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Abstract—This paper investigates the use of fractional order 

(FO) controllers for a microgrid. The microgrid employs various 

autonomous generation systems like wind turbine generator 

(WTG), solar photovoltaic (PV), diesel energy generator (DEG) 

and fuel-cells (FC). Other storage devices like the battery energy 

storage system (BESS) and the flywheel energy storage system 

(FESS) are also present in the power network. An FO control 

strategy is employed and the FO-PID controller parameters are 

tuned with a global optimization algorithm to meet system 

performance specifications. A kriging based surrogate modeling 

technique is employed to alleviate the issue of expensive objective 

function evaluation for the optimization based controller tuning. 

Numerical simulations are reported to prove the validity of the 

proposed methods. The results for both the FO and the integer 

order (IO) controllers are compared with standard evolutionary 

optimization techniques and the relative merits and demerits of 

the kriging based surrogate modeling are discussed. This kind of 

optimization technique is not only limited to this specific case of 

microgrid control but also can be ported to other 

computationally expensive power system optimization problems.  

 
Index Terms—microgrid control; kriging; fractional order 

PID controller; global optimization; surrogate modelling  

 

I. INTRODUCTION 

ENETRATION of renewable energy technologies in 

electrical power systems, in recent years, have increased 

the system complexity and requires efficient monitoring and 

control methods to ensure smooth operation of the whole 

system [1]. The distributed generation (DG) model [2] which 

uses small capacity generators, typically in the order of 5kW 

to 10MW, can easily include renewable energy storage 

systems and other fuel based generators. The DG model offers 

the advantage of localized generation with consequent 

reduction in transmission costs and losses. They offer 

increased reliability and ease of maintenance. Retrofitting 

other units to the DG is also simple and helps in easier 

capacity planning and improvement in later stages of 

operation. Smart grid refers to the integration of these DGs 

into the grid where there is significant interplay of information 
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and communication technologies for increasing the grid 

flexibility and system reliability [3]. These smart grids may be 

composed of different smaller units known as microgrids 

(MG) [4]. These MGs are comprised of small generation and 

load units connected at multiple points and can either operate 

autonomously as an isolated system or can work in a grid 

connected mode. Since the generating units are small in 

capacity, their inertia is smaller. This results in severe 

fluctuations in system parameters like frequency and voltage 

in cases where the input is stochastic (wind or solar) or there 

are outages in the generating units. To improve the system 

stability and performance, energy storage devices like 

flywheels, batteries and ultra-capacitors are often used [4]. 

These serve as backup devices and store excess power when 

the generation is more than the demand and release power to 

the grid when the demand is more than the generation. This 

essentially helps in maintaining a steady flow of power 

irrespective of the generation and load power level 

fluctuations and consequently keeps the deviations in system 

frequency at acceptable levels.   

 For efficient operation of these interconnected generators 

and energy storage devices, the control of microgrids has 

received increased attention in recent years [5]. Proper 

management and control of domestic smart grid technology 

can be achieved by good prediction, advanced planning and 

real time control [6]. This helps in a better matching of 

demand and supply. There are different levels of control 

schemes in the grid viz. the local controls, centralized controls 

and decentralized controls [5]. Recently intelligent frequency 

control techniques using particle swarm optimization (PSO) 

and fuzzy logic have been used in the context of microgrids 

[7] with encouraging results. Multi-agent system for microgrid 

control has been investigated in [8]. Genetic algorithms have 

also been employed for frequency control design in hybrid 

energy generation/storage system [9].  

    Application of fractional calculus based control system 

designs have gained impetus in recent times due to the 

flexibility and effectiveness that can be gained through such 

methodologies [10][11]. Merging computational intelligence 

techniques with fractional order controller designs are also 

being recently explored [12]. However applicability of FO 

controllers for electrical power systems is still largely 

unexplored. A few studies have been done for the application 

of the fractional order PID (FOPID) controller to the design of 

the automatic voltage regulator (AVR) and load-frequency 

control (LFC) in a power system using single objective [13] 
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and multi-objective formalisms in frequency domain [14] and 

in time domain [15] and has been shown to give better results 

over the traditional PID controller. The FOPID controller has 

also been applied to the problem of two area load frequency 

control in a deregulated environment [16]. A fractional 

calculus based maximum photovoltaic power tracking (MPPT) 

controller is also proposed for microgrid system in [17].  

Most of these optimization based controller design 

problems involve multiple calls to computationally expensive 

time domain simulations for power system’s dynamics with 

different guess values of controller parameters which are 

refined iteratively. This becomes computationally prohibitive 

and therefore algorithms which can arrive at optimal solutions 

in less number of iterations are necessary.  Meta-models or 

surrogate modelling methodology for evolutionary algorithms 

are expedient in such circumstances [18]. These meta-models 

approximate the fitness landscape of the expensive 

optimization function and take much less computational time 

to simulate. Surrogate based modelling methodologies have 

also been expedient in problems involving dynamic 

optimization [19], constrained optimization, combinatorial 

optimization [20] etc. amongst many others. Various 

techniques can be used for the construction of the surrogate 

fitness function like radial basis functions [21], neural 

networks [22], kriging methods [20], response surface models 

[23] etc. However, surrogate modelling techniques have not 

been popular for optimization and design of expensive 

dynamic power system models.  

In this paper, a kriging assisted surrogate modelling 

methodology is outlined and embedded within a global 

optimization framework for the design of FOPID controllers 

for microgrid frequency control. The FO differ-integral 

operators are inherently infinite dimensional linear filters [10], 

but for practical realization of such systems, band-limited 

higher order linear system approximations are commonly used 

[24]. Therefore time domain simulation of such coupled very 

high order approximated FO systems with several power 

system components, is computationally expensive. The 

surrogate modelling methodology is hence suitable in such 

circumstances to obtain the controller parameters in less 

number of iterations to pave the path of online tuning this type 

of FO controllers. 

II. THEORETICAL BACKGROUND 

A. Fractional Calculus Basics 

Fractional calculus extends the common notion of integer 

order integration/differentiation to any arbitrary real number. 

It can be represented by a tD
 where  is the order of the 

differentiation/integration and a  and t  are the bounds of the 

operation. There are many definitions of fractional calculus 

like the Grünwald-Letnikov (GL), Riemann-Liouville (RL) 

and Caputo definitions [11]. In control system studies, the 

Caputo definition is mostly used for realizing the fractional 

integro-differential operators of the FOPID controller. 

According to Caputo’s definition, the th order derivative of a 

function  x
f t with respect to time is given by (1). 
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B. Microgrid System and the Controller Structure 

 
Fig. 1: Schematic of a microgrid with different connected energy sources.  

 

Fig. 1 shows the schematic of the microgrid [7] used in the 

present study with various power generating units like the 

wind turbine, photovoltaic cell, fuel cells and diesel energy 

generator etc. There are also a battery and a flywheel energy 

storage system in the microgrid. The FOPID controller gives 

the control signal to the fuel cell (FC) and the diesel energy 

generator (DEG) based on the frequency deviation in the 

microgrid and tries to minimize the stochastic fluctuations in 

the grid frequency. Fig. 2 shows the block diagram schematic 

of the microgrid with the transfer functions of the individual 

components. The parameters of different components of the 

microgrid system are adopted from [7] as follows: 

1WTG FESS BESSK K K   , 0.015 pu/HzD  , 2 0.1667 pu sH  , 

0.1 sFESST  , 0.1 sBESST  , 0.26 sFCT  , 1.5 sWTGT  , 0.08 sgT 

, 0.4 stT  , / 0.004 sI CT  , 0.04 sINT  , 3 Hz/puR  . 

The FOPID controller is used to minimize the system 

frequency fluctuations in the microgrid and ensure better 

power quality. The transfer function representation of a 

FOPID controller is given by (2) 

                      p i dC s K K s K s                    (2) 

This typical controller structure has five independent tuning 

knobs i.e. the three controller gains , ,p i dK K K and two 

fractional order operators ,  . For , 1   the controller 

structure (2) reduces to the classical PID controller in parallel 

structure. Few recent research results show that band-limited 

implementation of FOPID controllers using higher order 

rational transfer function approximation of the integro-

differential operators gives satisfactory performance in 

industrial automation [25]. The Oustaloup’s recursive 

approximation (ORA), which has been used to implement the 

integro-differential operators in frequency domain is given by 



 

 

3

(3), representing a higher order analog filter [10]. 
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where, the poles, zeros, and gain of the filter can be 

recursively evaluated as (4). 
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Fig. 2: Block diagram schematic of the microgrid used in the study. 

 

The frequency deviation signal  f t is passed through the 

filter (3) and the output of the filter can be regarded as an 

approximation to the fractionally differentiated or integrated 

signal  D f t    which are then linearly combined with PID 

gains to obtain the final control signal for controller structure 

(2). In (3)-(4),   is the order of the differ-integration, 

 2 1N   is the order of the analog filter and  ,b h  is the 

expected fitting range. Here, 5th order ORA is adopted for the 

FO operators within a chosen frequency band  2 210 ,10 

rad/sec for the constant phase elements (CPEs) [10-12]. 

The controller output actuates the FC and DEG to control 

these units as they require expensive fuels. Depending on the 

grid frequency fluctuation, the controller sends a signal to the 

respective actuators i.e. like the hydrogen flow rate in the FC 

and mass flow rate of oil in DEG. Such a scheme can regulate 

the amount of power delivered by these devices to the 

microgrid to minimize the operating costs. The motor speed to 

run the flywheel and battery input current are directly taken 

from the grid frequency oscillation signal without the 

intervention of the controller as these devices does not need 

sophisticated control [7].   

Here, the rated electrical specifications are adopted from [7] 

as the nominal case (without stochastic fluctuations), where all 

the powers are represented in pu with respect to the total base 

load demand of 410 kW (1 pu). The electrical load 

specifications of [7] are incorporated in the present model in 

the form of output saturation in each of the power producing 

components. The rated wind and solar powers are considered 

as 100 kW (0.244 pu) and 30 kW (0.073 pu) respectively with 

total renewable generation of 130 kW (0.317 pu). Similarly, 

the maximum power generated/absorbed by BESS and FESS 

are considered ±0.11 pu. In the case of the rapid power 

producing elements (FC/DEG), the lower bound of the 

saturation is zero since they cannot absorb power and the 

upper bound is 0.48 pu and 0.45 pu respectively. In [7], a 

sudden 0.1 pu (≈ 41 kW) of load disturbance has been 

introduced to study the performance of the control system. 

This has been improved in the present paper with a step-wise 

increase in the demand power having small stochastic 

fluctuations.  

An upper and lower saturation limit is imposed on each 

energy storage element along with rate constraint nonlinearity 

to avoid any possible mechanical shock due to sudden large 

frequency fluctuation. The dynamical models in Fig. 1 

represents small signal linearized transfer functions which 

captures the dynamic characteristics at a specific operating 

point [9]. The upper and lower limits of the output saturation 

will restrict the extraction/storage of large amount of power 

from/to a particular element than its rated values. The output 

saturations (in pu) and rate constraints for different elements 

are: 

0.11, 0.11,0 0.48,0 0.45
FESS BESS FC DEG

P P P P      , 

0.05, 0.05, 1, 0.5FESS BESS FC DEGP P P P       . 

The microgrid has different control hierarchy like the local 

control, secondary control, centralized control etc. [26] and 

here, the secondary control scheme is adopted. In case of 

emergency where one subsystem needs to be disconnected, the 

centralized control loop overrides the functioning of the 

secondary control loop and disconnects the subsystem. 

C. Characteristic Changes of the Wind and Solar Power 

Generation and the Demand Load 

Large deterministic drift and small stochastic power 

fluctuations [9] are considered for the wind generation, solar 

generation and load demand and are modeled in a general 

template here. This kind of template gives rise to a time-series 

with small stochastic fluctuations about the mean generated or 

demand power. In addition, the models take into account a 

sudden change in the mean value to represent real case 

scenarios where there are significant variations of these 

parameters. The general template for these is chosen as (5) 

     1P G s           (5) 

where, P represents the  power output of the solar, wind or the 

load model,   is the stochastic component of the power,   

contributes to the mean value of the power,  G s  is a low 

pass filter, is a constant in order to normalize the generated 

or demand power (  ) to match the per unit (pu) level,   is a 

time dependent switching signal with a gain which dictates the 

sudden fluctuation in mean value for the stochastic power 

output. Due to the sudden change in base value along with 

stochastic fluctuations, the source of such uncertain behavior 

in the power generation and demand can be modelled in a 

same template, having different parameters as studied in [9]. 
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For the wind power generation the parameters of (5) are: 

 ,~ 1 1U  , 0.8  , 10  ,    41 10 1G s s   and 

   0.24 0.04 140h t h t                (6) 

where,  h t is the Heaviside step function. 

For the solar power generation, the parameters of (5) are:

 ,~ 1 1U  , 0.1  , 10  ,    41 10 1G s s   and 

   0.05 0.02 180h t h t                (7) 

For the demand load, the parameters of (5) are:  ,~ 1 1U  , 

       300 300 1 1 1800 1G s s s    , 0.9  , 10   and  
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D. Objective Function for Optimization 

For effective functioning of the microgrid system, the 

controller gains and fractional integro-differential orders need 

to be tuned. For the controller design problem, the objective 

function in (9) is considered. It consists of the integral of two 

weighted terms, which try to minimize the frequency deviation 

in the microgrid ( f ), as well as the incremental control 

signal ( u ). 

      max

min

220 2 2

100
1

T

n
T

J w f w K u dt



        (9) 

where, w dictates the relative importance of the two objectives 

(i.e. Integral of Squared Error – ISE and Integral of squared 

Deviation of Control Output - ISDCO) [15] and its value is 

taken as 0.7.
410nK  is the normalizing constant to scale ISE 

and ISDCO in uniform scale. For any fixed structure 

controller there is always a trade-off between the conflicting 

objectives of load disturbance rejection (reducing f to zero 

very quickly) and the amount of control effort ( u ) required. 

Previous investigations [15] have shown that the problem is 

inherently multi-objective and to have a fast suppression of 

load disturbance, a higher amount of controller effort is 

required. The choice of w  as 0.7 in the present case indicates 

that the design gives more importance to the fast suppression 

of the microgrid frequency oscillations in comparison to the 

higher value of control signal.  

E. Kriging Based Global Optimization 

Kriging models have been shown to be very expedient in 

accurate global approximations of the design space [27].  

These models can approximate both linear and nonlinear 

trends in the design space. Their flexibility arises from the fact 

that different spatial correlation functions can be employed for 

building the approximation. Additionally, the kriging models 

can be built either to give more importance to the training 

dataset, by providing an exact interpolation, or they may be 

built to have a smooth inexact interpolation [28]. For the 

purpose of constructing a surrogate model, consider a set of k  

design sites  1 k
S s s  with

n

is  and corresponding 

model responses  1

T

kY y y  with
q

iy  . The data is 

normalized to satisfy the following conditions in (10). 
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where :, jX  is the vector represented by the 
thj column in 

matrix X , and  m   and  ,    denote the mean and the 

covariance respectively.   

A kriging model combines a global model with localized 

departures [29]. The model y


 that gives the deterministic 

response   qy x  , for an n  dimensional input n

zx    

as a realization of a regression model  and a stochastic 

process, 

      :,
ˆ , , 1, ,l l ly x x z x l q      (11) 

The regression model   is taken as a linear combination of 

p  chosen functions  : , 1, 2, ,n

jf j p     and can be 

expressed as 

 
     

     
:, 1, 1 ,

1 :, :,

,l l p l p

T

p l l

x f x f x

f x f x f x

  

 

   

   




 (12) 

where, the coefficients ,k l are the regression parameters. 

The random process z  is assumed to have zero mean and 

covariance between  z w  and  z x  is given by 

        2 , , , 1,2, ,l l lE z w z x w x l q         (13) 

where 
2

l  is the process covariance for the 
thl  component of 

the response and  , ,w x  is the correlation model with 

parameters  .  

For calculating the kriging predictor for the set S  of design 

sites, the design matrix k pF   with  ij j iF f s can be 

expressed as (14). 

    1

T

kF f s f s     (14) 

where,  f x  is defined in (12). Additionally the matrix Q  is 

defined to be that of the stochastic process correlations 

between z ’s at the design sites, 

    , , , 1,2, ,ij i jQ s s i j k      (15) 

At a previously unsampled location x , let 

      1, , , ,
T

kq x s x s x       (16) 

represent the vector of correlations between z ’s at the design 

sites and x . 

For the regression problem of the form (17), 

 F Y   (17) 

the generalized least square solution (with respect to Q ) is   

   1
* 1 1T TF Q F F Q Y

   (18) 

and the corresponding kriging predictor can be expressed as  

 

    
     

1 1 *

* 1 *

T
T T

T T

y x q Q Y F Q q f

f x q x Q Y F



 

 



  

  
 (19) 
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The mean squared error estimate  x of the predictor can be 

obtained as (20). 

     1
2 1 11 T T Tx b F Q F b q Q q 

     (20) 

where, 
1Tb F Q q f   and 

2  is the maximum likelihood 

estimate of the variance. 

The correlation models considered in this paper are of the 

form (21) [29]. 

    
1

, , ,
n

j j j

j

w x w x 


     (21) 

which are essentially products of stationary one dimensional 

correlations. Table 1 shows the different correlation functions 

used in the present study.    

 
TABLE 1: DIFFERENT CORRELATION FUNCTIONS FOR KRIGING MODEL 

Name  ,j jd  where j j jd w x   

Exponential  j jd
e


 

Gaussian  2
j jd

e


 

Linear  max 0,1 j jd  

Spherical 31 1.5 0.5j j   ,where  min 1,j j jd   

Spline 

   

2 3

3

1 15 30 0 0.2

1.25 1 0.2 1

0 1

j j j

j j j

j
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for

for

  

   



    
   




 

where j j jd   

 

 
Fig. 3 Schematic of kriging based optimization method. 

 

Fig. 3 shows a schematic of the kriging based surrogate 

modelling and optimization process. Initially a symmetric 

Latin hypercube sampling scheme is constructed in the design 

space of the fractional order controller (i.e. the three gains and 

the two fractional orders). This kind of a sampling scheme is a 

trade-off [30] between the simple Latin hypercube sampling 

(which might not cover the entire design space uniformly) and 

the computationally expensive ‘space-filling’ Latin hypercube 

sampling [31] methods. The bounds of the design variables 

{Kp,Ki,Kd,λ,μ} are kept between {0,0,0,0,0} and {5,5,5,2,2} 

respectively and 50 initial sampling points are generated using 

this scheme. Using these sampling points, the kriging model is 

constructed with one of the correlation functions as in Table 1. 

The candidate point approach [32] is used on the kriging 

model, for selecting the best location to sample in the next 

iteration. It works by creating two groups of candidates, one 

which is obtained by perturbing the best point obtained till the 

present iteration and the other which is generated by uniformly 

selecting points from the whole decision space. The kriging 

based response surface is used to predict the objective function 

values at the candidate points and is used to calculate the 

response surface criterion. The distance criterion is calculated 

which measures the distance of each candidate point to the 

existing set of sampled points. The weighted sum of these two 

criteria is used to determine the best candidate point. This best 

candidate point is then used to sample the computationally 

expensive objective function (by running the microgrid control 

model) and the actual value of the objective function is 

obtained. The kriging model is updated with this new value of 

the objective function and the process is iterated until a 

specified number of function evaluations are completed.  

III. SIMULATION AND RESULTS 

A. Performance Evaluation of the Kriging Based Optimizers 

and Different Controller Structures 

Since the objective function is stochastic in nature (i.e. the 

same value of controller parameters gives slightly different 

objective function values in each instance), the function is 

evaluated multiple times (10 in this case) and the expected 

value of the objective function is considered for optimization. 

Calling the objective function multiple times in this fashion is 

counted as one expensive function evaluation and the total 

number of these expensive function evaluations is limited to 

150. The kriging based optimization is run with the different 

correlation models and the statistical results for 30 

independent runs along with the best found expected minima 

(since the model contains stochastic components) of the 

objective (9) – Jmin are reported in Table 2. A comparison is 

done with a standard Genetic Algorithm (GA) which is run 

with 10 populations for 15 generations (so that the total 

number of function evaluations is 150) and the statistical 

results for the same are also reported in Table 2. The number 

of elite individuals is taken as 2 and the crossover and 

mutation fraction are taken as 0.8 and 0.2 respectively. The 

corresponding best found parameters for the PID and the 

FOPID controller are reported in Table 3. During the 

optimization four different controller structures are called 

depending on ranges of values for FOPID orders i.e. , 
greater and less than one, since the ORA can only approximate 

FO operators less than unity. For  , 1   the nominal FO 

part is rationalized using ORA and an additional 

integrator/differentiator is added within the controller structure 

in series with the higher order rational approximation [10, 12]. 

The results in Table 2 indicate that the FOPID controller 

consistently outperforms the PID controller with all of the 

optimization algorithms. Also, the kriging based optimization 

algorithm with the spline correlation function gives the best 

result for both the PID/FOPID controllers. In both cases, the 

kriging based surrogate method outperforms the GA. Also the 

mean and standard deviation of the kriging based optimisation 

algorithms in Table 2 are very small as compared to the GA. 

This occurs since the GA is not able to find stable solutions in 

the many of the runs. Therefore the kriging based method not 

only gives better accuracy, but also consistently gives stable 
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near optimal solutions every time. Table 2 also shows that the 

spline correlation model gives the best average solution for 

both PID/FOPID controller amongst the five correlation 

models in Table 1.  

It is known in FO control that the integral order of FOPID 

higher than unity i.e. λ>1 makes the overall system faster, 

whereas λ<1 makes it slower [12]. On contrary the control 

effort for λ>1 increases drastically to ensure faster time 

response and λ<1 produces smaller control effort. Since the 

cost function (9) has got two parts balancing the impact of fast 

tracking and control effort as a weighted sum, under different 

circumstances integro-differential orders may be less than or 

greater than one, although in Table 3 both the optimum FO 

orders are <1. 

 
TABLE 2: STATISTICAL RESULTS OF 30 INDEPENDENT RUNS OF DIFFERENT 

KRIGING BASED OPTIMIZATION WITH PID/FOPID CONTROLLER 

Kriging model 

/optimizer Controller 

Statistics of J for 30 independent runs 

Jmin Mean Standard deviation 

Exponential 

PID 0.01413 0.01830 0.00523 

FOPID 0.00396 0.01055 0.00758 

Gaussian 

PID 0.01407 0.01655 0.00251 

FOPID 0.00391 0.00977 0.01473 

Linear 

PID 0.01434 0.01786 0.00625 

FOPID 0.00404 0.00994 0.00773 

Sphere 

PID 0.01406 0.01807 0.00553 

FOPID 0.00401 0.00892 0.00522 

Spline 

PID 0.01392 0.01639 0.00272 

FOPID 0.00382 0.00604 0.00230 

GA 

PID 0.01419 6.95936 27.77352 

FOPID 0.00421 2.92570 11.21648 

 

TABLE 3: BEST PID/FOPID CONTROLLER PARAMETERS 

Kriging 

model 

/optimizer Controller 

Best controller parameters 

Kp Ki Kd λ µ

Exponential 

PID 3.613 1.822 0.344 - - 

FOPID 0.984 3.359 1.426 0.677 0.623 

Gaussian 

PID 3.666 1.903 0.333 - - 

FOPID 2.461 5.000 0.948 0.926 0.744 

Linear 

PID 4.150 1.250 0.350 - - 

FOPID 2.204 3.155 1.233 0.768 0.705 

Sphere 

PID 3.678 1.351 0.342 - - 

FOPID 2.450 4.750 0.950 0.860 0.780 

Spline 

PID 3.712 1.391 0.333 - - 

FOPID 0.950 4.350 1.250 0.660 0.700 

GA 

PID 3.124 1.087 0.324 - - 

FOPID 1.703 2.166 1.310 0.992 0.654 

 

Fig. 4 shows a single realization of the stochastic process 

model for power generation by the WTG, PV and the load (5) 

which is used in the simulation study. It is observed that there 

are significant fluctuations which would be reflected in the 

system frequency and the controller needs to take appropriate 

action to damp out these oscillations considering all possible 

realization of the stochastic objective function (9), thereby 

locating an expected minima [33, 34] based on multiple runs 

of the same model. Therefore, the role of the kriging model 

used here is to approximate a dynamically evolving noisy 

function taking into account the correlations among the 

different controller parameters to find out the expected global 

minima in less number of iterations. Such reduction in number 

of iterations would facilitate the online implementation of 

tuning such controllers in future [7]. Significant non-stationary 

nature of the stochastic fluctuation with drift in renewable 

generation and demand load are evident in Fig. 4. In the 

present design framework, it is considered that the microgrid 

was operating at 1 pu load during 0<t<100 sec and the control 

system performance has been evaluated then for a finite time 

horizon of 100<t<220 sec considering change in both the 

demand load and renewable generations (Fig. 4).  

 

 
Fig. 4 One realization of the stochastic generated and demand powers 

independent of the controller structure.   

 
Fig. 5 Frequency deviation, control signal and power deviation of the 

microgrid with best obtained PID/FOPID controllers.   
 

The microgrid frequency deviation ( f ), control signal (u) 

and the deficit/excess power ( P ) corresponding to the best 

obtained PID and the FOPID controller are shown in Fig. 5. It 

is evident that the FOPID controller outperforms the PID 

controller since it results in less frequency fluctuation f  

(hence better power quality), faster damping of the deficit grid 

power P with less control signal (hence less actuator size 

requirements for the FC and DEG). 
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The corresponding powers produced by the FESS, BESS, 

FC and DEG are reported in Fig. 6. It can be observed that 

there are less power fluctuations with the FOPID controller 

than the PID controller. This implies that if the FOPID 

controller is used, the sizing of these energy supply and 

storage systems can be made smaller. Also there are less 

requirements of supplying and storing power to supress the 

microgrid frequency fluctuations. This makes the overall 

system more energy efficient. 

 

 
Fig. 6 Individual powers of the different components of the microgrid with the 

best obtained PID/FOPID controllers. 

 
Fig. 7 Convergence of five kriging methods for PID controller. 

 
Fig. 8 Convergence of five kriging methods for FOPID controller. 

 

Fig. 7 and Fig. 8 show four standard statistical measures 

(mean, median, best and worst case) of the convergence 

curves in semi-log scale, for 30 independent runs of the 

kriging based optimization employing different correlation 

functions for the PID and the FOPID controller respectively. 

The corresponding curves for the GA are plotted in Fig. 9. It is 

clear that to find the best solutions, the GA takes more number 

of iterations whereas all the kriging based optimizers 

converges to the best solutions very quickly. Therefore, the 

kriging solutions would significantly outperform the GA even 

if less number of function evaluations (than 150) are used. 

Also, if there are significant stochastic deviations in the 

objective function, then calling the function only 10 times (as 

done in this case) would not be suitable for approximating an 

expected value and more number of samples need to be taken. 

In such cases, the kriging would significantly outperform the 

GA as well. As also evident from Fig. 7-Fig. 8 that for both 

PID and FOPID controller the spline correlation function is 

capable of locating lower value of the objective functions in 

all the four cases of statistical measures which is in agreement 

with the findings reported in Table 2. 

 
Fig. 9 Convergence of GA based tuning of PID/FOPID controllers. 

B. Parametric Robustness of the Optimum Solutions 

 
Fig. 10 Robustness for increase in system parameters. 

 
Fig. 11 Robustness for decrease in system parameters. 

 

The best solutions for the PID/FOPID controllers are now 

obtained from Table 2 and Table 3 (as the nominal case) and 

their robustness is tested for perturbed case of different 

microgrid parameters. The expected values of the objective 

function (9) are noted in Table 4 considering multiple runs of 

the stochastic model. The corresponding microgrid frequency 

deviation for both the case of parameter increase and decrease 

(in D, 2H, R, TFC, Tg, Tt, TI/C, TIN) are shown in Fig. 10 and 

Fig. 11 respectively. It can be observed from Table 4 and also 
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Fig. 10 and Fig. 11 that the PID controller is less robust than 

the FOPID controller in terms of increased value of J under 

perturbed condition and increase in Δf. This establishes the 

superiority of using FOPID controller in such a microgrid 

frequency control problem with large positive/negative 

uncertainty in the system parameters. It is also evident from 

Fig. 10-Fig. 11 that the increase in system parameters is much 

detrimental than a decrease in equal amount in most cases, 

although the ill-effects are significantly smaller with an 

FOPID. Among different parameters the interconnection 

device, FC and inverter time constants (TI/C, TFC, TIN) are 

found to be gradually most susceptible ones which cause 

performance deterioration much faster than perturbing other 

microgrid parameters. 

 
TABLE 4: ROBUSTNESS FOR PERTURBATION IN MICROGRID PARAMETER 

Microgrid 

parameters 

Perturbation 

(±) Controller 

J for increase 

in parameter 

J for decrease 

in parameter 

D 70% 

PID 0.01381 0.01403 

FOPID 0.003802 0.003847 

2H 50% 

PID 0.007543 0.04399 

FOPID 0.002453 0.0147 

R 70% 

PID 0.01397 0.01378 

FOPID 0.00381 0.00397 

TFC 20% 

PID 0.02079 0.01222 

FOPID 0.00443 0.003411 

Tg 70% 

PID 0.02543 0.01207 

FOPID 0.004496 0.003242 

Tt 70% 

PID 0.01928 0.01134 

FOPID 0.004688 0.003126 

TI/C 0.5% 

PID 0.01364 0.01512 

FOPID 0.003776 0.004133 

TIN 50% 

PID 0.02675 0.01424 

FOPID 0.004816 0.003722 

C. Effect of Actuator On-Off Switching Logic 

Next, it is assumed that the FC and DEG does not supply 

any power if the grid frequency deviation is within a specified 

limit of 0.05f  and only turns on when the FESS and 

BESS cannot supply/absorb enough power within a short 

period to damp the frequency deviation. It turns out that the 

scheme suffers from chattering which is common for such 

switched systems and sliding mode control. Chattering is 

detrimental for different components of the microgrid and 

hence is not desirable. To alleviate this issue to some extent a 

modification of the scheme is done such that it remains on for 

at least a minimum of 10 sec until the frequency deviations are 

within acceptable limits. However as soon as this happens and 

both the DEG and FC are cut out of the microgrid, the system 

frequency starts to deviate and the scheme again triggers the 

DEG and FC on, after a few milliseconds. Therefore, there are 

significant switching transients after almost every 10 seconds 

as shown in Fig 12 which is undesirable. The actuator on-off 

switching logic is implemented in Stateflow while modelling 

of the microgrid with FOPID is done using Simulink which is 

invoked by the optimization procedure coded in Matlab 

scripts. The whole model (with system nonlinearity in the 

form of rate constraint and output saturation, FOPID 

controller, stochastic forcing with jumps) is numerically 

integrated with the 3rd order accurate Bogacki-Shampine 

formula with a fixed step-size of 0.01 sec. 

 
Fig. 12 Transients due to on-off switching of the actuators. 

 
Fig. 13 Significant nonlinear operation of the energy storage/supplying 

elements with rate constraint nonlinearity. 

 

Operation in significant nonlinear zone has also been shown 

in Fig. 13 along with the actuator on-off logic in Fig. 12 for 

the present microgrid system with PID/FOPID controller. It is 

evident from Fig. 13 that the rate of change of power in each 

element above or below the respective thresholds have been 

cut-off and a constant rate is maintained. Also the DEG and 

FC in Fig. 12 produces a constant amount of power once they 

reach their maximum limits due to the presence of the output 

nonlinearity in the system. 

IV. CONCLUSION 

The paper proposes the use of fractional order controller for 

supressing the system frequency deviation in a nonlinear and 

stochastic model of a microgrid. Simulation results show that 

the FOPID controller is better than the standard PID controller 

under nominal operating condition and gives better robustness 

for large parametric uncertainty of the microgrid. A kriging 

based surrogate modelling and optimization technique is 

proposed which reduces the time taken for optimizing the 

controller parameters for the microgrid system. This can 

facilitate the online tuning of such controllers in future. 

Simulation results show that the kriging based optimization 

outperforms the standard genetic algorithm in terms of the 

quality of solutions and faster convergence. 
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