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Kriging models for aero-elastic simulations and reliability analysis of 

offshore wind turbine support structures 

The existence of uncertainties in material properties, environmental loads and soil 

properties as well as the presence of nonlinearities introduced by the control systems 

have a remarkable influence on the dynamic response of offshore wind turbine (OWT) 

support structures. The reliability computations of these structures need to consider 

implicit expensive-to-evaluate limit state functions, implying large computational costs. 

This paper addresses these limitations by proposing a computationally-efficient 

reliability framework for OWT support structures, based on the use of a kriging model 

to approximate the response of the system, capturing both the dynamic behaviour of the 

structure and inherent uncertainties. The surrogate model is built with sample points 

from stochastic fully coupled simulations in the time-domain. A thorough sensitivity 

study is performed on the influence of number of sample points, the seeds used to 

obtain each point, the range of the variables and the inherent variability in turbulent 

wind and stochastic waves. The framework is used to evaluate the reliability of the 

NREL 5 MW turbine model, mounted on a monopile with a flexible foundation for the 

severest Design Load Cases (DLCs) from the IEC 61400-3. The results agreed with the 

general literature showing that the structure is far from failure. 

Keywords: Offshore wind turbine; Design load case; Support structure; Kriging; 

reliability; surrogate models 

1. Introduction 

The Offshore Wind Turbine (OWT) industry is rapidly maturing with an exponential increase 

in the installed capacity of offshore wind farms. Nowadays, the market is moving to floating 

OWT concepts while the solutions for fixed structures in shallow waters are not yet 

optimised. Also, it has been recommended that an appropriate approach be developed to 

determine the target reliability levels for fixed structures in order to capture the design 

changes with more rational safety factors (Jha et al. 2009).  

The Levelised Cost Of Energy (LCOE) is an indicator to compare the cost of energy, 

and it is key for the development of offshore wind to lower it through optimisation. To 



achieve that, a deeper understanding of the reliability levels delivered by the current 

standards is essential. The current design of OWT support structures is performed largely 

following the IEC 61400-3 standard (IEC 2009) based on the Load and Resistance Factor 

Design (LRFD), which defines several design situations representing the various modes of 

operation of the turbine, each deriving into a large number of Design Load Cases (DLCs), 

with their associated load factors. The design standard offers guidance on methods to 

evaluate the DLCs in order to check the structural integrity of the OWT. It was created by 

combining the offshore Oil & Gas standards and the existing onshore wind energy design 

standards, which were first addressed in the RECOFF (Norton and Quarton 2003) project, 

proposing a series of recommendations for the design of OWT (Norton and Quarton 2003), 

and leading to the elaboration of IEC 61400-3 (IEC 2009). In spite of these efforts, it is 

generally acknowledged that the reliability levels achieved by following the standards are not 

yet clear and the resulting partial safety factors might not be optimal for OWT. 

An essential step towards the understanding of the effectiveness and rationality of the 

partial safety factors is to develop efficient frameworks or methods to assess the reliability of 

such structures, and this is a challenging task due to the computational simulations involved. 

When time-domain simulations are employed, each evaluation of the Limit State Function 

(LSF) may imply a large computational cost. As a consequence, some authors limited the 

scope of analysis. Wei et al. (2014) used an incremental wind-wave analysis under extreme 

loading, using a static pushover analysis (similar to the approach used for Oil & Gas 

structures), and applied it to a jacket and a monopile structure. A single and two-parameter 

approach was used, both leading to a very high reliability index for the monopile with a LSF 

based on the plastic moment; their study, however, did not account for the dynamic effects of 

the structure itself nor for the nonlinearities introduced by the turbine controllers. (Kim and 

Lee 2015a) avoided the expensive computational time domain simulations by estimating a 



dynamic peak response using static response and a dynamic amplification factor. This was 

applied to a jacket support structure during a parked situation under extreme loading and the 

LSF was linked to the displacement of the structure at mudline. A different approach was 

taken by Muskulus and Schafhirt (2015), by creating a decoupled linear numerical model and 

obtaining the structural response through impulse-response functions for an arbitrary load 

time series. They applied it to a monopile and jacket structure with similar results to the 

previous studies; the design was far from failure and the highest values were obtained for 

operational DLCs. Assuming that the stochasticity of the variables, the nonlinearities 

introduced by the turbine controls and the dynamic time domain simulations are unavoidable, 

(Carswell et al. 2014a) analysed the reliability of a monopile substructure using fully coupled 

simulations. They used the p-y method to model the soil-structure interaction and the LSFs 

were taken as the displacement and rotation of the pile head at mudline. It was observed that 

the uncertainty in soil properties greatly influences the overall reliability, while the tower 

damage and the associated stiffness reduction dramatically alter the tower response. Recently, 

Yang et al. (2015) proposed a methodology for the design optimization based on Kriging 

model which replaces the original decoupled numerical simulation of the Finite Element (FE) 

model. They used the Von Mises stress, tower top displacement and natural frequency to 

optimise the structure weight and study a jacket support structure. It is however still missing a 

fully coupled model with aero-hydro-servo-elasto simulations which are able to 

comprehensively capture the most important failure modes of these structures at different 

levels, from tower top to the base of the foundation. 

Motivated by the need to develop a computationally efficient framework for the 

reliability analysis and to take the applicability of the kriging approach further, in this paper 

we extend a methodology introduced in Morató et al. (Sept 2015) making use of stochastic 

fully coupled simulations, which capture both the dynamic behaviour of the structure and 



inherent uncertainties, followed by detailed finite element analysis for reliability 

computations. The accuracy of the different methods for constructing the kriging model is 

also studied. This paper also intends to gather the most common LSFs found in the literature 

representing common failure modes of different parts of the structure, such as the foundation, 

blades and the tower. The method is based on an interface between FAST 8 (J. M. Jonkman 

and Buhl 2005), an aero-hydro-servo-elastic simulator developed by National Renewable 

Energy Laboratory (NREL) and the FE analysis software Abaqus®. The Kriging method is 

proposed to approximate the outcomes of the computational interface. First, several design 

points are generated through a random sampling technique. Then, using these points, a model 

is constructed to replace the original computational interface. Finally, Monte Carlo 

simulations, First and Second Order Reliability methods (FORM and SORM) are used to 

perform the reliability analysis and derive the reliability index. By using a surrogate model, 

additional stochastic variables such as material and geometric properties, as well as loads can 

be incorporated in the analysis. Also, the Apparent Fixity (AF) (Bush and Manuel 2009) 

method is used to model a flexible soil-pile interaction, thus additional uncertainties coming 

from the soil properties are also incorporated. The approach is demonstrated by applying to 

the benchmark NREL 5 MW monopile OWT (J. M. Jonkman et al. 2009). 

2. Kriging models 

2.1 Metamodels and reliability 

The most widely used and established method for the reliability analysis is the Monte Carlo 

simulation (MCS) method. This technique is probably the best option for reliability problems 

with explicit limit state functions which are “easy” or “cheap” to evaluate. It can also be 

improved with variance reduction techniques such as importance sampling or subset 

simulations when higher accuracy is needed around the failure region. However, when it 

comes to complex structural systems, powerful and advanced numerical models might be 



required for the reliability analysis. Besides, OWT structures are normally designed to obtain 

very low probabilities of failure, which implies that an implicit LSF be solved several 

thousand times, resulting in a prohibitively large computational effort. A solution for this 

problem is to use metamodels, also known as surrogate models or response surface methods. 

A metamodel is nothing but a model of a model: it constructs a relationship between the 

design variables and corresponding responses using relatively few sampling points and the 

original complex model is effectively replaced by a transfer function called response surface. 

The LSF is no longer an implicit expensive-to-evaluate function but an explicit function, 

which can now be used with traditional reliability methods. There are different types of 

metamodels, of which the polynomial response surfaces method is the most common one 

used in engineering problems. It was first applied to a structural problem by (Bucher and 

Bourgund 1990) in which a two-stage method was applied with a quadratic response surface 

function. Kriging method is another type of surrogate model that uses interpolation based on 

the assumption that there is a spatial correlation between the model predictions (Kaymaz 

2005). Kriging was originally developed in geostatistics (also known as spatial statistics) by 

the South African mining engineer called Krige. The Kriging models do not assume an 

underlying global functional form as assumed in the polynomial regression models (e.g. first- 

or second-order polynomials) and can approximate arbitrary functions with high accuracy in 

global as well as local levels. These models are frequently described in the literature as the 

realisation of a stochastic field or Gaussian processes. Kaymaz (Kaymaz 2005) compared the 

Kriging method with the polynomial response surface method using different numerical 

examples, including the effect of the kriging parameters, and observed that the kriging 

method showed great accuracy. Also, several researchers proposed different correlation 

functions and studied the compatibility with the regression functions in different industries 

(Rasmussen 2006; Santner, Williams, Notz 2013). In recent years, the potential of the 



Kriging method for structural reliability estimates has been discovered, resulting in many 

relevant studies assessing its efficiency (Gaspar et al. 2014; Shi et al. 2015; Zhang et al. 

2015a). 

2.2 Fundamentals of Kriging models 

The idea of Kriging method is to estimate the value of the output from the sum of the 

weighted values of the known surrounding sample points 𝑋 = (𝑥1 … 𝑥𝑛) with 𝑥𝑖 ∈ ℝ𝑚. The 

corresponding responses 𝑌 = (𝑦1 … 𝑦𝑛) with 𝑦𝑖 ∈ ℝ𝑝 of these experimental points 𝑥𝑖 are 

obtained from the complex numerical model simulations. Then, a predicted value 𝑌̂ is 

expressed in two parts as 

𝑌̂(𝑥) = 𝑓(𝑥) + 𝛿(𝑥), (1) 

where 𝑓(𝑥) is the regression function (or trend) and is based on the data, and the Gaussian 

process 𝛿(𝑥) is constructed through the residuals with mean 0, variance 𝜎2and a covariance 

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) = 𝜎𝑙2𝑅(𝜃, 𝑥𝑖 , 𝑥𝑗),    𝑙 = 1, … , 𝑝 (2) 

where 𝑅(𝑥𝑖 , 𝑥𝑗) is the correlation function, 𝜎𝑙 is the process variance for the 𝑙th component 

and 𝜃 represents the hyperparameters. The regression function is defined as a multivariate 

polynomial which takes the form 

𝑓(𝑥) = ∑ 𝛽𝑖. 𝑏𝑖(𝑥)𝑛
𝑖=1 , (3) 

where 𝛽𝑖 denotes the coefficients and 𝑏𝑖(𝑥) denotes the basis functions such as the power 

base for a polynomial. In some kriging variants, the regression function might be taken as 0 



(e.g. simple kriging) or set to a constant 𝑓(𝑥) = 𝑏0 (e.g. ordinary kriging). In simple words, 

the regression function captures the general trend of the data and the Gaussian Process 

interpolates the residuals. Selecting the correct regression function is a difficult problem; 

hence, the regression function is often chosen as a constant, which has been proven to be 

enough for common engineering problems.  

The stochastic part shown in Equation (1) includes the correlation function, which is a 

function of the distance between surrounding data point and the distance between data points 

and the predictor point, respectively. The correlation functions are semivariograms that 

define the degree of spatial correlation between data points in stochastic processes, a 

correlation function of the type 𝑅(𝒙𝒊, 𝒙𝒋) = 𝑅(𝒙𝒊 − 𝒙𝒋), is generally selected (Sacks et al. 

1989), which is largely dependent on the separation distances. The correlation function 𝑅(𝒙𝒊, 𝒙𝒋) is to be chosen and several correlation functions are suggested in the literature. The 

Gaussian and exponential correlation functions are probably the most used, however, others 

such as the simplified Matérn functions with shape parameter 𝑣 = 3/2 and 𝑣 = 5/2, known 

as Matérn-3/2 and Matérn-5/2 respectively, are also suggested in the literature. Others less 

common could be the linear, spherical or circular correlation functions. For example, the 

correlation function for the distance between a data point 𝑥 and the predictor point 𝑥0 will 

take the form: 

 Gauss / exponential 

𝑅(𝑥 − 𝑥0, 𝜃, 𝑞) = 𝑒𝑥𝑝 (− |𝑥 − 𝑥0|𝑞𝜃 ) (4) 

 Matérn 



𝑅(𝑥 − 𝑥0, 𝜃, 𝑣) = 12𝑣−1(𝑣) (2√𝑣 |𝑥 − 𝑥0|𝜃 )𝑣
𝑣 (2√𝑣 |𝑥 − 𝑥0|𝜃 ) (5) 

where 𝑞 denotes the smoothness of the function; the function is either Gaussian or 

exponential when 𝑞 = 2 or 𝑞 = 1, respectively,  is the Euler Gamma function, 𝑣 is the 

Bessel function of the third kind and 𝜃 ∈ ℝ𝑚 denotes the hyperparameters of the function, 

which are calibrated using the Maximum Likelihood Estimation (MLE).The dimension of the 

hyperparameter is the same as the dimension of each sample point, which is the number of 

random variables. It is interesting to note that an unreliable prediction will be derived if there 

are large distances or few clusters surrounding the predictor location. On the other hand, 

kriging is the best linear unbiased estimator for intermediate points. Also, a data point will 

have different kriging weights for another predicted estimation. Figure 1 show how the 

correlation function may differ from each other depending on 𝜃 and how each function can 

change as a function of 𝜃 as well. 

3. Reliability analysis approach 

3.1 Fully coupled simulations 

The dynamic analysis is performed using an interface between an aero-hydro-servo-elastic 

simulation and structural finite element analysis, both linked with Matlab®, which allows the 

simulations to run in batch mode. All the hydrodynamic, aerodynamic and internal nonlinear 

loading are calculated using FAST v8 (developed by Jonkman and Buhl at NREL (J. M. 

Jonkman and Buhl 2005)), and Abaqus® is chosen to perform the finite element structural 

analysis. The interface between FAST and Abaqus enhances the opportunities for efficient 

reliability computations, capturing the possible nonlinearities as the analysis progresses. 

However, in this paper the interface was only used for Von Mises stress. Also, both material 

and geometry nonlinearities are introduced in the reliability analysis through variables.   



FAST v8 uses a modularisation framework to simulate the non-linear coupled 

dynamic performance of offshore and onshore Horizontal-Axis Wind Turbines. The aero-

hydro-servo-elastic tool FAST is used as an interface between different modules such as 

AeroDyn, HydroDyn, ServoDyn, ElastoDyn and SubDyn that feed it. The wind acting on the 

rotor and tower, the global structural dynamics and the hydrodynamic loading are reduced to 

tower top resultant loads (3 forces and 3 moments) and a hydrodynamic moment at the 

seabed. These loads calculated by FAST are then applied to the Abaqus® model, which 

performs a time-domain dynamic analysis applying the time-varying tower top loads and 

hydrodynamic moment. The introduced material and geometric uncertainties capture the 

influence of parameters such as thicknesses or Young’s modulus. A scheme representing the 

interface can be seen in Figure 2 and further information about this computational framework 

and its validation can be found in (Morató et al. 2015). 

The turbulent wind field is computed by TurbSim (B. J. Jonkman 2009). The 

conventional method for controlling power-production operation relies on the design of two 

basic control systems: a generator-torque controller and a full-span rotor-collective blade-

pitch controller. The goal of the generator-torque controller is to maximize power capture 

below the rated operation point. On the other hand, blade-pitch controller aims to regulate the 

generator speed above the rated operation point by feathering (pitching) the blades, limiting 

the thrust force and keeping the outputted power constant. ServoDyn calls the already-proven 

and validated NREL offshore 5-MW wind turbine’s baseline control system, which was 

developed by NREL as an external Dynamic Link Library (DLL). Further information about 

this routine can be found in (J. M. Jonkman et al. 2009). It is assumed that the wind turbine is 

class II within the framework found in IEC (IEC 2005). The turbulence reference intensity is 

chosen as B (0.14) as class A is unlikely to be found offshore, unless the spacing within the 

wind farm is lower than typically found, and hence quite conservative. HydroDyn uses 



Morison’s equation to model the hydrodynamic loading. Here, depending on the sea state 

condition, either Airy’s or 2nd order stokes theory are used to derive wave kinematics and 

then evaluate the inertia and drag loading (through an inertia coefficient and a drag 

coefficient). The monopile is treated as a slender Morison’s element and thus the use of 

potential theory (radiation and diffraction) is not needed.  The current is modelled as a near-

surface current: the model follows a linear relationship down to a reference depth. Further 

information can be found in FAST user guide (J. M. Jonkman and Buhl 2005). 

3.2 Limit state Functions 

There is a significant amount of literature focusing on the reliability of OWT structures 

(Agarwal 2008; Carswell et al. 2014; Kim and Lee 2015; Muskulus and Schafhirt 2015), 

however most of it deals with substructures, structures or blades separately. This paper takes 

advantage of the framework presented, which performs fully coupled simulations using a 

flexible foundation, being capable of bringing together the LSFs analysis from the tower top 

to the foundation level. The LSFs used herein show the main LSFs currently used in general 

research for this type of structures for ULS or Serviceability Limit State (SLS) such as plastic 

yielding, local buckling or maximum displacement or rotation at certain points of the 

structure. 

One example of LSFs is the condition that the maximum Von Mises stress reaches 

yield at any point in the structure. It is used in (Yang et al. 2015) as a reliability-based design 

optimization constraint and in (Morató et al. 2016) for reliability evaluation. This is a very 

conservative condition as first yielding at a point does not necessarily imply collapse. The 

highest 𝑃𝑓 is expected to come from this equation, expressed as follows: 

𝑔 = 𝑓𝑦 − 𝜎𝑉𝑀 (5) 



where 𝑓𝑦 is the yield strength, and 𝜎𝑉𝑀 denotes the maximum equivalent stress. Another ULS 

failure criteria of a structure is likely to come from plastic yielding; it is related to the cross 

section strength and it occurs when the acting bending moment is higher than the bending 

resistance to plastic yielding. Beyond that stress state, the material starts deforming 

plastically and a hinge is formed. This is assessed with a simplified failure criterion based on 

the design standards (DNV 2010 and NORSOK 2004) shown in Equation 6 at the relevant 

points on the structure, i.e., tower base and mudline level as: 

𝑔 = 𝑍𝑓𝑦 − 𝑆𝑀 = 16 (𝐷3 − (𝐷 − 2𝑡)3)𝑓𝑦 (6) 

where 𝑍 is the plastic section modulus expressed as a function of the diameter 𝐷, and the 

thickness 𝑡, 𝑆𝑀 is the acting bending moment at the corresponding section. This LSF was 

used for reliability-based design in (Muskulus and Schafhirt 2015) and to assess the structural 

capacity in (Wei et al. 2014). 

For OWT structures the factor 𝐷/ 𝑡 is of great importance for cost reduction (less 

volume of steel) and in dynamic assessment to match the desired natural frequency. The 

tendency is to use as high a ratio as possible, which may cause failure under local buckling. 

We use a simplified model for local buckling failure of an OWT support structure in shallow 

waters, as explained in (Sørensen and Toft 2010; Sorensen and Tarp-Johansen 2005) for 

optimization purposes and also used for the reliability assessment in (Morató et al. 2016). The 

LSF is written as follows, 

𝑔 = 𝑀𝑐𝑟 − 𝑆𝑀 (7) 

where, 𝑀𝑐𝑟 resistant bending moment, and 𝑆𝑀 represents the bending moment at the tower 

base level. The resistance 𝑀𝑐𝑟 can be obtained as 



𝑀𝑐𝑟 = 16 (1 − 0.84 𝐷𝑡 𝑓𝑦𝐸 )(𝐷3 − (𝐷 − 2𝑡)3)𝑓𝑦 (8) 

where 𝐷 and 𝑡 are the diameter and thickness at tower base level respectively, and 𝐸 denotes 

the Young’s Modulus. It applies a reduction factor to account for buckling on the plastic 

moment which directly depends on the magnitude of 𝐷/ 𝑡. As seen in Figure 3, for a given 

diameter (6m), the higher the 𝐷/ 𝑡 the lower the buckling resistance and the bigger the 

difference with the plastic moment. As for the plastic yielding failure criterion, the model for 

local buckling is applied at the tower base and mudline level, which are critical locations for 

the substructure integrity. The first one has the section with highest D/t ratio and it is where 

the transition piece is located, whereas the second one withstands the severest moments and 

interacts with the soil.  

Another type of LSF for a ULS is the gap between the tower and the tip of the blade. 

This parameter is critical for the design of the blades as it limits their length. If this distance 

is 0 the blade crashes against the tower causing failure of the blade and most likely damaging 

the tower severely. An additional LSF relates to the foundations, typically defining a limit for 

excessive deflection/rotation. Some authors used this type of LSF limiting the displacement 

and rotation at the tower top (Yang et al. 2015) and at the mudline level if a flexible 

foundation is used (Carswell et al. 2014a; Carswell et al. 2014b). 

3.3 Creation of the metamodel and reliability analysis 

As explained previously, the kriging models are used to approximate responses such as the 

Von Mises stress (𝜎𝑉𝑀) or the bending moment at tower base level (𝑀) with the aim of 

obtaining the response surface; 𝜎𝑉𝑀,𝑘𝑟𝑖𝑔 and 𝑀𝑘𝑟𝑖𝑔. The first step in the creation of a 

metamodel is to define the number of random variables (i.e. thickness, Young’s modulus, 

mean wind speed, 𝐻𝑠, etc.), their distributions and the distribution parameters. Subsequently, 



the Design of Experiments (DoE) is carried out defining the number of the sample points and 

an efficient spatial distribution. There are different techniques for DoE such as Central 

Composite Design (CCD) (Barker 2005), Box-behnken (Box et al. 1978) or Latin Hypercube 

Sampling (LHS) (Wang 2003). In this paper, the LHS sampling technique is chosen and the 

number of sampling points are carefully picked. A good initial range for the stochastic 

variables to cover 99% of the probabilities is three times the standard deviation. 

The computational interface described in Figure 4 is used to obtain the structural 

response (i.e. tower base bending moment, displacement at mudline, etc.) for the chosen 

sample points, and the outputs vector (𝑝 = 1) corresponding to the sample points matrix are 

formed (i.e. maximum tower base bending moment of each simulation). In order to apply the 

kriging method, two specific Matlab® toolboxes available in the public domain called are 

used, see Section 5. The kriging result is a very long expression which is not tractable 

manually but computationally-cheap to evaluate. A cross-validation plot may be used to 

check the accuracy of the model. It is interesting to note that the kriging method is the best 

linear unbiased predictor for intermediate points and hence an almost perfect fitting at the 

sample points is expected. The last part of Figure 4, shows the reliability technique used for 

the analysis. In this case MCS and FORM/SORM (Hohenbichler et al. 1987) are used to 

derive the probability of failure of each LSF for each DLC. 

4. APPLICATION EXAMPLE 

4.1 Benchmark and site specifics 

The structure used for the study is the 5MW monopile OWT model from the OC3 project 

with a water depth of 20m (J. Jonkman and Musial 2010). The platform has a constant 

thickness of 0.06m with a diameter of 6m whereas the tower diameter and thickness decrease 

linearly, the diameter from 6 to 3.87m and thickness from 0.027 to 0.019m, further 

information can be found in (J. M. Jonkman et al. 2009). The location chosen for this study is 



the Ijmuiden Shallow Water Site from the Upwind design basis (Fischer et al. 2010). The site 

is found in the Dutch North Sea, with coordinates 52º33’00” north and 4º03’30” east. 

4.2 Flexible foundation model 

The difference between using a rigid or flexible foundation in the dynamic analysis of an 

OWT may significantly influence the structural response as shown in (Bush and Manuel 

2009). In this paper, the flexible apparent fixity (AF) model is considered, as it is the only 

way to model a flexible foundation in FAST. The idea of the AF model is to replace the 

interaction between the pile and the surrounding soil by a fictitious cylinder that is fixed not 

at the original mudline but at a lower depth, as in Figure 5. The depth of the cantilevered 

beam and its flexural rigidity are derived so as to have the same stiffness as the true pile-soil 

system.  

It is important to highlight that the properties of this fictive cylinder are totally 

dependent on the loading conditions; each different cylinder will correspond to specified 

levels of shear and moment at the true mudline. To determine the depth and flexural rigidity 

of the fictitious cylinder this procedure is followed: first, a stochastic simulation with the 

desired wind and wave conditions is carried out using a fixed-based model and the time-

series of shear and moments at mudline are obtained. Second, the true pile with the true soil 

layers and conditions is modelled in a pile lateral load analysis program such as OPILE®. 

Then, 50 random pairs of shear and moment from the fixed-base simulation are picked and 

applied in OPILE® at the pile head in order to obtain 50 pairs of pile head displacement and 

rotation.  The length (𝐿) of the fictive cylinder and the flexural rigidity (𝐸𝐼) are chosen such 

that they will produce the same rotation (𝜃) and lateral deflection (𝑤) at its free end (original 

mudline) under the shear 𝐹 and moment 𝑀 applied at the mudline. Then the parameters 𝐿 and 𝐸𝐼 for each pair of 𝐹 and 𝑀 are derived using the following equations: 



𝑤 = 𝐹𝐿33𝐸𝐼 + 𝑀𝐿22𝐸𝐼  

(9) 

𝜃 = 𝐹𝐿22𝐸𝐼 + 𝑀𝐿𝐸𝐼  

The apparent fixity length and the flexural rigidity values used in the AF model for 

the given sea state are taken as an average of the 50 pairs of 𝑤 and 𝜃. The results for the 

considered DLCs are shown in Table 1. 

4.3 Design load cases 

The aim of this study is to analyse the reliability of the well-known 5MW NREL baseline 

OWT benchmark structure for the severest DLCs from the IEC (IEC 2009). It is worth to 

mention that this structure was not designed following the IEC, but rather specified based on 

industry trends and information from other reference turbines. Consequently, the resulting 

reliability is not the one delivered by the standards. Therefore, the results shown herein ought 

not to be used in reliability-based code calibration, but as an indicator of the reliability of the 

structure. The benchmark structure is explained in more detail in the following sections. 

The selection of the DLCs is based on a previous study (Morató et al. 2017), which 

systematically analysed a subset of Ultimate Limit State (ULS) load cases proposed by the 

IEC 61400-3, identifying the most critical among them in terms of key design parameters. 

The results showed that the highest overturning moment at the mudline level was caused by 

DLC 1.6a and 6.2a, both driven by the hydrodynamic loading. For this study we picked the 

first 3 stochastic DLCs from the ranking, which are DLC 1.3, 1.6a and 6.2a. Reliability 

techniques are applied to the DLCs with specific conditions for each DLC, which are 

explained in the following subsections.  



4.3.1 DLC 1.3 

This power production DLC uses the Extreme Turbulent Model (ETM), Normal Sea State 

(NSS) with the significant wave height (𝐻𝑠) conditioned on the wind speed, with the wave 

kinematics based on linear wave theory, Normal Current Model (NCM) and the Mean Sea 

Level (MSL) during operational conditions. It is simulated with a slight misalignment to 

account for the lack or delay of yaw controller. The DLC requires six 10-minute simulations 

for each mean wind speed. The most demanding conditions within the DLC appeared for an 

8° yaw angle and a wind speed close to rated (14m/s) which corresponds to a 𝐻𝑠 of 1.91m 

and a peak spectral period (𝑇𝑝) of 6.07s. 

4.3.2 DLC 1.6a 

The DLC 1.6a requires the Normal Turbulent Model (NTM) and follows the Severe Sea State 

(SSS) with a significant wave height conditioned to the wind speed 𝐻𝑠 = 𝐻𝑠,𝑆𝑆𝑆(𝑉). The 

standard allows using the unconditional extreme significant wave height 𝐻𝑆50 with a 

recurrence period of 50 years as a conservative value for 𝐻𝑠,𝑆𝑆𝑆(𝑉) (IEC 2009). The analysis 

uses 𝐻𝑆50, implying that 𝐻𝑠 stays constant for all wind bins. The 𝐻𝑠 for a 1-hour simulation 

period may be obtained from the value corresponding to a 3-hour reference period (IEC 

2009) using a conversion factor of 1.09. The current model is NCM, and the water offset is 

taken as the highest value within the Normal Water Level Range (NWLR), which is the 

Highest Astronomical Tide (HAT). In that case, the most demanding situation came with 8° 

of yaw angle and the rated wind speed 12m/s, with the value of 𝐻𝑆50 taken as 8.07 and 𝑇𝑝 as 

11.3s (Morató et al. 2017). In this case, giving the combination of 𝐻𝑠, 𝑇𝑝  and water depth, 

the Airy wave assumption is not reliable anymore: the appropriate wave theory would be 

stokes 3rd order. However, HydroDyn only supports formulations up to stokes 2nd order, 

which is used instead. This applies to section 4.3.3 as well. 



4.3.3 DLC 6.2a 

DLC 6.2a recreates a parked/idling condition, which aims to simulate a special event: the loss 

of network of the wind turbine, which means that if the turbine does not have a battery 

backup of the yaw drive it will lose control over it. The way to model this extra condition is 

by running the simulations for the full range of possible yaw misalignment angles, which is ±180°. It requires the Extreme Wind Model (EWM) with the Extreme Sea State (ESS) and 

wave kinematics based on second order. The DLC uses the Extreme Current Model (ECM), 

as well as the Highest Still Water Level (HSWL) within the Extreme Water Level Range 

(EWLR). It was found in (Morató et al. 2017) that the combination leading to the highest 

overturning moment was with 30° of wind/wave misalignment and a 90° and -90° of yaw 

angle. The conditions for the three DLCs are summarized in Table 2. 

5. Sensitivity analysis 

The effectivity of the metamodels have been already proven satisfactory for reliability 

systems where the outputs of the experiments follow an expected trend (Kaymaz 2005; 

Gaspar et al. 2014; Zhang et al. 2015) . However, the effectivity of this methodology when 

the transfer function is found for noisy data or for points which are outputs from aero-elastic 

simulations is still unpredictable. Time-series of coupled simulations include strong 

nonlinearities due to the control systems, and the intrinsic randomness due to turbulent wind 

and/or stochastic wave profiles. This section aims to study the sensitivity of the kriging 

model applied to aero-elastic simulations for the design of offshore wind turbines. In the 

following subsections, different sensitivities are analysed, such as the effect of the implicit 

randomness in the wind turbulence and water surface, the range of the variables, the number 

of experimental points and seeds as well as the kriging functions themselves. To do that, a 

large number of simulations is carried out with different combinations of steady/turbulent 



wind, regular/irregular waves, number of sample points and seeds used to construct each 

sample point.  

One of the advantages of using the Kriging model to estimate the response of an aero-

elastic simulation is that each simulation can output any requested output channel so, if 

necessary, the channel to be modelled can also be chosen after the simulations are carried out, 

which adds flexibility to the proposed framework for reliability. It is also important to 

mention that some extra variability may be expected as the random variables used for the 

sample points such as the mean wind speed or 𝐻𝑠 are used to create frequency spectra, which 

then results in a random turbulent wind field and random wave profile, producing different 

time-series (with same variance) for the same mean values. To validate the overall behaviour 

of each model, the Root Mean Squared Error (RMSE) is taken as an excellent general-

purpose error metric for numerical predictions, as it amplifies and severely punishes large 

errors: 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑(𝑌̂ − 𝑌)2𝑛
𝑖=1  (10) 

where n is the number of validation points, 𝑌̂ and 𝑌 are the predicted and the actual values for 

each of them. 

To construct the Kriging models, we used two Matlab® toolboxes available on the 

public domain. The first one, ooDACE (Couckuyt et al. 2014) is being developed at Ghent 

University and it is an object-oriented toolbox for building kriging surrogate models. The 

outcome from the ooDACE toolbox is compared with the results obtained using the 

framework for uncertainty quantification developed by the UQLab at the ETH in Zurich 

(Lataniotis et all. 2015). This framework provides the tools to compute kriging parameters or 

to perform reliability or sensitivity analysis. The toolbox provides highly customisable and 



advanced options for fitting and optimising the metamodeling, allowing us to compare the 

results using different regression/correlation functions as well as optimisation algorithms. 

5.1 Regression and correlation functions and sample points 

Firstly, a sensitivity analysis is performed on the regression and correlation functions as well 

as the number of sample points used to construct a Kriging model and the range of the 

random variables. Four sets with 25, 50, 75 and 100 points are chosen, as well as an extra set 

of 125 points that is used to validate each model. Then, each set of sample points is used to 

construct different models with different regression and correlation functions. 

Two stochastic variables are chosen in this section, the mean wind speed (𝑉𝑟) and the 

thickness at the tower base (𝑡𝑡𝑜𝑤𝑒𝑟), which affects the whole tower as it changes linearly. The 

first variable is related to the loading and the second one to resistance. In this sub-section, the 

range of 𝑉𝑟 is kept within the rated wind speed bin [10-12m/s], whereas the range of 𝑡𝑡𝑜𝑤𝑒𝑟 is [𝜇 − 3, 𝜇 + 3]. Regarding the Kriging model, the regression functions studied are simple 

(with 0 mean), ordinary (unknown mean), linear and quadratic, whereas the correlation 

functions are Gaussian, Matern 3/2, Matern 5/2, linear and exponential. The results in this 

section are presented for the Von Mises stress at the base of the tower for different 

combinations of regression/correlation functions. To make the error dimensionless, the 

RMSE is divided by the mean of the actual values of the validation points, also the scale is 

kept the same for all the subplots to better capture the differences. The results showed that 

kriging models approximate very well the response of the wind turbine when the inherent 

variability is low, such as steady wind and still water or regular waves. Then, the accuracy 

tends to decrease when randomness is included through irregular waves or turbulent wind. 

The same happens for the influence of the number of sample points: the lesser the variability 

in the simulations, the clearer the improvement with more sample points; whereas in cases 



with turbulent wind and/or irregular waves the effect of the number of sample points is 

minor. Results are shown in Figure 6 using ordinary kriging. 

Regarding the influence of the regression and correlation functions, the results look 

better overall with a linear regression function and the Matern 5/2 correlation function. 

However, ordinary kriging and linear regression function seem quite consistent, delivering an 

RMSE around 2.5-3% (Figure 6c) and 2-2.5% repectively in the worst case with turbulent 

wind and irregular waves. We also noticed that linear and quadratic regression functions do 

not get along with linear and exponential correlation functions, giving incongruences when 

fitting the model. The kriging models using linear regression function with Matern 5/2 and 

ordinary kriging with exponential correlation functions are shown in Figure 7 for a model 

with 50 sample points, turbulent wind and stochastic irregular waves. Notice why the kriging 

models are the best linear unbiased predictors for interpolation points -the black dots are the 

predicted values of the sample points and the surface fits them perfectly-. 

5.2 Stochasticity of waves 

This section aims to understand the contribution of the different types of waves (regular and 

irregular) and wind profiles (steady and turbulent) to the kriging model error, as well as that 

of the number of sample points and the range of the variables. The mean wind speed is one of 

the most important variables for this type of simulations and many design load cases include 

simulations within the cut-in to cut-out range. It has already been seen that one of the 

consequences of the control system is that the structure is most loaded when the wind speed 

is close to rated (Morató et al. 2017) One may approach this situation in two ways: to carry 

out the simulations with a mean wind speed only within the rated wind speed bin (𝑉𝑟 =±1𝑚/𝑠) with the corresponding 𝐻𝑆 and 𝑇𝑝 (1.7m and 5.88s) as in section 4.1 or, on the other 

hand, to study the entire range (𝑉𝑖𝑛 < 𝑉𝑟 < 𝑉𝑜𝑢𝑡) with the conditioned 𝐻𝑆 and 𝑇𝑝 for each 

mean wind speed. These two approaches are performed with two random variables. In 



addition, to study the influence of waves the two sets are run also for still water, regular 

waves and irregular waves, Table 3 summarises the simulations. 

The results -using again Von Mises stress at tower base- from all the simulations are 

captured in Figure 8 with the kriging model built with linear and matern 5/2 regression and 

correlation function correspondingly. One can see how expanding the range of a random 

variable increases the error and the number of sample points acquire more relevance, whereas 

restricting the variable to a smaller range increases accuracy. Also, the error for regular 

waves and still water is very small and decreases with increasing number of sample points in 

both cases, whereas the error with irregular waves decreases too if 𝑉𝑖𝑛 < 𝑉𝑟 < 𝑉𝑜𝑢𝑡, but it 

does not seem to be influenced by the number of sample points 𝑉𝑟 = [10, 12].  
5.3 Wind turbulence 

Turbulence is the variation of the mean wind speed over time and space and it is introduced 

to the aero-elastic simulations through turbulence intensity (𝜎1) (IEC 2009). This parameter 

depends on the wind turbine class or the turbulence model and affects the standard deviation 

of the wind speed profile. For the NTM, it is: 𝜎1 = 𝐼𝑟𝑒𝑓(0.75𝑉ℎ𝑢𝑏 + 5.6). Proceeding the 

same way as in Table 3, a large number of simulations is carried with still water and different 

turbulence intensities (12,14 and 16%) for different sets of sample points and two ranges of 𝑉𝑟. 

Figure 9 shows the RMSE of the Von Mises stress at tower base for each 

combination. Here, one can see the same pattern: with 𝑉𝑖𝑛 < 𝑉𝑟 < 𝑉𝑜𝑢𝑡 there is a decreasing 

RMSE with the number of sample points, whereas for 𝑉𝑟 = [10, 12] this trend is less 

noticeable. However, the error is lower for all combinations. It is remarkable what an error 

the turbulent wind introduces to the model, although the difference between higher or lower 

turbulence intensities is negligible.  



5.4 Number of seeds 

In this sub-section, the number of seeds used to obtain each sample point is studied. In this 

case, the simulations are carried out with a turbulent wind field as well as stochastic irregular 

waves. The range of the mean wind speed is chosen to be 𝑉𝑟 = [10, 12]. It is important to 

mention that this study implies high computational effort as the simulations required for each 

set of sample points are the product of the number of sample points and seeds, leading to a 

very large number of simulations. Due to computational limitations, only the set with 75 

sample points is picked, and 2, 4, 6 and 8 seeds are used to obtain each sample point to 

construct the model. This methodology would be closer to what the code (IEC 2009) requires, 

which is six 10-minute simulations in case there is stochastic wind or waves. In this case, the 

average of the highest computed loads for different stochastic realisations shall be taken. 

The results are shown in Figure 10a, where a nice decreasing trend over the number of 

seeds is observed. Two relevant ideas can be inferred from this figure, first is that even with 

just one seed for each sample point the RMSE is just about 2%; and second, it seems that, in 

order to reduce the RSME to half, the number of sample points must be quadrupled. Also, it 

is interesting to see how the larger the number of seeds, the flatter the model, and the lesser 

the error and variability. This subsection is useful to validate the use of just one seed for the 

purpose of this study. Besides, it is remarkable that the response of the structure, in this case 

Von Mises stress, under stochastic loading can be approximated with less than 2% of RMSE 

when using an adequate kirging model. Summarising the results from the previous sub-

sections, from an RMSE perspective, this methodology seems promising when estimating the 

outcome of a fully-coupled time-domain simulation, which includes inherent stochasticity in 

wind and waves. Here, one can also compare between the results for 1 seed and those  from 

the previous sub-sections: looking at Figure 8 and Figure 9 one can also say that the error 

coming from stochastic wind and waves does not seem to be additive. The error with 75 



sample points with steady wind and irregular waves and still water and turbulent wind are 1.8 

and 2.2% respectively, and up to 2.8% when using turbulent wind and irregular waves 

simultaneously.  

6. Reliability analysis based on DLCs 

In the final stage of computations, a reliability analysis is performed by using the kriging 

models to approximate any output from the fully-coupled simulations, with reference to the 

considered LSFs. In this case, more random variables are incorporated to the surrogate 

model, and the kriging models are included in the LSFs. For the reliability analysis, Monte 

Carlo simulations (10e6 simulations), FORM and SORM are computed. To apply FORM, the 

Matlab® toolbox FERUM (Der Kiureghian et al. 2006) is used. The considered LSFs are 

summarised in Table 4. The subscript krig indicates the kriging approximation/model of the 

variable, as a function of the 7 random variables considered. 

The variables included in Table 4 are described in Table 5, which are implicit 

stochastic variables used to build the kriging models, e.g. 𝑔2 =
𝑔2(𝐷, 𝜒𝑦, 𝑓𝑦𝐸, 𝜒𝑚, 𝑡𝑡 , 𝑡𝑝𝑙𝑎𝑡 , 𝑉𝑤 , 𝑇𝑝, 𝐸𝐼, 𝐿).  The yield stress is considered as a random variable 

through the parameter 𝜒𝑦, and 𝜒𝑚 includes the model uncertainties. 

The reliability techniques are applied to derive the reliability indexes (𝛽) for each of 

the LSFs and DLCs. The results showed that the LSFs related to buckling and plastic yielding 

are very far from failure; from where that a null probability of failure is computed using the 

three methods. To understand that, the critical moment is calculated for the mean values and 

it shows a difference of one order of magnitude with the highest bending moments at tower 

base levels. The reason for that is that the NREL 5MW monopile was created for code 

comparisons; it was not so much “designed”, but rather “specified” based on industry trends 

and information from other reference turbines. In addition, these types of support structures, 



in general, are expected to fail more likely under fatigue limit states rather than ULS. These 

results agree with the overall conclusions on the literature of reliability of such structures 

(Muskulus and Schafhirt 2015). Also, the analysis of LSF 𝑔4 showed that the gap between 

the tower and the blade tip is large enough even in the worst conditions. The DLC 6.2a is not 

considered for 𝑔4 as it simulates parked/idling conditions with a fault on the yaw controller, 

in these cases the rotor would be stopped avoiding any interaction of blade/tower. 

On the other hand, supporting the above-mentioned theory, the results showed a very 

low probability of failure for 𝑔1, as seen in Table 6. However, it is to be noted that 𝑔1 is very 

conservative as these types of structures will unlikely fail by one element reaching yield: for 

a section to yield all the corresponding elements must yield first. Some of the β’s are not 

given as they relate to too small probabilities of failure. For the case of 𝑔5 and 𝑔6  the limit is 

taken to show how the reliability indices evolve within a range between 8-9 cm and 0.5-0.6 

degrees, respectively. 

Finally, the computational savings using the presented framework with the kriging 

approach against crude Monte Carlo simulations are shown averaged in Table 7. Although 

Monte Carlo simulations do not need to obtain the sample points, it needs to run the whole 

interface for each evaluation of the LSF. However, with the kriging method the main 

computational time is spent in obtaining the outputs of each sample point but the creation of 

kriging model and the evaluation of the LSF take only seconds. Another powerful advantage 

of the presented framework is that the cost of evaluating a new LSF is negligible, whereas 

crude MCS would require running the interface thousands of times again. It allows one to 

perform a comprehensive component-based reliability analysis with different LSFs at all 

levels with almost no extra computational cost.  

As a subsequent part of the FORM analysis, a sensitivity analysis is performed to 

understand which variables play a more important role in defining the performance, as efforts 



to refine the uncertainty of these variables would have a greater impact on the reliability 

performance. From Table 7, it can be noticed that the DLC 1.6a is the most demanding and 

therefore it is picked for the sensitivity analysis. The results are shown in Table 8 for the 

considered LSFs. As it may be expected, the stochastic parameters corresponding to the 

uncertainty in the yield strength and in the Kriging model draw all the relevance and the 

variables included implicitly in the kriging model become residual. Hence efforts to improve 

the understanding about 𝜒𝑦 and 𝜒𝑚 would drastically increase the reliability of these type of 

structures. To have a clearer view of the influence of these variables the same analysis is 

carried out without 𝜒𝑦 and 𝜒𝑚 and the results are shown in Table 9. Of course, the 

probabilities of failure become smaller as part of the uncertainty is being deducted from the 

problem, but one can see the role of the other variables in a clearer way. It is interesting to 

see the influence of the thickness of the platform and the wave height in g1. Moreover, the 

LSFs 𝑔5 and  𝑔6 show great correlation with the flexural rigidity 𝐸𝐼 leaving the influence of 𝐿 

as residual. 

7. Conclusions 

The objective of the present work is to demonstrate the application of an efficient response-

based approach to determine structural reliability of OWT support structures. Also, the most 

common LSFs in the literature relevant to different structural components are identified. 

Specific combinations of DLCs 1.3, 1.6a and 6.2a from IEC 61400-3 are picked as a proven 

set of the severest loading combinations by the literature. The NREL 5MW turbine is 

considered for the study modeled with a flexible foundation following the Apparent Fixity 

model. A dynamic interface between FAST and Abaqus® capable of performing efficient 

time-domain simulations is developed to obtain sample points to be used in the surrogate 

model. The influence of the turbulence, stochastic waves, and variable ranges are studied, 



along with an identification scheme for appropriate kriging models.  The Kriging method is 

adopted here to develop the response surface for the desired outputs, such as the maximum 

Von Mises stress, bending moment at tower base level and blade-tower clearance. Six LSFs 

involving yield or local buckling to pile tip displacement and rotation are proposed. The 

probability of failure for each DLC combination and LSF is evaluated using Monte-Carlo 

simulations, FORM and SORM and a sensitivity analysis is performed. The present work is 

aimed as a demonstration tool for the application of the kriging approach to substitute the 

computationally expensive aero-elastic and FE time-domain simulations and efficiently 

approximate the responses of offshore wind turbine support structures. Also, a thorough 

analysis is performed on the influence of using different regression and correlation functions 

in the kriging model. The results agreed with recent literature showing very low or even zero 

probabilities of failure for most of the LSFs. 

This framework considers uncertainties related to the soil-pile interaction through the 

flexural rigidity and the equivalent length, but it could be interesting to see the relationship 

between these parameters and actual parameters such as friction angle. In addition, as the 

accuracy of the methodology is analysed in an overall manner, further investigation is 

recommended to study the corresponding accuracy around the failure region, this may 

include advanced algorithms to improve the sampling technique. 
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Figures 

 

Figure 1 - Correlation functions and the effect of the hyperparameters 

 

 

Figure 2 - Scheme of the interface between FAST and Abaqus® 



a) 
 

b) 

Figure 3 – a) Example of local buckling. b) Section plastic moment and simplified model for 

the buckling resistance as a function of D/t 

 

Figure 4 - Flow chart of the procedure to create the kriging model and analyse the reliability 



 

Figure 5 - Foundation models 



 

Figure 6 – Evolution of the RMSE using different correlation functions and number of 

sample points as well as inherent variability introduced by wind turbulence and random wave 

profiles. 

 

  

a) Steady wind and still water b) Steady wind and Irregular waves 

  

c) Turbulent wind and regular waves d) Turbulent wind and irregular waves 
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Figure 7 – Kriging models using linear regression function and Matern5/2 correlation 

function (a) and ordinary kriging with exponential correlation function (b) 

 

Figure 8 - Influence of regular and stochastic irregular waves 
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Figure 9 - Influence of wind turbulence and the number of sample points 

 

Figure 10 - Influence of number of seeds using a set of 75 sample points to build the kriging 

model 
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Tables 

Table 1 - Apparent fixity model parameters for DLCs 1.3, 1.6a and 6.2a 

DLC 
Flexural 

rigidity, EI 
[N·m2] 

Equivalent 
length, L 

[m] 

1.3 1.050e12 16.320 

1.6a 1.037e12 16.450 

6.2a 1.039e12 16.381 

Table 2 - Summary of DLCs  

DLC 
Wind Waves Current 

Yaw 
angle 

Wind/wave 
angle Model 

Speed 
[m/s] 

Model 𝐻𝑆 [m] | 𝑇𝑝 [s] Model 
Speed 
[m/s] 

Power production 
1.3 ETM 14 NSS   1.91  |  6.07  NCM 0.6 8° 0° 
1.6a NTM 12 SSS   8.07  |  11.3 NCM 0.6 8° 0° 

Parked / idling 
6.2a EWM 40.375 ESS   8.07  |  11.3 ECM 1.2 90° 30° 

Table 3 - Simulations sets for sensitivity analysis 

Sets of 

simulations 
Conditions 

Random 

variables/range 

Experimental 

points 

1st Set 
Steady wind 

Still water 

𝑉𝑟 = [10, 12]  𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  25,50,75,100 

2nd Set 
𝑉𝑥 = [𝐶𝑢𝑡𝑖𝑛, 𝐶𝑢𝑡𝑜𝑢𝑡]  𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  25,50,75,100 

3rd Set 
Steady wind 

Regular waves 

𝑉𝑟 = [10, 12]  𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  25,50,75,100 

4th Set 
𝑉𝑟 = [𝐶𝑢𝑡𝑖𝑛, 𝐶𝑢𝑡𝑜𝑢𝑡]  𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  25,50,75,100 

5th Set 
Steady wind 

Irregular 

waves 

𝑉𝑟 = [10, 12]  𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  25,50,75,100 

6th Set 𝑉𝑟 = [𝐶𝑢𝑡𝑖𝑛, 𝐶𝑢𝑡𝑜𝑢𝑡]  25,50,75,100 



𝑡𝑡𝑜𝑤𝑒𝑟 = [−3, +3]  
Table 4 - List of Limit State Functions 

 Description LSF 

𝑔1 

Von Mises stress 

reaching yield 
𝐺 = 𝜒𝑦𝑓𝑦 − 𝑋𝑚𝜎𝑉𝑀,𝐾𝑟𝑖𝑔  

𝑔2 

Simplified tower 

buckling model 
𝐺 = 16 (1 − 0.84 𝐷𝑡𝑡 𝜒𝑦𝑓𝑦𝐸 )(𝐷3 − (𝐷 − 2𝑡𝑡)3)𝜒𝑦𝑓𝑦 − 𝜒𝑚𝑀𝐾𝑟𝑖𝑔  

𝑔3 Plastic yielding 𝐺 = 16 (𝐷3 − (𝐷 − 2𝑡𝑡)3)𝜒𝑦𝑓𝑦 − 𝜒𝑚𝑀𝐾𝑟𝑖𝑔  

𝑔4 

Blade – tower 

clearance 
𝐺 = 𝜒𝑚𝐶𝑙𝑒𝑎𝑟𝐾𝑟𝑖𝑔  

𝑔5 

Pile top 

displacement 
𝐺 = 𝜔𝑙𝑖𝑚 − 𝜒𝑚𝑀𝑢𝑑𝐷𝑥𝐾𝑟𝑖𝑔  

𝑔6 Pile top rotation 𝐺 = 𝛼𝑙𝑖𝑚 − 𝜒𝑚𝑀𝑢𝑑𝐷𝑥𝐾𝑟𝑖𝑔  

Table 5 - Stochastic and deterministic variables used in the LSFs and the kriging models 

(Sørensen and Toft 2010; Sorensen and Tarp-Johansen 2005) 

Description 
Distribution 

type 
Expected 

value 
CoV 

Random variables implicit in kriging models 𝑡𝑡 Thickness at tower base level Normal 0.027m 0.03 𝑡𝑝𝑙𝑎𝑡 Platform thickness Normal 0.06m 0.03 

𝑉𝑤 Mean wind speed Normal Table 2 0.05 

𝐻𝑠 Significant wave height Normal Table 2 0.05 

𝑇𝑝 Peak spectral period Normal Table 2 0.05 

𝐸𝐼 

Flexural rigidity of the 

foundation 
Normal Table 1 0.05 

𝐿 

Equivalent length of the 

foundation 
Normal Table 1 0.05 

Random parameters in LSFs 𝜒𝑦 Yield Stress coefficient Lognormal 1 0.05 𝜒𝑚 
Kriging model coefficient Normal 1 0.2 

Deterministic variables 



𝑓𝑦 Yield stress - 2.35e8Pa  - 𝐸 
Young’s Modulus - 210e9Pa - 

𝐷 

Tower base and platform 

diameter 
- 6m - 

Table 6 - Reliability indices (𝜷) for each DLC and LSF using MCS, FORM and SORM 

DL
C 

Reliability 
method 𝑔1 

𝑔5 𝑔6 𝜔𝑙𝑖𝑚 = 8𝑐𝑚 𝜔𝑙𝑖𝑚 = 9𝑐𝑚 𝛼𝑙𝑖𝑚 = 0.4° 𝛼𝑙𝑖𝑚= 0.5° 
1.3 

MCS 3.881 - - - - 

FORM 4.547 9.856 11.89 8.701 10.567 

SORM - - - - - 

1.6a 

MCS 4.224 3.956 4.935 2.284 4.038 

FORM 4.278 3.953 5.010 2.284 4.043 

SORM 4.286 3.963 5.023 2.278 4.031 

6.2a 

MCS 4.133 4.175 5.069 2.880 4.526 

FORM 4.312 4.225 5.216 2.970 4.567 

SORM 4.140 4.177 5.175 3.246 4.453 

Table 7 - Comparison of computational times for 1 LSF 

 
Obtaining 100 

sampling points 

Reliability 

analysis 

(10e6 

simulations) 

Total time 

(for 1 LSF) 

Adding a 

new LSF 

Presented 

framework 

MCS 
~115 h 

~0.067 h 115.067 h + ~0.069h 

FORM ~0.0083 h 115.0083 h + ~0.0083h 

Crude Monte 

Carlo 

simulations 

 - ~1.15e9 h 1.15e9 h 
+ ~1.15e9 

h 

Table 8 - Sensitivity analysis for DLC 1.6a  

 𝑔1 
𝑔5 𝑔6 𝜔𝑙𝑖𝑚 = 8𝑐𝑚 𝛼𝑙𝑖𝑚 = 0.5° 



𝑡𝑡 - -0,053 -0.003 𝑡𝑝𝑙𝑎𝑡 -0,030 0,064 0.025 

𝑉𝑤 - - -0.001 

𝐻𝑠 0,057 0,176 0.167 𝑇𝑝 - - - 

𝐸𝐼 - -0,167 -0.099 

𝐿 - - - 𝜒𝑦 -0,406 - - 𝜒𝑚 0,912 0,967 0.981 

Table 9 - Sensitivity analysis for DLC 1.6a without the random parameters 𝝌𝒎 and 𝝌𝒚 

 𝑔1 
𝑔5 𝑔6 𝜔𝑙𝑖𝑚 = 8𝑐𝑚 𝛼𝑙𝑖𝑚 = 0.5° 𝑡𝑡 - 0.022 -0.154 𝑡𝑝𝑙𝑎𝑡 0,621 -0,439 0.194 

𝑉𝑤 - - -0.002 

𝐻𝑠 -0,784 0,039 0.059 𝑇𝑝 - - - 

𝐸𝐼 - -0,897 -0.967 

𝐿 - - - 

 


