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Intro Kriging Regression Designs Examples RMC Contributions

Bermudan Option Pricing/ Optimal Stopping

State process X , payoff h(t ,Xt)

Discrete-time: t = 1, 2, . . . horizon T

Value function V (t , x) = supτ≤T Et ,x [h(τ,Xτ )]

Optimization is over stopping times τ

Solution: τ∗ = inf{t : Xt ∈ St}∧T . Stopping region:

St = {x : V (t , x) = h(t , x)}
eg (Xt) is GBM; h(t , x) = e−rt(K − x)+ – Bermudan Put

Ludkovski Adaptive RMC
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Stopping Rule via Timing Value
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T (t , x) := Et ,x [V (t + 1,Xt+1)]− h(t , x) = Et ,x

[
h(τt+1,Xτt+1

)
]
− h(x).

Stopping decision is characterized by St = {x : T (t , x) < 0}
To find τ∗, it’s sufficient to evaluate the conditional expectation,

i.e. approximate the sign of T (t , ·) for t = T − 1,T − 2, . . . , 0

Ludkovski Adaptive RMC
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Conditional Expectation

f (x) := E[h(X·)|X0 = x ].

Input: Markov process X with state space X & (path-) Functional

h(X·)

Output: the conditional mean map x 7→ f (x)

Generalizes the problem of pointwise estimates at a fixed x

Appears as a building block:

◮ Optimal switching/impulse control
◮ XVA
◮ BSDEs
◮ Capital Requirements/Insurance

Ludkovski Adaptive RMC
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Regression Monte Carlo

f (x) := E[g(X·)|X0 = x ].

Classical Monte Carlo for a fixed x0: f̂ (x0) :=
1
N

∑N
n=1 h(xn

· ) where

xn
· are N simulated paths

Need to be able to predict f (x) for any x ∈ X
The state space X is multi-dimensional and continuous

→ Construct a grid x1:N and borrow information spatially

Statistical regression: smooth + interpolate

Ludkovski Adaptive RMC
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RMC for Optimal Stopping

Backwards induction in time (ST = {x : h(t , x) ≥ 0})

Given stopping sets: Ŝt+1:T

Starting at Xt = x , simulate trajectory X x
t+1:T and take

τ ′ = inf{s > t : X x
s ∈ Ŝs}

Pathwise future payoff y := h(τ ′,X x
τ ′) satisfies

Et ,x

[
Yx

]
= C(t , x) ⇔ Yx = C(t , x) + ε(x)

where C(t , x) = T (t , x) + h(t , x) is the continuation value

Now generate a stochastic grid (xn
t )

N
n=1 and paths x1:N

t+1:T

Obtain a sample {xt , yt}1:N

Estimate Ĉ(t , ·) and set Ŝt := {x : Ĉ(t , x)− h(t , x) < 0}
Popularized by Longstaff & Schwartz (2001)

Ludkovski Adaptive RMC
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Metamodeling

AIM: Build an approximation of Ĉ(t , ·)
Choose an approximation architecture H and loss function L

Generate the grid x1:N
t : Experimental Design

Set Ĉ(t , ·) = arg minC∈H L(C; (x , y)1:N)

Repeat over t = T − 1,T − 2, . . .

Traditionally:

Data is generated using the transition density of X

(“path-simulation”)

Least-Squares parametric regression, i.e.

H = span(Bi(x), i = 1, . . . , r)

(The implied loss function is E0,X0
[{Ĉ(Xt)− C(Xt)}2])

Ludkovski Adaptive RMC
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What is Metamodeling?

Classical regression – data is given and try to fit the “best curve”

In metamodeling generating data (through efficient simulations) is

part of the solution

Also, typically look for a non-parametric model (dense H)

Goes by many other names: response surface modeling,

statistical learning, DACE (design and analysis of computer

experiments), emulation

Used extensively in machine learning; simulation optimization,

computational statistics

See eg Kleijnen (2015), Williams and Rasmussen (2006), Powell

and Ryzhov (2012)

Connects to CS, OR, stats communities (language barriers!)

Ludkovski Adaptive RMC
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Improving RMC

Main concerns are Speed/memory – convergence of RMC is slow;

often need ≫ 105 paths to obtain a good estimate

Desire ability to handle a “black-box” setting, e.g. 5-D system

with implicit dynamics, and limited known structure

Timing optionality is now embedded in a ton of contracts – wish to

have a “universal” algorithm

Traditional methods offer few performance guarantees

(eg. sensitive to the choice of basis functions) and are hard to trust

Ludkovski Adaptive RMC
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Contributions

There has been extensive ongoing research on better

regressions: Belomestny, Bouchard, Gobet, Kohler, Oosterlee,

Stentoft, Tompaidis, ...

Also analysis of error propagation through dependent regressions:

Egloff (2004), Gobet and Warin (2006), Belomestny (2011),

Gerhold (2011), Kohler (2012), Zanger (2013)

Ludkovski Adaptive RMC
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Contributions

There has been extensive ongoing research on better

regressions: Belomestny, Bouchard, Gobet, Kohler, Oosterlee,

Stentoft, Tompaidis, ...

Also analysis of error propagation through dependent regressions:

Egloff (2004), Gobet and Warin (2006), Belomestny (2011),

Gerhold (2011), Kohler (2012), Zanger (2013)

Contribution 1: investigate impact of RMC experimental designs

and suggest several (improved) choices

Contribution 2: propose use of kriging metamodels

RMC is often called Least Squares Monte Carlo. This puts

misplaced narrow emphasis on a specific regression framework,

and tends to ignore the design aspect. We advocate a shift in

terminology to better align with the underlying problem.

Ludkovski Adaptive RMC
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Modeling Conditional Expectation

f (x) := E[g(X·)|X0 = x ].

Must impose some structure on f (X is a "nice" process, so f is

"smooth")

Project onto basis functions: f (x) =
∑R

i=1 aiHi(x)

Smoothing spline (piecewise cubic)

Piecewise linear

Piecewise constant f (x) =
∑

i ai1{x∈Ri}

Fully nonparametric (kernel): f (x) =
∑

i K (x , x i)y i

Gaussian process

Ludkovski Adaptive RMC
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Stochastic Kriging

Data-generating process Y (x) = C(t , x) + ε(x) where

ε(x) ∼ N(0, σ2(x))

Assume the continuation value C(t , ·) lives in the function space

HK – Gaussian RKHS

Means C(t , ·) is a realization of a Gaussian random field with a

covariance structure defined by K , H = span(K (·, x) : x ∈ X )

K (x , x ′) := E[f (x)f (x ′)] controls the spatial decay of correlation,

i.e. smoothness of C(t , ·)
e.g Gaussian kernel K (x , x ′) = τ2 exp(−‖x − x ′‖2/θ2) – elements

of HK are C∞, with lengthscale θ and fluctuation scale τ .

Use L2 projection: Ĉ(t , ·) = arg minC∈H
∑N

i=1(C(x i)− y i)2;

Representer theorem implies that Ĉ(t , x) =
∑N

i=1 wiK (x , x i)

Ludkovski Adaptive RMC
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Stochastic Kriging

Think of C(t , ·) as a random element in HK with a Gaussian prior

C(t , x) ∼ N(0, τ2)

The posterior conditional on G ≡ (x , y)1:N is also Gaussian

Marginally C(t , x)|G ∼ N(m(x), v2(x))

m(x) = ~k(x)T (K +Σ)−1~y

v(x , x ′) = K (x , x ′)− ~k(x)T (K +Σ)−1~k(x ′)

Kij = K (x i , x j), Σ = diag(σ2(x i)), ki = K (x , x i)

Linear model in the infinite basis expansion defined by K

Ludkovski Adaptive RMC
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Kriging Example 1

The posterior is a measure on HK (i.e function-valued)

Visually has a “football” shape– v2(x) has local minima at x i ’s.

The mean m(x) is a linear combination of kernel eigenfunctions

centered at design sites

Outside the domain X ′, revert to prior m(x) → 0, v2(x) → τ2

Below: θ = 2, τ = 1.5, σ2(x) ≡ 0.22

Ludkovski Adaptive RMC
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Kriging Example 2
Global consistency – converge to the truth as N → ∞
Optimized Matern-5/2 kernel

K (x , x ′; τ, θ) = τ2
(
1 + (

√
5 + 5/3)‖x − x ′‖2

θ

)
· e−

√
5‖x−x ′‖θ

Ludkovski Adaptive RMC
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Fitting a GP

Need to know the kernel hyperparameters – τ, θ, et cetera. Use

MLE (nonlinear optimization problem).

θ is the lengthscale – correlation decay

τ2 is the process variance – has analytic MLE once θ is known

GP is expensive compared to e.g LM; complexity is O(N3) for a

design of size N

Allows a lot of analytic formulas to understand the fit and its

uncertainty

Kriging is becoming the gold standard in the simulation/DACE

communities

Used DiceKriging package in R – off-the-shelf use

Ludkovski Adaptive RMC



../ucsbwave-cmyk.png

Intro Kriging Regression Designs Examples Batching

Simulation Noise
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Figure: Left: scatterplot of (x ,Ht (X
x
·
)− h(t , x)) over 10,000 distinct x ∈ R+. Right: Histogram

of N = 200 pathwise future payoffs yn ∼ Ht (X
x
·
) starting at x = 35 in a 1-D Bermudan Put

problem; t = 0.6. The vertical dashed line indicates the empirical mean
E[Ht (X

x
·
)|Xt = 35] ≃ Ave(y1:N) = 5.49. Note that in 24 out of 200 scenarios, the payoff yn was

zero, creating a point mass in the distribution of Ht (X
x
·
) and generating a significant negative

skew. Other moments were StDev(y1:N) = 2.45, Skew(y1:N) = −1.28 and Max(y1:N) = 9.87.

Ludkovski Adaptive RMC
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Simulation Noise

Knowing the distribution of simulation noise ε(x) is fundamental

for meta-modeling

Simulation noise is highly state-dependent in RMC

Also, distribution can be skewed/far from Gaussian

Solution 1: treat it as a constant σ2 (so-called “nugget”), can

estimate along with other kernel hyper-parameters

Solution 2: build an empirical estimate through replicating

simulations at a fixed site x

(Resembles a Monte Carlo forest)

Solution 3: model x 7→ σ2(x) via an auxiliary metamodel

Ludkovski Adaptive RMC
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Batching

Generate M independent realizations y (i) ∼ Yx of pathwise

payoffs starting at Xt = x

Set the average ȳ(x) = 1
M

∑M
i=1 y (i)(x)

Empirical σ̃2(x) := 1
M−1

∑M
i=1(y

(i)(x)− ȳ(x))2

The averaged simulations still follow the same statistical model but

with signal-to-noise ratio improved by factor of M

Size of macro-design Z ′ is N/M – much faster fitting

Also, Ȳ has almost-Gaussian simulation noise

Ludkovski Adaptive RMC
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Batched Kriging Metamodel for T (t , ·)

Figure: LHS design Z of size N = 3000 with M = 100 replications. The vertical “error” bars
indicate the 95% quantiles of the simulation batch at x , while the dotted lines indicate the 95%
credibility interval (CI) of the kriging metamodel fit.

Ludkovski Adaptive RMC



../ucsbwave-cmyk.png

Intro Kriging Regression Designs Examples Batching

Deterministic Kriging

If M is very large, σ̃2(x)/M ≃ 0 and can view Ȳx as deterministic

Metamodel becomes an interpolator

Figure: The boxplots summarize the distribution of y (m)(xn)’s, m = 1, . . . ,M = 1600. The dots
indicate the batch means ȳ(xn) which are exactly interpolated by the two meta-models.
Z′ = {30, 32, 34, 35, 36, 38}.

Ludkovski Adaptive RMC
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Regression Designs

Based on St |S0 Uniform in [30, 40]

Monte Carlo forest Adaptive Grid

Ludkovski Adaptive RMC
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Experimental Design

The meta-model should learn C(t , ·) – Z should cover the domain

X
Space-filling designs – lattice, low-discrepancy (Sobol)

LHS Latin Hypercube sampling: random space-filling

User must specify the effective X ′ (typically a rectangle)

Ludkovski Adaptive RMC
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Experimental Design

The meta-model should learn C(t , ·) – Z should cover the domain

X
Space-filling designs – lattice, low-discrepancy (Sobol)

LHS Latin Hypercube sampling: random space-filling

User must specify the effective X ′ (typically a rectangle)

The design should reflect the underlying (Xt)

Empirical sampling: Z is constructed by drawing from Xt

Automatically has the right “shape”

This is the standard approach. Sensitive to X0 (e.g. OTM Puts)

(Optimal Design is NP-Hard so heuristics are common)

Ludkovski Adaptive RMC
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Figure: Three different designs for fitting a kriging metamodel of the continuation value. Top

panels show the fitted T̂ (t , ·) as well as the distinct design sites x1:N′

. Middle panels plot the
corresponding surrogate standard deviation v(x). Bottom panels display the loss metric ℓ(x ;Z).
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Adaptive Design

Recall that aim to learn the sign of T (t , ·)
Gradually grow Z(k), k = N0, . . . ,N

Add new locations greedily according to acquisition function

xk+1 = arg max EIk (x)

Favor points where m(k)(x) ≃ 0 (close to zero-contour) or v (k)(x)
is large (reduce uncertainty)

Loss from making the wrong stopping decision at (t , x) is

ℓ(x ;Z) :=

∫

R

|y − h(t , x)|1{m(x)<h(t ,x)<y
⋃

y<h(t ,x)<m(x)}Mx(dy)

Analytic expression for

EIk (x) := E[ℓ(k)(x)− ℓ(k+1)(x)|Z(k), xk+1 = x ]

ZC-SUR strategy: maximizes stepwise expected reduction in loss

See Gramacy-L. (SIFIN 2015)

Ludkovski Adaptive RMC



../ucsbwave-cmyk.png

Intro Kriging Regression Designs Examples Sequential Design

Sequential Design: K = 20

Initialize with a LHS design Z(20)
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Sequential Design: K = 30

Zoom to the stopping boundary
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Sequential Design: K = 40

Prefer regions that are more likely for Xt
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Optimal Stopping for a 2D Stoch Vol Model

ZC-SUR LHS

Figure: Adaptive vs LHS designs. Bermudan Put e−rt (100 − X1)+ with a Heston SV model.
Both designs used N = 10000 simulations. Color-coded according to T (t , x); contour indicates
the stopping boundary.

Ludkovski Adaptive RMC
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Comparison in 1-D GBM Put

Batch Size LHS Spline LHS Kriging Emp Kriging Seq Kriging

M = 3 2.306 2.304 2.306 2.303

M = 8 2.306 2.306 2.308 2.305

M = 20 2.292 2.305 2.286 2.295

M = 50 2.302 2.303 2.302 2.309

M = 100 2.302 2.303 2.304 2.311

M = 250 2.304 2.304 2.303 2.309

Table: Performance of different DoE approaches to RMC in the 1-D

Bermudan Put setting, h(t , x) = e−rt(40 − x)+. All methods utilize

|Zt | = 3000. The LHS input space was X̃ = [25, 40]. Results are based on

averaging 100 runs of each method, and evaluating V (0,X0) on a fixed

out-of-sample database of Nout = 50, 000 scenarios.

Ludkovski Adaptive RMC
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2D Examples

Method V̂ (0,X0) (StDev.) #Sims Time

Brockwell Rhambarat SV5

LSM N = 5 · 104 15.98 (0.04) 2.5 · 106 24

LSM N = 1.25 · 105 16.38 (0.03) 6.25 · 106 52

LHS km N = 2500 16.07 (0.16) 1.07 · 106 25

LHS km N = 10000 16.48 (0.06) 4.8 · 106 168

SUR km N = 4000 16.42 (0.11) 1.67 · 106 65

Agrawal, Juneja and Sircar

LSM N = 5 · 104 18.63 (0.03) 1.0 · 106 25

LSM N = 1.25 · 105 18.81 (0.02) 2.5 · 106 60

LHS km N = 2500 18.79 (0.04) 0.20 · 106 11

LHS km N = 10000 18.88 (0.02) 0.81 · 106 53

SUR km N = 4000 18.86 (0.02) 0.35 · 106 64

SUR km N = 10000 18.90 (0.01) 0.80 · 106 103

Table: Comparison of methods for different 2D stochastic volatility models.Ludkovski Adaptive RMC
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Kriging Performance

Kriging appears very promising as a flexible, off-the-shelf

regression framework

Gives smooth, non-parametric fits for C(t , ·)
Emphasizes the interpolation vs. smoothing aspect of

metamodeling

Easy implementation via public R packages

Order of magnitude slower than a Least-Squares model (not

important if simulations are the bottleneck)

Ludkovski Adaptive RMC
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Experimental Design Performance

Batching has minimal effect on performance (but major effect on

speed)

(Random) space-filling designs allow to reduce size of design by a

factor of 3-5

Compared to standard LSM this reduces simulation budget by

25-50%

Adaptive sequential designs
◮ Yield further substantial savings (up to an order of magnitude)
◮ Significant regression overhead as must fit multiple (kriging)

metamodels
◮ Worth it if in high dimensions d > 3 and simulation budget is very

constrained

Ludkovski Adaptive RMC
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Bermudan Max Call (max(X1,X2)− K )+

It is often nontrivial to specify a good domain X ′

This is the advantage of the empirical design

Sequential designs really begin to shine

Ludkovski Adaptive RMC
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The Future

Finding conditional expectations is a metamodeling problem

Can squeeze (a lot) of extra efficiency by jointly targeting

experimental design + regression

Lots more opportunities in this direction

e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

Also more general control problems (optimal switching, sequential

games, et cetera)

RMC = +

Ludkovski Adaptive RMC



../ucsbwave-cmyk.png

Intro Kriging Regression Designs Examples Summary Conclusion

The Future

Finding conditional expectations is a metamodeling problem

Can squeeze (a lot) of extra efficiency by jointly targeting

experimental design + regression

Lots more opportunities in this direction

e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

Also more general control problems (optimal switching, sequential

games, et cetera)

RMC = Regression + Stochastic Grid

Ludkovski Adaptive RMC
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The Future

Finding conditional expectations is a metamodeling problem

Can squeeze (a lot) of extra efficiency by jointly targeting

experimental design + regression

Lots more opportunities in this direction

e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

Also more general control problems (optimal switching, sequential

games, et cetera)

RMC = Regression + Stochastic Grid

THANK YOU!

Ludkovski Adaptive RMC
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Require: N – number of initial grid points

1: ST ← X
2: for t = T − 1,T − 2, . . . , 0 do

3: k ← 0

4: Generate an initial grid {x1:N
t }, and corresponding classifier S

(0)
t

5: while the current grid needs refining do

6: k ← k + 1

7: Generate new grid point(s) {x
(k),n′

t } n′ = 1, . . . ,N(k)

8: Simulate forward trajectories x
(k),1:N(k)

t+1:T . Using Ŝt+1:T find y (k),1:N(k)

9: Update the classifier to S
(k)
t using new samples (x

(k)
t , y (k))1:N(k)

10: (Update the classifiers Ŝt+1:T−1 using x
(k),1:N(k)

t+1:T−1 )

11: Save the overall grid {xt} ← {xt} ∪ {x
(k),1:N(k)

t }
12: end while

13: Generate final estimate of the classifier at time step t , Ŝt

14: end for

15: Simulate forward trajectories X n
0:T from X n = x0 using Ŝ0:T

16: return V (0, x0) ≃
1
N

∑N
n=1 hτn (X n

τn )

17: return Estimated policy {Ŝ0:T}.

Ludkovski Adaptive RMC
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Sequential Design for Regression Monte Carlo

Generate the grids adaptively online. [Vanilla RMC re-uses the grids during forward

simulations. We regenerate fresh paths at each step]

Start with initial grid Z(n0) ≡ {x1:n0

t }

Build initial approximation S
(n0)
t

LOOP for k = n0, n0 + 1, . . .

◮ Identify promising regions
◮ Generate new data {xk+1

t :T } and costs-to-go

yk+1
t = h(xk

τ
k+1)− h(xk+1

t ).

◮ Update the fit to S
(k+1)
t

END LOOP

Repeat above at each time-step t = T − 1, . . . , 1

Ludkovski Adaptive RMC
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