-reply" exchange. We refer to these
transactions as being synchronous because messages arrive

Figure 1 - In this example of a synchronous communication
query, a blocking query waits for an expected reply.

each other if they have a common representation language

or use languages that are inter-translatable.

Assuming a common or translatable language, it is still

necessary for communicating agents to share a framework
of knowledge (i.e. a shared structured vocabulary) in order

to interpret the messages they exchange. This is not really

a shared semantics, but a shared ontology. There is not
likely to be one shared ontology, but many. Shared

ontologies are under development in many important
application domains such as planning and scheduling,

biology and medicine.

Pragmatics among computer processes includes

1) knowing who to talk with and how to find them

2) knowing how to initiate and maintain an exchange.

KQML is concerned primarily with pragmatics (and

secondarily with semantics). It is a language and a set of
protocols which support computer programs in

identifying, connecting with and exchanging information

with other programs.

KQML Protocols

There are a variety of interprocess information exchange

protocols. There is the simple case of one process (a
client) sending a query to another process (a server)

waiting for a reply as is shown in Figure 1. This occurs

commonly when a backward-chaining reasoner retrieves

information from a remote source. As it needs data, it

places queries and waits for the replies before attempting

any further inferences. A far as protocol is concerned, this
case includes those where the server’s reply message

actually contains a collection of replies.

Another common case is when the server’s reply is not the

complete answer but a handle which allows the client to
ask for the components of the reply, one at a time as

shown in Figure 2. A common example of this type of

exchange is a simple client querying a relational database

Query

Reply
Next

~1~ Reply

Figure 2 - The remote server can maintain state by
remembering the partial answer. Replies are sent
individually, each at the request of the client.

at the client only when they are expected.

It is a different situation in real-time systems, among

others, where the client subscribes to a server’s output and

then an indefinite number of replies arrive at irregular

intervals in the future, as shown in Figure 3. In this case,

Rep’y i

~1 ~91--~ Reply ~

Figure 3 - Using an asynchronous communication protocol, a
non-blocking subscribe request can result in an irregularly
spaced, indeterminate number of incoming messages.

the client does not know when each reply message will be

arriving and may be busy performing some other task

when they do. We refer to these transactions as being
asynchronous.

There are other variations of these protocols. For example,

messages might not be addressed to specific hosts, but

broadcast to a number of them. The replies, arriving

synchronously or asynchronously have to be collated and,

- 95 - ,

optionally, associated with the query that they are replying

to.

The KQML Language

KQML supports these protocols by making them an

explicit part of the communication language. When using

KQML, a software agent transmits messages composed in

its own representation language, wrapped in a KQML

message.

KQML is conceptually a layered language. The KQML

language can be viewed as being divided into three layers:

the content layer, the message layer and the

communication layer. The content layer is the actual

content of the message, in the programs own

representation language. KQML can carry any

representation language, including languages expressed as

ASCII strings and those expressed using a binary notation.

All of the KQML implementations ignore the content

portion of the message except to the extent that they need

to determine its boundaries.

The communication level encodes a set of features to the

message which describe the lower level communication
parameters, such as the identity of the sender and

recipient, and a unique identifier associated with the

communication.

The message layer forms the core of the language. It

determines the kinds of interactions one can have with a

KQML-speaking agent. The primary function of the
message layer is to identify the protocol to be used to

deliver the message and to supply a speech act or
performative which the sender attaches to the content. The

(performative or speech act)

communication (in
agreed upon language, e.g.,
KIF, KRSL, etc.)

Figure 4 - The KQML language can be viewed as being divided
into three layers: the content layer, the message layer and the
communication layer.

performative signifies that the content is an assertion, a

query, a command, or any of a set of known

performatives. Because the content is opaque to KQML,

this layer also includes optional features which describe

the content: its language, the ontology it assumes, and

some type of more general description, such as a

descriptor naming a topic within the ontology. These

features make it possible for KQML implementations to

analyze, route and properly deliver messages even though

their content is inaccessible.

Conceptually, a KQML message consists of a

performative, its associated arguments which include the

real content of the message, and a set of optional
arguments which describe the content in a manner which

is independent of the syntax of the content language. For

example, a message representing a query about the

location of a particular airport might be encoded as:

(ask-one :content (gooloe lax (7long ?lat))
:ontology gee-model3)

In this message, the KQML performative is ask-one, the

content is (geoloc lax (?long ?lat)) and the assumed

ontology is identified by the token :geo-model3. The same

general query could be conveyed using standard Prolog as

the content language in a form that requests the set of all

answers as:

(ask-all :content "geoloc(lax,[Long,Lat])"
:language standard_prolog
:ontology gee-model3)

The syntax of KQML is based on a balanced parenthesis

list. The initial element of the list is the performative and

the remaining elements are the performative’s arguments

as keyword/value pairs. Because the language is relatively

simple, the actual syntax is relatively unimportant and can

be changed if necessary in the future. (The current syntax

was selected because most of the original implementation

efforts were done in Common Lisp.)

The set of KQML performatives is extensible. There is a

set of reserved performatives which have a well defined

meaning. This is not a required or minimal set; a KQML

agent may choose to handle only a few (perhaps one or

two) performatives. However, an implementation that

chooses to implement one of the reserved performatives

must implement it in the standard way. A community of
agents may choose to use additional performatives if they

agree on their interpretation and the protocol associated

with each.

Some of the reserved performatives are shown in Figure

5. In addition to standard communication performatives
such as ask, tell, deny, delete, and more protocol oriented

performatives such as subscribe, KQML contains
performatives related to the non-protocol aspects of

pragmatics, such as advertise - which allows an agent to

- 96 -

announce what kinds of asynchronous messages it is
willing to handle; and recruit - which can be used to find

suitable agents for particular types of messages.

For example, agent B might send the following
performative to agent A:

Basic query performatives:
evaluate, ask-if, ask-in, ask-one, ask-all
Multi-response query performatives:
stream-in, stream-all

Response performatives:
reply, sorry
Generic informational performatives:

tell, achieve, cancel, untell, unachieve
Generator performatives:
standby, ready, next, rest, discard, generator
Capability-definition performatives:
advertise, subscribe, monitor, import, export

Networking performatives:
register, unregister, forward, broadcast, route

Figure 5 - There are about two dozen reserved
performative names which fall into seven basic
categories.

(advertise
:language KQML

:ontology K10

:content (subscribe :language KQML

:ontology K10

:content (stream-about
:language KIF

:ontology motors

:content motor 1)))

to which agent B might respond with:

(subscribe :reply-with sl

:language KQML

:ontology K10

:content (stream-about

:language KIF
:ontology motors

:content motorl))

Agent A would then send B a stream of tell and untell

performatives over time with information about motor1, as

in:

(tell :language KIF

:ontology motors
:in-reply-to s 1

:content (= (val (torque motorl) (sim-time

(scalar 12 kgf))

(tell :language KIF
:ontology structures

:in-reply-to sl

:content (fastens frame l 2 motor 1))
(untell :language KIF

:ontology motors
:in-reply-to sl

:content (= (val (torque motorl) (sim-time

(scalar 12 kgf))

KQML Semantics. Currently there are no formal

semantics defined for the basic KQML performatives or
for the protocols associated with them. A semantic model

is under development that assumes that a KQML-speaking

agent has a virtual knowledge base with two separate

components: an information store (i.e., "beliefs") and

goal store (i.e., "intentions"). The primitive
performatives are defined in terms of their effect on these

stores. A TELL(S), for example, is an assertion by the

sending agent to the receiving agent that the sentence S is

in its virtual belief store. An ACHIEVE(S) is a request

the sender to the receiver to add S to its intention store.

The protocols that govern the allowable responses when
an agent receives a KQML message must also be defined.

These are currently defined informally in English

descriptions, but work is underway to provide formal
definitions in terms of a grammar using the definite

clause grammar (DCG) formalism.

KQML Internal Architectures

KQML was not defined by a single research group for a

particular project. It was created by a committee of

representatives from different projects, all of which were

concerned with managing distributed implementations of
systems. One project was a distributed collaboration of

expert systems in the planning and scheduling domain.

Another was concerned with problem decomposition and

distribution in the CAD/CAM domain. A common
concern was the management of a collection of

cooperating processes and the simplification of the

programming requirements for implementing a system of

this type. However, the groups did not share a common

communication architecture. As a result, KQML does not
dictate a particular system architecture, and several

different systems have evolved.

- 97.

Our group has two implementations of KQML. One is communication channel is currently implemented by a

written in Common Lisp, the other in C. Both are fully

interoperable and are frequently used together.

The design of these two implementations was motivated

by the need to integrate a collection of preexisting expert

systems into a collaborating group of processes. Most of
the systems involved were never designed to operate in a

communication oriented environment. The

communication architecture is built around two

specialized programs, a router and a facilitator, and a
library of interface routines, called a KRIL.

KQML Routers. Routers are content independent!::
message routers. Each KQML-speaking software agent i s i

associated with its own separate router process. All routers :~

are identical; each is just an executing copy of the same

program. A router handles all KQML messages going to
and from its associated agent. Because each program has

an associated router process, it is not necessary to make

extensive changes to the program’s internal organization

to allow it to asynchronously receive messages from a
variety of independent sources. The router provides this

service for the agent and provides the agent with a single

point of contact for communicating with the rest of the

network. It provides both client and service functions for

the application and can manage multiple simultaneous
connections with other agents.

The router never looks at the content fields of the

messages it handles. It relies solely on the KQML

performatives and its arguments. If an outgoing KQML

message specifies a particular Internet address, the router

directs the message to it. If the message specifies a
particular service by name, the router will attempt to find

an Internet address for that service and deliver the

message to it. If the message only provides a description of
the content (e.g. query, :ontology "geo-domain-3",

:language "Prolog", etc.) the router may attempt to find

server which can deal with the message and it will deliver
it there, or it may choose to forward it to a smarter

communication agent which may be willing to route it.
Routers can be implemented with varying degrees of

sophistication -- they can not guarantee to deliver all

messages.

In the C implementation, a router actually is a separate

UNIX process. It is a child process which is forked by the
application. The communication channel between the

router and the application carries KQML messages but

may carry more than is specified by the formal protocol.

That is, since it is a private channel between the router
and application it does not have to observe KQML

protocol. The router only has to observe the formal KQML

rules when speaking to the outside world. The

UNIX pipe, but we are planning on experimenting with a

higher bandwidth channel which can be implemented with

shared memory.

The Lisp implementation uses Lucid’s multitasking
primitives to implement the router as a separate Lisp task

within the application’s Lisp image. It would be too

inefficient to fork a separate Lisp image for the router.
However, we are planning on experimenting with using

the C router with Common Lisp applications.

Router

Network KQML
Connections objects

Network

Figure 6 - A router gives an application a single interface
to the network, providing both client and server
capabilities, managing multiple simultaneous
connections, and handling some KQML interactions
autonomously.

KQML Facilitators. To deliver messages that are

incompletely addressed, routers rely on facilitators. A
facilitator is a network application which provides useful

network services. The simplest service it provides is to

maintain a registry of service names; routers rely on

facilitators to help them find hosts to route information to.
In this role, facilitators serve only as consultants to the

communication process.

However, facilitators can provide many other
communication services. On request, a facilitator may

forward messages to named services. Or, it may provide

matchmaking services between information providers and
consumers. They include

content based routing of information between agents,

brokering of information between an advertising

supplier and an advertising consumer,

recruiting suppliers to deal directly with advertising

consumers,

smart multicasting of information to interested agents

~- 98 -

These activities can be performed in a relatively simple
manner (as shown in Figure 8) or they may be performed

by an intelligent agent capable of synthesizing information
from multiple sources.

Facilitators are actual network software agents; they have

their own KQML routers to handle their traffic and they

deal exclusively in KQML messages. There is typically

one facilitator for each local group of agents. This can

translate into one facilitator per local site or one per

project; there may be multiple local facilitators to provide

redundancy. The facilitator database may be implemented

in any number of ways depending on the number of hosts

served and the quality of service required. An early

ask(X)

tell(X)

Content Based
Routing

¯ broker(ask(:~tk..._ ~il~’er rise. (~k(X)) I
Brokering ~~

Recruiting ~br°ker(ask(vertlse. (&~k(X)]
tell(X)

Figure 7 - Facilitators are agents that deal in knowledge
about the information services and requirements of other
agents. They can offer services such as forwarding,
brokering, recruiting and content-based routing.

implementation of a facilitator replicated the database on

every machine in the local net, to reduce communication

overhead for routing. This was replaced with a more

centralized implementation which is supplemented by

caching of information in the routers. For larger networks,
and for facilitators serving multiple networks, a

distributed implementation (analogous to the Internet

domain name service) may be more appropriate.

When each application starts up, its router announces

itself to the local facilitator so that it is registered in the

local database. When the application exits, the router

sends another KQML message to the facilitator, removing

the application from the facilitator’s database. In this way

applications can find each other without there having to be

a manually maintained list of local services.

KQML KRILs. Since the router is a separate process

from the application, it is necessary to have a

programming interface between the application and the

router. This interface is called a KRIL (KQML Router

Interface Library). While the router is a separate process,

with no understanding of the content field of the KQML

message, the KRIL is embedded in the application and has
access to the application’s tools for analyzing the content.

While there is only one piece of router code, which is

instantiated for each process, there can be various KRILs,

one for each application type or one for each application

language. The general goal of the KRIL is to make access

to the router as simple as possible for the programmer.

Facilitator

Network

Figure 8 - A communication Facilitator is an agent that performs
various useful services, e.g. maintaining a registry of service
names, forwarding messages to named services, routing messages
based on content, providing "matchmaking" between
information providers and clients, and providing mediation anl
translation services.

To this end, a KRIL can be as tightly embedded in the

application, or even the application’s programming

language, as is desirable. For example, an early

implementation of KQML featured a KRIL for the Prolog

language which had only a simple declarative interface for

the programmer. During the operation of the Prolog

interpreter, whenever the Prolog database was searched for

predicates, the KR1L would intercept the search;

determine if the desired predicates were actually being

supplied by a remote agent; formulate and pose an

appropriate KQML query; and return the replies to the

Prolog interpreter as though they were recovered from the

internal database. The Prolog program itself contained no

mention of the distributed processing going on except for

the declaration of which predicates were to be treated as

remote predicates. Figure 9 shows an example of this

together with a facilitation agent which provides a central

content-based routing service.

It is not necessary to completely embed the KRIL in the

application’s programming language. A simple KRIL for
a language generally provides two programmatic entries.

For initiating a transaction there is a send-kqml-message

\

Know~ "P if Q and R"

export(p/2).

import(q/I).

import(r/l).

/

q(a)Kn°ws Q I
I~)port(q

2.~.~

¯ ¯ to know P

Application ?- p(A,B)
A6 A1 import(p/2)

Knows who knows what

Knows [¢ :~
name(al.

A4 128.62.39.4) ...
r(b)

import(al,p/2)
~}port(r export(a4,r/1)

export. (a6,p2)...

Figure 9 - This example shows the use of a facilitator to do content-based routing allowing a set of Prolog-based agents to work
together to prove goals.

function. This accepts a message content and as much

information about the message and its destination as can

be provided and returns either the remote agent’s reply (if

the message transmission is synchronous and the process

blocks until a reply is received) or a simple code

signifying the message was sent. For handling incoming

asynchronous messages, there is usually a declare-

message-handler function. This allows the application

programmer to declare which functions should be invoked

when messages arrive. Depending on the KR/L’s

capabilities, the incoming messages can be sorted

according to performative, or topic, or other features, and

routed to different message handling functions.

In addition to these programming interfaces, KRILs accept

different types of declarations which allow them to

register their application with local facilitators and contact

remote agents to advise them that they are interested in

receiving data from them. Our group has implemented a
variety of experimental KRILs, for Common Lisp, C,

Prolog, Mosaic, SQL, and other tools.

KQML Performance. We have developed a simple

performance model, shown in Figure 11, for KQML

communication which has allowed us to analyze the

efficiency of communication and to identify and eliminate

bottlenecks by tuning the software and adding additional

capabilities. For example, various compression

enhancements have been added which cut the

communication costs by reducing the message sizes and

also by eliminating a substantial fraction of symbol lookup

and string duplication.

fimction

Network objects

Figure 10 -The KRIL is part of the application and has access to
its internals. It provides internal access points to which the
router delivers incoming messages, analyzes outgoing messages
for appropriate domain tagging and routing, and provides
application specific interface and procedures for communication
access.

Experiences with KQML

We have used KQML as the communication language in

several technology integration experiments in the

ARPA/Rome Lab Planning Initiative. These experiments
linked a planning agent (in SIPE), with a scheduler (in

Common Lisp), a knowledge base (in LOOM), and a case

based reasoning tool (in Common Lisp). All of the

components integrated were preexisting systems which

were not designed to work in a distributed environment.

We have also successfully used KQML in demonstrations

for the ARPA-supported Integrated Weapons Systems

Database, integrating distributed clients (in C) with

mediators which were retrieving data from distributed

databases. Additional work was done under this project

using KQML to link a World Wide Web browser with

mediators designed to locate documents for them.

The Computer Systems Division of the Aerospace Corp.

has used KQML to integrate commercial off-the-shelf

~g
reply .~oding & writing reply

Waltln~ ~quer~~.~

Figure 11 - A simple performance model for KQML
communication has allowed us to analyze the efficiency of
KQML-based communication and to eliminate bottlenecks.

software into systems by wrapping them in KQML-

speaking shells.

The Lockheed AI Center and the Palo Alto Collaboration

Testbed have also made extensive use of KQML to
decompose and distribute problems in the CAD/CAM

domain.

Conclusion

This paper has described KQML -- a language and
associated protocol by which intelligent software agents

can communicate to share information and knowledge.

We believe that KQML, or something very much like it,

will be important in building the distributed agent-
oriented information systems of the future. One must ask

how this work is to be differentiated from the work in two
related areas -- distributed systems (DS) and distributed

AI (DAI).

KQML and DS. KQML offers an abstraction of an

information agent (provider or consumer) at a higher level

that is typical in other areas of Computer Science. In

particular, KQML assumes a model of an agent as a

knowledge-based system (KBS). Although this will not

seem to be surprising or profound in our AI community, it

is a significant advance (we hope!) for the general

community. The KBS model easily subsumes a broad

range of commonly used information agent models,

including database management systems, hypertext

systems, server-oriented software (e.g. finger demons,

mail servers, HTML servers, etc), simulations, etc. Such

systems can usually be modeled as having two virtual

knowledge bases -- one representing the agent’s

information store (i.e., beliefs) and the other representing

its intentions (i.e., goals).

We hope that future standards for interchange and
interoperability languages and protocols will be based on

this very powerful and rich model. This will avoid the
built-in limitations of more constrained models (e.g., that

of a simple remote procedure call or relational database

query) and also make it easier to integrate truly intelligent

agents with simpler and more mundane information

clients and servers.

In addition to having something to offer, KQML also has

something it seeks from distributed systems work -- the

right abstractions and software components to provide

basic communication services. Current KQML-based
systems have been built on the most common transport

layers in use today -- TCP/IP and EMAIL. The real

contributions that KQML makes are independent of the

transport layer. We anticipate that KQML interface
implementations will be based on whatever is seen as the

best transport mechanism.

KQML and DAI. The contribution that KQML makes to

Distributed AI research is to offer a standard language and

protocol that intelligent agents can use to communicate

among themselves as well as with other information

servers and clients. We believe that permitting agents to

use whatever content language they prefer will make

KQML appropriate for most DAI research. In designing

KQML, our goal is to build in the primitives necessary to
support all of the interesting agent architectures currently

in use. If we have been successful, then KQML should
prove to be a good tool for DAI research, and, if used

widely, should enable greater research collaboration

among DAI researchers.

KQML and the Future. The ideas which underlie the

evolving design of KQML are currently being explored

through experimental prototype systems which are being

used to support several testbeds in such areas as

concurrent engineering [Cutkowski, McGuire,
Tenenbaum, Kuokka], intelligent design [Genesereth] and

intelligent planning and scheduling. Figure 12 shows the

.101-

architecture of a system in which KQML is being used to

support the interchange of knowledge among a planner, a

plan simulator, a plan editor and a knowledge server,
which is the repository for the shared ontology and access

point to common databases through the Intelligent

Database Interface [McKay, Pastor].

Figure 12 - KQML has been used in the ARPA Rome Planning
Initiative to support communication between components of an
intelligent planning system.

The design of KQML has continued to evolve as the ideas

are explored and feedback is received from the prototypes

and the attempts to use them in real testbed situations.

Furthermore, new standards for sharing persistent object-

oriented structures are being developed and promulgated,

such as OMG’s CORBA specification and Microsoft’s

OLE 2.0. Should any of these become widely used, it will

be worthwhile to evoNe KQML so that its key ideas -- the

collection of reserved performatives, the support for a

variety of information exchange protocols, the need for an

information based directory service -- can enhance these

new information exchange languages.

Bibliography

External lnterfac.es Working Group ARPA Knowledge Sharing
Effort. KQML Overview. Working paper, 1992.

External Interfaces Working Group ARPA Knowledge Sharing
Effort. Specification of the KQML agent-communication
language. Working paper, December 1992.

S. Bussmann and J. Mueller. A communication architectute-~m-
cooperating agents. Computers and Artificial Intelligence,

12:37--53, 1993.

M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber, M.
Genesereth, and W. Mark. PACT: An experiment in integrating
concurrent engineering systems. 1992.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill.
Trends in cooperative distributed problem solving. IEEE
Transactions on Knowledge and Data Engineering, 1(!):63--83,
March 1989.

Dan Kuokka et. al. Shade: Technology for knowledge-based

collaborative. In AAAI Workshop on AI in Collaborative
Design, 1993.

James McGuire et. al. Shade: Technology for knowledge-based
collaborative engineering. Journal of Concurrent Engineering:
Research and Applications, to appear.

Tim Finin, Rich Fritzson, and Don McKay et. al. An overview
of KQML: A knowledge query and manipulation language.
Technical report, Department of Computer Science, University
of Maryland Baltimore County, 1992.

Tim Finin, Rich Fritzson, and Don McKay. A language and
protocol to support intelligent agent interoperability. In
Proceedings of the CE& CALS Washington "92 Conference.
June 1992.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
KQML: an information and knowledge exchange protocol. In
International Conference on Building and Sharing of Very Large-
Scale Knowledge Bases, December 1993.

M. Genesereth and R. Fikes et. al. Knowledge interchange
format, version 3.0 reference manual. Technical report,
Computer Science Department, Stanford University, 1992.

Mike Genesereth. Designworld. In Proceedings of the IEEE
Conference on Robotics and Automation, pages 2,785--2,788.
IEEE CS Press.

Mike Genesereth. An agent-based approach to software
interoperability. Technical Report Logic-91-6, Logic Group,
CSD, Stanford University, February 1993.

Carl Hewitt and Jeff Inman. DAI betwixt and between: From
"’intelligent agents" to open systems science. IEEE Transactions
on Systems, Man and Cybernetics, 21(6), December 1991.
(Special Issue on Distributed AI).

Michael N. Huhns, David M. Bridgeland, and Natraj V. Arni. A
DAI communication aide. Technical Report ACT-RA-317-90,
MCC, Austin TX, October 1990.

R. E. Kahn, Digital Library Systems, Proceedings of the Sixth
Conference on Artificial Intelligence Applications CAIA-90
(Volume II: Visuals), Santa Barbara CA, pp. 63-64, 1990.

Robert MacGregor and Raymond Bates, The Loom Knowledge
Representation Language, Proceedings of the Knowledge-Based
Systems Workshop, St. Louis, Missouri, April, 1987.

Don McKay, Tim Finin, and Anthony O’Hare. The intelligent

database interface. In Proceedings of the 7th National
Conference on Artificial Intelligence, August 1990.

r ~r - --

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W. Swartout. Enabling technology for knowledge sharing.
AI Magazine, 12(3):36 -- 56, Fall 1991.

Jeff Y-C Pan and Jay M. Tenenbaum. An intelligent agent

framework for enterprise integration. IEEE Transactions on
Systems, Man and Cybernetics, 21(6), December 1991. (Special

Issue on Distributed AI).

Mike P. Papazoglou and Timos K. Sellis. An organizational

framework for cooperating intelligent information systems.
International Journal on Intelligent and Cooperative Information

Systems, 1(1), (to appear) 1992.

Jon Pastor, Don Mckay and Tim Finin, View-Concepts:
Knowledge-Based Access to Databases, First International

Conference on Information and Knowledge Management,

Baltimore, November 1992.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T.

Gruber, and R. Neches. The darpa knowledge sharing effort:
Progress report. In B. Nebel, C. Rich, and W. Swartout, editors,

Principles of Knowledge Representation and Reasoning:
Proceedings of the Third Intemational Conference (KR’92), San

Mateo, CA, November 1992. Morgan Kaufmann.

J. R. Searle. What is a speech act? In M. Black, editor, From
Philosophy in America, pages 221--239. Allen & Unwin, Ort??,

1965.

Reid G. Smith. The contract net protocol: High-level

communication and control in a distributed problem solver.
IEEE Transactions on Computers, C-29(12):1104--1113,

December 1980.

Reid G. Smith and Randall Davis. Framework for cooperation

in distributed problem solving. IEEE Transactions on System,

Man, and Cybernetics, SMC-11 (1):61--70, January 1981.

M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration:
Lessons from shade and pact. In C. Petrie, editor, Enterprise

Integration Modeling. MIT Press, 1993.

Gio Wiederhold Peter Wegner and Stefano Ceri. Toward
megaprogramming. Communications of the ACM, 33(11):89--

99, November 1992.

Steven T. C. Wong and John L. Wilson. COSMO: a

communication scheme for cooperative knowledge-based

systems. IEEE Transactions on Systems, Man and Cybernetics,

to appear.

- 103 -

