
Kramers-Kronig Relations for Nonlinear Rheology: 2. Validation of

Medium Amplitude Oscillatory Shear (MAOS) Measurements

Sachin Shanbhag∗

Department of Scientific Computing, Florida State University, Tallahassee, FL 32306. USA

Yogesh M. Joshi†

Department of Chemical Engineering,

Indian Institute of Technology, Kanpur, INDIA

(Dated: March 21, 2022)

1

ar
X

iv
:2

20
3.

09
98

3v
1 

 [
co

nd
-m

at
.s

of
t]

  1
8 

M
ar

 2
02

2



Abstract

The frequency dependence of third-harmonic medium amplitude oscillatory shear (MAOS) modulus

G∗33(ω) provides insight into material behavior and microstructure in the asymptotically nonlinear regime.

Motivated by the difficulty in the measurement of MAOS moduli, we propose a test for data validation

based on nonlinear Kramers-Kronig relations. We extend the approach used to assess the consistency of

linear viscoelastic data by expressing the real and imaginary parts of G∗33(ω) as a linear combination of

Maxwell elements: the functional form for the MAOS kernels is inspired by time-strain separability (TSS).

We propose a statistical fitting technique called the SMEL test, which works well on a broad range of ma-

terials and models including those that do not obey TSS. It successfully copes with experimental data that

are noisy, or confined to a limited frequency range. When Maxwell modes obtained from the SMEL test

are used to predict the first-harmonic MAOS modulus G∗31, it is possible to identify the range of timescales

over which a material exhibits TSS.

I. INTRODUCTION

Due to their convenience, oscillatory shear tests have become increasingly important tools for

characterizing the linear and nonlinear rheology of soft materials [1–3]. In strain-controlled exper-

iments a sinusoidal strain γ(t) = γ0 sinωt with amplitude γ0 and angular frequency ω is applied,

and the resulting stress profile σ(t) is measured. In the linear viscoelastic (LVE) regime, defor-

mations are infinitesimal so that the equilibrium microstructure of the material is not disturbed. In

practice, LVE properties are measured by small amplitude oscillatory shear (SAOS) experiments

in which γ0 ≈ O(0.01) is small, and the resulting stress response is linear in γ0,

σSAOS(t) = γ0
(
G′(ω)sinωt +G′′(ω)cosωt

)
, (1)

where G′(ω) and G′′(ω) are the LVE storage and loss moduli, respectively. They are intrinsic

material properties that are independent of the strain amplitude, and correspond to the real and

imaginary parts of the complex relaxation modulus G∗(ω) = G′(ω) + iG′′(ω). The principle

of causality induces a mathematical relationship between the real and imaginary parts of G∗(ω)
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called the Kramers-Kronig relations (KKR) [4, 5]. For viscoelastic liquids,

G′(ω) =−2ω2

π

∫
∞

0

G′′(u)/u
u2−ω2 du

G′′(ω) =
2ω

π

∫
∞

0

G′(u)
u2−ω2 du, (2)

Due to the singularity at u = ω in the denominator, the Cauchy principal value of these integral

transforms is automatically implied. We call these relations linear KKR, since they correspond

to the LVE moduli. They can be expressed in different forms (see Table 1 of companion paper

ref. [6]). Besides rheology [1], equivalent linear KKR find use in numerous other areas including

optics [7, 8], electrochemical impedance spectroscopy [9, 10], electrical networks [11], etc.

A. Applications of Linear Kramers-Kronig Relations

Linear KKR are used to either numerically evaluate one signal from the other, or to test the

consistency of the two signals. In the first scenario, KKR is used to compute either the real or

imaginary component (G′(ω) or G′′(ω)) from the other. This is useful when one of the signals is

weak, and perhaps falls below the limits of instrument sensitivity. This is also the common setting

in optics, where it is easier to measure the imaginary part (absorption coefficient) of the complex

dielectric permittivity over a broad range of frequencies, and infer the real part (refractive index)

by numerically integrating the KKR [8].

Even the earliest attempts to numerically integrate KKR recognized the need to deal with the

potential singularity at u = ω , and the extrapolation of experimental observations beyond the finite

frequency window, ωmin ≤ ω ≤ ωmax, over which they are measured [12]. Since the singularity

is an integrable Cauchy-type singularity, standard methods like linearization [12, 13], or integra-

tion by parts may be used [14–17]. Custom Gauss quadrature methods have also been developed

to specifically tackle this problem [18, 19]. Since the integral in the KKR extends from zero to

infinity, it is preferable to obtain data over the widest possible experimental window [ωmin,ωmax].

Nevertheless, the question of how to optimally extend the data on both ends remains. Different

functional forms including polynomials [17], polynomial functions of the logarithm of the fre-

quency [20], and splines [21], have been previously employed for extrapolation.

In the second scenario, KKR are used for data validation, where the consistency of the mea-

sured signals, G′(ω) and G′′(ω), is evaluated. This is practically relevant, for example, when

time-temperature superposition is used to construct master-curves by shifting a number of individ-
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ual datasets [22]. Sometimes, an independent parameter like strain rate, stress, pH, etc. is observed

to play a role similar to temperature in time-temperature superposition. In such situations, KKR

becomes a useful tool to check the authenticity of the superposition of the experimental data. This

strategy was successfully used, for example, by Erwin and coworkers [23] to determine the valid-

ity of strain-rate frequency superposition in soft materials [24]. Numerical evaluation of the KKR

integrals is one method to check consistency: we can compare the experimental G′(ω) and G′′(ω)

with the moduli calculated from KKR (equation 2).

However, if the goal is merely to test the consistency of the experimental data and KKR, a

simple strategy that avoids the problems associated with numerical integration can be adopted.

In this approach, we attempt to infer a relaxation spectrum by simultaneously fitting G′(ω) and

G′′(ω) to a set of N discrete Maxwell modes M = {g j,τ j} with j = 1, · · · ,N, which is called the

discrete relaxation spectrum (DRS) [25–27],

G′(ω) =
N

∑
j=1

g j
ω2τ2

j

1+ω2τ2
j
=

N

∑
j=1

g jk′(ωτ j)

G′′(ω) =
N

∑
j=1

g j
ωτ j

1+ω2τ2
j
=

N

∑
j=1

g jk′′(ωτ j), (3)

where g j > 0 and τ j > 0 are the modulus and timescale characterizing the jth relaxation mode,

respectively [1]. k′(z) = z2/(1+ z2) and k′′(z) = z/(1+ z2) are the kernels corresponding to the

storage and loss moduli, respectively. The DRS can be inferred from frequency sweep experiments

using open-source programs like DISCRETE [28], pyReSpect [29–31], or a commercial program

like IRIS [32]. While the method proposed later in this work is inspired by the DRS, it should

be noted that the continuous analogue of equation 3, called the continuous relaxation spectrum

(CRS), where the summation is replaced by an integral may also used in lieu of the DRS for data

validation.

The attractive feature of this approach is that KKR are built into the kernel functions by design:

k′ and k′′ obey equation 2. Therefore, any linear combination such as that considered in the DRS

(equation 3) necessarily obeys KKR. If a DRS that can simultaneously account for the storage

and loss moduli cannot be found, the validity of the experimental data is brought into question,

because it violates KKR. Since this method relies on optimization as its engine, it is well-suited to

experimental data that are noisy, or confined to a limited frequency window.
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B. Kramers-Kronig Relations for Medium Amplitude Oscillatory Shear

In medium amplitude oscillatory shear (MAOS) tests, we impose a sinusoidal strain γ(t) =

γ0 sinωt, similar to SAOS measurements. As γ0 is gradually increased, the weakest or asymptoti-

cally nonlinear modes are initially activated [3, 33–37]. Due to the odd symmetry of shear stress

with shear strain, these weak nonlinear modes are proportional to γ3
0 . In this regime, the total stress

is given by, σ(t) = σSAOS(t)+σMAOS(t)+O(γ5
0 ), where [38],

σMAOS(t) = γ
3
0
[
G′31(ω)sinωt +G′′31(ω)cosωt +G′33(ω)sin3ωt +G′′33(ω)cos3ωt

]
(4)

The MAOS moduli associated with the first and third harmonic are G∗31 = G′31 + iG′′31, and G∗33 =

G′33 + iG′′33, respectively. These MAOS moduli, primarily the third-harmonic G∗33(ω), have been

used extensively to probe features of material structure that are not salient in LVE data. For

example the intrinsic nonlinearity parameter Q0, which is related to the relative intensity of the

third harmonic normalized by the first harmonic I3/I1 = I3/1(ω,γ0) as [3, 39, 40],

Q0(ω) = lim
γ0→0

I3/1(ω,γ0)

γ2
0

=
|G∗33(ω)|
|G∗(ω)|

. (5)

The shape of Q0(ω) curves is sensitive to polymer architecture. Therefore, it can be used to distin-

guish between linear and branched polymers [34, 39, 41] by analyzing the number of local peaks.

Q0(ω) is also more sensitive to effects of fillers in polymer nanocomposites, and can be used to

evaluate nanoparticle dispersion quality [42, 43], and droplet size dispersion in polymer blends

[44, 45], etc. In contrast, the first-harmonic MAOS moduli G∗31(ω) have been less frequently used

[46–48].

Using a multiple integration formulation to capture the nonlinear mechanical response, and

appealing to the principle of causality, KKR can be derived for G∗33(ω) [6]. It can be succinctly

represented in complex notation as,

G∗33(ω) =
i
π

ω
3
∫

∞

−∞

1
u3

G∗33(u)
u−ω

du. (6)

Similar to the linear KKR (equation 2), this relation can be expressed as a pair of equations relating

the real and imaginary parts of G∗3 on a non-negative frequency domain,

G′33(ω) =−2ω4

π

∫
∞

0

G′′33(u)/u3

u2−ω2 du

G′′33(ω) =
2ω3

π

∫
∞

0

G′33(u)/u2

u2−ω2 du, (7)
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Just like linear KKR, these MAOS KKR can be used to numerically evaluate one signal from

the other, or for data validation. Analogous KKR are widely used in nonlinear optics [49–51].

As described in the ref. [6], KKR for G∗31(ω) do not exist, and there is no direct way in which

their consistency can be similarly evaluated. However, MAOS functions are related to G∗(ω)

for materials exhibiting time-strain separability, i.e. when the nonlinear shear relaxation modulus

G(t,γ) = h(γ)G(t) in step-strain experiments. Here, h(γ) is the damping function, and G(t) is the

LVE stress relaxation modulus. These functions are given by [38, 52–55]:

G′31(ω) =
3a
4
[
4G′(ω)−G′(2ω)

]
G′′31(ω) =

3a
4
[
2G′′(ω)−G′′(2ω)

]
G′33(ω) =−a

4
[
3G′(ω)−3G′(2ω)+G′(3ω)

]
G′′33(ω) =−a

4
[
3G′′(ω)−3G′′(2ω)+G′′(3ω)

]
, (8)

where a = limγ→0 dh/d(γ2) is the derivative of the damping function in the limit of zero shear.

C. Motivation and Scope

Obtaining MAOS moduli experimentally is tedious, and fraught with numerous potential

sources of error. This is in contrast to the ease with which LVE moduli G′(ω) and G′′(ω) can

be obtained. This difficulty arises from different sources: (i) the window of suitable strain am-

plitudes γ0 is narrow [36]. MAOS signals are weak when γ0 is small, and contaminated by the

higher-harmonics when γ0 is too large. (ii) the optimal γ0 is frequency-dependent: at low fre-

quency, larger strain amplitudes are desirable [56]. (iii) the method is indirect: the “true” MAOS

moduli are extracted by extrapolating measurements at multiple strain-amplitudes to filter out the

contribution of higher harmonics.

This is a complicated process, which only serves to increase the importance of data validation.

As mentioned previously, consistency of LVE moduli with linear KKR can be tested by fitting

a DRS. In this work, we adopt a similar approach, and devise an efficient test to quantitatively

assess the consistency of MAOS moduli G∗33; fortunately a majority of practically used MAOS

tests involve G∗33.

The proposed method involves fitting G′33 and G′′33 to a sum of Maxwell elements as discussed

in section II. The fitting is performed using a statistical technique called LASSO (least absolute

6



shrinkage and selection operator) regression [57, 58]. It is a regularized linear least-squares regres-

sion method that automatically selects a parsimonious set of modes. We call this technique sum

of Maxwell elements using LASSO, or SMEL test after the underlined initials. The SMEL test is

applied to the MAOS response of the Giesekus model, which is not time-strain separable (TSS), a

TSS power-law model, and experimental data on a well-characterized solution of Polyvinyl alco-

hol (PVA) and Borax [36, 37, 59].

II. METHODS FOR DATA VALIDATION

We assume that MAOS experimental data for the third-harmonic modulus G∗33(ω) = G′33(ω)+

iG′′33(ω) are available over a finite frequency window ω ∈ [ωmin,ωmax] as D = {ωi,D′i =

G′33(ωi),D′′i = G′′33(ωi)} for i = 1,2, · · · ,nd . Here, nd is the number of data-points, ω1 = ωmin,

and ωnd = ωmax. Typically, but not necessarily, these data are evenly spaced on a logarithmic

frequency scale. Our goal in this section is to develop an efficient method to test whether these

observations violate the MAOS KKR given by equation 7.

A. Functional Form for Kernel

The first step is to devise a suitable functional form for the MAOS kernels, K′ and K′′, that

mimics the relationship between the linear kernels (k′ and k′′ in equation 3) and the linear KKR

(equation 2). This functional form should (i) automatically satisfy the MAOS KKR (equation 7),

and (ii) be flexible enough to assimilate the behavior of a wide class of materials. As with the

DRS, the second requirement can potentially be addressed by considering a large set of modes, N.

To satisfy the first requirement, we appeal to the MAOS response of a single TSS Mawell

mode with relaxation time τ . Letting z = ωτ , the LVE kernels are k′(z) = z2/(1+ z2) and k′′(z) =

z/(1+z2). The MAOS functions G′33 and G′′33 are related to the LVE moduli G′(ω) and G′′(ω) and

the damping function via equation 8 [38, 52–55]. Using this relationship, we propose the MAOS

kernels,

K′(z) = 3k′(z)−3k′(2z)+ k′(3z) =
36z4(z2−1)

(1+ z2)(1+4z2)(1+9z2)

K′′(z) = 3k′′(z)−3k′′(2z)+ k′′(3z) =
6z3(11z2−1)

(1+ z2)(1+4z2)(1+9z2)
. (9)
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These MAOS kernels automatically satisfy the corresponding MAOS KKR for G∗33 (equation 7):

K′(ω) =−2ω4

π

∫
∞

0

K′′(u)/u3

u2−ω2 du

K′′(ω) =
2ω3

π

∫
∞

0

K′(u)/u2

u2−ω2 du. (10)

Thus, the idea is to fit the experimental data D to a linear combination of MAOS kernels, so that

G′33(ω)≈ P′(ω) =
N

∑
j=1

g jK′(ωτ j)

G′′33(ω)≈ P′′(ω) =
N

∑
j=1

g jK′′(ωτ j), (11)

where g j and τ j are the weights and timescales associated with the jth mode. They can be de-

termined by fitting experimental data at ω = ω1, · · · ,ωnd using equation 11. Once the modes

M = {g j,τ j} are found, they can be used to predict the corresponding MAOS response, P′ and

P′′, at any frequency. Since K′ and K′′ satisfy KKR by design, the validity of the experimental

data can be ascertained by the examining the quality of the fit.

B. Numerical Method for Fitting MAOS modes

Now that the framework for data validation is established, we turn our attention to the numerical

method for fitting the experimental data with a set of kernel functions. We formulate a weighted

least-squares problem by defining the objective function via a sum of squared residuals (SSR),

χ
2 =

1
4nd

nd

∑
i=1

[
w′i
(
D′i−P′(ωi)

)2
+w′′i

(
D′′i −P′′(ωi)

)2
]
, (12)

where the terms inside the two parentheses in the square brackets are residuals at a particular

frequency ωi. The positive weights w′i = 1/|D′i| and w′′i = 1/|D′′i | are chosen to prevent the con-

tribution of small D′i and D′′i from being overwhelmed. This improves the agreement between the

data and the fit, when the moduli are presented on a log-log plot.

For a given number of modes N, the least-squares problem involves finding the optimal set of

modes M that minimizes the objective function χ2. In general, this is a nonlinear least-squares

problem that requires a sophisticated approach [31], especially when the number of modes N is

unknown, and a parsimonious representation is desired. Sometimes, values of τ j are pre-specified

on a regular logarithmically spaced grid. This automatically fixes N, and significantly simplifies
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the problem: (i) the number of parameters to determine is halved from 2N to N, and (ii) the

regression problem becomes linear in the undetermined coefficients g j.

Furthermore, unlike the DRS, we do not require these coefficients g j to be positive: the MAOS

kernels (equation 10) and their linear combinations (equation 11) can simply be viewed as a means

to an end (data validation), and not objects of interest themselves. This further simplifies the prob-

lem. Despite these simplications, the resulting linear least squares problem is ill-conditioned,

which makes it susceptible to noise in the experimental data and round-off errors. We are faced

with a common tradeoff: using a large number of modes enhances flexibility, but simultaneously

worsens the conditioning of the problem. A standard approach to mitigate this problem is regu-

larization, which improves the conditioning of the problem by adding a constraint to the objective

function.

Here, we consider a regularized linear regression technique called LASSO (least absolute

shrinkage and selection operator) [57, 58]. It modifies the least-squares objective function χ2

by appending an L1 regularization term as,

χ
2
LASSO({g j}) = χ

2({g j})+α

N

∑
j=1

∣∣g j
∣∣ . (13)

The parameter α controls the strength of the regularization constraint. When α = 0, we recover

the original least-squares problem which is poorly conditioned. As α is increased, regularization

kicks in and improves conditioning. However, as α → ∞, the regularization constraint dominates

the solution, and drives it to the trivial solution g j = 0 for all j. The optimal value of α lies some-

where between these two limits, and seeks to balance the need to describe the experimental data

accurately, and the need to pose a well-conditioned problem. Here, optimal value of α is found

by 3-fold cross-validation using the built-in function LassoCV from the linear_model module

of the Python machine learning library scikit.learn version 1.01 [60]. This implementation of

LASSO uses coordinate descent to fit the unknown coefficients, and uses a duality gap calculation

to control convergence [61, 62]. This method is well-suited when the number of modes N & nd .

An attractive feature of LASSO is feature selection: it automatically identifies the most important

modes, and sets the weights g j = 0 for the other modes [58]. Thus, it provides a parsimonious

representation of the data, which while not necessary, provides some insight into the regressed

parameters.
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C. SMEL Test Algorithm

The kernel functions are specified by equation 9. We seek to fit the experimental data D to

a sum of these modes (equation 11) by minimizing the regularized objective function (equation

13). Here, we specify the algorithm for the proposed method, which incorporates these ideas, and

checks compliance of G∗33(ω) data with MAOS KKR.

In the description below, vectors and matrices are represented using bold symbols, e.g X . Xi

denotes the ith element of the vector X; similarly, Xi, j denotes the element in the ith row, and jth

column of matrix X . For consistency and brevity, the index i = 1,2, · · · ,nd is exclusively used to

mark experimental data-points, and the index j = 1,2, · · · ,N is exclusively used to mark Maxwell

modes throughout this work.

1. Setup Data and Parameters

• Collect experimental observations, D = {ωi,D′i = G′33(ωi),D′′i = G′′33(ωi)}. Stack

these moduli into a 2nd×1 column vectorD so thatDi = D′i andDnd+i = D′′i ;

• Denote the boundaries of the frequency window ωmin = min{ωi} and ωmax =

max{ωi}; mark the boundaries of the modes τmin = 0.1/ωmax and τmax = 10/ωmin

by extending the experimental domain by one decade on either side;

• Set mode density ρN = 10 modes/decade. Set the number of modes N = ρN ·

floor(log10(τmax/τmin));

• Set the intermediate timescales τ j on a logarithmically equispaced grid via,

τ j

τmin
=

(
τmax

τmin

) j−1
N−1 , (14)

Thus, τ1 = τmin and τN = τmax.

2. Setup for LASSO

• Furnish two nd × N kernel matrices K ′i, j = K′(ωiτ j), and K ′′i, j = K′′(ωiτ j) using

equation 9. Stack K ′ above K ′′ to produce the 2nd ×N feature matrix K, so that

Ki, j =K
′
i, j andKnd+i, j =K

′′
i, j;

• Let g = [g1, · · · ,gN ]
T be a column vector of coefficients to be determined so thatD ≈

Kg (equation 11);
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• Define a 2nd × 2nd diagonal matrix of weights Wii = 1/
√
|Di| for weighted least-

squares;

• Transform the data vectorD and the feature matrixK using these weights, D̂=WD

and K̂ =WK. The least-squares objective function (equation 12) can be succinctly

represented as,

χ
2 =

1
4nd

(D̂−K̂g)T (D̂−K̂g). (15)

The standard unregularized normal equations are K̂TK̂g = K̂TD̂;

• Use the scikit-learn function LassoCV with three-fold cross-validation to deter-

mine an optimal value of α in equation 13. Solve and determine the coefficients g;

• Assess the quality of the fit using the coefficient of determination, or R2, as a proxy for

the quality of the fit. If R2 ≥ 0.95 (or some other reasonable threshold), the dataset is

deemed consistent with MAOS KKR. Otherwise it is deemed inconsistent.

For conveniene, Python code that implements the SMEL test is presented in supplementary

material. The implementation takes fewer than 20 lines of code.

III. RESULTS

The SMEL test is based on LASSO regression using a sum of Maxwell kernel functions in-

spired by the MAOS response of a TSS Maxwell model. The applicability and generality of the

method needs to be evaluated. We consider two synthetic examples for which analytical forms

of G∗33(ω) are available: (i) a single mode Giesekus model, which violates TSS, and (ii) a TSS

material that exhibits power-law LVE and MAOS behavior over a finite frequency window. Note

that the MAOS KKR hold for both TSS and non-TSS materials. Furthermore, power-law depen-

dence is often difficult for discrete Maxwell modes to capture. These examples are designed with

this aspect in mind. We also explore how the SMEL test responds when we contaminate syn-

thetic data with noise, or arbitrarily shift one of G′33 or G′′33 to artificially create an invalid dataset.

We also consider an experimental dataset on a PVA-borax system studied by Ewoldt and Bharad-

waj [37, 59]. Finally, implications for the first harmonic G∗31 and time-strain superposability are

discussed.
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A. Giesekus Model

The Giesekus model is a popular constitutive model for polymer solutions and melts [63, 64],

and for worm-like micelles [65–67]. The polymer contribution to the total stress tensor σ is given

by,
O
σ +

1
τ
σ+

αG

Gτ
σ ·σ = 2GD, (16)

where G and τ are the modulus and relaxation time, respectively. The symmetric deformation

gradient tensorD can be expressed in terms of the velocity gradient ∇v asD = (∇v+∇vT )/2.

For homogeneous flows, the upper-convected derivative simplifies to,

O
σ=

∂σ

∂ t
−∇vT ·σ−σ ·∇v. (17)

Nonlinearity is subsumed into a single nonlinear parameter αG ∈ [0,1]. When αG = 0, it is equiva-

lent to the upper-convected Maxwell model. The Giesekus model in not TSS for timescales shorter

than τ [68], which means that equation 8 does not apply, even though the LVE response tracks the

Maxwell model. Nevertheless, analytical expressions for intrinsic MAOS moduli G∗33(ω) have

been derived previously [37, 67]. With z = ωτ , G′33 and G′′33 are given by,

G′33(z)
G

=
αGz4(−21+30z2 +51z4 +4αG(4−17z2 +3z4))

4(1+ z2)3(1+4z2)(1+9z2)

G′′33(z)
G

=
αGz3(−3+48z2 +33z4−18z6 +αG(2−48z2 +46z4))

4(1+ z2)3(1+4z2)(1+9z2)
(18)

Note that the asymptotic dependence of G′33(ω)∼ω−2 at large ω differs from that of K′(ω)∼ω0

for the Maxwell model, while the other asymptotic dependencies at both small and large ω are

identical.

We generated synthetic experimental data for G∗33 from the expressions in equation 18 using

αG = 0.2. Without loss of generality, we set τ = 1 s, and G = 1 Pa in our numerical calculations,

so that they set the time and modulus scales, respectively. We used nd = 25 logarithmically equi-

spaced points between ωminτ = 10−1 and ωmaxτ = 101. These are shown by symbols in figure 1.

Note that G′33 and G′′33 take both positive and negative values, which are depicted using filled and

unfilled symbols, respectively.

To apply the SMEL test, we used the default mode density of ρN = 10 modes/decade which

leads to N = 40 logarithmically equispaced τ j between τmin/τ = 10−2 and τmax/τ = 102. The

condition number of the unregularized least-squares feature matrix K̂ in equation 15 is O(1014).
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10-1 100 101

ωτ

10-4

10-3

10-2

|G
∗ 3
3
|/
G

G ′
33

G ′′
33

FIG. 1. Synthetic MAOS moduli G′33 (circles) and G′′33 (squares) generated using the Giesekus model with

nonlinear parameter αG = 0.2. Filled (unfilled) symbols denote positive (negative) values. Solid lines of the

corresponding color show fits using LASSO regression with N = 40 modes. The locations of the nonzero

modes τ j are indicated by vertical gray lines at frequencies corresponding to 2π/τ j; the darkness of a line

increases with mode strength |g j|.

LASSO adds regularization and makes the problem amenable to numerical solution. The optimal

value of the regularization parameter α is found to be 3.4× 10−4. The regression identifies 18

nonzero modes (out of N = 40); the modes that lie within the experimental frequency window

are indicated in figure 1 by vertical gray lines. The darker the line, the larger the magnitude of

the corresponding |g j|. The spacing between these lines gives a visual sense of the mode density.

Solid lines are fits using these nonzero modes in equation 11. The agreement between the fitted

curves and data is excellent as evidenced by a coefficient of determination value of R2 = 0.997.

It is worthwhile to pause and highlight the advantages of LASSO regression. Recall that two

vexing questions that complicate the extraction of the linear relaxation spectrum (DRS) from

G∗(ω) are how to select a parsimonious N, and where to place the modes τ j? If τ j are not pre-

specified, nonlinear least-squares regression, which is computationally costly, has to be performed.

LASSO regression allows us to specify a large number of candidate modes τ j; it completely frees

us from the two questions that complicate the calculation of the DRS. At sufficiently high mode

density, the modes are closely spaced, which ensures that the relevant timescales are included in
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FIG. 2. The nonzero modes used to fit data in figure 1 with mode density of ρN = 10 modes/decade (N = 40)

are indicated by black circles. Filled (unfilled) symbols denote positive (negative) values. Shaded patches

roughly identify regions where g j is negative. When the mode density is increased to ρN = 50 (N = 200),

we obtain results depicted by the red triangles. Dotted vertical lines mark the timescales corresponding to

the data, viz. (ωmaxτ)−1 and (ωminτ)−1.

the set {τ j}. The regression is robust and automatically discards redundant modes. In the example

shown in figure 1, only 18 or 45% of the originally specified N = 40 modes were retained.

Figure 2 depicts the location (τ j) and strength (|g j|) of the modes for N = 40 (ρN = 10

modes/decade) obtained from fitting the data in fig. 1. Note that some of the coefficients g j

are negative, and indicated by open symbols. The majority of the modes identified fall within

the range of the experimental data demarcated by the dotted vertical lines. Nevertheless, a non-

negligible fraction of the modes lie beyond this range; this situation is also observed in fitting DRS

to LVE measurements.

At N = 40 the spacing between successive modes τ j+1/τ j ≈ 1.3. To test the robustness of

the SMEL test to large N, we run a numerical experiment by increasing the number of modes to

N = 200 (ρN = 50). All but 69 (35%) of these modes, shown by triangles in figure 2, are discarded

as unimportant. The consistency between the locations of τ j, the sign and relative magnitudes

of g j, and the relative independence regularization parameter α with N is reassuring. Note that

this large value of ρN = 50 modes/decade, which leads to τ j+1/τ j ≈ 1.05, is practically close to
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FIG. 3. Comparison of fits using different choices for the number of initial modes for the Giesekus model

shown in fig. 1. The three predictions nearly overlap with each other, and are hard to distinguish.

the continuous limit and probably excessive. However, it is shown here to highlight one of the

strengths of LASSO regression: its ability to gracefully cope with a large number of modes or

degrees of freedom.

Despite these similarities there is one key difference: computational cost. The N = 40 calcu-

lation took about 0.17s, whereas the N = 200 calculation took 1.45s on a desktop computer with

an Intel i7-6700 (3.40GHz) CPU. This trend is expected since the cost of the underlying linear

least squares problem asymptotically scales as O(N3). The ability of SMEL test appears to be

insensitive to ρN or N. For example using N = 20 produces a fit that is visually indistinguishable

(see figure 3) from the N = 40 fit reported in figure 1, or larger values of N.

These findings may be summarized as follows: the SMEL test (i) correctly identifies KKR

compliance of G∗33(ω) data even when it is not TSS, (ii) it is efficient; the computational cost is

typically O(0.1s), (iii) it works when experimental data is available on a finite frequency window,

and (iv) it is robust and practically insensitive to large N; however the asymptotic computational

cost increases roughly as O(N3).
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B. Time-Strain Separable Power-Law Material

Multiscale complex fluids such as polydisperse and/or branched polymer melts and solutions

[69], structured food materials [70, 71], the critical gel state in polymeric or colloidal gels [25, 72–

74], etc., show power-law dependence of relaxation modulus, G(t) = St−n, over a certain range

of timescales t. Here, n ∈ (0,1) is the power-law exponent, and the quasi-property S has units of

Pa·sn and characterizes material stiffness. The corresponding storage and loss moduli are [25],

G′(ω) =
πS

2Γ(n)
ωn

sin(nπ/2)
,

G′′(ω) =
πS

2Γ(n)
ωn

cos(nπ/2)
. (19)

Several such materials are known to obey TSS [69, 75, 76]. Consequently, their G′33 and G′′33 can be

obtained from the LVE (equation 19), and the damping function parameter a via equation 8. Note

that while G∗(ω) obeys linear KKR, the G∗33(ω) obtained from the LVE assuming TSS violates

the MAOS KKR. The weak dependence of the G′33 and G′′33 at low frequencies (ωn) results in a

non-integrable singularity in equation 7 at u = 0. In practice, this issue is moot because power-law

behavior is confined to a finite domain of frequencies [69, 72].

Nevertheless, the question of assessing the KKR compliance of power-law behavior experimen-

tally observed over a finite frequency window is both relevant and important. Here, we generate

synthetic data between ωmin = 10−1 rad/s and ωmax = 101 rad/s with nd = 25 data points. We

assume n = 0.3, S = 1.0 Pa·sn, and damping function parameter a = −0.1. In figure 4, we con-

taminate this “pristine” G′33 and G′′33 with 5% random noise. This noisy dataset is generated by

multiplying the pristine data with independent, normally distributed random numbers with mean

equal to one, and standard deviation equal to 0.05.

As before, we use N = 40 modes and obtain the fit shown by the solid lines in figure 4. The

agreement between the experimental and fitted data is quite reasonable, and sports a R2 of 0.97.

This example demonstrates the robustness of SMEL test to noisy data. Even though the regressed

curves have some wiggles, the goal of data validation is accomplished. Note that if the synthetic

data is not contaminated by noise, the quality of the fit improves. Thus, this example also shows

that over a finite range, power-law behavior can be well-described by a sum of MAOS Maxwell

elements.

Up to this point, all synthetic data were generated from analytical expressions for G∗33(ω).

Therefore, the G′33 and G′′33 were consistent with KKR by default. What we have shown thus far
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FIG. 4. Synthetic MAOS moduli G′33 (circles) and G′′33 (squares) generated using the TSS power-law model

(equations 8 and 19) with parameters n = 0.3, S = 1 Pa·sn, and a =−0.1. 5% noise is added to the pristine

data. Solid lines of the corresponding color show fits with N = 40 modes. The locations and strengths of

the nonzero modes are indicated by vertical gray lines as in figure 1.
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FIG. 5. Synthetic MAOS moduli G′33 (circles) and G′′33 (squares) generated using the TSS power-law model

with parameters n = 0.3, S = 1 Pa·sn, and a = −0.1. G′33 is then artificially shifted downwards by a factor

of two. Solid lines of the corresponding color show fits with N = 40 modes. The locations and strengths of

the nonzero modes are indicated by vertical gray lines as in figure 1.
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then is that the SMEL test correctly identifies datasets that obey KKR. To test its performance

on data that violate KKR, we generate an “invalid” dataset using the same parameters as used

above for fig. 4, except for the noise (including or excluding noise does not change results). We

artificially shift the G′33 curve downwards by a factor of two as shown in figure 5. The G′′33 curve

is left untouched.

We use the SMEL test to analyze this data. As shown in figure 5, the fits do not agree with the

shifted experimental data. Here we used N = 40, but increasing N does not improve the agreement

as might be expected from figure 3, which demonstrates that the quality of the fit is insensitive to

N. Furthermore, R2 = −0.87 is below any reasonable threshold. It provides a quantiative proxy

for what is visually obvious, leading us to declare that the data is not KKR compliant.

These findings may be summarized as follows: the SMEL test (i) can model power-law behav-

ior over finite frequency windows using Maxwell elements, (ii) it is robust to noise in the data, and

(iii) it correctly identifies datasets that are consistent and inconsistent with KKR. When the level

of noise is not too large, numerical experiments conducted thus far demonstrate that the SMEL

test does not suffer from either false positives or false negatives.

C. Experimental Data

Now that we have demonstrated that the SMEL test works quite well on synthetically generated

data, we move on to analyze real experimental data. The first experimental report of G∗33 in the

literature is due to Davis and Macosko [78]. However, systematic measurements of frequency-

dependent MAOS signatures are more recent. Bharadwaj and Ewoldt reported LVE and MAOS

moduli of an aqueous solution of 2.75 wt% poly vinyl-alcohol (PVA) mixed with 1.25 wt% sodium

tetraborate (borax) [36, 37, 59]. Thermoreversible cross-links between the PVA and borax units

endow the material with interesting rheological properties. The LVE signature is simple, and can

be nearly approximated by a single Maxwell element. However, common constitutive models do

not anticipate the sign changes of MAOS moduli for this system [37]. A new network model

with non-Hookean springs called the strain-stiffening temporary network model was developed

to account for these sign changes [79]. From LVE measurements the modulus and zero-shear

viscosity were estimated to be G0 = 1546±13 Pa, and η0 = 745±12 Pa·s [59].

Figure 6 shows the experimentally determined intrinsic MAOS properties in terms of the third

order Chebyshev coefficients [e3](ω) = −G′33(ω) and [v3](ω) = G′′33(ω)/ω . Fits obtained using
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FIG. 6. Experimental data on a PVA-borax system showing [e3] = −G′33 (circles) and [v3] = G′′33/ω

(squares) [36, 37, 59]. Filled (unfilled) symbols denote positive (negative) values. Solid lines of the corre-

sponding color show fits using N = 40. The locations and strengths of the nonzero modes are indicated by

vertical gray lines as in figure 1.[77]

SMEL test with N = 50 modes are shown by solid lines. Only about a quarter of these modes

are found to be nonzero. Overall the agreement between the experiments and the fits is good, as

reflected by an R2 = 0.974. Since this is above the cutoff threshold, it suggests that the experimen-

tally extracted MAOS data are compliant with KKR.

D. Implications for First-Harmonic MAOS Moduli

These examples demonstrate how the SMEL test can be used to efficiently validate G∗33(ω)

data. A by-product of this test is the set of Maxwell modes M = {gi,τi} which fit the data in

accordance with equations 9 and 11. The form of the MAOS kernels used in the SMEL test (equa-

tion 9) was inspired by the MAOS moduli for TSS materials. In oscillatory shear experiments,

TSS materials occupy a special place. For example, their LAOS response can be computed with

spectral accuracy using only G∗(ω) and the damping function h(γ) [77]. The MAOS moduli, G∗31

and G∗33, can be analytically obtained from G∗(ω) via equation 8. However, when TSS is violated,

this link between the MAOS and SAOS moduli is severed.

With these ideas in mind, we propose a numerical experiment. Suppose, we consider kernel
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(a) Giesekus (b) critical gel (c) PVA-Borax

FIG. 7. Comparisons of synthetic or experimental MAOS moduli G∗31 (symbols) with predictions P∗31 ob-

tained from Maxwell modes {g j,τ j} for (a) Giesekus model, (b) TSS power-law model, and (c) experimen-

tal PVA-Borax system. The Maxwell modes are collected during the SMEL test as part of validating G∗33

data.

functions for G∗31 that are valid for TSS materials (similar to equation 9 for G∗33) as,

K′31(z) = (−3)
(
4k′(z)− k′(2z)

)
K′′31(z) = (−3)

(
2k′′(z)− k′′(2z)

)
. (20)

We can use the Maxwell modes M obtained during the SMEL test, and the kernel functions above,

to compute “predictions" for the first-harmonic MAOS moduli, P∗31 = P′31 + iP′′31,

P′31(ω) =
N

∑
j=1

g jK′31(ωτ j)

P′′31(ω) =
N

∑
j=1

g jK′′31(ωτ j). (21)

We can then evaluate the correspondence between the G∗31 data, and the predictions P∗31. For TSS

materials, we expect P∗31 ≈ G∗31. For non-TSS materials, we expect this approximation to fail.

Figure 7 compares these predictions P∗31 with the corresponding synthetic or experimental data

on G∗31 for the three different systems considered previously. Different patterns are observed for

these three systems, which may be interpreted through the lens of time-strain superposability.

By design, the critical gel in figure 7b is TSS. Therefore, it is not surprising that P∗31 ≈G∗31 over

most of the frequency range. Minor discrepancy is observed near the high-frequency end of the

experimental window; this is a manifestation of a familiar phenomenon related to the uncertainty

in the extraction of DRS from LVE data [80]. The disagreement between the inferred and exper-

imental G∗31 in figure 7c suggests that the PVA-Borax system is not TSS. Indeed, the specialized
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network model used to describe this data is non-TSS [53, 79]. This brings us to figure 7a for the

Giesekus model. Interestingly, for ωτ� 1, P∗31 ≈G∗31. However, for ωτ� 1 this correspondence

breaks down, especially the prediction for G′31. This would lead us to correctly conclude that the

Giesekus model is not TSS.

Many materials are not strictly TSS; instead, they exhibit the property of time-strain separability

over a range of timescales in step strain experiments. As an illustrative example, consider polymer

solutions and melts where chains relax primarily by reptation. However, when chains are rapidly

stretched in strong flows, a relaxation mechanism, which operates on a much quicker timescales

called chain retraction also gets activated. This phenomenon leads to non-TSS behavior at short

timescales. Interestingly, the Giesekus model qualitatively captures this phenomenology. The

nonlinear stress relaxation modulus is given by [68],

GGiesekus(t,γ) =
G0

et/τ +2α2γ2[1− cosh(t/τ)]+αGγ2[et/τ −1]
, (22)

where the characteristic time τ may be loosely thought of as the reptation time. For t > τ , the

contribution of γ becomes negligible, and G(t,γ) becomes proportional to the LVE response

G(t) = G0e−t/τ , and obeys TSS. In this regime, the damping function is given by hGiesekus(γ) =

(αG(1−αG)γ
2)−1. However, for t . τ , TSS is violated. The partial agreement of P∗31 and G∗31

in figure 7a is a direct reflection of this fact. At low-frequencies ωτ � 1, corresponding to long

timescales in G(t,γ), the Giesekus model obeys TSS.

Thus, as a by-product the SMEL test can also be used to explore the question of time-strain

separability. From figure 7, we argue that it can identify TSS and non-TSS materials. Perhaps,

more importantly, it has the potential to identify the range of timescales over which some materials

are TSS. Note that this inference can also be drawn directly from LVE moduli using equation 8.

However, direct application of these formulae requires knowledge of the damping function at small

strains (the parameter a), which involves performing multiple step-strain experiments. The SMEL

test method avoids this additional work.

IV. SUMMARY AND CONCLUSIONS

The third-harmonic MAOS modulus G∗33 is extensively used to glean insights into materials

that are not immediately visible in LVE data. However, measurement of G∗33 in experiments is

tedious, and fraught with several potential sources of error. Thus, it is important to validate the
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experimental data, before it can be interpreted.

With this motivation, we proposed a new method called the SMEL test to assess the compliance

of G∗33 with nonlinear KKR. It is inspired by the approach employed to check the consistency of

LVE data with linear KKR using Maxwell elements. In the SMEL test, G∗33 is expressed as a

sum of a large number (approximately 10 modes/decade of frequency) of MAOS kernels inspired

by TSS Maxwell elements. It converts the problem of data validation to a linear least squares

problem. The ill-conditioning of this problem is fixed using a statistical technique called LASSO,

which appends an L1 regularization term to the objective function. LASSO automatically selects

a parsimonious set of modes.

The SMEL test is applied to the MAOS response of the Giesekus model, which is not TSS,

a TSS power-law model, and an experimental system containing cross-linked polymers, which

exhibits a non-standard MAOS fingerprint. The SMEL test work successfully across this broad

range of materials and models. It successfully copes with noisy data, and can correctly identify

datasets that violate nonlinear KKR. Despite its power and versatility, the SMEL test is simple,

barely requiring 20 lines of code, and efficient, requiring runtimes of only a fraction of a second

in most cases. Furthermore, the time-strain separability of the material under investigation can

be quantified as a byproduct, without running additional step-strain experiments to measure the

damping function.

SUPPLEMENTARY MATERIAL

See supplementary material for the Python code used to run the SMEL Test.
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