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Kriging metamodeling in simulation: a review

Jack P.C. Kleijnen

Department of Information Systems and Management, Tilburg University, Postbox
90153, 5000 LE Tilburg, Netherlands

Abstract

This article reviews Kriging (also called spatial correlation modeling). It presents
the basic Kriging assumptions and formulas� contrasting Kriging and classic linear
regression metamodels. Furthermore, it extends Kriging to random simulation, and
discusses bootstrapping to estimate the variance of the Kriging predictor. Besides
classic one-shot statistical designs such as Latin Hypercube Sampling, it reviews
sequentialized and customized designs. It ends with topics for future research.
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1 Introduction

Metamodels are also called response surfaces, surrogates, emulators, auxil-
iary models, etc. By de�nition, a metamodel is an approximation of the In-
put/Output (I/O) function that is de�ned by the underlying simulation model.
This simulation model may be either deterministic or random (stochastic). Ex-
amples of deterministic simulation are models of airplanes, automobiles, TV
sets, and computer chips� applied in Computer Aided Engineering (CAE)
and Computer Aided Design (CAD) at Boeing, General Motors, Philips, etc.
These deterministic simulations may show numerical inaccuracies, which make
this type of simulation related to random simulation. The latter type, however,
uses Pseudo-Random Numbers (PRNs) inside its model. Examples are models
of logistic and telecommunication systems. In this article, I cover both types
of simulation. (Because simulation is applied in so many di¤erent disciplines,
the terminology varies widely; I try to include di¤erent terms for the same
concept.)

Most publications on metamodels focus on low-order polynomial regression.
Such metamodels are �tted to the I/O data of the local or global experiment



with the underlying simulation model. This type of metamodel may be used
for the explanation of the underlying simulation model�s behavior, and for
prediction of the expected simulation output for combinations of input values
that have not yet been simulated (inputs are also called factors; combinations
are also called scenarios). The �nal goals of the metamodel may be validation
of the simulation model, sensitivity analysis, and optimization.

In this article, I focus on Kriging metamodels. Typically, Kriging models are
�tted to data that are obtained for larger experimental areas than the areas
used in low-order polynomial regression metamodels; that is, Kriging models
are global rather than local. These models are used for prediction; the �nal
goals are sensitivity analysis and optimization.

Kriging was originally developed in geostatistics (also known as spatial sta-
tistics) by the South African mining engineer called Danie Krige. The mathe-
matics were further developed by Matheron; see his 1963 article [19]. A classic
geostatistics textbook is Cressie�s 1993 book [3]. I also recommend References
17 through 21 in [18] .

Later on, Kriging models were applied to the I/O data of deterministic sim-
ulation models. These models have k-dimensional input where k is a given
positive integer (whereas geostatistics considers only two-dimensional input);
see Sacks et al.�s classic 1989 article [21]. More recent publications are Jones et
al.�s 1998 summary article [8], Simpson et al.�s 2001 article [23], and Santner
et al.�s 2003 textbook [22].

Only in 2003, Van Beers and I started applying Kriging to random simulation
models; see [25]. Although Kriging in random simulation is still rare, I strongly
believe that the track record Kriging achieved in deterministic simulation holds
promise for Kriging in random simulation!

Note: Searching for �Kriging�via Google on February 15, 2007 gave 631,000
hits, which illustrates the popularity of this mathematical method. Searching
for �Operations Research�within these pages gave 81,000 hits.

The goal of this article is to review the basics of Kriging, and some recent
extensions. I expect that these basics will convince analysts in deterministic
or random simulation of the potential usefulness of Kriging. Furthermore, I
hope that the review of recent extensions is also of interest to analysts who
are already familiar with Kriging in simulation.

The rest of this article is organized as follows. Section 2 covers the basic as-
sumptions and formulas of Kriging. Section 3 presents some relatively new
results, including random simulation and estimating the variance of the Krig-
ing predictor through bootstrapping. Section 4 includes one-shot and sequen-
tial statistical designs for simulation experiments analyzed through Kriging
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metamodels. Section 5 presents conclusions and topics for future research

2 Kriging basics

I start with highlighting the di¤erences between (familiar) linear regression�
especially low-order polynomial regression� and Kriging models. I focus on
a single (univariate, scalar) simulation output, because most Kriging models
also assume such output. My general black-box representation is then

w = s(d1; : : : ; dk; r0) (1)

where

w is the output of the underlying simulation model;

s(:) denotes the mathematical function implicitly de�ned by the computer
code implementing this simulation model;

dj with j = 1; : : : k is the jth input variable (factor) of the simulation program,
so D = (dij) is the design matrix for the simulation experiment, with i =
1; : : : ; n and n the number of input combinations in that experiment,

r0 is the vector of PRN seeds.

I point out that D determines the original simulation input variables (say)
z and the corresponding standardized (coded, scaled) regression variables x
de�ned below (3). The design matrix D is usually standardized; for example,
a two-level (fractional) factorial has elements that are either �1 or +1; also
see [9].

The �rst-order polynomial regression metamodel for (1) is

yreg = �0 + �1d1 + : : : �kdk + ereg (2)

where

yreg is the regression predictor of the simulation output w in (1); the subscript
reg distinguishes this metamodel from the Kriging metamodel presented be-
low;

� = (�0; �1; : : : ; �k)
0 is the vector with the parameters of this metamodel;

ereg is the error (residual, noise)� which includes both lack of �t of the meta-
model and intrinsic noise caused by the PRNs.
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The model in (2) is a special case of the general linear regression model

yreg = X� + ereg (3)

where

yreg denotes the n-dimensional vector with the regression predictor where n
is the number of simulated combinations;

X = (xij) denotes the n � q matrix of explanatory regression variables with
xij the value of variable j in run i (i = 1; : : : ; n; j = 1; : : : ; q) (for example, in
(2) q = 1+k including the dummy variable or constant xi0 = 1 corresponding
with �0);

� = (�1; : : : ; �q)
0 denotes the q-dimensional vector of regression parameters

(if there is a dummy variable, then �1 denotes the intercept in the general
regression model, whereas the symbol �0 denoted the intercept in the speci�c
regression model (2));

ereg is the vector of residuals in the n factor combinations.

Above, I pointed out that D determines the standardized regression variables
x. Indeed, the �rst-order polynomial model (2) implies X = (1;D) where 1 =
(1; : : : ; 1)0 is an n-dimensional vector with each element being the number one.

The Least Squares (LS) estimator (say) b� of the regression parameter vector
� in the linear regression model (3) can be derived to be

�̂ = (X0X)�1X0w (4)

where w = (w1; : : : ; wn)
0 is the n-dimensional vector with �the�output of the

simulation model with input D; �the�output of combination i is the average
output of a constant number of replications, mi = m:

wi =

Pm
r=1wir
m

: (5)

Obviously, in deterministic simulation m = 1. If the number of replicates is
not constant, then a slightly more complicated formulation is required; see [9].

Hence, the regression predictor for a simulation input (say) d = (d1; : : : ; dk)0

is byreg(d) = x(d)0�̂ = x(d)0(X0X)�1X0w (6)

where the vector of explanatory variables x is determined by the vector of
simulation inputs d; for example, the �rst-order polynomial model (2) implies
x(d) = (1; d1; : : : ; dk)

0. The input d may be a new or an old combination (the
old combination is one of the rows in D).
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In this article, I focus on the simplest type of Kriging called Ordinary Kriging,
which assumes

w(d) = �+ �(d) (7)
where

� is the simulation output averaged over the �experimental area�(also see the
comment below);

�(d) is the additive noise that forms a �stationary covariance process�with
zero mean (this process is de�ned below).

Zeigler et al. [27] call the experimental area the experimental frame. I would
also call it the domain of admissible scenarios� given the goals of the simula-
tion study (various goals are discussed in [10] and [13]).

By de�nition, the time series wt is a stationary covariance process if it has
a constant mean (say) E(wt) = �, a constant variance var(wt) = �2, and
covariances depending only on the lag jt� t0j; that is, cov(wt; wt0) = �jt�t0j.

The metamodel (7) with its constant � does not imply a �at response surface;
see [21]. Instead of this constant �, Universal Kriging uses a regression model.
However, Ordinary Kriging often su¢ ces in practice; see [1], [17], [18], and
[21].

I point out that Kriging is also used� quite successfully� in deterministic sim-
ulation. At �rst sight it seems strange that the random (meta)model (7) can
be applied to a deterministic simulation model. My interpretation is that
the deviations of the simulation output w from its mean � form a random
process� with the characteristics of a �stationary covariance process� (with
zero mean); see � in (7).

Ordinary Kriging (from now on, brie�y called Kriging) uses the following linear
predictor:

y(d) = �(d;D)0w(D) = �0w (8)
where the weights �(d;D)� abbreviated to �� are not constants (whereas �
in equation 3 is) but decrease with the distance between the input d to be
predicted and the �old�points D; this D determines the simulation output
vector w, so the explicit notation is w(D) and the simpler notation is w.

To select the optimal values for the weights � in (8), a criterion must be
selected. In linear regression, the Sum of Squared Residuals is the criterion�
which gives the LS estimator (4). Kriging selects the Best Linear Unbiased
Predictor (BLUP), which (by de�nition) minimizes the Mean Squared Errors
(MSE) of the predictor:

min
�
MSE[y(d)] = min

�
[E(y(d)� w(d))]2 (9)
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where d may be any point (input combination) in the experimental area.
Moreover, this minimization must account for the condition that the predictor
in unbiased :

E(y(d)) = E(w(d)): (10)

Obviously, in deterministic simulation E(w(d)) may be replaced by w(d).
It can be proven that the solution of the constrained minimization problem
de�ned by (9) and (10) implies that the weights of the linear predictor (8)
must satisfy the following condition:

nX
i=1

�i = 1 (11)

or (in matrix notation) 10� = 1.

Furthermore, the optimal weights can be proven to have the values

�o= �
�1[ + 1

1� 10��1
10��11

] (12)

where

� = (cov(wi; wi0)) with i; i0 = 1; : : : ; n is the n�n symmetric and positive semi-
de�nite matrix with the covariances between the �old�outputs (i.e., outputs
of input combinations that have already been simulated);

 =(cov(wi; w0)) is the n-dimensional vector with the covariances between
the n �old�outputs wi and w0, the output of the combination to be predicted
(which may be �new�or �old�).

Finally, it can be proven (also see [14]) that (7), (8), and (12) imply

y = b�+  0��1(w�b�1) (13)

with b� = (10R�11)�110R�1w:

It is easy to see that the Kriging model in (7) implies E(y) = � because
(7) implies E(w) = �1. Furthermore, if (say) w1 > �;w2 = �; : : : ; wn =
�, then the conditional expected value of the predictor in (13) exceeds the
unconditional mean � because  0��1 > 00.

Obviously, the optimal values for the Kriging weights in (12) depend on the
covariances� or equivalently the correlations� between the simulation outputs
in the Kriging model (7). Kriging assumes that these correlations are deter-
mined by the �distance�between the inputs of the outputs wi and wi0 or wi
and w0� or (more succinctly) between wi and wg with g = 0; 1; : : : ; n.
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In simulation applications of Kriging, the usual assumption is that the cor-
relation function for a k-dimensional input vector is the product of k one-
dimensional functions:

�(w(di); w(dg)) =
Yk

j=1
�(dij; dgj): (14)

Moreover, Kriging assumes a stationary covariance process, which implies that
the correlations depend only on

hj(i; g) = jdij � dgjj (j = 1; : : : ; k) (i = 1; : : : ; n)(g = 0; 1 : : : ; n): (15)

So, �(dij; dgj) in (14) reduces to �(hj(i; g)). Transforming the standardized
design points dj into the original simulation inputs zj makes the distances
scale dependent; also see [2].

There are several types of stationary covariance processes. Three popular types
for a single input (so hj = h in equation 15) with parameter � > 0 are:

� Linear correlation function: �(h) = max(1� �h; 0)
� Exponential correlation function: �(h) = exp(��h)
� Gaussian correlation function: �(h) = exp(��h2) (its point of in�ection can
be proven to be 1=

p
2�).

In Kriging, a popular correlation function is

�(h) = exp[�
kX
j=1

(
hj
�j
)pj ] =

Yk

j=1
exp[�(hj

�j
)pj ] (16)

where

�j denotes the importance of factor j; that is, the higher �j is, the less e¤ect
input j has;

pj denotes the smoothness of the correlation function; for example, pj = 2 im-
plies an in�nitely di¤erentiable function. Obviously, exponential and Gaussian
correlation functions have p = 1 and p = 2 respectively.

Correlation functions that decrease as the distance increases, imply that the
optimal weights are relatively high for inputs close to the input to be predicted.
Furthermore, some of the weights may be negative. Finally, the weights imply
that for an �old� input (so d is a row within D) the predictor equals the
observed simulation output at that input:

y(di) = w(di) if di 2 D, (17)
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so all weights are zero except the weight of the observed output. This prop-
erty implies that the Kriging predictor is an exact interpolator, whereas the
regression predictor minimizes the Sum of Squared Residuals (SSR) so it is
not an exact interpolator� unless n = q (where q was de�ned below equation
3)

A major problem is that the optimal Kriging weights �i depend on the correla-
tion function of the underlying simulation model� but this correlation function
is unknown. Therefore both the type and its parameter values must be esti-
mated. (The number of observations for a covariance of a given distance h
decreases as that distance increases.) Given these estimates for various values
of the distance h, a correlation function is �tted. To estimate the parame-
ters of such a correlation function, the standard software and literature uses
Maximum Likelihood Estimators (MLEs). A MLE requires constrained max-
imization. This optimization is a hard problem, because matrix inversion is
necessary, multiple local maxima may exist, etc.; see [16] and [18]. (Besides the
MLE criterion, [18] uses cross-validation; for the linear correlation function,
[11] uses the LS criterion.)

For the estimation of the correlation functions and the optimal weights through
(12), I recommend the Matlab Kriging toolbox DACE, which is free of charge;
see [15]. Alternative free software is available via http://www.stat.ohio-state.edu/~comp_exp/
and http://endo.sandia.gov/Surfpack.

Note: There are also many publications that interpret Kriging models in a
Bayesian way; see [7] and [16].

3 Kriging: new results

The interpolation property in (17) is attractive in deterministic simulation,
because the observed simulation output is unambiguous (ignoring numerical
noise that may occur when deterministic simulation software is executed; see
[24]). In random simulation, however, the observed output is only one of the
many possible values. For random simulations, [25] replaces w(di) in (9) by
the average observed output

wi =

Pmi
r=1wir
mi

(i = 1; : : : ; n): (18)

These n averages, however, are still random, so the property in (17) loses its
intuitive appeal. Nevertheless, [25] gives examples in which the Kriging predic-
tions based on (18) are much better than the regression predictions (regression
metamodels may be useful for other goals such as understanding, screening,
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and validation). (Reference [22] includes a computer program in C� called
PErK� which allows random output, but I do not know any applications.)

The Kriging model in (7) assumes a stationary covariance process, which im-
plies a constant variance (say) �2�. However, in experiments with random sim-
ulation models such as queueing models, the output variances var(wi) are not
constant at all! Fortunately, [12] demonstrates that the Kriging model is not
very sensitive to this variance heterogeneity.

The following problem is virtually ignored in the Kriging literature: replacing
the weights in (8) by the estimated optimal weights (say) c�0 implies that
the Kriging predictor becomes a nonlinear estimator. The literature uses the
predictor variance� given the Kriging weights �. At a �xed point d, this
variance follows directly from (12) (also see [3], p. 122):

var[y(d)j�)] = 2
nX
i=1

�icov(w0; wi)�
nX
i=1

nX
i0=1

�i�i0cov(wi; wi0): (19)

Using (19), it is easy to derive that the variance in case w0 equals wi reduces
to zero.. Ignoring the randomness of the estimated optimal weights tends to
underestimate the true variance of the Kriging predictor Moreover, the true
(unconditional) variance and the conditional variance do not reach their max-
ima for the same input combination. To estimate the true variance, I �rst
discuss random simulation; then deterministic simulation.

In random simulation, each input combination is replicated a number of times;
also see (18) Therefore a simple method for estimating the true predictor
variance is distribution-free bootstrapping. The basics of bootstrapping are
explained in [5] and [9]. To estimate the predictor variance in Kriging, [26]
resamples� with replacement� the mi Independent and Identically Distrib-
uted (IID) observations. This sampling results in the bootstrapped average
w�i where the superscript � is the usual symbol to denote a bootstrapped ob-
servation and i = 1; : : : ; n. From these n bootstrapped averages w�i , the boot-
strapped estimated optimal weights c�0� and the corresponding bootstrapped
Kriging predictor y� are computed. To decrease sampling e¤ects, this whole
procedure is repeated B times, which gives y�b with b = 1; : : : ; B. The variance
of the Kriging predictor is estimated from these B values.

For deterministic simulation, [4] applies parametric bootstrapping, assuming a
Gaussian stationary covariance process and Gaussian correlation functions; see
(16) with p = 2. The �true�parameter values �j of this process are estimated
from the given simulation I/O data, (D; w). Next, the Monte Carlo method
is used to sample bootstrapped data (D;w�) from the estimated multivariate
normal distribution. For alternative approaches (including cross-validation and
Akaike�s Information Criterion) I refer to [16] and [18].
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4 Designs for Kriging

Simulation analysts often use Latin Hypercube Sampling (LHS) to generate
the I/O simulation data to which they �t a Kriging (meta)model. Actually,
LHS was not invented for Kriging but for Risk Analysis; see [9].

LHS assumes that an adequate metamodel is more complicated than a low-
order polynomial such as (2), which is assumed by classic designs such as
fractional factorials. LHS, however, does not assume a speci�c metamodel or
simulation model. Instead, LHS focuses on the design space formed by the
k�dimensional unit cube de�ned by the standardized simulation inputs. LHS
is one of the space �lling types of design. Other designs related to LHS (e.g.,
maximin designs and orthogonal arrays) are discussed in [9],including many
references and websites.

An alternative for LHS are sequentialized designs. Sequential statistical proce-
dures are known to be more �e¢ cient�; that is, they require fewer observations
than �xed-sample (one-shot) procedures; see, for example, [20]. Moreover,
computer experiments (unlike agricultural experiments) proceed sequentially.
Nevertheless, sequential procedures may be less e¢ cient computationally; for
example, re-estimating the Kriging parameters may be costly; see [6].

In [11] and [26], Van Beers and I develop a sequential procedure for deter-
ministic and random simulations respectively. These two procedures share the
following steps.

(1) We start with a pilot experiment, using some small space-�lling design
(e.g., a LHS design). Its (say) n0 combinations form the input into the
simulation model, and results in the corresponding simulation outputs.

(2) We �t a Kriging model to the I/O simulation data that is available at
this step (in the �rst pass of this procedure, these I/O data are the data
resulting from Step 1).

(3) We consider (but do not yet simulate) a set of candidate input combi-
nations that have not yet been simulated and that are selected through
some space-�lling design; we select as the next combination to be actu-
ally simulated, the candidate combination that has the highest predictor
variance (below, I discuss how to estimate this variance)

(4) We use the combination selected in Step 3 as the input to the simula-
tion model, run the (expensive) simulation, and obtain the corresponding
simulation output.

(5) We re-�t a Kriging model to the I/O data that is augmented with the
I/O data resulting from Step 4.

(6) We return to Step 3 until we are satis�ed with the Kriging metamodel.

Our designs are also customized (tailored or application-driven, not generic);
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that is, which combination has the highest predictor variance is determined by
the underlying simulation model. For example, if the simulation model has an
I/O function (response surface) that is a simple hyperplane within a subspace
of the total experimental area, then our procedure selects relatively few points
in that part of the input space.

We experiment with two random simulation models that are building blocks
for more realistic simulation models. The �rst model is an M/M/1 simulation
with a tra¢ c rate d that varies over the experimental area 0:1 � d � 0:9. First
we use a LHS design with n = 10 pre�xed values for the tra¢ c rate. Next we
use our procedure, until we have simulated the same number of observations
as in the LHS design (namely 10). For each simulated tra¢ c rate, we obtain
enough IID observations (namely, renewal cycles) to reach a prespeci�ed ac-
curacy (namely, a con�dence interval with a prespeci�ed type-I error rate, say,
� and a prespeci�ed relative error); also see [13]. We apply distribution-free
bootstrapping to these IID observations, to estimate the Kriging predictor
variance (see Step 3 in our procedure presented above). Our design turns
out to select more input values in the part of the input range that gives a
drastically increasing (highly nonlinear) I/O function. Our design gives bet-
ter Kriging predictions than the �xed LHS design does� especially for small
designs, which are used in expensive simulations. The second model is an (s,
S) inventory simulation. Again, in the �rough�region of the response surface
our procedure simulates more input combinations.

We also experiment with a deterministic simulation model, namely a fourth-
degree polynomial I/O function in one input variable with two local maxima
and three local minima; two of these minima are at the border of the ex-
perimental area. Now we do not use bootstrapping to estimate the predictor
variance in Step 3 of our procedure; instead, we use cross-validation and jack-
kni�ng (as explained below). We compare our design to a sequential design
based on (19), which approximates the variance of the Kriging predictor ignor-
ing the random character of the estimated weights. The latter design selects
as the next point the input value that maximizes this variance; i.e., there is
no need to specify candidate points. It turns out that this approach selects as
the next point the input farthest away from the old inputs, so the �nal design
spreads all its points evenly across the experimental area� like space �lling
designs do.

We, however, estimate the true predictor variance through cross-validation.
So, we successively delete one of the I/O observations already simulated from
the original I/O data set (D;w) , which gives (D�i;w�i) where the subscript
�i means that (di; wi) is deleted. Next, we recompute the Kriging prediction,
based on the recomputed correlation function parameters and the correspond-
ing optimal Kriging weights.
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To quantify this prediction uncertainty, we use jackkni�ng. So, we calculate
the jackknife�s pseudovalue (say) J for candidate input combination (say) j
as the weighted average of the original and the cross-validation predictors:

Jj;i = ncyj � (n� 1)dyj;�i with j = 1; : : : ; c and i = 1; : : : ; n
where c denotes the number of candidate points and n the number of points
that have really been simulated so far and are deleted successively. From these
pseudovalues we compute the classic variance estimator:

dvar(Jj) = Pn
i=1(Jj;i � Jj)2
(n� 1) :

Like in the two random simulation examples, our design favors input com-
binations in subareas that have more interesting I/O behavior; i.e., our �nal
design selects relative few input values in the subareas that generate an ap-
proximately linear I/O function, whereas it selects many input values near the
borders, where the function changes much.

In [9], I brie�y review several publications that also propose sequentialized
and customized designs for simulation. Those publications use a Bayesian
approach, the conditional variance formula in (19), other metamodels than
Kriging (e.g., splines), etc.

5 Conclusions and future research

This article may be summarized as follows.

� I started with a review of the basic assumption of Kriging, namely �old�
simulation observations closer to the new point to be predicted, should
receive more weight. This assumption is formalized through a stationary
covariance process with correlations that decrease as the distances between
observations increase.

� Moreover, the Kriging model is an interpolator; i.e., predicted outputs equal
observed simulated outputs at old points.

� Next, I reviewed some more recent results for random simulation, and I
explained how the true variance of the Kriging predictor can be estimated
through bootstrapping.

� I �nished with a discussion of one-shot and sequentialized, customized de-
signs for simulation experiments to be analyzed through Kriging.

There is a need for more research:
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� Kriging software needs further improvement. For example, the estimated
metamodel should be less sensitive to the prespeci�ed lower and upper limits
for the correlation parameters �j. The usual MSE criterion may be replaced
by the maximum squared error criterion. In random simulation, Kriging still
assumes that the predictors equal the average outputs at the inputs already
observed.

� Sequentialized and customized design procedures may bene�t from asymp-
totic proofs of their performance; for example, does the design approximate
the optimal design (the latter designs are brie�y discussed in [9] )?

� More experimentation and analyses may be done to derive rules of thumb
for our sequential procedure�s parameters, such as the size of the pilot design
in deterministic or random simulation and the initial number of replicates
in random simulation experiments. For this pilot design and for the set of
candidate points not only LHS but also other space-�lling designs may be
studied; for example, maximin designs and orthogonal arrays.

� Stopping rules for sequential designs based on a measure of accuracy (or
precision) may be investigated.

� Kriging should also be applied to practical random simulation models, which
are more complicated than the academic M/M/1 queueing and (s, S) in-
ventory models.

� Whereas I focused on Sensitivity Analysis, other researchers search for the
optimal input of the simulation model. Can both approaches be combined,
especially in robust optimization (also see [9])?

� Nearly all Kriging publications assume univariate output, whereas in prac-
tice simulation models have multivariate output.

� Often the amalysts know that the simulation�s I/O function has certain
properties, for example, monotonicity. Most metamodels (Kriging, regres-
sion) do not preserve these properties (also see [9]).

� Sequential and customized designs may be analyzed not only through Krig-
ing but also through other types of metamodels.
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