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Abstract

This paper presents some equivalent forms of the common Kuder-Richardson
Formula 21 and 20 estimators for non-dichotomous data belonging to certain
other exponential families, such as Poisson count data, exponential data, or ge-
ometric counts of trials until failure. Using the generalized framework of Foster
(2020), an equation for the reliability for a subset of the natural exponential
family have quadratic variance function is derived for known population param-
eters, and both formulas are shown to be different plug-in estimators of this
quantity. The equivalent Kuder-Richards formulas 20 and 21 are given for six
different natural exponential families, and these match earlier derivations in the
case of binomial and Poisson data. Simulations show performance exceeding
that of Cronbach’s alpha in terms of root mean squared error when the formula
matching the correct exponential family is used, and a discussion of Jensen’s
inequality suggests explanations for peculiarities of the bias and standard error
of the simulations across the different exponential families.
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1 Introduction

Formulas 20 and 21 of Kuder and Richardson (1937), abbreviated throughout this paper
as KR20 and KR21, are some of the earliest and most well-known formulas in assessing
reliability of a test. For dichotomous data, the formulas are given by

KR20 =
k

k − 1

(

1−
∑k

j=1
pj(1− pj)

σ2

X

)

KR21 =
k

k − 1

(

1− kp̄(1− p̄)

σ2

X

)

where k is the test length, σ2

X is the variance of sum test scores, pj is the proportion
of correct responses to test item j, and p̄ is the average correct response over all items.
The most common estimator of reliability, Cronbach’s alpha, is often seen as a general
version of KR20 (Cronbach, 1951). Beyond Cronbach’s alpha, there does not seem to have
been many attempts to determine equivalent variants of KR20 and KR21 to specific types
non-dichotomous data, such as count data. Allison (1978) derived a KR21 equivalent for
Poisson distributed data, but most have stuck to Cronbach’s alpha as a general estimator
of reliability.

The topic of reliability estimation, and Cronbach’s alpha in particular, has been a
subject of much recent debate within the psychometric literature. Alpha has been criti-
cized as having assumptions which are not realistic in practice (McNeish, 2018; Schmitt,
1996; Sijtsma, 2009). Criticisms have focused on alpha’s assumptions of tau equivalence
and uncorrelated errors. McNeish (2018) claims that normality is an assumption of Cron-
bach’s alpha, but Raykov and Marcoulides (2019) rebut that no assumptions of normality
are made in the derivation of alpha and consistency as an estimator does not depend on
an assumption of normality. However, Zumbo (1999) notes that though the classical test
theory derivation of alpha makes no assumptions of normality, estimators of alpha often
do, in agreement with Bay (1973) who noted in his time that early derivations of statistical
properties of estimators such as Cronbach’s alpha and KR20 as in L. S. Feldt (1965) were
developed using an ANOVA model which includes an assumption of normality. More re-
cent research in Zyl, Neudecker, and Nel (2000) on the sampling distribution of cronbach’s
alpha using maximum likelihood techniques also assumes normality, though nonparametric
methods have been developed for psychometric calculations using techniques like the boot-
strap as in Raykov (1998). The statistical properties of alpha and other estimators have
been little explored outside of these assumptions of normality, with simulation studies in
Sheng and Sheng (2012) and Zimmerman, Zumbo, and Lalonde (1993). Beyond classical
test theory, Geldhof, Preacher, and Zyphur (2014) explicitly state that non-normal data is
a limitation for reliability estimation in a multilevel confirmatory factor analysis framework
As Zinbarg, Yovel, Revelle, and McDonald (2006) note, properties of alternatives to Cron-
bach’s alpha based on a factor analysis are not well known under non-normality, despite
most psychological data being non-normal. It is clear that there is a need for analysis of
reliability for non-normal data.

The purpose of this paper is to make a contribution towards the analysis of reliability
under non-normality by reversing direction from Cronbach’s alpha once again to derive
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formulas to estimate test reliability in special cases – to find equivalent forms of KR20 and
KR21 which can be used to assess reliability of tests for specific types of non-dichotomous
data. For example, chapter 21 of Lord, Novick, and Birnbaum (1968), discussing the work
of Rasch (1960), notes that the number of an examinee’s misreadings in an oral reading test
may be modeled as a Poisson random variable. If the response of interest were instead the
time between misreadings, an exponential distribution would then be appropriate. Meredith
(1971) also showed that a Poisson process is appropriate for tests of speed, and noted
that under certain assumptions the distributions of observed scores ought to be negatively
binomial distributed. The key idea is this: KR20 and KR21 can be seen as a specific
version of an estimator for reliability for Bernoulli distributed item responses where the
mean-variance relationship of the Bernoulli distribution is exploited for variance calculations
rather than using standard sample variances. Other exponential family distributions also
have mean-variance relationships. By working within the generalized framework of Foster
(2020) and deriving a formula for reliability in exponential families which uses the mean-
variance relationship and which matches traditional KR20 and KR21 in the binomial case,
equivalent versions of KR20 and KR21 are obtained for data from other exponential family
distributions. The KR20 and KR21 equivalent formulas are shown for when sum test
scores can be said to follow one of the six natural exponential family distributions with
quadratic variance function (NEF-QVF): the normal, the binomial, the Poisson, the gamma,
the negative binomial, or the natural exponential family generated by a convolution of
generalized hyperbolic secant functions (NEF-GHS).

Section 2 describes the properties of the generalized framework for reliability de-
scribed in Foster (2020) which form the basis for derivations of the formulas and definition
of reliability as parallel-test correlation, and states which assumptions are slightly modified
for the purposes of this paper. Section 3 shows how the mean-variance relationship can
be exploited to obtain test reliability and derives the general KR20 and KR21 formulas as
estimators of this relationship, giving the formulas for each NEF-QVF distribution. These
are shown to match the traditional KR20 and KR21 of Kuder and Richardson (1937) in the
binomial case, and the Poisson KR21 of Allison (1978) in the Poisson case. The conditions
for algebraic equivalence between KR20 and Cronbach’s alpha are also discussed. Section
4 performs a simulation study showing that these formulas do appear to converge to the
population reliability as the number of subjects and test length increases and comparing the
equivalent KR20 and KR21 formulas to Cronbach’s alpha and each other in terms of root
mean squared error, bias, and standard deviation. Results indicate that when the formulas
are used for data following the appropriate exponential family, performance is improved over
Cronbach’s alpha in terms of RMSE, though whether KR20 or KR21 is superior depends
on the variance function of the exponential distribution. A brief discussion of Jensen’s in-
equality indicates a possible explanation for why one formula is superior to another for a
given distribution.

2 Framework

This paper follows the generalized framework of Foster (2020), where “generalized” is used
in the same sense of a generalized linear model which may deal with non-normal exponential
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family data. A complete theoretical description of the framework is given in Foster (2020),
but this paper will only state without proof elements which are necessary. One major differ-
ence is that while the framework of Foster (2020) applies to the entire natural exponential
family, this paper focuses only on the members of the exponential family having quadratic
variance function so that the variance is a polynomial function of the mean up to degree two.
For example, a Bernoulli distribution with success probability p has mean p and variance
p(1 − p) = p − p2, so the variance is a quadratic function of the mean. Such distributions
and their properties are extensively described in Morris (1982) and Morris (1983), which
serve as a general reference. Furthermore, while the framework of Foster (2020) allows
the test length to vary between subjects, this paper assumes a common test length for all
subjects for the sake of simplicity. The framework of Foster (2020) is most closely related
to the strong true-score theory found in chapters 21 through 24 of Lord et al. (1968) and
associated papers such as Lord (1965) and Keats and Lord (1962) in deriving properties
of reliability when specific distributional forms can be assumed, but rather than dealing
individually with the binomial and Poisson distributions, the framework of Foster (2020)
derives properties for the exponential family in general. The framework makes assumptions
of true score distributions in such a way as to ensure that the regression of true score on
observed score is linear, though the observed scores are non-normal.

Let i = 1, 2, . . . , n index test subject and let j = 1, 2, . . . , k index test item. In this
framework, each test item for each subject Yij is assumed to identically follow a natural
exponential family distribution with quadratic variance function (NEF-QVF), with inde-
pendence conditional on subject ability θi. The six NEF-QVF distributions which may be
used as generator distributions in this fashion are the normal, Bernoulli, Poisson, exponen-
tial, geometric, and generalized hyperbolic secant densities. Each of these distributions is
closed under convolution. For example, the normal is a sum of normals, the binomial is the
sum of Bernoullis, and the gamma is a sum of exponentials. Let Xi =

∑k
j=1

Yij be the sum
score for subject i, summing over all k test items. The six possible distributions for Xi are
then the normal, binomial, Poisson, gamma, negative binomial, and NEF-GHS.

Furthermore, let abilities θi follow the corresponding conjugate prior g(θi|µ,M) for
the natural exponential family distribution, where µ = E[θi] and M = E[V (θi)]/V ar(θi).
For example, if the test items Yij are Bernoulli distributed with mean given by subject ability
θi, then subject sum scores Xi are binomial distributed, and abilities θi themselves follow a
beta distribution with parameters µ = α/(α+ β) and M = α+ β. A complete description
of several common NEF-QVF distributions, their conjugate priors, and the appropriate
parameterizations in terms of µ and M is given in the appendix of Foster (2020). The
model can be thought of as a hierarchy, with observed scores at the top level and abilities
at the bottom level.

For natural exponential family distributions with quadratic variance function, the
variance is a polynomial function of the mean of up to degree two.

V ar(Yij |θi) = V (θi) = v0 + v1θi + v2θ
2

i (1)

For example, the Bernoulli distribution has V (θi) = θi(1− θi) = θi − θ2i , so v0 = 0, v1 = 1,
and v2 = −1. The normal distribution, which assumes the variance around each item
response is known to be σ2, has V (θi) = σ2 constant.
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In this framework, the conditional and unconditional expectations of test item Yij
are given by

E[Yij |θi] = θi

E[Yij ] = µ
(2)

where µ is the population mean ability. The conditional expectation being equal to ability
θi in Equation (2) is an implicit assumption that each item is of equal difficulty conditional
on subject with ability θi, the necessity of which is discussed in Section 6. The conditional
and unconditional variances are given by

V ar(Yij |θi) = V (θi)

V ar(Yij) = E[V (θi)] + V ar(θi)
(3)

where V (θi) is the variance function in Equation (1) applied to abilities θi. Then sum scores
Xi have conditional and unconditional expectations

E[Xi|θi] = kθi

E[Xi] = kµ
(4)

Correspondingly, the conditional and unconditional variances of Xi are given by

V ar(Xi|θi) = kV (θi)

V ar(Xi) = kE[V (θi)] + k2V ar(θi)
(5)

Within this framework, the test reliability is defined as the correlation between
parallel tests, where parallel means that each test consists of identical, conditionally inde-
pendent items Yij following the same exponential family model with means and variances
given by Equations (2), (3), (4), and (5). As shown in Foster (2020), when this condition
is met the test reliability is equal to

ρ =
k

M + k

where k is the test length and M = E[V (θi)]/V ar(θi) is the parameter of the underlying
distribution of abilities g(θi|µ,M). This is also one minus the shrinkage parameter in the
Bayesian posterior distribution. Cronbach’s alpha reduces to this quantity in the framework.

Because the response to each test item Yij is conditionally independent and identical
on ability θi, this framework is unidimensional. As shown in Equation (3) and in Foster
(2020), the unconditional variances of each test item and unconditional covariances between
test items are equal. The variance-covariance matrix between test items implied in this
framework is thus tau-equivalent with equal variances, though the variance around each
test item Yij is different for each subject i because of the mean-variance relation given in
Equation (1).
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3 KR20 and KR21 as Estimators of Reliability

Conjugate priors for natural exponential families have a close relationship between their
mean µ and their variance V ar(θi), connecting to the variance function of the original
exponential family distribution they are conjugate to. From Morris (1983), the variance of
the conjugate prior for natural exponential families with a quadratic variance function is

V (µ) = V ar(θi)(M − v2) (6)

where V (µ) is the variance function of Equation (1) applied to the mean µ, M is the
parameter of the conjugate distribution of abilities g(θi|µ,M), and v2 is the coefficient of the
quadratic term of the variance function in Equation (1). For example, a beta distribution for
θi with parameters µ = α/(α+β) and M = α+β has variance V ar(θi) = µ(1−µ)/(M+1).
With V (θi) = θi(1− θi) for the Bernoulli distribution, this gives V (µ) = (M + 1)V ar(θi).

Define the the quantity R as

R =
k

k + v2

(

1− kV (µ)

V ar(Xi)

)

(7)

where V ar(Xi) is the unconditional variance. Using the mean-variance relationship given
in Equation (6) and the variances given in Equation (5), this quantity becomes

R =
k

k + v2

(

1− kV (µ)

V ar(Xi)

)

=
k

k + v2

(

1− kV ar(θi)(M − v2)

kE[V (θi)] + k2V ar(θi)

)

=
k

k + v2

(

kE[V (θi)] + k2V ar(θi)− kV ar(θi)(M − v2)

kE[V (θi)] + k2V ar(θi)

)

=
k

k + v2

(

M + k − (M − v2)

M + k

)

=
k

k + v2

(

k + v2
M + k

)

=
k

M + k

= ρ

(8)

The last line in Equation (7) is the parallel-test reliability, as previously stated. For di-
chotomous, Bernoulli distributed item responses, which have V (θi) = θi − θ2i and v2 = −1,
substitution into the quantity R in Equation (7) gives

R =
k

k − 1

(

1− kµ(1− µ)

V ar(Xi)

)

which is strikingly similar to the original KR20 and KR21 estimators of Kuder and Richard-
son (1937), but depends on known population parameters rather than sample quantities.

The parameters in Equation (7) are unknown, however, or else there would be no
need to administer any sort of test. The question is then, is it possible to construct a
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consistent estimator for Equation (7) from sample quantities? The answer is yes. Given
a consistent estimator for V (µ) and a consistent estimator for V ar(Xi), then by Slutsky’s
theorem, using these as plug-ins for the numerator and denominator of Equation (7) will
produce a consistent estimator for the population test reliability.

For V ar(Xi), the standard unbiased variance moment-based estimator of variance
is used for raw sum scores xi.

s2x =
1

n− 1

n
∑

i=1

(xi − x̄)2

A note on the equivalence of KR20 and Cronbach’s alpha for dichotomous data: these
are often stated to be exactly equal; however, algebraic equivalence only occurs when the
biased estimator of the sample variance which divides by the number of subjects n is used
for V ar(Xi) rather than the unbiased estimator which divides by n − 1 (for Cronbach’s
alpha itself, either estimator of variance yields identical estimates so long as it is used
consistently). For all calculations in this paper, the unbiased estimator of sample variance is
used. The historical reason for introducing bias into the denominator of the KR20 estimator
of reliability appears to be obtaining algebraic equivalence Cronbach’s alpha. As the results
of the simulation study in Section 4 show, however, using the unbiased estimator of variance
produces improved performance over alpha.

For the quantity V (µ), more than one estimator is possible. Because V (θi) is a
continuous polynomial for all six distributions considered, any consistent estimator for µ is
consistent for V (µ) by the continuous mapping theorem. The simplest estimator is to note
that from Equation (4), E[Xi] = kµ, and so 1

k
times the sample mean of sum scores has

expectation E[ 1
k
x̄] = 1

k
(kµ) = µ. Hence, 1

k
x̄ is a consistent estimator for µ by the law of

large numbers, and so V ( 1
k
x̄) is a consistent estimator for V (µ).

An alternative estimator is constructed by observing that the terms in the mean of
sum scores x̄ can be rearranged to equal the sum of test item means.

x̄ =
1

n

n
∑

i=1

xi =
1

n

n
∑

i=1

k
∑

j=1

yij =
1

n

k
∑

j=1

n
∑

i=1

yij =
k
∑

j=1

ȳj (9)

From Equation (2), a single test item Yij has E[Yij ] = µ. By the law of large numbers,
the item sample mean ȳj converges to µ for each item j. Then V (ȳj) is also a consistent
estimator for V (µ).

In Equation (7), the desired quantity is not V (µ), but kV (µ). Because the variance
function applied each item mean V (ȳj) is independently consistent for V (µ), a sum of V (ȳj)
over all k items gives the desired result. Plugging this into Equation (7) with unbiased
sample variance s2x for the denominator yields the generalized form of KR20:

KR20 =
k

k + v2

(

1−
∑k

j=1
V (ȳj)

s2x

)

(10)

For dichotomous, Bernoulli distributed item responses with V (θi) = θi−θ2i so that v2 = −1,
this gives:
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k

k − 1

(

1−
∑k

j=1
ȳj(1− ȳj)

s2x

)

which is the traditional KR20 formula, with ȳj = pj as the proportion of correct responses
on item j.

The alternative is to use kV ( 1
k
x̄) as a consistent estimator for kV (µ). Plugging this

and s2x into Equation (7) yields the generalized form of KR21:

KR21 =
k

k + v2

(

1− kV ( 1
k
x̄)

s2x

)

(11)

For dichotomous, Bernoulli distributed item responses, this is

k

k − 1

(

1− k( 1
k
x̄)(1− 1

k
x̄)

s2x

)

which is the traditional KR21 formula, as x̄ is the average sum score and so 1

k
x̄ is the

average proportion correct p̄.
The difference between KR20 and KR21, as far as this framework is concerned,

is whether the variance function V (·) is applied “inside” the sum of item means on the
right-hand side of Equation (9), yielding KR20, or “outside” the sum, yielding KR21. A
table showing the six different NEF-QVF distributions for item responses, their variance
functions, and their corresponding KR20 and KR21 estimators is given in Table 1. As
shown, the binomial formulas match the formulas originally derived in Kuder and Richard-
son (1937). The Poisson KR21 formula here exactly matches equation thirteen of Allison
(1978), which originally derived KR21 for Poisson count data. This paper shows that it is
also the Poisson KR20 equivalent because the variance function for the Poisson distribution
is simply the identity V (θi) = θi, and so applying Equation (9) gives equality. The rest
of the formulas are new, so far as can be determined. For the normal distribution, the
error variance σ2 around the response to each item is assumed known. As this is extremely
unlikely to be the case in practice, Cronbach’s alpha is recommended instead.

4 Simulation Study

4.1 Simulation Method

A reasonable question is, why use these generalized KR20 or KR21 estimators when Cron-
bach’s alpha is available? What advantage do these estimators have? This question is
answered with a simulation study.

The purpose of this simulation study is to show that when data is simulated from
the correct NEF-QVF model, the generalized KR20 and KR21 estimators corresponding
to that family both converge to the population reliability as the test length and number
of subjects increase, and that they do so as or more efficiently than Cronbach’s alpha. It
is not a simulation study to determine all properties of the estimators or to investigate all
potential sources and magnitudes of bias, though several are discussed. For data generation,
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the method described in the appendix of Foster (2020) is used, which is identical to the
simulation method of Huynh (1979) in the case of the binomial-beta model. Test data is
simulated using the following algorithm:

1. Choose the appropriate NEF-QVF distribution for test item responses yij , the mean
ability µ, the number of subjects n, the number of test items k, and desired population
reliability ρ.

2. Calculate the M required to obtain the desired population reliability ρ as

M =

(

1− ρ

ρ

)

k

3. Simulate n abilities θi from the conjugate prior g(θi|µ,M), one for each subject i.
The appropriate parameterization of the prior in terms of µ and M is given in the
appendix of Foster (2020)

4. For each θi, simulate k responses from the NEF-QVF distribution p(yij |θi). The sum
score xi for each subject i is calculated as the sum of these responses over the k items.

This algorithm implies the underlying distribution of talent levels g(θi|µ,M) is dif-
ferent for each (k, ρ) pair, as the parameter M of the distribution is calculated anew for
each. Hence, it is difficult to directly compare simulation results across two identical k
values if ρ differs, or across identical ρ values if k differs. Again, the primary goal is to show
convergence. The alternative is to keep the distribution of talent levels constant by keeping
M constant and varying the the reliability through the test length k, but this was not chosen
because it limits the potential values of the desired population reliability ρ and preliminary
simulations indicated that the shape of the distribution of talent levels g(θi|µ,M) was less
influential than the value of ρ, with the exception of extremely skewed distributions which
may be of interest in other simulations. The balance of choices in producing a desired pop-
ulation reliability ρ is delicate and it is not possible within this framework to have complete
freedom in all choices. A more complete simulation study might achieve a desired ρ through
different methods in order to determine the effect of each. Though the mean ability µ does
not affect the population reliability directly, it does have the potential to affect the sam-
pling distribution of reliability through manipulating aspects of the distribution of abilities
g(θi|µ,M) such as skew and kurtosis. In particular, preliminary simulations indicated that
µ values near the edges of the distribution support may lead to very skewed g(θi|µ,M) dis-
tributions which could potentially have a large influence, but these were not considered for
further study by simulation in this paper. The mean µ is instead kept constant throughout
the simulation studies to avoid yet another quantity which could potentially affect results,
though it could be of interest in a further simulation study. This algorithm also produces
items which are of equal difficulty conditional on subject with ability θi, though items may
have different algebraic means.

For the choice of exponential family model, the Poisson-gamma, gamma-inverse
gamma, negative binomial-F, and binomial-beta distributions are used, where the first dis-
tribution named is the distribution of sum scores xi and the second is the conjugate prior
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g(θi|µ,M). The binomial-beta distribution corresponds to the Kuder and Richardson (1937)
coefficients and has been extensively studied, but is also shown here for completeness and
comparison to results for other estimators. The normal-normal assumes the variance σ2 is
known, and as such is not of practical use. The distribution in the last row of Table 1,
the natural exponential family generated by a convolution of generalized hyperbolic secant
distributions, is neither common nor easy to simulate from.

For population ability ρ, the values 0.3, 0.6, and 0.8 are used, representing low,
moderate, and high reliability. For test length, the values k = 5, 10, and 30 are used,
representing a short, medium, and long test. For number of subjects, the values n = 30, 75,
and 500 are used, representing a small, moderate, and large number of subjects. The value
of the mean ability µ is constant within each set of simulations at µ = 1 for the Poisson-
gamma model and the gamma-inverse gamma model, µ = 1.01 for the negative binomial-F
model, and µ = 0.5 for the binomial-beta model. These were simply chosen as reasonable
values which worked well in simulation.

This gives a total of 27 sets of (ρ, k, n) values for each exponential family model and
four models. Details of the implied variance-covariance matrix are given in the Appendix.
For each set of values, a total of Nsims = 1, 000, 000 data sets were simulated and Cronbach’s
alpha and the KR20 and KR21 equivalents given by Equations (10) and (11) were calculated
for each. To judge the estimator for a given set of estimated reliabilities ρ̂, the sample root
mean squared error is used.

RMSE(ρ̂) =

√

√

√

√

1

Nsims

Nsims
∑

s=1

(ρ− ρ̂s)
2

The root mean squared error is further decomposed into the traditional bias and variance
(squared standard deviation) of the estimator.

RMSE(ρ̂) =
√

Bias2(ρ̂) + V ar(ρ̂) =

√

√

√

√

(

1

Nsims

Nsims
∑

s=1

(ρ− ρ̂s)

)2

+
1

Nsims

Nsims
∑

s=1

(ρ̂s − ρ̄s)
2

where ρ̄s is the sample mean of the ρ̂s. Note that decomposition requires the biased variance
formula for exact algebraic equivalence, but for Nsims = 106 total simulations using either
the biased or unbiased variance estimate gives identical results within the first three decimal
places. The decomposition allows for further inspection of results in order to determine exact
properties of the estimator and answer questions about why a particular estimator might
be performing better or worse than another.

The results of the simulation study are shown in Table 2 and Figure 1 for the
Poisson-gamma model, Table 3 and Figure 2 for the gamma-inverse gamma model, Table 4
and Figure 3 for the negative binomial-F model, and Table 5 and Figure 4 for the binomial-
beta model. In the results the sample standard deviation is given rather than the sample
variance because the sample variance was often extremely small. Results are reported to
three decimal places. The largest sample variance reported for any estimator is 0.2512 for
Cronbach’s alpha in the first row of Table 3; thus, the approximate Monte Carlo standard
error is less than or equal to 0.251/

√
106 = 0.000251, and quite often much smaller. For
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this reason, the reporting of three decimal places in results is appropriate. Again, note that
the unbiased estimator of sample variance s2x which divides by n − 1 is used in all cases.
Furthermore, intervals around derived quantities are small. A 99% bootstrap interval for the
RMSE of Cronbach’s alpha in the first row of Table 3, based on 10,000 bootstrap samples
of the one million simulated alpha values, is (0.251, 0.252). The standard error of the point
estimate of RMSE is thus smaller than the rounding amount 0.001, so confidence intervals
surrounding the point estimates are not included.

4.2 Analysis of Results

The results of Tables 2, 3, 4, and 5 show that the primary aims of the simulation study are
met. Both Cronbach’s alpha and the estimators in Table 1 decrease in RMSE and appear to
be converging towards zero as the test length k and the number of subjects n increase. This
can be seen for ρ = 0.3 in Figures 1, 2, 3, and 4. Furthermore, the estimators in Table 1 are
nearly universally superior to Cronbach’s alpha, answering the initial question posed of why
they might be preferred over alpha. It is only in high-data situations with a relatively large
number of test items k and large number of subjects n that all estimators are nearly equal
and the root mean squared error is approximately the same no matter which estimator you
choose. In general, it appears that increasing the number of subjects n can greatly lead
to a reduction in RMSE through reduction of both bias and variance. For shorter tests
with a smaller number of subjects, the generalized estimators provided by Equations (10)
and (11) often strongly outperform alpha in terms of RMSE. However, there are noticeable
differences in the exact manner the increase occurs. For example, the generalized KR21
estimator outperforms the generalized KR20 estimator for the gamma-inverse gamma and
negative-binomial F results in Tables 3 and 4, but the reverse occurs for the binomial-beta
model results given in Table 5. The bias of all three estimators is also generally negative,
except for KR20 and KR21 in the binomial-beta model results given in Table 5. There are
also differences in variances of the estimators across models. Though formal proof is not
offered, some probability theory may help to explain the idiosyncrasies within each table
and between tables.

First, it is noticeable that in all three sets of simulations the bias is negative for
Cronbach’s alpha in all cases, though converging to zero as the number of subjects n in-
creases. Why? From Foster (2020), Cronbach’s alpha is estimating the quantity

α =
k

k − 1

(

1−
∑k

j=1
V ar(Yj)

V ar(X)

)

using plug-in estimates of the sample variances s2yj and s2x, though as in Foster (2020) this
paper assumes V ar(Yj) is identical for all test items j. Essentially, it is a ratio of sample
variances, and ratios of sample variances tend to be biased upwards. For independent
variances, Jensen’s inequality shows that the bias is always high, as 1/s2x is a convex function
of s2x and so E[1/s2x] ≥ 1/E[s2x] = 1/V ar(X); however, the lack of independence between s2x
and

∑

s2yj in the calculation of Cronbach’s alpha makes precise determination of the bias
for alpha difficult. When the bias of the ratio is positive, then the act of subtracting the
ratio from one in the calculation of Cronbach’s alpha flips the bias of the estimator as a
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whole to underestimation.
Also noticeable is that the bias of the KR21 and KR20 estimators is often larger

than the bias of Cronbach’s alpha for the gamma-inverse gamma and negative-binomial F
models, identical for the Poisson-gamma model, and smaller for the binomial-beta model.
Why? Though is it difficult to state exactly the reasons, as Equations (10) and (11) are
slightly different than alpha due to the presence of the k/(k + v2) in front and because
the two estimators are estimating the reliability using different quantities, a very strong
clue is offered by Jensen’s inequality. The numerators of KR20 and KR21 in Equations
(10) and (11) are still estimating variances similarly to alpha, only in an indirect manner.
From Equation (7), the mean-variance relationship for exponential family random variables
is being exploited to estimate the variance through estimation of the variance function
V (µ). Because V (µ) is not available, however, the plug-in estimate V ( 1

k
x̄) is used for

the KR21 estimator. By Jensen’s inequality, E[V ( 1
k
x̄)] ≥ V (E[ 1

k
x̄]) = V (µ) for convex

functions V (·). In Table 1, the variance function V (µ) for both the exponential (gamma-
inverse gamma model) and geometric (negative binomial-F model) distributions is convex.
Hence, additional bias is introduced to the numerator of the ratio estimate, as the expected
value of the variance function of the sample mean is larger than the variance function of the
population mean. This is seen in the increased bias over Cronbach’s alpha in Tables 3 and 4.
A similar argument applies for the KR20 estimator. The bias for the Poisson-gamma model
in Table 2, however, is equal for both Cronbach’s alpha and the KR20 and KR21 equivalents.
This is because the variance function for the Poisson distribution V (µ) = µ is linear, and
thus E[V ( 1

k
x̄)] = V (E[ 1

k
x̄]) = V (µ). The bias for KR20 and KR21 in the binomial-beta

model is smaller than the bias of Cronbach’s alpha, as seen in Table 5, because the variance
function V (µ) = µ − µ2 is concave, and so E[V ( 1

k
x̄)] ≤ V (E[ 1

k
x̄]) = V (µ) by Jensen’s

inequality. For most estimators, a downward bias would be a disadvantage. However, the
bias of the standard binomial KR20 and KR21 appear in the numerator of a ratio estimator
that is already biased upwards. By all accounts, it appears that the downward bias for the
traditional KR20 and KR21 from the use of the variance function applied to the sample
mean acts as a counterweight to the upward bias coming from taking the ratio of sample
variances, which is a rather remarkable idea.

It has long been noted that in the standard binomial case, KR21 serves as a lower
bound for KR20 (Kuder & Richardson, 1937). This is also easily seen as an application
of Jensen’s inequality in its algebraic form. Because V (θ) = θ − θ2 is concave, Jensen’s
inequality gives

kV

(

1

k
x̄

)

= kV





1

k

k
∑

j=1

ȳj



 ≥ k

(

1

k

) k
∑

j=1

V (ȳj) =
k
∑

j=1

V (ȳj)

and once again, the act of subtracting from one in Equations (10) and (11) flips the in-
equality to obtain the standard result for the inequalities as a whole. Conversely, for convex
variance functions, as is the case with the exponential (gamma-inverse gamma model) and
geometric (negative binomial-F model) data, the inequality is reversed and KR20 serves
as a lower bound to KR21. For Poisson data with identity variance function, the two es-
timators are equal, as previously discussed. Because KR20 and KR21 are both generally
underestimating the reliability, this has the effect that KR20 is less biased than KR21 for
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the binomial-beta model, with a smaller variance, mirroring the traditional wisdom that
KR20 is superior to KR21 for dichotomous data. KR20 is more biased than KR21 for the
gamma-inverse gamma and negative binomial-F models, with a larger variance.

Lastly, even though the bias of the KR20 and KR21 estimators is sometimes larger,
it compensates for this by a greatly decreased variance. What is the reason for this decrease
in variance? A possible explanation is that it comes from using sample means in combination
with the mean-variance relationship of exponential families to estimate a variance rather
than using sample variances themselves. Sample means converge to population means at
a rate of

√
n, where n is the number of test subjects, while sample variances converge to

population variances at a rate of n (Casella & Berger, 2002). Simply put, sample means
converge faster than sample variances. Hence, estimating item variances using sample
means in combination with a mean-variance relationship should tend to be more efficient
than using sample variances alone.

4.3 Alternative Reliability Estimators

Cronbach’s alpha, though popular is far from the only estimator available, and its use
has been criticized (McNeish, 2018; Sijtsma, 2009) and alternatively defended (Raykov &
Marcoulides, 2019). One alternative based on analysis of a factorial structure is McDon-
ald’s omega (McDonald, 1999), which has been proposed as preferable to Cronbach’s alpha
(Hayes & Coutts, 2020; McNeish, 2018). Different estimators called omega exist, but two
in particular, omega hierarchical (ωH) which calculates the general factor saturation of a
test and omega total (ωT ) which also includes specific factors, have been a focus of interest
(Revelle & Zinbarg, 2009; Savalei & Reise, 2019). Another commonly proposed alternative
is the greatest lower bound (Sijtsma, 2009; Trizano-Hermosilla & Alvarado, 2016), but Rev-
elle and Zinbarg (2009) note that it is potentially smaller than ωT , and its performance has
been examined in Trizano-Hermosilla and Alvarado (2016). It is, however, worth comparing
the generalized estimators of Table 1 to ωH and ωT to evaluate performance. Because the
data is tau-equivalent, omega will equal reliability and the simulation study will evaluate
performance as an estimator.

To do so, a smaller simulation study similar to that of Section 4.1 was performed.
The Poisson-gamma (P-G), gamma - inverse gamma (G-IG), and binomial-beta (B-B) mod-
els were used to simulate data with a desired population reliability of ρ = 0.8, chosen to
avoid possible numerical issues with low reliabilities. Test lengths of k = 5, 10 and num-
ber of subjects n = 30, 75 were chosen to present results with large root mean squared
errors so that differences between the estimators are more easily observed. A total of
Nsims = 1, 000, 000 data sets were generated for each model. The generalized KR21 esti-
mator was chosen for comparison because it performed the best on the Poisson-gamma and
gamma-inverse gamma models, as seen in Tables 2 and 3. Calculation of ωH and ωT was
performed using the psych package in R (Revelle, 2020). Root mean squared error and both
bias and variance of KR21, ωH , and ωT are shown in Table 6.

The results of the study generally show that ωH has the worst performance in
terms of root mean squared error, including both elements of bias and variance, while the
generalized KR21 formulas of Table 1 are competitive with ωT for superior RMSE. In some
scenarios one is larger, while in the others the second is larger. Noticeably, it occasionally
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occurs that one estimator has a larger RMSE but a lower standard deviation, suggesting that
bias correction could be a worthwhile strategy to improve the estimator. Also noticeable is
that the bias of ωT is generally small, but positive. One possible explanation for the small
bias is that ωT may be overfitting the model, which causes an upward bias in estimation
of reliability that counters the general downard bias from ratios of sample statistics seen
in other estimators. However, as Savalei and Reise (2019) note, further study regarding
the properties of reliability coefficients such as ωH and ωT is needed to determine their
statistical properties.

5 Example

A small example shows how and why these formulas can be applied in practice. The data in
Table 7 are taken from Table 3 of Moore (1970) and represent a count of the number of times
a specific letter was seen in a clerical speed test, for which the time has been subdivided into
blocks of 10 units. Only the first 9 blocks of time are used in Table 7 in order to keep test
length equal for all subjects. Chi-squared goodness of fit tests performed by Moore (1970)
show that a Poisson process is a good fit to the data, and so the number of responses in each
block of time may be treated as an independent and identical Poisson random variable with
mean θi for subject i. The data may therefore also be treated as unidimensional and tau-
equivalent. If the data were larger, either in terms of number of subjects or number of items,
a regression of sample variance on sample means could indicate a linear relationship which
would indicate that the Poisson model is appropriate. For small data, recognizing that the
observation is a count should draw attention to the Poisson distribution for responses.

The reliability of this test represents the theoretical correlation of the sum scores xi
with sum scores on a parallel test. Ideally, this correlation will be high to indicate that the
sum scores are accurately capturing each subject’s counting ability under time constraints.
However, the data contains only k = 9 responses for each of n = 10 subjects, and the data
is discrete and non-negative. Cronbach’s alpha for this data set is α = 0.079, which is low.
A problem is that the small number of responses per subject indicates that item variances
are not being efficiently estimated. McDonald’s omega for this data set gives ωH = 0.726
and ωT = 0.802, but factor analysis on a small, exceedingly non-normal data set should
call for caution with respect to the statistical properties, and the results of Table 6 indicate
that this could be an overestimate.

The generalized KR20 and KR21 estimators of Table 1, originally derived in Allison
(1978) and which are equal in this case, resolve this issue by utilizing the mean-variance
relationship for Poisson data to obtain reliability. For Poisson data, the variance of a
subject’s response for each item is equal to their mean ability. The generalized KR21
estimator therefore uses sample means to obtain an estimate of ρ̂ = 0.626. The simulation
results of Table 2 indicate that this estimate is likely still biased downwards, but is a more
efficient estimator than alternatives.
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6 Conclusion, Suggestions, and Future Research

Directions

This paper has introduced formulas which may be seen as the equivalent of the classical
KR20 and KR21 formulas of Kuder and Richardson (1937) for some non-dichotomous data,
extending to data which may be modeled using an NEF-QVF distribution. Simulations
show that when the model is satisfied, the KR20 and KR21 equivalent formulas appear to
converge to the population reliability and are generally a more efficient estimator of relia-
bility than Cronbach’s alpha. Exponential families are defined by mean-variance relations,
so these formulas may be considered when a quadratic relationship between subject mean
and subject variance appears to be present, as in Equation (1), which can be checked with
analysis of sample variances as a function of sample means, exactly in the way a general-
ized linear model is chosen. Certain types of data such as dichotomous data (binomial),
count data (Poisson), or data measuring time between events (exponential) also naturally
fit this framework, especially when each response may be assumed to have roughly the same
difficulty.

It is important to state the assumptions made in the derivation of these estimators:
that the response to each test item identically follows a natural exponential family con-
ditionally independent given ability θi for subject i, implying that all item difficulties are
equal for a subject, and that abilities themselves follow the corresponding conjugate prior
distribution. Not all of these assumptions are made in the derivations of the traditional
binomial KR20 and KR21 in Kuder and Richardson (1937) and the Poisson KR21 in Allison
(1978), suggesting that some assumptions may be superfluous, particularly the assumption
that abilities follow the conjugate prior distribution. L. J. Feldt (1984) also derives the
traditional binomial KR20 and KR21 formulas simply from the binomial error model. It
is likely that these generalized KR20 and KR21 formulas may similarly be derived using
a general error model from the mean-variance relationship of natural exponential families,
and possibly for exponential families without quadratic variance functions. Furthermore,
the difference in use between KR20 and KR21 in Kuder and Richardson (1937) is taken
to be whether or not all items have equal difficulties. Zimmerman (1972) showed that the
traditional binomial KR21 does not equal reliability when item difficulties are unequal, and
it seems incredibly likely that some similar property may hold for the generalized KR20 and
KR21 estimators of Table 1. How these estimators perform with items of varying difficulty,
and whether there exist theoretical guarantees of performance, remains unknown excepting
the case of the traditional binomial KR20 and KR21 formulas.

As stated in Section 2, the data in this framework are implied to be unidimensional
and tau equivalent. If either of these assumptions are incorrect, none of KR20, KR21, or
alpha are appropriate, and a reliability estimator based on analysis of a factorial structure,
such as ωT of McDonald (1999), is more appropriate. Unidimensionality should be tested
before reliability is calculated using these formulas. When assumptions are appropriate,
Section 4.3 shows that the KR20 and KR21 values are competitive with ωT in terms of root
mean squared error.

The advantage of these formulas is that when the data can be assumed to come
from the correct model, use of distribution-specific formulas will generally provide a su-
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perior estimate of the test reliability as measured by mean-squared error as compared to
Cronbach’s alpha. This reduction occurs primarily through a reduction of the variance of
the estimator, though for some estimators with an increase in bias. In general, for negative
binomial and gamma data, the KR21 estimator outperforms the KR20 estimator and has
less bias, though both generally outperform Cronbach’s alpha. For Poisson data, the two
estimators are equal, and both outperform Cronbach’s alpha. For binomial data, simula-
tions agree with conventional wisdom that the traditional KR20 estimator is superior to
KR21. This is verified through simulations in Section 4. Notably, it is only in the case of
dichotomous data, assumed to come from a binomial distribution, that KR20 outperforms
KR21. Though it is not fully clear the reasons for this, Jensen’s inequality provides a strong
clue.

Cronbach’s alpha can be used when no assumptions are made regarding the distri-
bution of responses. Simulations show that while it is not the most efficient estimator of
reliability, it is a consistent estimator that performs well over all the exponential families
tested. The use of distribution-specific formulas such as KR20 and KR21 can then be seen
as a riskier method of estimating reliability – when the parametric assumption is correct,
the distribution-specific formula provides improved performance; however, if an incorrect
distribution is assumed, performance may be disastrously worse. This raises the obvious
question of how “wrong” a parametric assumption must be in order for an estimate based
on it to be worse than Cronbach’s alpha, which could potentially be the subject of a future
simulation study.

Bias is present in both Cronbach’s alpha and the equivalent KR20 and KR21 estima-
tors. Noticeably, the bias is universally negative for alpha and almost universally negative
for both KR20 and KR21, excepting only a few instances of positive bias for KR20 in the
binomial-beta model. As discussed in Section 4, Jensen’s inequality may help to explain the
direction of the bias, though further study is needed. As noted in Section 4.3, bias correc-
tion of the estimator could lead to improved performance. In general, a strategy to fix bias
in an estimate of reliability could be to perform a bootstrap, parametric or otherwise, to
obtain an estimate of the bias and then bias correct the original estimate of reliability. The
accuracy of this procedure would depend on whether the bias the same at both the true and
estimated values of reliability, which is not yet known; however, even an inaccurate boot-
strap bias corrected estimate may prove to be more useful than an uncorrected estimate.
As the RMSE of KR20 and KR21 for the gamma-inverse gamma and negative-binomial F
models is smaller than the RMSE of alpha despite the increase in bias, a bootstrap bias
corrected version of the generalized KR20 and KR21 estimators for these models might
prove incredibly useful.

Lastly, Section 4.3 showed that ωT remains a strong estimator of reliability in the
presence of non-normality, sometimes superior to the KR21 estimates, but other times
inferior. The exact mechanism for this remains unknown, and the framework of Section 2
could potentially be used to analyze statistical properties of estimators of factorial structures
in the presence of non-normality. It could also potentially be possible to derive estimators of
the factorial structure which utilize the mean-variance relationship of exponential families
with improved performance when the distribution of responses is known to take a certain
form.

These formulas have been shown to be strong estimators of reliability in the scenario

16



of perfect match to the assumed exponential model, and represent a small step towards the
derivation of a more complete theory for properties of reliability estimators in the presence
of non-normality. However, questions still remain about their use in the presence of items
of unequal difficulty, lack of unidimensionality, and what their properties are both when the
data does and does not not perfectly fit the assumed exponential model. Further research
is needed, and these formulas offer many fruitful avenues for such research.
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Yij Distribution V (θ) KR20 KR21
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Table 1: Natural exponential family distributions with quadratic variance functions and their cor-
responding KR20 and KR21 estimators, given by Equations (10) and (11), respectively. The sum
scores xi for subject i have sample mean x̄ and sample variance s2x, where sample mean and variance
are calculated over subjects. Each test item has response yij, with i indexing subject and j indexing
item, and where ȳj is the mean response for item j, again averaging over subjects. The test length
is k items and the number of subjects is n. Note that the use of the normal density assumes that
the noise variance σ2 around each test item is known, which is unlikely to be the case in practice.
Cronbach’s alpha is recommended when the data are believed to be normal. Where possible, terms
are cancelled to simplify formulas, except in the case of the binomial so as to preserve KR20 and
KR21 in their original forms. Also note that because

∑k

j=1
ȳj = x̄ as shown in Equation (9), the

Poisson estimator is identical for both KR20 and KR21. The binomial estimators were first derived
in Kuder and Richardson (1937) and the Poisson estimator was first derived in Allison (1978).
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Poisson-Gamma
Parameters Cronbach’s Alpha KR20 KR21

µ ρ k n M RMSE Bias SD RMSE Bias SD RMSE Bias SD
1 0.30 5 30 11.67 0.247 -0.057 0.241 0.224 -0.057 0.216 0.224 -0.057 0.216
1 0.30 5 75 11.67 0.142 -0.022 0.140 0.128 -0.022 0.126 0.128 -0.022 0.126
1 0.30 5 500 11.67 0.052 -0.003 0.052 0.047 -0.003 0.047 0.047 -0.003 0.047
1 0.30 10 30 23.33 0.232 -0.054 0.225 0.221 -0.054 0.214 0.221 -0.054 0.214
1 0.30 10 75 23.33 0.132 -0.021 0.130 0.126 -0.021 0.124 0.126 -0.021 0.124
1 0.30 10 500 23.33 0.048 -0.003 0.048 0.046 -0.003 0.046 0.046 -0.003 0.046
1 0.30 30 30 70.00 0.223 -0.053 0.217 0.220 -0.053 0.213 0.220 -0.053 0.213
1 0.30 30 75 70.00 0.126 -0.020 0.124 0.124 -0.020 0.122 0.124 -0.020 0.122
1 0.30 30 500 70.00 0.046 -0.003 0.046 0.045 -0.003 0.045 0.045 -0.003 0.045
1 0.60 5 30 3.33 0.156 -0.041 0.151 0.141 -0.041 0.135 0.141 -0.041 0.135
1 0.60 5 75 3.33 0.090 -0.017 0.089 0.081 -0.016 0.080 0.081 -0.016 0.080
1 0.60 5 500 3.33 0.033 -0.003 0.033 0.030 -0.003 0.030 0.030 -0.003 0.030
1 0.60 10 30 6.67 0.139 -0.036 0.135 0.133 -0.036 0.128 0.133 -0.036 0.128
1 0.60 10 75 6.67 0.080 -0.014 0.079 0.076 -0.014 0.075 0.076 -0.014 0.075
1 0.60 10 500 6.67 0.029 -0.002 0.029 0.028 -0.002 0.028 0.028 -0.002 0.028
1 0.60 30 30 20.00 0.130 -0.032 0.126 0.128 -0.032 0.124 0.128 -0.032 0.124
1 0.60 30 75 20.00 0.074 -0.012 0.073 0.072 -0.012 0.071 0.072 -0.012 0.071
1 0.60 30 500 20.00 0.027 -0.002 0.027 0.026 -0.002 0.026 0.026 -0.002 0.026
1 0.80 5 30 1.25 0.096 -0.031 0.091 0.087 -0.031 0.081 0.087 -0.031 0.081
1 0.80 5 75 1.25 0.055 -0.013 0.054 0.050 -0.013 0.048 0.050 -0.013 0.048
1 0.80 5 500 1.25 0.020 -0.002 0.020 0.018 -0.002 0.018 0.018 -0.002 0.018
1 0.80 10 30 2.50 0.079 -0.023 0.075 0.075 -0.023 0.071 0.075 -0.023 0.071
1 0.80 10 75 2.50 0.045 -0.009 0.044 0.043 -0.009 0.042 0.043 -0.009 0.042
1 0.80 10 500 2.50 0.017 -0.001 0.017 0.016 -0.001 0.016 0.016 -0.001 0.016
1 0.80 30 30 7.50 0.068 -0.018 0.065 0.067 -0.018 0.064 0.067 -0.018 0.064
1 0.80 30 75 7.50 0.039 -0.007 0.038 0.038 -0.007 0.037 0.038 -0.007 0.037
1 0.80 30 500 7.50 0.014 -0.001 0.014 0.014 -0.001 0.014 0.014 -0.001 0.014

Table 2: Simulation results for Cronbach’s alpha and the KR20 and KR21 equivalents for the
Poisson-gamma model, where abilities θi follow a gamma distribution and sum test scores xi follow a
Poisson distribution. The population reliability is ρ, the test length is k, the number of subjects is n,
and the parameters of the gamma distribution for abilities are µ andM . The exact parameterizations
of µ and M are given in the appendix of Foster (2020). The number in the first column beneath
the estimator is the sample root mean squared error, RMSE. The numbers in the second and third
columns are the sample bias and sample standard deviation (SD) of the estimator. The relationship
between the three numbers is given by the formula RMSE =

√
Bias2 + SD2 (the formula may

not be exact for results in the table due to rounding). For example, for α̂ in the first row of
the table, 0.247 =

√

(−0.057)2 + 0.2412. One million simulated data sets are used for each set of
parameters. The results are identical for KR20 and KR21 for the Poisson-gamma model because
the two estimators are equal. The generalized KR21 for Poisson count data was first derived in
Allison (1978). 19



Gamma-Inverse Gamma
Parameters Cronbach’s Alpha KR20 KR21

µ ρ k n M RMSE Bias SD RMSE Bias SD RMSE Bias SD
1 0.30 5 30 11.67 0.262 -0.075 0.251 0.233 -0.098 0.211 0.221 -0.081 0.206
1 0.30 5 75 11.67 0.157 -0.033 0.154 0.134 -0.041 0.127 0.131 -0.035 0.126
1 0.30 5 500 11.67 0.061 -0.005 0.061 0.051 -0.007 0.050 0.051 -0.006 0.050
1 0.30 10 30 23.33 0.239 -0.063 0.230 0.233 -0.087 0.216 0.220 -0.066 0.210
1 0.30 10 75 23.33 0.140 -0.026 0.137 0.131 -0.035 0.126 0.127 -0.027 0.124
1 0.30 10 500 23.33 0.052 -0.004 0.052 0.048 -0.005 0.047 0.047 -0.004 0.047
1 0.30 30 30 70.00 0.226 -0.055 0.219 0.233 -0.080 0.219 0.220 -0.057 0.212
1 0.30 30 75 70.00 0.128 -0.021 0.127 0.128 -0.031 0.124 0.124 -0.022 0.123
1 0.30 30 500 70.00 0.047 -0.003 0.047 0.046 -0.004 0.046 0.046 -0.003 0.046
1 0.60 5 30 3.33 0.212 -0.099 0.187 0.191 -0.115 0.152 0.181 -0.104 0.148
1 0.60 5 75 3.33 0.135 -0.054 0.124 0.115 -0.060 0.098 0.112 -0.056 0.097
1 0.60 5 500 3.33 0.062 -0.015 0.060 0.051 -0.016 0.048 0.051 -0.015 0.048
1 0.60 10 30 6.67 0.168 -0.063 0.156 0.164 -0.078 0.144 0.155 -0.066 0.140
1 0.60 10 75 6.67 0.101 -0.029 0.097 0.095 -0.035 0.089 0.093 -0.030 0.088
1 0.60 10 500 6.67 0.041 -0.005 0.041 0.038 -0.006 0.037 0.038 -0.006 0.037
1 0.60 30 30 20.00 0.139 -0.040 0.134 0.144 -0.055 0.133 0.136 -0.041 0.129
1 0.60 30 75 20.00 0.080 -0.016 0.079 0.080 -0.022 0.077 0.078 -0.016 0.076
1 0.60 30 500 20.00 0.030 -0.002 0.030 0.029 -0.003 0.029 0.029 -0.003 0.029
1 0.80 5 30 1.25 0.199 -0.137 0.144 0.183 -0.150 0.104 0.175 -0.142 0.102
1 0.80 5 75 1.25 0.139 -0.095 0.102 0.120 -0.100 0.067 0.118 -0.097 0.067
1 0.80 5 500 1.25 0.081 -0.051 0.062 0.063 -0.052 0.035 0.062 -0.052 0.035
1 0.80 10 30 2.50 0.126 -0.072 0.103 0.124 -0.083 0.092 0.117 -0.075 0.090
1 0.80 10 75 2.50 0.080 -0.042 0.068 0.075 -0.046 0.060 0.073 -0.043 0.059
1 0.80 10 500 2.50 0.038 -0.014 0.035 0.034 -0.015 0.031 0.034 -0.014 0.031
1 0.80 30 30 7.50 0.083 -0.032 0.077 0.086 -0.040 0.077 0.081 -0.033 0.074
1 0.80 30 75 7.50 0.049 -0.014 0.047 0.049 -0.017 0.046 0.048 -0.014 0.046
1 0.80 30 500 7.50 0.020 -0.002 0.020 0.019 -0.003 0.019 0.019 -0.003 0.019

Table 3: Simulation results for Cronbach’s alpha and the KR20 and KR21 equivalents for the
gamma-inverse gamma model, where abilities θi follow an inverse gamma distribution and sum test
scores xi follow a gamma distribution. The population reliability is ρ, the test length is k, the
number of subjects is n, and the parameters of the inverse gamma distribution for abilities are
µ and M . The exact parameterizations of µ and M are given in the appendix of Foster (2020).
The number in the first column beneath the estimator is the sample root mean squared error,
RMSE. The numbers in the second and third columns are the sample bias and sample standard
deviation (SD) of the estimator. The relationship between the three numbers is given by the formula
RMSE =

√
Bias2 + SD2 (the formula may not be exact for results in the table due to rounding).

For example, for α̂ in the first row of the table, 0.262 =
√

(−0.075)2 + 0.2512. One million simulated
data sets are used for each set of parameters.
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Negative Binomial - F

Parameters Cronbach’s Alpha KR20 KR21
µ ρ k n M RMSE Bias SD RMSE Bias SD RMSE Bias SD

1.01 0.30 5 30 11.67 0.251 -0.067 0.242 0.220 -0.090 0.201 0.210 -0.073 0.197
1.01 0.30 5 75 11.67 0.151 -0.028 0.149 0.126 -0.037 0.120 0.123 -0.030 0.119
1.01 0.30 5 500 11.67 0.058 -0.005 0.058 0.047 -0.006 0.047 0.047 -0.005 0.047
1.01 0.30 10 30 23.33 0.235 -0.061 0.227 0.228 -0.084 0.212 0.215 -0.064 0.206
1.01 0.30 10 75 23.33 0.137 -0.024 0.135 0.127 -0.033 0.123 0.124 -0.025 0.122
1.01 0.30 10 500 23.33 0.051 -0.004 0.051 0.046 -0.005 0.046 0.046 -0.004 0.046
1.01 0.30 30 30 70.00 0.225 -0.055 0.218 0.232 -0.080 0.218 0.219 -0.057 0.212
1.01 0.30 30 75 70.00 0.128 -0.021 0.126 0.128 -0.031 0.124 0.124 -0.022 0.122
1.01 0.30 30 500 70.00 0.047 -0.003 0.047 0.046 -0.005 0.046 0.046 -0.003 0.045
1.01 0.60 5 30 3.33 0.164 -0.053 0.155 0.132 -0.068 0.113 0.125 -0.058 0.111
1.01 0.60 5 75 3.33 0.103 -0.024 0.100 0.076 -0.030 0.070 0.074 -0.026 0.069
1.01 0.60 5 500 3.33 0.042 -0.004 0.042 0.029 -0.005 0.029 0.029 -0.005 0.029
1.01 0.60 10 30 6.67 0.142 -0.043 0.136 0.135 -0.058 0.122 0.128 -0.046 0.119
1.01 0.60 10 75 6.67 0.085 -0.018 0.083 0.077 -0.024 0.073 0.075 -0.019 0.072
1.01 0.60 10 500 6.67 0.032 -0.003 0.032 0.028 -0.004 0.028 0.028 -0.003 0.028
1.01 0.60 30 30 20.00 0.132 -0.036 0.127 0.136 -0.050 0.126 0.128 -0.037 0.122
1.01 0.60 30 75 20.00 0.076 -0.014 0.074 0.075 -0.019 0.073 0.073 -0.014 0.072
1.01 0.60 30 500 20.00 0.028 -0.002 0.028 0.027 -0.003 0.027 0.027 -0.002 0.027
1.01 0.80 5 30 1.25 0.114 -0.032 0.109 0.064 -0.043 0.048 0.060 -0.038 0.046
1.01 0.80 5 75 1.25 0.080 -0.014 0.079 0.029 -0.018 0.022 0.027 -0.016 0.022
1.01 0.80 5 500 1.25 0.042 -0.003 0.042 0.009 -0.004 0.009 0.009 -0.003 0.009
1.01 0.80 10 30 2.50 0.075 -0.026 0.070 0.065 -0.035 0.055 0.061 -0.029 0.053
1.01 0.80 10 75 2.50 0.047 -0.012 0.045 0.037 -0.015 0.033 0.035 -0.013 0.033
1.01 0.80 10 500 2.50 0.019 -0.002 0.019 0.014 -0.003 0.014 0.014 -0.002 0.014
1.01 0.80 30 30 7.50 0.066 -0.020 0.063 0.068 -0.027 0.062 0.063 -0.021 0.060
1.01 0.80 30 75 7.50 0.038 -0.008 0.038 0.038 -0.011 0.036 0.037 -0.008 0.036
1.01 0.80 30 500 7.50 0.014 -0.001 0.014 0.014 -0.002 0.014 0.014 -0.001 0.014

Table 4: Simulation results for Cronbach’s alpha and the KR20 and KR21 equivalents for the
negative binomial - F model, where abilities θi follow an F distribution and sum test scores xi follow
a negative binomial distribution. The population reliability is equal to ρ, the test length is k, the
number of subjects is n, and the parameters of the F distribution for abilities are µ andM . The exact
parameterizations of µ and M are given in the appendix of Foster (2020). The number in the first
column beneath the estimator is the sample root mean squared error, RMSE. The numbers in the
second and third columns are the sample bias and sample standard deviation (SD) of the estimator.
The relationship between the three numbers is given by the formula RMSE =

√
Bias2 + SD2 (the

formula may not be exact for results in the table due to rounding). For example, for α̂ in the first
row of the table, 0.251 =

√

(−0.067)2 + 0.2422. One million simulated data sets are used for each
set of parameters.
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Binomial-Beta
Parameters Cronbach’s Alpha KR20 KR21

µ ρ k n M RMSE Bias SD RMSE Bias SD RMSE Bias SD
0.50 0.30 5 30 11.67 0.240 -0.048 0.235 0.228 -0.015 0.228 0.238 -0.039 0.235
0.50 0.30 5 75 11.67 0.136 -0.018 0.135 0.133 -0.005 0.133 0.136 -0.015 0.135
0.50 0.30 5 500 11.67 0.050 -0.003 0.050 0.050 -0.001 0.050 0.050 -0.002 0.050
0.50 0.30 10 30 23.33 0.229 -0.050 0.223 0.217 -0.021 0.216 0.228 -0.046 0.223
0.50 0.30 10 75 23.33 0.129 -0.019 0.128 0.126 -0.008 0.126 0.129 -0.017 0.127
0.50 0.30 10 500 23.33 0.047 -0.003 0.047 0.047 -0.001 0.047 0.047 -0.002 0.047
0.50 0.30 30 30 70.00 0.221 -0.051 0.216 0.210 -0.025 0.208 0.221 -0.050 0.215
0.50 0.30 30 75 70.00 0.125 -0.019 0.124 0.122 -0.009 0.122 0.125 -0.019 0.124
0.50 0.30 30 500 70.00 0.045 -0.003 0.045 0.045 -0.001 0.045 0.045 -0.003 0.045
0.50 0.60 5 30 3.33 0.134 -0.023 0.132 0.127 -0.001 0.127 0.132 -0.015 0.131
0.50 0.60 5 75 3.33 0.077 -0.009 0.077 0.076 0.000 0.076 0.077 -0.005 0.077
0.50 0.60 5 500 3.33 0.028 -0.001 0.028 0.028 0.000 0.028 0.028 -0.001 0.028
0.50 0.60 10 30 6.67 0.127 -0.025 0.124 0.121 -0.007 0.120 0.126 -0.022 0.124
0.50 0.60 10 75 6.67 0.072 -0.009 0.072 0.071 -0.003 0.071 0.072 -0.008 0.072
0.50 0.60 10 500 6.67 0.026 -0.001 0.026 0.026 0.000 0.026 0.026 -0.001 0.026
0.50 0.60 30 30 20.00 0.125 -0.028 0.122 0.118 -0.012 0.118 0.125 -0.026 0.122
0.50 0.60 30 75 20.00 0.071 -0.010 0.070 0.069 -0.004 0.069 0.071 -0.010 0.070
0.50 0.60 30 500 20.00 0.026 -0.001 0.026 0.026 -0.001 0.026 0.026 -0.001 0.026
0.50 0.80 5 30 1.25 0.068 -0.009 0.067 0.065 0.006 0.065 0.067 -0.001 0.067
0.50 0.80 5 75 1.25 0.040 -0.003 0.040 0.039 0.003 0.039 0.040 0.000 0.040
0.50 0.80 5 500 1.25 0.015 0.000 0.015 0.015 0.000 0.015 0.015 0.000 0.015
0.50 0.80 10 30 2.50 0.061 -0.010 0.061 0.059 0.000 0.059 0.061 -0.007 0.060
0.50 0.80 10 75 2.50 0.036 -0.004 0.035 0.035 0.000 0.035 0.035 -0.002 0.035
0.50 0.80 10 500 2.50 0.013 -0.001 0.013 0.013 0.000 0.013 0.013 0.000 0.013
0.50 0.80 30 30 7.50 0.061 -0.012 0.059 0.057 -0.004 0.057 0.060 -0.011 0.059
0.50 0.80 30 75 7.50 0.034 -0.005 0.034 0.034 -0.001 0.034 0.034 -0.004 0.034
0.50 0.80 30 500 7.50 0.013 -0.001 0.013 0.013 0.000 0.013 0.013 -0.001 0.013

Table 5: Simulation results for Cronbach’s alpha and KR20 and KR21 for the binomial - beta model,
where abilities θi follow a beta distribution and sum test scores xi follow a binomial distribution.
The population reliability is equal to ρ, the test length is k, the number of subjects is n, and the
parameters of the beta distribution for abilities are µ and M . The exact parameterizations of µ
and M are given in the appendix of Foster (2020). The number in the first column beneath the
estimator is the sample root mean squared error, RMSE. The numbers in the second and third
columns are the sample bias and sample standard deviation (SD) of the estimator. The relationship
between the three numbers is given by the formula RMSE =

√
Bias2 + SD2 (the formula may

not be exact for results in the table due to rounding). For example, for α̂ in the first row of
the table, 0.240 =

√

(−0.048)2 + 0.2352. One million simulated data sets are used for each set of
parameters. The KR20 and KR21 estimators for this model are the traditional ones derived in
Kuder and Richardson (1937).
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Parameters ωH ωT KR21
Model µ ρ k n M RMSE Bias SD RMSE Bias SD RMSE Bias SD
P-G 1 0.80 5 30 1.25 0.201 -0.153 0.130 0.090 0.061 0.066 0.087 -0.031 0.081
P-G 1 0.80 10 30 2.50 0.310 -0.281 0.131 0.077 0.050 0.059 0.075 -0.023 0.071
P-G 1 0.80 5 75 1.25 0.145 -0.114 0.088 0.060 0.041 0.045 0.050 -0.013 0.048
P-G 1 0.80 10 75 2.50 0.250 -0.230 0.096 0.053 0.039 0.036 0.043 -0.009 0.042
G-IG 1 0.80 5 30 1.25 0.309 -0.248 0.183 0.116 0.034 0.110 0.175 -0.142 0.102
G-IG 1 0.80 10 30 2.50 0.355 -0.317 0.159 0.090 0.035 0.083 0.118 -0.076 0.090
G-IG 1 0.80 5 75 1.25 0.270 -0.221 0.156 0.091 0.030 0.085 0.118 -0.097 0.066
G-IG 1 0.80 10 75 2.50 0.331 -0.306 0.124 0.068 0.035 0.059 0.073 -0.043 0.059
B-B 0.5 0.80 5 30 1.25 0.173 -0.135 0.108 0.084 0.066 0.052 0.067 -0.001 0.067
B-B 0.5 0.80 10 30 2.50 0.296 -0.272 0.118 0.073 0.055 0.048 0.061 -0.007 0.061
B-B 0.5 0.80 5 75 1.25 0.124 -0.101 0.071 0.054 0.041 0.035 0.040 0.000 0.040
B-B 0.5 0.80 10 75 2.50 0.231 -0.215 0.084 0.049 0.040 0.029 0.035 -0.002 0.035

Table 6: Simulation results for the KR21 equivalent for the Poisson-gamma (P-G), gamma - inverse
gamma (I-G), and binomial-beta (B-B) models compared to omega hierarchical and omega total, ωH

and ωT , as measured by root mean squared error. The omega reliability calculations are performed
by the psych package in R (Revelle, 2020). The number in the first column beneath the estimator
is the sample root mean squared error, RMSE. The numbers in the second and third columns are
the sample bias and sample standard deviation (SD) of the estimator. The relationship between
the three numbers is given by the formula RMSE =

√
Bias2 + SD2 (the formula may not be

exact for results in the table due to rounding). For example, for ωH in the first row of the table,
0.201 =

√

(−0.153)2 + 0.1302. One million simulated data sets are used for each set of parameters.

Subject 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 xi
1

k
xi s2

1 13 10 12 8 12 10 9 16 8 98 10.89 6.86
2 14 9 9 13 10 10 14 9 11 99 11.00 4.50
3 11 10 5 12 12 8 12 11 5 86 9.56 4.50
4 12 13 4 8 7 10 14 1 14 83 9.22 21.19
5 16 8 9 7 11 12 16 8 11 98 10.89 11.11
6 11 13 7 8 9 7 8 7 4 74 8.22 6.69
7 13 11 10 9 15 9 18 10 5 100 11.11 14.36
8 11 5 9 9 9 13 11 15 6 88 9.78 9.94
9 13 8 10 11 11 12 8 7 4 84 9.33 8.00
10 12 9 12 9 14 8 12 10 7 93 10.33 5.25

Table 7: Data from Moore (1970) showing the count of the number of responses for each of ten
subjects in consecutive intervals of transformed time. This data may be treated as a Poisson process,
where each response is a realization of a Poisson random variable with mean given by a subject’s
ability θi.
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Figure 1: Difference in RMSE (Alpha - KR21) for tests of different lengths for the poisson-gamma
model with ρ = 0.3, grouped by number of subjects. The plot clearly shows that α̂ has a larger
RMSE than KR21, but this effect decreases towards zero as both the test length k and number of
subjects n increases. The data in this plot are from Table 2.
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Figure 2: Difference in RMSE (Alpha - KR21) for tests of different lengths for the gamma-inverse
gamma model with ρ = 0.3, grouped by number of subjects. The plot clearly shows that α̂ has
a larger RMSE than KR21, but this effect decreases towards zero as both the test length k and
number of subjects n increases. The data in this plot are from Table 3.
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Figure 3: Difference in RMSE (Alpha - KR21) for tests of different lengths for the negative binomial-
F model with ρ = 0.3, grouped by number of subjects. The plot clearly shows that α̂ has a larger
RMSE than KR21, but this effect decreases towards zero as both the test length k and number of
subjects n increases. The data in this plot are from Table 4.
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Figure 4: Difference in RMSE (Alpha - KR21) for tests of different lengths for the binomial-beta
model with ρ = 0.3, grouped by number of subjects. The plot clearly shows that α̂ has a larger
RMSE than KR21, but this effect decreases towards zero as both the test length k and number of
subjects n increases. The data in this plot are from Table 5.

27



References

Allison, P. D. (1978). The reliability of variables measured as the number of events
in an interval of time. Sociological Methodology , 9 , 238 –253.

Bay, K. S. (1973). The effect of non-normality on the sampling distribution of
standard error of reliability coefficient estimates under an analysis of variance
model. British Journal of Mathematical and Statistical Psychology , 26 (1), 45-
57.

Casella, G., & Berger, R. (2002). Statistical inference, second edition. Duxbury
Press.

Cronbach, L. J. (1951, September). Coefficient alpha and the internal structure of
tests. Psychometrika, 16 (3), 297 – 334.

Feldt, L. J. (1984). Some relationships between the binomial error model and classical
test theory. Educational and Psychological Measurement , 44 (4), 883 – 891.

Feldt, L. S. (1965, September). The approximate sampling distribution of kuder-
richardson reliability coefficient twenty. Psychometrika, 30 (3), 357 – 370.

Foster, R. C. (2020, June). A generalized framework for classical test theory. The

Journal of Mathematical Psychology , 96 .
Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in

a multilevel confirmatory factor analysis framework. Psychological Methods ,
19 (1), 72-91.

Hayes, A. F., & Coutts, J. J. (2020). Use omega rather than cronbach’s alpha for
estimating reliability. but. . . . Communication Methods and Measures , 14 (1),
1-24.

Huynh, H. (1979). Statistical inference for two reliability indices in mastery testing
based on the beta-binomial model. Journal of Educational Statistics , 4 (3),
231-246.

Keats, J. A., & Lord, F. M. (1962, March). A theoretical distribution for mental test
scores. Psychometrika, 27 (1), 59 – 72.

Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test
reliability. Psychometrika, 2 (3), 151 – 160.

Lord, F. M. (1965, September). A strong true-score theory, with applications. Psy-

chometrika, 30 (3), 239 – 270.
Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental

test scores. Oxford, England: Addison-Wesley.
McDonald, R. (1999). Test theory: A unified treatment. Taylor & Francis.
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological

Methods , 23 (3), 412-433.
Meredith, W. (1971, 08). Poisson distributions of error in mental test theory. British

Journal of Mathematical and Statistical Psychology , 24 , 49 - 82.
Moore, W. E. (1970, November). Stochastic processes as true-score models for highly

speeded mental tests (Tech. Rep.). Princeton, New Jersey: Educational Testing

28



Service.
Morris, C. N. (1982). Natural exponential families with quadratic variance functions.

The Annals of Statistics , 10 (1), 65 – 80.
Morris, C. N. (1983). Natural exponential families with quadratic variance functions:

Statistical theory. The Annals of Statistics , 11 (2), 515 – 529.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests.

Danmarks Paedagogiske Institut.
Raykov, T. (1998). A method for obtaining standard errors and confidence intervals of

composite reliability for congeneric items. Applied Psychological Measurement ,
22 (4), 369-374.

Raykov, T., & Marcoulides, G. A. (2019). Thanks coefficient alpha, we still need you!
Educational and Psychological Measurement , 79 (1), 200-210.

Revelle, W. (2020). psych: Procedures for psychological, psychometric, and person-
ality research [Computer software manual]. Evanston, Illinois. Retrieved from
https://CRAN.R-project.org/package=psych (R package version 2.0.12)

Revelle, W., & Zinbarg, R. (2009, 03). Coefficients alpha, beta, omega, and the glb:
Comments on sijtsma. Psychometrika, 74 , 145-154.

Savalei, V., & Reise, S. P. (2019). Don’t forget the model in your model-based
reliability coefficients: A reply to mcneish (2018). Collabra:Psychology , 5 (1).

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment ,
8 , 350-353.

Sheng, Y., & Sheng, Z. (2012, February). Is coefficient alpha robust to non-normal
data? Frontiers in Psychology .

Sijtsma, K. (2009, 2009). On the use, the misuse, and the very limited usefulness of
cronbach’s alpha. Psychometrika, 74 (1), 107 – 120.

Trizano-Hermosilla, I., & Alvarado, J. (2016, 05). Best alternatives to cronbach’s
alpha reliability in realistic conditions: Congeneric and asymmetrical measure-
ments. Frontiers in Psychology , 7 .

Zimmerman, D. W. (1972). Test reliability and the kuder-richardson formulas:
Derivation from probability theory. Educational and Psychological Measure-

ment , 32 (4), 939 – 954.
Zimmerman, D. W., Zumbo, B. D., & Lalonde, C. (1993). Coefficient alpha as an

estimate of test reliability under violation of two assumptions. Educational and
Psychological Measurement , 53 (1), 33-49.

Zinbarg, R., Yovel, I., Revelle, W., & McDonald, R. (2006, 03). Estimating generaliz-
ability to a latent variable common to all of a scale’s indicators: A comparison
of estimators for ωh. Applied Psychological Measurement , 30 , 121-144.

Zumbo, B. (1999). A glance at coefficient alpha with an eye towards robustness studies

: Some mathematical notes and a simulation model. (Paper No. ESQBS-99-
1). Prince George, B.C.: University of Northern British Columbia. Edgeworth
Laboratory for Quantitative Behavioural Science.

Zyl, J., Neudecker, H., & Nel, D. (2000, 09). On the distribution of the maximum

29



likelihood estimator of cronbach’s alpha. Psychometrika, 65 , 271-280.

30



Appendix

The elements of the variance-covariance matrices used in the simulations of Section 4 are
easily obtained through applying the formulas of Foster (2020). For an individual test item
yj or pair of test items yj,1, yj,2, the unconditional variance and covariance in this framework
are

V ar(yj) = E[V (θi)] + V ar(θi) = V ar(θi)(M + 1) =

(

V (µ)

M − v2

)

(M + 1)

Cov(yj,1, yj,2) = V ar(θi) =
V (µ)

M − v2

These equalities hold for all natural exponential family distributions except for the last line,
which depends on the mean-variance relationship given in Equation (6) and holds only for
those with quadratic variance function, as discussed in this paper. The function V (µ) is the
variance function of the natural exponential family applied to the underlying population
mean, several of which are shown in Table 1, and v2 is the coefficient of the quadratic term
of the quadratic variance function, as shown in Equation (1).

If the parameter M is defined by the desired population value of Cronbach’s alpha
ρ and test length k by the relation M = [(1−ρ)/ρ]k as in Section 4, these formulas reduce to

V ar(yj) = V (µ)

[

(1− ρ)k + ρ

(1− ρ)k − ρv2

]

Cov(yj,1, yj,2) = V (µ)

[

ρ

(1− ρ)k − ρv2

]

Within the variance-covariance matrix, all test items have identical variances and all covari-
ances between them are equal. The variances and covariance for the simulations in Section
4 are as follows.

Poisson-Gamma

For the Poisson-gamma model, the variance function is V (θ) = θ with v2 = 0. This yields
variance and covariance elements as

V ar(yj) =
µ

M
(M + 1)

Cov(yj,1, yj,2) =
µ

M
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ρ k µ M V (yj) Cov(yj,1, yj,2)

0.3 5 1 11.67 1.0857 0.0857
0.3 10 1 23.33 1.0429 0.0429
0.3 30 1 70 1.0143 0.0143
0.6 5 1 3.33 1.3 0.3
0.6 10 1 6.67 1.15 0.15
0.6 30 1 20 1.05 0.05
0.8 5 1 1.25 1.8 0.8
0.8 10 1 2.5 1.4 0.4
0.8 30 1 7.5 1.1333 0.1333

Gamma-Inverse Gamma

For the gamma-inverse gamma model, the variance function is V (θ) = θ2 with v2 = 1. This
yields variance and covariance elements as

V ar(yj) =

(

µ2

M − 1

)

(M + 1)

Cov(yj,1, yj,2) =
µ2

M − 1

ρ k µ M V (yj) Cov(yj,1, yj,2)

0.3 5 1 11.67 1.0857 0.0857
0.3 10 1 23.33 1.0429 0.0429
0.3 30 1 70 1.0143 0.0143
0.6 5 1 3.33 1.3 0.3
0.6 10 1 6.67 1.15 0.15
0.6 30 1 20 1.05 0.05
0.8 5 1 1.25 1.8 0.8
0.8 10 1 2.5 1.4 0.4
0.8 30 1 7.5 1.1333 0.1333

Note that for small values of M the resulting distributions of yj become heavy tailed, and
so sample variances and covariances may not match theoretical values due to outliers.

Negative Binomial-F

For the negative binomial-F model, the variance function is V (θ) = θ + θ2 with v2 = 1.
This yields variance and covariance elements as
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V ar(yj) =

(

µ+ µ2

M − 1

)

(M + 1)

Cov(yj,1, yj,2) =
µ+ µ2

M − 1

ρ k µ M V (yj) Cov(yj,1, yj,2)

0.3 5 1.01 11.67 2.4107 0.1903
0.3 10 1.01 23.33 2.2119 0.0909
0.3 30 1.01 70 2.0889 0.0294
0.6 5 1.01 3.33 3.7702 0.87
0.6 10 1.01 6.67 2.7466 0.3583
0.6 30 1.01 20 2.2438 0.1068
0.8 5 1.01 1.25 18.2709 8.1204
0.8 10 1.01 2.5 4.7369 1.3534
0.8 30 1.01 7.5 2.6547 0.3123

Binomial-Beta

For the binomial-beta model, the variance function is V (θ) = θ(1− θ) with v2 = −1. This
yields variance and covariance elements as

V ar(yj) = µ(1− µ)

Cov(yj,1, yj,2) =
µ(1− µ)

M + 1

ρ k µ M V (yj) Cov(yj,1, yj,2)

0.3 5 0.5 11.67 0.25 0.0197
0.3 10 0.5 23.33 0.25 0.0103
0.3 30 0.5 70 0.25 0.0035
0.6 5 0.5 3.33 0.25 0.0577
0.6 10 0.5 6.67 0.25 0.0326
0.6 30 0.5 20 0.25 0.0119
0.8 5 0.5 1.25 0.25 0.1111
0.8 10 0.5 2.5 0.25 0.0714
0.8 30 0.5 7.5 0.25 0.0294
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