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Krasnoselskii-type fixed-point theorems for weakly
sequentially continuous mappings

J. Garcia-Falset and K. Latrach

Abstract

In this article, we establish some fixed-point results of Krasnoselskii type for the sum of two
weakly sequentially continuous mappings that extend previous ones. In the last section, we
apply such results to study the existence of solutions to a nonlinear integral equation modelled
in a Banach space.

1. Introduction

From a mathematical point of view, many problems arising from diverse areas of natural science
involve the existence of solutions of nonlinear equations of the form

Au+Bu = u, u ∈M, (1.1)

where M is a closed and convex subset of a Banach space X (see, for example, [4, 19, 21]). In
particular, many nonlinear integral equations can be formulated in this form (see [6, 11, 14,
20, 21, 24, 25]). Krasnoselskii’s fixed-point theorem [18] was one of the first results for solving
equations of the form (1.1). To solve this equation, Krasnoselskii had to impose that (i) M is
a bounded set, (ii) A is a continuous and compact mapping, (iii) B is a strict contraction and
(iv) A(M) +B(M) ⊆M . Nevertheless, in several applications, the verification of conditions
(i)–(iv) is, in general, either quite hard to be done or even some of them fail. As a tentative
approach to grappling with those difficulties, many interesting articles have appeared relaxing
some of the assumptions (i)–(iv). For instance, in [9], Burton and Kirk used an alternative
Leray–Schauder type to avoid the boundedness ofM ; in [8], Burton replaced assumption (iv) by
(if u = Bu+Ay with y ∈M , then u ∈M). Condition (ii) involves continuity and compactness;
since the infinite-dimensional Banach spaces are not locally compact, this condition seems quite
strong, hence O’Regan [22] and Barroso and Teixeira [6] gave new versions of Krasnoselskii’s
theorem for weakly sequentially continuous mappings, since one of the advantages of the weak
topology is the fact that if the set M is weakly compact, then every weakly sequentially
continuous map T : M → X is weakly continuous, and therefore T (M) is also weakly compact.
As a consequence, a lot of applications to problems with lack of compactness are solved. Since
then, some authors have worked using the weak sequential continuity of the maps (see, for
example, [4, 23, 26] and the references therein). Condition (iii) is also quite restrictive, so
some authors have replaced it by a more general condition (many times B is assumed to be a
φ-contraction [23]).

The main goal of the present paper is to establish new variants of Krasnoselskii’s theorem
in the spirit of the articles [6, 22, 23, 26] which allow us to relax the assumptions (i)–(iv) and
also to extend several results included in such works. Two examples will be discussed in the
last section. The first one will provide the existence of solutions for nonlinear integral equations
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of the form

u(t) = f(t, u(t)) +
∫ t

0

g(s, u(s)) ds, u ∈ C(0, T ;E),

where E is a reflexive Banach space and f : [0, T ] ×E → E is not necessary a lipschitzian map.
So, the case where f is a φ-contraction is a particular one of our framework. To justify our
results, we will discuss a concrete example where the function f is not lipschitzian. Thus, the
previous known results cannot be applied in this case.

2. Preliminaries

Throughout this paper, we suppose that (X, ‖ · ‖) is a real Banach space. As usual, for any
r > 0, Br denotes the closed ball in X centred at 0X with radius r. Here ⇀ denotes weak
convergence and −→ denotes strong convergence in X, respectively. Let B(X) denote the
collection of all nonempty bounded subsets of X. Then W(X) is the subset of B(X) consisting
of all weakly compact subsets of X.

Recall that the notion of the measure of weak noncompactness was introduced by De Blasi
[10]; it is the map ω : B(X) → [0,∞) defined in the following way:

ω(M) := inf{r > 0 : there exists W ∈ W(X) with M ⊆W +Br},
for every M ∈ B(X). For convenience we recall some basic properties of ω(·) needed below (see
[1] or [10]).

Let M1,M2 be two elements of B(X). Then the following conditions are satisfied:

(1) if M1 ⊆M2, then ω(M1) � ω(M2);
(2) ω(M1) = 0 if and only if M1

ω ∈ W(X) (M1
ω

means the weak closure of M1);
(3) ω(M1

ω
) = ω(M1);

(4) ω(M1 ∪M2) = max{ω(M1), ω(M2)};
(5) ω(λM1) = |λ|ω(M1) for all λ ∈ R;
(6) ω(co(M1)) = ω(M1);
(7) ω(M1 +M2) � ω(M1) + ω(M2).

A mapping T : M ⊆ X → X is said to be ω-k-contraction, for some k ∈ [0, 1), if T satisfies
ω(T (A)) � kω(A) for every bounded set A ⊆M with ω(A) > 0. The map T is said to be ω-
condensing if ω(T (A)) < ω(A). On the other hand, T is said to be a φ-contraction if there exists
a continuous nondecreasing function φ : [0,∞) → [0,+∞) such that φ(0) = 0, φ(r) < r for any
r > 0 and ||Tx − Ty|| � φ(||x− y||) for ever x, y ∈ D(T ). Finally, T is said to be nonexpansive
if ||Tx − Ty|| � ||x− y|| for every x, y ∈ D(T ). Of course, every φ-contraction map is in fact a
nonexpansive mapping.

Let X be a Banach space and T : D(T ) ⊆ X → X be a mapping. The map T is said to be
pseudocontractive if, for every x, y ∈ D(T ) and for all r > 0, the inequality

‖x− y‖ � ‖(1 + r)(x− y) + r(Ty − Tx)‖
holds. Pseudocontractive mappings are easily seen to be more general than nonexpansive
mappings. The interest in these mappings also stems from the fact that they are firmly
connected to the well-known class of accretive mappings. Specifically, T is pseudocontractive
if and only if I − T is accretive, where I is the identity mapping.

Recall that a mapping A : D(A) → X is said to be accretive if the inequality ‖x− y + λ(Ax−
Ay)‖ � ‖x− y‖ holds for all λ � 0, x, y ∈ D(A). An alternative way to define accretive mapping
is the use of the duality map; that is, A is accretive if the inequality

〈Ax−Ay, x− y〉s � 0
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holds for every x, y ∈ D(A). Here the function 〈·, ·〉s : X ×X → R is defined by 〈y, x〉s =
max{x∗(y) : x∗ ∈ J(x)}, where J : X → 2X∗

is the duality mapping on X, that is, J(x) =
{x∗ ∈ X∗ : x∗(x) = ‖x‖2, ‖x∗‖ = ‖x‖}. If, in addition, R(I + λA) is for one, hence for all,
λ > 0, precisely X, then A is called m-accretive. Accretive operators were introduced by
Browder [7] and Kato [17] independently.

A mapping T : D(T ) ⊆ X → X is said to be ψ-expansive if there exists a function ψ :
[0,+∞) → [0,+∞) satisfying the following conditions:

(1) ψ(0) = 0;
(2) ψ(r) > 0 for r > 0;
(3) either it is continuous or nondecreasing;

such that, for every x, y ∈ D(T ), the inequality ‖T (x) − T (y)‖ � ψ(‖x− y‖) holds (see, for
example, [14, 16]).

3. Fixed-point theorems

Let us now recall the following result by Emmanuele [13].

Proposition 3.1 [13]. Let M be a nonempty closed convex bounded subset of a Banach
space X and let A : M →M be a weakly continuous mapping. If A is ω-condensing, then it
has a fixed point in M .

Although it is not always possible to show that a given mapping between functional Banach
spaces is weakly continuous, quite often its weak sequential continuity can be checked easily.
This follows, among other things, from the fact that Lebesgue’s dominated convergence theorem
is valid for sequences but it fails for nets. Thus, our first step in this section is to improve the
above proposition in the following sense.

Lemma 3.2. Let M be a nonempty closed convex bounded subset of a Banach space X
and let A : M →M be a weakly sequentially continuous mapping. If A is ω-condensing, then
it has a fixed point in M .

Evidently the result of this lemma remains valid if we assume that A is a ω-k-contraction
for some k ∈ [0, 1).

Proof. Given an element x0 ∈M , define the set

Σ := {D ⊆M : D is closed convex, x0 ∈ D and A : D → D},
and put

B :=
⋂

D∈Σ

D.

Let K be the set
K = co{A(B) ∪ {x0}}.

Since x0 ∈ B and A : B → B, it follows that K ⊆ B. This implies that A(K) ⊆ A(B) ⊆ K.
Moreover, since x0 ∈ K, we obtain that K ∈ Σ. Therefore, we may conclude that K = B. On
the other hand, using the properties of ω(·), we get

ω(K) = ω(co{A(B) ∪ {x0}}) = ω(A(B)) = ω(A(K)) < ω(K),

which implies that ω(K) = 0. So K is weakly compact.
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Since A : B → B is weakly sequentially continuous and B is weakly compact, by the
Eberlein–S̆mulian theorem [12] we infer that A : B → B is in fact weakly continuous. So,
the use of Proposition 3.1 achieves the proof.

Remark 1. In the framework of Banach spaces, the above lemma can be thought of as an
extension of Arino, Gautier and Penot [2, Theorem 1].

Now our purpose is to establish a sharpening of Taoudi [26, Theorem 2.1].

Theorem 3.3. Let X be a Banach space. Let M be a nonempty closed convex and
bounded subset ofX and let A : M → X andB : X → X be two weakly sequentially continuous
mappings. If A,B satisfy the following conditions:

(i) B is pseudocontractive, continuous and ω-k-contraction for some k ∈ [0, 1[;
(ii) I −B is ψ-expansive;
(iii) A is a ω-s-contraction for some s ∈ [0, 1 − k[;
(iv) (x = Bx+Ay, y ∈M) ⇒ x ∈M ;

then the equation x = A(x) +B(x) has a solution.

Proof. It is easily checked that x ∈M is a solution for the equation x = B(x) +A(x) if and
only if x is a fixed point for the operator (I −B)−1 ◦A, whenever it is well defined. In order
to prove the latter, we have to check the following properties.

(a) The operator (I −B) has an inverse over R(I −B) := (I −B)(M).
This is equivalent to seeing that I −B is injective. Consider x, y ∈M , x �= y. Since I −B is
ψ-expansive, we have

‖(I −B)(x) − (I −B)(y)‖ � ψ(‖x− y‖) > 0.

(b) The domain of (I −B)−1 contains the range of A.
Take y ∈M and consider A(y). We have to check if there exists some x ∈M such that
(I −B)(x) = A(y) (which is equivalent to seeing if x = Bx+Ay). Define the map T : X → X
by Tx = Bx+Ay, x ∈ X. Since B is continuous and pseudocontractive, T is also a continuous
pseudocontractive map. Since I −B is ψ-expansive, we have

‖(I − T )(x) − (I − T )(z)‖ = ‖x− z + Tz − Tx‖
= ‖x− z +Bz −Bx‖
= ‖(I −B)(x) − (I −B)(z)‖
� ψ(‖x− z‖).

Hence I − T : X → X is accretive, continuous and ψ-expansive. By Barbu [3, Corollary 3.2],
I − T is m-accretive and hence, by Garćıa-Falset and Morales [16, Theorem 8] along with [14,
Remark 3.8], we conclude that I − T is surjective. Hence, R(I − T ) = X and therefore there
exists x ∈ X such that 0 = x− Tx, that is, x = Bx+Ay and, by assumption (iv), x ∈M .
Hence Ay = (I −B)(x) and consequently the map (I −B)−1 ◦A : M →M is well defined.

In order to achieve the proof, we will apply Lemma 3.2, so we have only to prove that the map
(I −B)−1 ◦A : M →M is weakly sequentially continuous and ω-condensing. Indeed, consider
(xn) a sequence in M which is weakly convergent to x. In this case, the set {xn : n ∈ N} is
relatively weakly compact and since A is weakly sequentially continuous, {A(xn) : n ∈ N} is
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also relatively weakly compact. Using the equality

(I −B)−1 ◦A = A+B ◦ (I −B)−1 ◦A (3.1)

and the fact that B is ω-condensing, we obtain

ω({(I −B)−1 ◦A(xn) : n ∈ N}) = ω({A(xn) : n ∈ N} + {B(I −B)−1 ◦A(xn) : n ∈ N})
� ω({B(I −B)−1 ◦A(xn) : n ∈ N})
< ω({(I −B)−1 ◦A(xn) : n ∈ N}).

Hence, {(I −B)−1 ◦A(xn) : n ∈ N}) is relatively weakly compact. Consequently, there exists
a subsequence (xnk

) such that

(I −B)−1 ◦A(xnk
) ⇀ y.

Going back to (3.1), the weak sequential continuity of A and B yields y = B(y) +A(x) and
thus y = (I −B)−1 ◦A(x). Accordingly we have

(I −B)−1 ◦A(xnk
) ⇀ (I −B)−1 ◦A(x).

Now a standard argument shows that (I −B)−1 ◦A : M →M is weakly sequentially continu-
ous. Next, we will prove that (I −B)−1 ◦A is ω-condensing. To do so, let S be a subset M . If
we set J := (I −B)−1 ◦A, using equality (3.1), we infer

ω(J(S)) = ω(A(S) +B(J(S))).

The properties of ω(·) and the assumptions on A and B imply that

ω(J(S)) � ω(A(S)) + ω(B(J(S))) � sω(S) + kω(J(S)),

and therefore

ω(J(S)) � s

1 − k
ω(S).

This inequality means, in particular, that J is ω-condensing.

Remark 2. (a) If in the previous result we assume that A(M) is weakly relatively compact,
then we can replace the assumption ‘B is a ω-k-contraction for some k ∈ [0, 1[’ by ‘B is ω-
condensing’. In these conditions assumption (iii) in Theorem 3.3 is redundant.

(b) Checking the proof of the previous theorem, it is not difficult to show that the
same conclusion holds if we replace the condition ‘B : X → X is weakly sequentially con-
tinuous and ω-k-contraction’ by ‘B|M := B : M → X is weakly sequentially continuous and
ω-k-contraction’.

Theorem 3.4. LetX be a Banach space. LetM be a nonempty closed convex and bounded
subset of X and let A : M → X and B : X → X be two mappings with A weakly sequentially
continuous. If A,B satisfy the following conditions:

(i) A(M) is relatively weakly compact;
(ii) B is continuous, pseudocontractive and B|M is weakly sequentially continuous and

ω-condensing;
(iii) if (xn) is a sequence of elements of M such that (I −B)(xn) ⇀ y, then (xn) has a

weakly convergent subsequence;
(iv) if λ ∈]0, 1[ and x = λBx+Ay for some y ∈M, then x ∈M ;

then the equation x = A(x) +B(x) has a solution.
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Proof. First, let us note that since B is continuous and ω-condensing, λB also is continuous
and ω-condensing whenever λ ∈]0, 1[. Next, we are going to check that, for every λ ∈]0, 1[,
the mapping λB is pseudocontractive. Indeed, since B is pseudocontractive, there exists
j ∈ J(x− y) such that

〈(x−Bx) − (y −By), j〉 � 0;

then

〈x− λBx− (y − λBy), x− y〉s � 〈x− λBx− (y − λBy), j〉
= 〈λx− λBx− (λy − λBy), j〉 + 〈(1 − λ)(x− y), j〉
= λ〈(x−Bx) − (y −B(y), j〉 + (1 − λ)‖x− y‖2

� (1 − λ)‖x− y‖2 � 0.

Hence, λB is pseudocontractive. On the other hand, the same inequality yields

‖x− λBx− (y − λBy)‖‖x− y‖ � 〈x− λBx− (y − λBy), x− y〉+ � (1 − λ)‖x− y‖2.

Consequently,
‖x− λBx− (y − λBy)‖ � ψ(‖x− y‖),

where ψ(t) = (1 − λ)t and therefore I − λB is ψ-expansive. The above argument shows that
A and λB fulfil the condition of Theorem 3.3. Consequently, for each λ ∈]0, 1[, there exists
xλ ∈M such that

xλ = A(xλ) + λB(xλ).

The rest of the proof works in the same way as the proof of Taoudi [26, Theorem 2.4].

Next, we derive the following result, which extends in [6, Corollary 2.11].

Corollary 3.5. Let X be a Banach space. Let M be a nonempty weakly compact convex
subset of X and let A : M → X and B : X → X be two mappings such that A and B|M are
weakly sequentially continuous. If A,B satisfy the following conditions:

(i) B is continuous and pseudocontractive;
(ii) if λ ∈]0, 1[ and x = λBx+Ay for some y ∈M, then x ∈M ;

then the equation x = A(x) +B(x) has a solution.

Proof. Since M is a weakly compact set and A, B|M are weakly sequentially continuous
mappings, the following conditions are satisfied:

(a) A(M) is a weakly compact set;
(b) B|M is weakly sequentially continuous and ω-condensing;
(c) every sequence (xn) in M admits a weakly convergent subsequence.

In order to achieve the proof, it is enough to note that conditions (a)–(c) along with (i) and
(ii) allow us to apply Theorem 3.4.

Next, we state a result which is a nonlinear alternative of Leray–Schauder type as well as an
improvement of O’Regan [22, Theorem 2.3].

Theorem 3.6. Let Q,C be a nonempty closed convex and bounded subsets of a Banach
space X with Q ⊆ C. Let U be a weakly open subset of Q (which means that there exists a
weakly open set V in X such that U = V ∩Q) with 0 ∈ U, let Ūω, the weak closure of U, be a
subset of Q, and let A : Ūω → C be a weakly sequentially continuous and w-condensing map.
Then
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(i) either the equation x = A(x) has a solution or
(ii) there exist u ∈ ∂QU and λ ∈]0, 1[ with u = λAu.

Proof. Assume that the second item is false and A does not have a fixed point in ∂QU
(otherwise we have nothing to do). Define the set

H := {x ∈ Ūω : x = λA(x) for some λ ∈ [0, 1]}.
It is clear that H �= ∅ (0 ∈ H). Since H is contained in Ūω, it is bounded. Now using the
inclusion H ⊆ co(A(H) ∪ {0}) together with the fact that A is w-condensing, we get

w(H) � w(A(H)) < w(H).

So w(H) = 0 and then H is relatively weakly compact. Nevertheless, since A is weakly
sequentially continuous, we infer that H is weakly compact. Since (ii) does not hold and A is
a fixed point free on ∂QU , we have H ∩ ∂QU = ∅. Applying the Tietze–Urysohn theorem, we
conclude that there exists a weakly continuous map ζ : Ūω → [0, 1] such that ζ(H) = 1 and
ζ(∂QU) = 0. Let η : C → C be the function defined by η(x) = ζ(x)A(x) if x ∈ Ūω and η(x) = 0
if x ∈ C\Ūω. Note that η is weakly sequentially continuous because A is weakly sequentially
continuous. Consider now a subset V of C. Since η(V ) ⊆ co(A(V ∩ U) ∪ {0}), we have

w(η(V )) � w(A(V ∩ U)) � w(A(V )) < w(V ).

So η is w-condensing. According to Lemma 3.2, there exists x ∈ C such that x = η(x). Now
x ∈ U because 0 ∈ U . Consequently, x = ζ(x)A(x) = λA(x) with 0 � λ = ζ(x) � 1. This shows
that x ∈ H and therefore ζ(x) = 1. Thus, x = A(x).

Theorem 3.7. Let X be a Banach space. Let Q,C be a nonempty closed convex and
bounded subsets of X with Q ⊆ C. In addition, let U be a weakly open subset of Q with 0 ∈ U,
let Ūω be a subset of Q, and let A : Ūω → X and B : X → X be two weakly sequentially
continuous mappings satisfying the following conditions:

(i) B is pseudocontractive, continuous and ω-k-contraction for some k ∈ [0, 1[;
(ii) I −B is ψ-expansive;
(iii) A is a ω-s-contraction for some s ∈ [0, 1 − k[;
(iv) (x = Bx+Ay, y ∈ Ūω) ⇒ x ∈ C.

Then either the equation x = A(x) +B(x) has a solution or there exist u ∈ ∂QU and λ ∈]0, 1[
with u = λAu+ λB(u/λ).

Proof. The same argument developed in the proof of Theorem 3.3 shows that (I −B)−1 :
X → X exists. It is also continuous [14]. Moreover, by condition (iii) it is not difficult to see
that (I −B)−1 ◦A(Ūω) ⊆ C. So we have only to prove that the mapping T := (I −B)−1 ◦A :
Ūω → C is weakly sequentially continuous and ω-condensing. These two facts can be proved
as in the proof of Theorem 3.3. Now applying Theorem 3.6, we get the desired result.

Remark 3. (a) As said in Remark 2, if in the previous result we assume that A(Ūω)
is weakly relatively compact, then we can replace the assumption ‘B is ω-k-contraction for
some k ∈ [0, 1[’ by ‘B is ω-condensing’ and, moreover, assumption (iii) in such a result is now
redundant.

(b) Note that if B is a φ-contraction and weakly continuous mapping, then B is pseudo-
contractive, continuous and ω-condensing (see [15, Lemma 3.1]). Consequently, according to
Remark 2 (a), Theorem 3.3 is a generalization of Taoudi [26, Theorem 2.1] and Theorem
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3.4 is an extension of Taoudi [26, Theorem 2.4]. Note also that Theorem 3.7 improves [23,
Theorem 2.1].

In order to show that our results are strictly more general than those quoted in Remark 3,
let us give the following example.

Example 1. Consider the Banach space (l2, ‖ · ‖2) and let (en = (δi,n)) be the usual
Schauder basis of such a space. Define the operator

T

( ∞∑
k=1

xkek

)
=

∞∑
i=1

(xi − zi(x))ei,

where

zi(x) =
{
x2k i = 2k − 1,
−x2k−1 i = 2k.

Let us see that T is pseudocontractive. For x, y ∈ l2, we can write

〈x− T (x) − (y − T (y)), x− y〉

=

〈 ∞∑
k=1

(x2k − y2k)e2k−1 +
∞∑

k=1

(y2k−1 − x2k−1)e2k,

∞∑
k=1

(xk − yk)ek

〉

=
∞∑

k=1

(x2k − y2k)(x2k−1 − y2k−1) +
∞∑

k=1

(y2k−1 − x2k−1)(x2k − y2k)

= 0.

This equality shows that T is a pseudocontractive mapping. Moreover, T is linear and satisfies

‖Tx− Ty‖ =
√

2‖x− y‖.
So T is not nonexpansive. On the other hand, if we take ψ(t) = t and x, y ∈ l2, then

‖x− T (x) − (y − T (y))‖ =

∥∥∥∥∥
∞∑

k=1

(x2k − y2k)e2k−1 +
∞∑

k=1

(y2k−1 − x2k−1)e2k

∥∥∥∥∥
= ‖x− y‖
= ψ(‖x− y‖),

which means that I − T is ψ-expansive.

Corollary 3.8. Let X be a Banach space. Let Q,C be a nonempty closed convex and
bounded subset of X with Q ⊆ C. In addition, let U be a weakly open subset of Q with 0 ∈ U,
let Ūω be a subset of Q, A : Ūω → X weakly sequentially continuous with A(Ūω) relatively
weakly compact and B : X → X satisfying the following conditions:

(i) B is linear and bounded;
(ii) there exists p ∈ N such that Bp is pseudocontractive and I −Bp is ψ-expansive;
(iii) (x = Bx+Ay, y ∈ Ūω) ⇒ x ∈ C.

Then either the equation x = A(x) +B(x) has a solution or there exist u ∈ ∂QU and λ ∈]0, 1[
with u = λAu+ λB(u/λ).

Proof. Following the arguments of the proof of Theorem 3.3, we infer that there exists
(I −Bp)−1 : X → X and it is continuous and so (I −B)−1 = (I −Bp)−1

∑p−1
k=0B

k. This fact
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means that (I −B)−1 is a bounded linear operator and thus it is both continuous and weakly
continuous. Now, since A is weakly sequentially continuous, A(Ūω) is relatively weakly compact
and (iii) is satisfied. So, the mapping T := (I −B)−1 ◦A : Ūω → C is under the conditions of
Theorem 3.6, which allows us to achieve the proof.

Example 1 shows that even in the case where B is a linear operator, our results can be
applied in a more general framework.

Theorem 3.9. Let X be a Banach space, let M be a nonempty convex weakly compact
subset of X, and let A : M → X and B : X → X be two continuous mappings. If A,B satisfy
the following conditions:

(i) A is weakly sequentially continuous;
(ii) B is pseudocontractive and I −B is ψ-expansive;
(iii) (x = Bx+Ay, y ∈M) ⇒ x ∈M ;

then there exists a sequence (xn)n∈N in M such that xn − (Axn +Bxn) ⇀ 0.

Proof. Arguing as in the proof of Theorem 3.3, one sees that (I −B)−1A(M) ⊂M . Since
(I −B)−1A is continuous [15], according to [5, Theorem 3.3], it has a weak-approximate fixed-
point sequence, that is, there is a sequence (yn)n∈N in M such that yn − (I −B)−1Ayn ⇀
0. The weak compactness of M implies that yn ⇀ y with y ∈M . Hence, we infer that
(I −B)−1Ayn ⇀ y. On the other hand, the weak sequential continuity of A implies that

Ayn ⇀ Ay (3.2)

and
A(I −B)−1Ayn ⇀ Ay. (3.3)

Next, let (xn)n∈N be a sequence of M defined by xn = (I −B)−1Ayn. Hence, we have

xn − (Axn +Bxn) = (I −B)xn −Axn = Ayn −Axn = Ayn −A(I −B)−1Ayn.

Now, using (3.2) and (3.3), we get xn − (Axn +Bxn) ⇀ 0 as n→ ∞, which ends the proof.

Remark 4. If in the result above the space is reflexive, then we can drop the weak
compactness assumption of M and replace it by its boundedness and closedness because any
closed bounded convex subset of a reflexive Banach space is weakly compact.

Let M be a nonempty closed convex subset of a Banach space X, let A : M → X be a weakly
sequentially continuous mapping and let B : X → X be a mapping. If A,B satisfy the following
conditions:

(i) B is pseudocontractive continuous and I −B is ψ-expansive;
(ii) (x = Bx+Ay, for some y ∈M) ⇒ x ∈M ;
(iii) F := {x ∈M : x = Bx+Ay, y ∈M)} is bounded;
(vi) B : F → X is weakly sequentially continuous;

and if C := co(F) then, as seen in the proof of Theorem 3.3, the operator (I −B)−1A is well
defined on C and we have (I −B)−1A(C) ⊂ C. Assume further that

(v) the map T := (I −B)−1A : C → C is ω-condensing.
Let us now prove that T is weakly sequentially continuous on C. Let (xn) be a sequence in
C converging weakly to x. So the set {xn, n ∈ N} is relatively weakly compact. Since T is
ω-condensing, we get the relative weak compactness of the set {Txn, n ∈ N}. Accordingly there
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exists a subsequence (xnk
) of (xn) such that Txnk

⇀ y. Now using the equality T = A+BT ,
the weak sequential continuity of A, the fact that Txn ∈ F for all n ∈ N and the fact that
B is weakly sequentially continuous on F , we get y = Ax+By and therefore y = Tx. Thus,
Txnk

⇀ Tx. By a standard argument (see, for example, [22]), we get the weak sequential
continuity of T .

Summarizing the discussion above and using Lemma 3.2, we obtain the following theorem.

Theorem 3.10. Let M be a nonempty closed convex subset of a Banach space X, let A :
M → X be a weakly sequentially continuous map and let B : X → X be a mapping. Further,
if the conditions (i)–(v) hold true, then the operator A+B has a fixed point in M .

As an easy consequence of this theorem, the next corollary is an improvement of Barroso
and Teixeira [6, Theorem 2.9].

Corollary 3.11. Let M be a nonempty closed convex subset of a Banach space X.
Assume that A : M → X and B : X → X are two mappings satisfying the following conditions:

(i) A is weakly sequentially continuous;
(ii) B is continuous, pseudocontractive and I −B is ψ-expansive;
(iii) if u = Bu+Ay for some y ∈M, then u ∈M ;
(iv) the set F := {u ∈M : u = B(u) +A(v) for some v ∈M} is relatively weakly compact;
(v) B : F → X is weakly sequentially continuous.

Then the operator A+B has a fixed point in M .

Proof. Let C := co(F). The use of the Krein–S̆mulian theorem implies that C is weakly
compact. Therefore, the map (I −B)−1A : C → C is w-condensing. Hence, the result follows
from the above theorem.

Remark 5. Let us note that all the results of this section remain valid if the De
Blasi measure of weak noncompactness is replaced by any other abstract measure of weak
noncompactness satisfying the conditions (1)–(7) given in the preliminaries.

4. A nonlinear integral equation: existence theory

In this section, we deal with the following nonlinear integral equation:

u(t) = f(t, u(t)) +
∫ t

0

g(s, u(s)) ds, u ∈ C(0, T ;E), (4.1)

where E is a reflexive Banach space. Assume that f and g satisfy the following conditions:
(H1) f : [0, T ] × E → E is weakly sequentially continuous, and uniformly continuous on

bounded sets;
(H2) for every t ∈ [0, T ], f(t, ·) : E → E is pseudocontractive and I − f(t, ·) is ψ-expansive

with the same ψ for every t ∈ [0, T ];
(H3) ‖u‖ � ‖u− f(t, u)‖ for all (t, u) ∈ [0, T ] × E;
(H4) for each t ∈ [0, T ] the map g(t, ·) : E → E is weakly sequentially continuous;
(H5) for each u ∈ C(0, T, E) the map t �−→ g(t, u(t)) is Pettis integrable on [0, T ];
(H6) there exists α ∈ L1(0, T ) and a nondecreasing continuous function ϕ : [0,∞[→ (0,∞[

such that ‖g(s, x)‖ � α(s)ϕ(‖x‖) for almost everywhere s ∈ [0, T ], and all x ∈ E.

Moreover,
∫T

0
α(t) dt <

∫∞
0
dt/ϕ(t).
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Theorem 4.1. Equation (4.1) has a solution in C(0, T ;E) whenever assumptions (H1)–
(H6) are satisfied.

Proof. As in the proof of Barroso and Teixeira [6, Theorem 5.1], we introduce the following
functions:

J(z) :=
∫z

0

ds

ϕ(s)
and b(t) := J−1

(∫ t

0

α(s) ds
)
.

Define the set
M := {u ∈ C(0, T ;E) : ‖u(t)‖ � b(t), for all t ∈ [0, T ]}.

Consider now the mappings A,B : C(0, T ;E) → C(0, T ;E) defined as follows:

A(u)(t) :=
∫ t

0

g(s, u(s)) ds and B(u)(t) = f(t, u(t)).

Our strategy consists in showing that A+B has a fixed point, since such a fixed point is a
solution of equation (4.1).

Steps (1)–(3) in the proof of Barroso and Teixeira [6, Theorem 5.1] yield the following:

(1) M is a closed, bounded and convex subset of C(0, T ;E);
(2) A(M) ⊆M ;
(3) given u ∈M , then ‖Au(t) −Au(s)‖ � |b(t) − b(s)|;
(4) A(M) is weakly equicontinuous and relatively weakly compact;
(5) A : M → C(0, T, E) is weakly sequentially continuous.

The properties of the mapping B will be given in several steps.
Step 1: The operator B is continuous.
Let (un) be a sequence in C(0, T, E) that converges to u, set k := sup{‖un‖∞ : n ∈ N}

and consider Bk := {x ∈ E : ‖x‖ � k}. It is clear that un(t) and u(t) belong to Bk for every
t ∈ [0, T ] and for all n ∈ N . Since, by the condition (H1), f is uniformly continuous on bounded
sets, for any ε > 0, there exists δ > 0 such that if x, y ∈ Bk and ‖x− y‖ � δ, then ‖f(t, x) −
f(t, y)‖ � ε. Moreover, since un → u, there exists n0 ∈ N such that ‖un(t) − u(t)‖ � δ for all
t ∈ [0, T ] and all n � n0. Therefore, ‖f(t, un(t)) − f(t, u(t))‖ � ε for all n � n0, which proves
the continuity of B.

Step 2: The operator B is pseudocontractive.
Indeed, by assumption (H2), the inequality

‖u(t) − v(t)‖ � ‖(1 + r)(u(t) − v(t)) + r(f(t, v(t)) − f(t, u(t)))‖
holds for all u, v ∈ C(0, T ;E) and for all t ∈ [0, T ]. Consequently,

‖u− v‖∞ � ‖(1 + r)(u− v) + r(B(v) −B(u))‖∞.
Step 3: The operator I −B is ψ-expansive.
Assumption (H2) says that I − f(t, ·) : E → E is ψ-expansive, hence the inequality

‖(u(t) − f(t, u(t)) − (v(t) − f(t, v(t)))‖ � ψ(‖u(t) − v(t)‖)
holds for every u, v ∈ C(0, T ;E) and for all t ∈ [0, T ]. Given u, v ∈ C(0, T ;E), the above
inequality yields

‖(u−B(u)) − (v −B(v))‖∞ � ψ(‖u(t) − v(t)‖), for all t ∈ [0, T ].

On the other hand, since u, v are continuous functions, there exists t0 ∈ [0, T ] such that
‖u− v‖∞ = ‖u(t0) − v(t0)‖. Therefore,

‖(u−B(u)) − (v −B(v))‖∞ � ψ(‖u(t0) − v(t0)‖) = ψ(‖u− v‖∞).
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Step 4: Suppose that u = B(u) +A(y) for some y ∈M. We will show that u ∈M .
It follows from the hypothesis (H3) that

‖u(t)‖ � ‖u(t) −B(u)(t)‖ = ‖A(v)(t)‖.
Since A(M) ⊆M , we conclude that u ∈M .

Step 5: The operator B is weakly sequentially continuous on F := {u ∈M : u = Bu+
Ay for some
y ∈M}.

First, we claim that F is a weakly equicontinuous set. Let u be an element of F ; then there
exists v ∈M such that u = Bu+Av. Since, for any t ∈ [0, T ], I − f(t, ·) is ψ-expansive with
the same ψ, we infer that

ψ(‖u(t) − u(s)‖) � ‖(u(t) − f(t, u(t))) − (u(s) − f(t, u(s)))‖
� ‖(u(t) −Bu(t)) − (u(s) −Bu(s))‖

+ ‖f(s, u(s)) − f(t, u(s))‖
= ‖Av(t) −Av(s)‖ + ‖f(s, u(s)) − f(t, u(s))‖
� |b(t) − b(s)| + ‖f(s, u(s)) − f(t, u(s))‖,

the properties of f , ψ along with the inequality above imply that F is a weakly equicontinuous
set as we claimed.

Since B(F) ⊆ F −A(F) and F , A(F) are weakly equicontinuous so is B(F). Let (un) be a
sequence in F weakly convergent to u ∈M . Then un(t) ⇀ u(t) in E for all t ∈ [0, T ]. Since f
is weakly sequentially continuous, one has that f(t, un(t)) ⇀ f(t, u(t)) in E, thus B(un)(t) ⇀
B(u)(t) in E for all t ∈ [0, T ].

On the other hand, consider the set {B(un) : n ∈ N}. Since (un) is a bounded sequence in
C(0, T, E), it is clear that the set

{un(t) ∈ E : n ∈ N and t ∈ [0, T ]}
is bounded in E. Since E is reflexive and f is weakly sequentially continuous, it follows that

{f(t, un(t)) ∈ E : n ∈ N and t ∈ [0, T ]}
is a bounded set in E. This means that (Bun) is a bounded sequence in C(0, T, E). These facts
allow us to apply the Ascoli–Arzela theorem and conclude that there exists a subsequence
(unk

) of (un) such that Bunk
⇀ v for some v ∈ C(0, T, E). Hence, Bu = v and by a standard

method, we obtain that Bun ⇀ Bu.
Step 6: F is relatively weakly compact.
Let (un) be an arbitrary sequence in F . Step 5 shows that F is weakly equicontinuous and

hence so is {un : n ∈ N}. Moreover, for all t ∈ [0, T ], the reflexivity of E implies that the set
{un(t) : n ∈ N} is relatively weakly compact. Thus, invoking first the Ascoli–Arzela and later
the Eberlein–S̆mulian theorem, we obtain that F is relatively weakly compact.

Summarizing the argument above, we see that A and B fulfil the conditions of Corollary 3.11
and therefore A+B has at least one fixed point in M .

Example 2. Consider the following nonlinear integral equation:

u(t) = −u3(t) +
∫ t

0

s2
√

|u(s)| + 1 ds, u ∈ C(0, T ;R). (4.2)

In order to show that such an equation admits a solution in the Banach space C(0, T ;R), we
are going to check that conditions of Theorem 4.1 are satisfied. In this case, E := R; then E
is a reflexive Banach space.
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Define f : R → R by f(x) = −x3. It is obvious that f is continuous (then weakly continuous)
and uniformly continuous on bounded sets of E.

The function f is pseudocontractive. Indeed, let (x, y) ∈ R2 and r > 0; we can write

|(1 + r)(x− y) + r(f(y) − f(x))| = |(1 + r)(x− y) + r(x3 − y3)|
= |x− y||1 + r(1 + x2 + xy + y2)|
� |x− y||1 + r|
� |x− y|,

which proves our claim.
The second step is to see that I − f is ψ-expansive. Indeed,

|(x− f(x) − (y − f(y))| = |(x− y) + (x3 − y3)|
= |(x− y) + (x− y)(x2 + xy + y2)|
= |(x− y)(1 + x2 + xy + y2)|
� |x− y|.

Thus, taking ψ(t) = t, we conclude that f is ψ-expansive. Moreover, since f(0) = 0, we have

|x| � |x− f(x)| for all x ∈ R.
So, f satisfies conditions (H1)–(H3).

Next, we introduce the function g : [0, T ] ×R → R as follows:

g(s, x) := s2
√

|x| + 1.

For each t ∈ [0, T ] the function g(t, ·) : E → E is clearly continuous (then weakly continuous).
On the other hand, given u ∈ C(0, T ;E), the function t �−→ g(t, u(t)) is continuous and hence

it is integrable in [0, T ].
Finally, we define the functions α : R → R and ϕ : [0,∞[→ (0,∞) by

α(s) = s2 and ϕ(x) =
√
x+ 1.

Since g, α and ϕ satisfy conditions (H4)–(H6), we apply Theorem 4.1 to derive the existence
of a solution to equation (4.2).

Remark 6. (i) Equation (4.2) is a particular case of the model integral equation

u(t) = f(u(t)) +
∫ t

0

g(s, u(s)) ds, u ∈ C(0, T ;E),

which is widely considered in the literature. Obviously, this type of equation falls into the class
studied in equation (4.1).

(ii) If f : [0, T ] × E → E is a φ-contraction with respect to the second variable, then f(t, ·) is
pseudocontractive and I − f(t, ·) is ψ-expansive. Theorem 4.1 represents an extension of several
previous ones which assume such a hypothesis on f (see, for instance, [6, Theorem 5.1]).
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