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Abstract—We employ the well-developed and powerful tech-
niques of algebraic semantics and Priestley duality to set up a
Kripke semantics for a modal expansion of Arieli and Avron’s
bilattice logic, itself based on Belnap’s four-valued logic. We
obtain soundness and completeness of a Hilbert-style derivation
system for this logic with respect to four-valued Kripke frames,
the standard notion of model in this setting. The proof is via
intermediary relational structures which are analysed through a
topological reading of one of the axioms of the logic. Both local
and global consequence on the models are covered.

I. INTRODUCTION

Combining multi-valued and modal logics into a single
system is a long-standing concern in mathematical logic and
computer science, see for example [12], [13] and the literature
cited there. Given the necessity for multiple truth values in
many areas of computer science and AI, on the one hand, and
the spectacular success of applied modal calculi in verification,
on the other, the justification for studying combined calculi is
as strong as ever.

Similarly, it is widely accepted that Kripke frames provide a
semantics for modal logics that is both flexible with regards to
intended applications and interpretations, and highly intuitive.
When the non-modal part is multi-valued, though, one may
wonder whether the accessibility relation between worlds
should remain two-valued or itself be allowed to assume the
same range of truth values as the logic itself. Starting from
the point of view of AI applications, Fitting [12], [13] argues
that multiple values are an appropriate and useful modelling
device, and this is the approach taken here, too. Also, restrict-
ing to Kripke structures with two-valued accessibility relations
corresponds to a strengthening of the logic, contrary to our
interest in identifying the minimal modal logic.

Our logic is four-valued and thus in the tradition of bilattice
logic begun by Belnap [2], [3] and subsequently greatly
extended by Arieli and Avron [1] and others. The additional
values besides the classical t (“true”) and f (“false”) are ⊥ (for
“unknown”) and ⊤ (for “contradiction”) with obvious interpre-
tations and applications in a computer science setting. For the
present purposes it is noteworthy that bilattice logic makes use
of two designated truth values, t and ⊤ and that furthermore
¬⊤ = ⊤, that is, negation does not convert all designated
values to non-designated ones. Much of the existing literature
on multi-valued logics (modal or otherwise) is therefore not

immediately applicable. Furthermore, the Belnap lattice, when
seen as a residuated lattice, is not integral (in a sense explained
below) which sets it apart from the tradition in multi-valued
logic. Finally, modal expansions of bilattice logic are not
normal in the sense that the axiom □(𝜑→ 𝜓)→ (□𝜑→ □𝜓)
is not valid. This implies that the standard techniques of modal
logic are not applicable without close scrutiny and adaptation.
To summarise, modal bilattice logic is natural and desirable
yet much of the existing literature does not apply to it. It is the
purpose of the present paper to show that nevertheless a very
attractive and satisfactory Kripke semantics can be established.

Our overall strategy can be summarised by the following
diagram:

deductive
system

algebraic
semantics

4-valued
Kripke frames

2-valued

structures
intermediary

The link at the top will allow us to exploit the rich body of
knowledge concerning bilattices, and we will make use of [25],
[20] and [21]. Since the “local” version of the consequence
relation we study is not algebraizable (in the sense of [5]),
establishing this link is one of the results of this paper. The
link on the left combines Jónsson-Tarski duality for modal
algebras with the general duality for bilattices established
in [18] (drawing on results in [22]). The link at the bottom,
finally, is established by a careful analysis of the 2-valued
intermediary structures that arise from duality, interpreting and
exploiting the axiom □(⊥ → 𝜑)↔ (⊥ → □𝜑).

Outline. As we have explained, much of the existing litera-
ture on modal multi-valued logics does not apply to modal
bilattice logic, and so in the present paper we take care
to explain the setting at every stage, pointing out similar-
ities, differences, and alternative approaches. In Section II
we introduce the language of bilattice logic and explain the
choices of basic connectives available in it. This provides
the background for our discussion of four-valued Kripke
structures in the following section and the evaluation of the



□-operator in particular. In the second part of Section III
we present a Hilbert-style axiomatisation of modal bilattice
logic, extending the one given by Arieli and Avron in [1] for
the non-modal part. Both local and global consequence are
covered. In Section IV we start on our completeness proof by
providing an algebraic semantics in modal bilattices. These
structures are further analysed in the following section, where
we show that they can be seen as twist-structures constructed
from bimodal Boolean algebras. This is important for the the
rest of the paper but it also allows us to conclude that our logic
properly subsumes that of [24]. In Section VI we show how
Priestley duality for bilattices and Jónsson-Tarski duality for
modal algebras can be combined to obtain a duality between
modal bilattices and modal bispaces. We have then all the tools
ready to prove completeness in Section VII. A key ingredient
of the completeness proof is the fact that modal bispaces give
rise to four-valued Kripke structures. We discuss our results
in Section VIII and indicate lines for further research.

II. ALGEBRAIC PRELIMINARIES

The non-modal fragment of the logics we are going to study
is the multi-valued logic of Arieli and Avron [1] (henceforth
referred to as bilattice logic or Arieli-Avron logic), which
arose from Belnap’s famous proposal for a “useful four-valued
logic” [3]. Belnap saw that his four truth values can be ar-
ranged as lattices in two distinct but equally meaningful ways,
ordering them either by information content (the knowledge
order ≤𝑘) or by logical strength (the truth order ≤𝑡), see
Figure 1.
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Fig. 1. The four-element Belnap bilattice ℱ𝒪𝒰ℛ in its two orders

Generally, a (bounded) bilattice is an algebra
⟨𝐵,∧,∨,⊗,⊕,¬, f, t,⊥,⊤⟩ such that ⟨𝐵,∧,∨, f, t⟩ and
⟨𝐵,⊗,⊕,⊥,⊤⟩ are both bounded lattices. The order ≤𝑡

arising from ∧ or ∨ is called the truth order, that arising from
⊗ or ⊕ the knowledge order ≤𝑘. The negation operation ¬
is required to satisfy the properties

(i) 𝑥 ≤𝑡 𝑦 iff ¬𝑦 ≤𝑡 ¬𝑥;
(ii) 𝑥 ≤𝑘 𝑦 iff ¬𝑥 ≤𝑘 ¬𝑦;

(iii) ¬¬𝑥 = 𝑥,
which on ℱ𝒪𝒰ℛ determine negation uniquely: ¬t = f, ¬f =
t, ¬⊤ = ⊤, and ¬⊥ = ⊥. From a logical point of view,
∧ and ⊗ are interpreted as conjunctions, and ∨ and ⊕ as
disjunctions.

Just as the notion of (ultra)filter is fundamental in the
algebraic study of classical logic, a key notion for the logical
study of bilattices is that of bifilter [1, Definition 2.13]. A
bifilter of a bilattice B is a non-empty set 𝐹 ⊆ 𝐵 that is

a lattice filter with respect to both lattice orders. A bifilter
is prime if it is a prime filter with respect to both orders.
Every bilattice has a least bifilter 𝐹0, which is generated by
the set {⊤, t}.

The four-element algebra ℱ𝒪𝒰ℛ, having {f, t,⊥,⊤} as its
carrier set, is the smallest non-trivial bilattice. Here, the least
bifilter 𝐹0 = {⊤, t} is the only proper one; it is also prime.

In addition to the algebraic operations of bilattices, two
implication operations are naturally available on ℱ𝒪𝒰ℛ.
Weak implication ⊃ [1, Definition 3.15] is defined by

𝑥 ⊃ 𝑦 :=

{
t if 𝑥 /∈ 𝐹0

𝑦 if 𝑥 ∈ 𝐹0

Strong implication → [1, Definition 3.25] is defined by the
term 𝑥 → 𝑦 := (𝑥 ⊃ 𝑦) ∧ (¬𝑦 ⊃ ¬𝑥). The choice of
this terminology is justified by the fact that each of these
operations shares some of the logical properties of classical
(i.e., Boolean) implication. For instance, Arieli-Avron logic
enjoys the classical deduction theorem with respect to weak
implication [1, Proposition 3.16]. On the other hand, strong
implication has a better interaction with negation. For example,
it satisfies the contraposition law (𝜑 → 𝜓 is inter-derivable
with ¬𝜓 → ¬𝜑) and determines the truth lattice order of
ℱ𝒪𝒰ℛ:

𝑥 ≤𝑡 𝑦 iff 𝑥→ 𝑦 ∈ 𝐹0

iff 𝑥→ 𝑦 = (𝑥→ 𝑦)→ (𝑥→ 𝑦).
(1)

Another observation which will play a key role in our study of
modal bilattice logics is that ℱ𝒪𝒰ℛ can be viewed as a resid-
uated lattice. This means that by setting 𝑥 ∗ 𝑦 := ¬(𝑦 → ¬𝑥)
we obtain a commutative monoid ⟨ℱ𝒪𝒰ℛ, ∗,⊤⟩ and the
following property (residuation) is satisfied [25, Proposition
5.4.1]:

𝑥 ∗ 𝑦 ≤𝑡 𝑧 iff 𝑦 ≤𝑡 𝑥→ 𝑧. (2)

Residuated lattices are well-known in algebraic logic as they
provide algebraic semantics for a wide class of multi-valued
logics, including the so-called fuzzy logics [16].

The truth tables of the adjoint pair ⟨∗,→⟩ in ℱ𝒪𝒰ℛ are
displayed below:

∗ f ⊥ ⊤ t → f ⊥ ⊤ t
f f f f f f t t t t
⊥ f f ⊥ ⊥ ⊥ ⊥ t ⊥ t
⊤ f ⊥ ⊤ t ⊤ f ⊥ ⊤ t
t f ⊥ t t t f ⊥ f t

In the same way as we think of ⊃ and → as implications, one
can view ∗ as yet another conjunction, called multiplicative
or strong conjunction in the literature on multi-valued logics.
Note, though, that ∗ is not idempotent, so it does not define a
third ordering on ℱ𝒪𝒰ℛ.

Altogether, then, we view ℱ𝒪𝒰ℛ not just as a bilattice,
but as an algebra in the enriched language that includes weak
implication (and therefore also the term-definable → and ∗):
Definition 1. The class of (bounded) classical implicative
bilattices is the variety generated by ℱ𝒪𝒰ℛ in the algebraic
language ⟨∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤⟩.



This variety, axiomatized in [25, Definition 4.3.1], provides
an algebraic semantics (in fact, the equivalent algebraic se-
mantics in the sense of [5]) of the Arieli-Avron calculus [1,
Definition 3.15]; this fact is proved in [25, Theorem 4.3.10].
We also refer to [25, Ch. 4 and 5] for further details and proofs
concerning the results on Arieli-Avron logic that we will use
in the next sections.

III. MODAL EXPANSIONS OF BILATTICE LOGIC

A. Semantics

Algebraically, Arieli-Avron logic is defined as the logic of
the variety of classical implicative bilattices with bifilters as
their set of designated truth values. The same logic arises when
one restricts the bifilters to prime ones [25] or even when one
just considers ℱ𝒪𝒰ℛ together with 𝐹0 = {t,⊤} [1]. For our
purposes it is most convenient to adopt the last alternative.

Let Fm be the formula algebra over the language
⟨∧,∨,⊗,⊕,⊃,¬, t, f,⊤,⊥⟩, freely generated by a countable
set of variables Var . For Γ ∪ {𝜑} ⊆ 𝐹𝑚 (the carrier set
of Fm), we define Γ ⊨ 𝜑 if and only if, for all homomor-
phisms ℎ : Fm → ℱ𝒪𝒰ℛ, if ℎ(𝛾) ∈ 𝐹0 = {t,⊤} for all
𝛾 ∈ Γ, then ℎ(𝜑) ∈ 𝐹0. This is the non-modal core of our
logic.1

For a modal expansion of this logic we initially focus on
the necessity operator □. Semantically, we seek to interpret
it in suitable Kripke structures. For motivation, let us con-
sider first a classical Kripke model ⟨𝑊,𝑅, 𝑣⟩, where 𝑊 is
a set of “worlds”, 𝑅 an accessibility relation among them
and 𝑣 a valuation. Now view 𝑅 as the characteristic func-
tion associated with the accessibility relation, i.e., as a map
𝑅 : 𝑊×𝑊 → {t, f}. Similarly, view 𝑣 : 𝐹𝑚×𝑊 → {t, f} as a
map assigning to each formula 𝜑 ∈ 𝐹𝑚 at each point 𝑤 ∈𝑊
a truth value in {t, f}. By the so-called standard translation
of modal logic into first-order logic, we obtain the following
definition for the semantics of the necessity operator

𝑣(□𝜑,𝑤) :=
⋀
{𝑅(𝑤,𝑤′)→ 𝑣(𝜑,𝑤′) : 𝑤′ ∈𝑊} (3)

where
⋀

denotes the infinitary meet corresponding to the
universal quantifier and → is Boolean implication.2

This definition can now easily be adapted to our four-valued
setting. We consider Kripke models ⟨𝑊,𝑅, 𝑣⟩ where both 𝑅
and 𝑣 are four-valued, that is, we define 𝑅 : 𝑊×𝑊 → ℱ𝒪𝒰ℛ
and 𝑣 : 𝐹𝑚×𝑊 → ℱ𝒪𝒰ℛ. As before, valuations are required
to be homomorphisms in their first argument. We stress, as
this will be important for our axiomatization, that we have
included the constants t, f,⊤,⊥ in the propositional language,
so valuations must interpret each of them as the corresponding
element of ℱ𝒪𝒰ℛ.

Since ℱ𝒪𝒰ℛ carries three distinct conjunctions and two
implications there are six candidates for the translations of (3)
to the four-valued setting. We reject the monoid operation ∗

1Note that, by its very definition, this logic is a conservative expansion of
Belnap-Dunn logic [2], [14] (⊃ being the additional connective).

2Note that conjunction is taken in the complete lattice of truth values, so
there is no problem with using the infinitary operation

⋀
.

because it is not idempotent and hence would require us to re-
place the set {𝑅(𝑤,𝑤′)→ 𝑣(𝜑,𝑤′) : 𝑤′ ∈𝑊} by a multi-set.
The choice between ∧ and ⊗ is more subtle as relates to the
intended interpretation of the necessity operator. Our choice is
for the “logical” connective rather than the knowledge order
one as it is here that there are useful interactions with the two
implications. This leaves the pairs ⟨∧,→⟩ and ⟨∧,⊃⟩.

The latter choice has the disadvantage (in our opinion)
that the accessibility relation 𝑅, although formally introduced
as four-valued, turns out to have a two-valued behaviour
when interacting with weak implication. This is so because
in ℱ𝒪𝒰ℛ the value of (3) (with → replaced by ⊃) is the
same as the following one:⋀

{𝑣(𝜑,𝑤′) : 𝑅(𝑤,𝑤′) ∈ 𝐹0}.
In fact, the choice ⟨∧,⊃⟩ has already been considered in [24]
to introduce a modal expansion of Belnap-Dunn logic (that is,
the {∧,∨,¬, f, t}-fragment of Arieli-Avron bilattice logic). It
turns out, however, that the resulting operator is strictly less
expressive than the one defined by the pair ⟨∧,→⟩. Let us
denote the two choices by □⊃ and □→. We get:

Proposition 2. For all formulas 𝜑 ∈ 𝐹𝑚, all four-valued
Kripke models ⟨𝑊,𝑅, 𝑣⟩, and all 𝑤 ∈𝑊 :

𝑣(□⊃𝜑, 𝑤) = 𝑣(□→(𝜑 ∨ ⊥)⊕ (□→𝜑 ∧ ⊥), 𝑤).
One may wonder whether, conversely, it is possible to

define □→ from □⊃. This is already unlikely given the two-
valued nature of the latter, and our algebraic analysis below
(Section V) will indeed confirm this intuition.

To summarise, our choice for the semantics of the necessity
operator is based on the pair ⟨∧,→⟩, that is, in the four-valued
context we replace classical conjunction with the truth lattice
meet and classical implication with the strong implication of
Arieli-Avron logic. From now on we will write simply □ in
place of □→.

Let us point out a further pleasing feature of □. Given
that ℱ𝒪𝒰ℛ can be seen as a residuated lattice, and since
strong implication interacts well with negation, we can define
a possibility operator ◇ which will turn out in the logic to be
dual to □. Semantically, it is given by [6, p.746]:

𝑣(◇𝜑,𝑤) :=
⋁
{𝑅(𝑤,𝑤′) ∗ 𝑣(𝜑,𝑤′) : 𝑤′ ∈𝑊}. (4)

This is obviously a generalization of the classical definition
with the monoid operation replacing classical conjunction.3

We are now ready to extend the semantic consequence
relation of Arieli-Avron logic to our modal expansion. We say
that a point 𝑤 ∈ 𝑊 of a four-valued model 𝑀 = ⟨𝑊,𝑅, 𝑣⟩
satisfies a formula 𝜑 ∈ 𝐹𝑚 if 𝑣(𝜑,𝑤) ∈ {t,⊤}. In such a
case we write 𝑀,𝑤 ⊨ 𝜑. For a set of formulas Γ ⊆ 𝐹𝑚, we
write 𝑀,𝑤 ⊨ Γ to mean that 𝑀,𝑤 ⊨ 𝛾 for each 𝛾 ∈ Γ.
As is usual in modal logic, we consider two consequence
relations. The local consequence Γ ⊨𝑙 𝜑 holds if for every

3As we noted before, ∗ is not idempotent but this is not a problem here as
it is applied to two terms, not to a set.



model 𝑀 = ⟨𝑊,𝑅, 𝑣⟩ and every 𝑤 ∈ 𝑊 , it is the case that
𝑀,𝑤 ⊨ Γ implies 𝑀,𝑤 ⊨ 𝜑. The global consequence relation
Γ ⊨𝑔 𝜑 holds if, for every model 𝑀 , if 𝑀,𝑤 ⊨ Γ for all
𝑤 ∈𝑊 , then 𝑀,𝑤 ⊨ 𝜑 for all 𝑤 ∈𝑊 .

We remind the reader that the above definitions imply that:
∙ if Γ ⊨𝑙 𝜑, then Γ ⊨𝑔 𝜑 (global consequence is a

strengthening of the local one);
∙ ∅ ⊨𝑙 𝜑 if and only if ∅ ⊨𝑔 𝜑 (the two consequences have

the same valid formulas).
Let us now explore the axioms and rules that are valid

semantically.

Proposition 3. The following formulas are valid in all mod-
els:4

(i) □t↔ t
(ii) □(𝜑 ∧ 𝜓)↔ (□𝜑 ∧□𝜓),

(iii) □(c→ 𝜑)↔ (c→ □𝜑) for all c ∈ {t, f,⊤,⊥}
As in [6], the last of these schemata will play a prominent

role in the axiomatization of our logic, as will the following
rule:

Proposition 4 (Monotonicity). The rule 𝜑→ 𝜓 ⊢ □𝜑→ □𝜓
is sound with respect to global consequence. In other words,
𝜑→ 𝜓 ⊨𝑔 □𝜑→ □𝜓 holds.

The following is an immediate consequence of monotonic-
ity:

Corollary 5. If 𝜑→ 𝜓 is a formula valid in all models then
so is □𝜑→ □𝜓.

However, necessitation 𝜑 ⊨𝑔 □𝜑, which classically is equiv-
alent to monotonicity, is not sound. (This is a consequence of
the fact that 𝐹0 is not an exponential ideal of ℱ𝒪𝒰ℛ, i.e.,
𝑥 ∈ 𝐹0 does not imply 𝑎 → 𝑥 ∈ 𝐹0.) The normality axiom,
□(𝜑 → 𝜓) → (□𝜑 → □𝜓), also fails and it is easy to find
small counter-models to it (or see [6]). Thus, the modal logic
we are studying is non-normal. This constitutes one of the
main difficulties in axiomatizing it, as the standard canonical
model construction cannot be applied to prove completeness.

In light of these negative results is rather fortuitous that the
monotonicity rule holds and this may give further credence to
our choice of the semantics of □.

B. Axiomatizations

In this section we introduce Hilbert-style calculi which we
will prove to be complete with respect to the global and the
local consequence relations, respectively. Our starting point
is the axiomatization of the non-modal fragment of our logic
provided by Arieli and Avron [1, p. 47]. We present the axiom
schemata in stages:

(⊃ 1) 𝑝 ⊃ (𝑞 ⊃ 𝑝)

(⊃ 2) (𝑝 ⊃ (𝑞 ⊃ 𝑟)) ⊃ ((𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟))

(⊃ 3) ((𝑝 ⊃ 𝑞) ⊃ 𝑝) ⊃ 𝑝

(¬ ¬) 𝑝 ⊃ ¬¬𝑝 ¬¬𝑝 ⊃ 𝑝

4We use 𝜑↔ 𝜓 as a shorthand for (𝜑→ 𝜓) ∧ (𝜓 → 𝜑).

Note that the usual schema (¬𝑝 ⊃ ¬𝑞) ⊃ (𝑞 ⊃ 𝑝) (contraposi-
tion) is absent but the classical nature of the calculus has been
preserved by the inclusion of Peirce’s Law (⊃ 3) and double
negation.5 The next set of schemata establishes the link with
the truth lattice operations and is entirely standard:

(∧ ⊃) (𝑝 ∧ 𝑞) ⊃ 𝑝 (𝑝 ∧ 𝑞) ⊃ 𝑞

(⊃ ∧) 𝑝 ⊃ (𝑞 ⊃ (𝑝 ∧ 𝑞))
(⊃ t) 𝑝 ⊃ t

(⊃ ∨) 𝑝 ⊃ (𝑝 ∨ 𝑞) 𝑞 ⊃ (𝑝 ∨ 𝑞)
(∨ ⊃) (𝑝 ⊃ 𝑟) ⊃ ((𝑞 ⊃ 𝑟) ⊃ ((𝑝 ∨ 𝑞) ⊃ 𝑟))

(⊃ f) f ⊃ 𝑝

The analogous schemata for the information lattice operations:

(⊗ ⊃) (𝑝⊗ 𝑞) ⊃ 𝑝 (𝑝⊗ 𝑞) ⊃ 𝑞

(⊃ ⊗) 𝑝 ⊃ (𝑞 ⊃ (𝑝⊗ 𝑞))
(⊃ ⊤) 𝑝 ⊃ ⊤
(⊃ ⊕) 𝑝 ⊃ (𝑝⊕ 𝑞) 𝑞 ⊃ (𝑝⊕ 𝑞)
(⊕ ⊃) (𝑝 ⊃ 𝑟) ⊃ ((𝑞 ⊃ 𝑟) ⊃ ((𝑝⊕ 𝑞) ⊃ 𝑟))

(⊃ ⊥) ⊥ ⊃ 𝑝

In the absence of contraposition one also has to stipulate how
negation interacts with the other operations:

(¬ ∧) ¬(𝑝 ∧ 𝑞) ≡ (¬𝑝 ∨ ¬𝑞)
(¬ ∨) ¬(𝑝 ∨ 𝑞) ≡ (¬𝑝 ∧ ¬𝑞)
(¬ ⊗) ¬(𝑝⊗ 𝑞) ≡ (¬𝑝⊗ ¬𝑞)
(¬ ⊕) ¬(𝑝⊕ 𝑞) ≡ (¬𝑝⊕ ¬𝑞)
(¬ ⊃) ¬(𝑝 ⊃ 𝑞) ≡ (𝑝 ∧ ¬𝑞)
(¬ t) ¬t ⊃ 𝑝

(¬ f) 𝑝 ⊃ ¬f
(¬ ⊤) 𝑝 ⊃ ¬⊤
(¬ ⊥) ¬⊥ ⊃ 𝑝

where 𝜑 ≡ 𝜓 abbreviates the two schemata 𝜑 ⊃ 𝜓 and 𝜓 ⊃ 𝜑.
The only rule of the Arieli-Avron calculus is modus ponens:

(mp) 𝑝, 𝑝 ⊃ 𝑞 ⊢ 𝑞
As is shown in [1], this calculus is complete with respect to
the semantics based on ℱ𝒪𝒰ℛ presented at the beginning of
Section III-A.

We now proceed to expand the Arieli-Avron calculus to
accommodate the modal necessity operator, taking our cue
from the semantic considerations in in the previous subsection.
We begin by adding the axiom schemata

(□ t) □t↔ t

(□ ∧) □(𝑝 ∧ 𝑞)↔ (□𝑝 ∧□𝑞)

(□ ⊥) □(⊥ → 𝑝)↔ (⊥ → □𝑝)

5In fact the {∧,∨,⊃} fragment of Arieli-Avron logic coincides with the
negation-free fragment of classical logic.



Interestingly, the last of these covers only one of the four
cases that make up Proposition 3-(iii), and indeed, one of
the consequences of our completeness result is that the other
three are not needed. In order to capture the closure property
expressed in Corollary 5 we need to make sure that we first
generate all valid instances of the shape 𝜑 → 𝜓. The official
definition of our logic is therefore slightly more involved than
usual:

Definition 6. Let 𝐹𝑚 be the set of formulas generated by
a countable set of variables Var in the modal language
⟨∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,□⟩. The set Σ of axioms of modal
bilattice logic is the least subset of 𝐹𝑚 containing all substi-
tution instances of the schemata exhibited above, and closed
under

(val-mp) if 𝜑 and 𝜑 ⊃ 𝜓 are in Σ, then so is 𝜓;
(val-mono) if 𝜑→ 𝜓 is in Σ, then so is □𝜑→ □𝜓.

The rules of modal bilattice logic are

𝜑,𝜑 ⊃ 𝜓
(mp)

𝜓

𝜑→ 𝜓
(mono)

□𝜑→ □𝜓

Local inference ⊢𝑙 employs only (mp), while global infer-
ence ⊢𝑔 is generated by (mp) and (mono).6

Having defined calculi for both local and global conse-
quence on four-valued Kripke-structures, we will now embark
on the completeness proof. Our strategy for doing so is fairly
different from that of [6]. The latter is in a certain sense more
general than ours, as it applies to any finite integral residuated
lattice. Ours, however, is not a special case of [6] because their
proof only applies to residuated lattices which are integral, that
is, ones where the identity of the monoid operation ∗ coincides
with the maximum element of the associated lattice order; this
does not hold in ℱ𝒪𝒰ℛ because ⊤ is the monoid identity but
t is the maximum element of the truth order. Moreover, the
proof of [6] is rather syntactical (see, e.g., [6, Claims 4.9 and
4.10]) and because of this, in our opinion, less transparent than
the ones we will present. We use instead algebra and topology,
so that our strategy is more indirect but also more structural.
As it turns out, it is also more powerful in the sense that it
allows us to prove completeness also for ⊢𝑔 , a problem which
is left open in [6].

Our strategy is as follows. We first prove that both our modal
consequence relations enjoy algebraic completeness with re-
spect to a variety of bilattices expanded with a modal operator,
the difference being in the sets of designated elements that are
allowed. As happens with classical modal logic, the global
consequence relation is in fact algebraizable [5], whereas the
local one is only complete with respect to this algebra-based
semantics.

6Note that, although structurally similar, the rules (val-mp) and (val-
mono) are only ever applied to valid formulas, while (modus ponens) and
(monotonicity) can be applied to arbitrary assumptions.

We then develop a topological duality theory for modal
bilattices which will allow us to construct a generalized
(two-valued) relational semantics for our logics; these are
the intermediary structures mentioned in the Introduction.
Finally, we show that intermediary structures can be used to
build four-valued Kripke (counter)-models and thus to prove
completeness of our calculi with respect to the semantics
introduced in III-A.

IV. ALGEBRAIC COMPLETENESS

Algebraic logic, begun by Tarski in 1935 [27], is by now
a well-developed methodology for the study of derivation
systems, and particularly well-suited for propositional and
modal calculi. A convenient reference for our purposes is [5];
see also [10], [15]. In a nutshell, the idea is to translate the
axioms and rules of a deductive system into the equational
logic of a suitable class of algebras. The strongest corre-
spondence of algebraic logic is that of algebraic equivalence
and it holds when the deductive system and the equational
logic can be mutually translated into each other, see [5,
Definition 2.8]. The logic in this case is called algebraizable.
One of the consequences of algebraizability is that a complete
algebraic semantics (with matrices, that is, algebras and sets
of designated elements) can be constructed mechanically from
the deductive system via the so-called defining equations and
equivalence formulas which underlie the two translations, see
[5, Theorem 2.17].

Arieli’s and Avron’s bilattice logic was shown to be al-
gebraizable by the second author in [25]. The corresponding
algebraic semantics is the variety of classical implicative
bilattices (Definition 1) with defining equation 𝜑 = 𝜑 ⊃ 𝜑 and
equivalence formula 𝜑 ↔ 𝜓. The set of designated elements
for a classical implicative bilattice is exactly the smallest
bifilter (which is the one generated by {t,⊤}).

In more detail, let ⊢ denote the derivability relation of
Arieli’s and Avron’s calculus, and let Γ ∪ {𝜑} ⊆ 𝐹𝑚. We
have that Γ ⊢ 𝜑 iff, for every pair ⟨B, 𝐹0⟩, where B is a
classical implicative bilattice B and 𝐹0 is the least bifilter of
B, and for all homomorphisms ℎ : Fm→ B, it holds that, if
ℎ(𝛾) ∈ 𝐹0 for all 𝛾 ∈ Γ, then ℎ(𝜑) ∈ 𝐹0.

One of the striking features of algebraizability is that it is
an intrinsic feature of a derivation system, [5, Theorem 4.7].
As can be seen from the conditions listed there, adding new
connectives to a logic will often preserve algebraizability.
This is the case here with the global inference system ⊢𝑔
for modal bilattice logic. The condition needed is exactly the
monotonicity rule (mono). By the same token, local inference
is not algebraizable.

Defining equation and equivalence formula remain the same
in the modal expansion and using them to translate the
additional axioms we obtain the axiomatization of the variety
that is the basis for the complete algebraic semantics:

Definition 7. A modal bilattice is an algebra
⟨𝐵,∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,□⟩ such that the reduct



obtained by dropping □ is a classical implicative bilattice
and the following equations are satisfied:7

(i) □t = t

(ii) □(𝑥 ∧ 𝑦) = □𝑥 ∧□𝑦

(iii) □(⊥ → 𝑥) = ⊥ → □𝑥.

Returning to a comment we made above, we note that every
modal bilattice satisfies the equation □(c→ 𝜑) = c→ □𝜑 for
each c ∈ {f, t,⊥,⊤}. This can be shown purely algebraically
and then translated back into the logic as □(c→ 𝜑) ↔
(c→ □𝜑).

To summarize our discussion:

Theorem 8. The global consequence relation ⊢𝑔 of modal
bilattice logic is algebraizable with respect to the variety of
modal bilattices, with defining equation 𝜑 = 𝜑 ⊃ 𝜑 and
equivalence formula 𝜑↔ 𝜓.

Theorem 9. The global consequence relation ⊢𝑔 is complete
with respect to the class of all matrices ⟨B, 𝐹0⟩ such that B is
a modal bilattice B and 𝐹0 is the least bifilter of B.

As happens with classical modal logic, the global and the lo-
cal consequence relations share the same algebraic counterpart.
However, ⊢𝑙 has looser relation with the algebraic semantics
(in particular, it is not algebraizable). Nevertheless we are able
to prove the following:

Theorem 10. The local consequence relation ⊢𝑙 is complete
with respect to the class of all matrices ⟨B, 𝐹 ⟩ such that B
is a modal bilattice B and 𝐹 is a bifilter of B.

Let us stress the difference with Theorem 9: now we need
to consider arbitrary bifilters, not just the least one.

V. MODAL BILATTICES AS TWIST-STRUCTURES

Several classes of bilattices can be conveniently represented
through a construction called twist-structure [21], [7]. In this
section we extend it to obtain a representation for modal
bilattices, which will greatly enhance our understanding of the
necessity operator □ and also clarify the connection between
our logic and that of [24].

Definition 11. A bimodal Boolean algebra is a structure
A = ⟨𝐴,⊓,⊔,∼, 0, 1,□+,□−⟩ such that ⟨𝐴,⊓,⊔,∼, 0, 1⟩ is
a Boolean algebra and both □+ and □− are unary operators
that preserve finite meets.

The above definition implies that both ⟨𝐴,⊓,⊔,∼, 0, 1,□+⟩
and ⟨𝐴,⊓,⊔,∼, 0, 1,□−⟩ are modal Boolean algebras in the
usual sense [9].

Given a bimodal Boolean algebra A, we consider the twist-
structure

A⊳⊲ = ⟨𝐴×𝐴,∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,□⟩
7For those who are familiar with algebraic logic: The quasi-equation

corresponding to the monotonicity rule holds as a consequence of □(𝑥 ∧ 𝑦) =
□𝑥 ∧ □𝑦 (monotonicity of □ with respect to the truth lattice order).

whose operations are defined, for ⟨𝑎1, 𝑎2⟩, ⟨𝑏1, 𝑏2⟩ ∈ 𝐴×𝐴, as
follows:

⟨𝑎1, 𝑎2⟩ ∧ ⟨𝑏1, 𝑏2⟩ := ⟨𝑎1 ⊓ 𝑏1, 𝑎2 ⊔ 𝑏2⟩
⟨𝑎1, 𝑎2⟩ ∨ ⟨𝑏1, 𝑏2⟩ := ⟨𝑎1 ⊔ 𝑏1, 𝑎2 ⊓ 𝑏2⟩
⟨𝑎1, 𝑎2⟩ ⊗ ⟨𝑏1, 𝑏2⟩ := ⟨𝑎1 ⊓ 𝑏1, 𝑎2 ⊓ 𝑏2⟩
⟨𝑎1, 𝑎2⟩ ⊕ ⟨𝑏1, 𝑏2⟩ := ⟨𝑎1 ⊔ 𝑏1, 𝑎2 ⊔ 𝑏2⟩
⟨𝑎1, 𝑎2⟩ ⊃ ⟨𝑏1, 𝑏2⟩ := ⟨(∼ 𝑎1) ⊔ 𝑏1, 𝑎1 ⊓ 𝑏2⟩

¬⟨𝑎1, 𝑎2⟩ := ⟨𝑎2, 𝑎1⟩
f := ⟨0, 1⟩
t := ⟨1, 0⟩
⊥ := ⟨0, 0⟩
⊤ := ⟨1, 1⟩

□⟨𝑎1, 𝑎2⟩ := ⟨□+𝑎1 ⊓□−∼ 𝑎2, ◇+𝑎2⟩

where ◇+𝑎2 := ∼□+∼ 𝑎2. This construction is obviously
related to (and to some extent generalizes) those of [24], [26],
[23].

It can be directly checked that every twist-structure A⊳⊲

satisfies the axioms of modal bilattices. With respect to the
construction used in [24], [23] to represent so-called BK-
lattices, we note that a twist-structure A⊳⊲ is a BK-lattice
precisely when the underlying bimodal Boolean algebra A
satisfies the equation □−(𝑥) = 1, so that □⟨𝑎1, 𝑎2⟩ =
⟨□+𝑎1, ◇+𝑎2⟩. It is also easy to check that

□(⟨𝑎1, 𝑎2⟩ ∨ ⟨0, 0⟩)⊕ (□⟨𝑎1, 𝑎2⟩ ∧ ⟨0, 0⟩) = ⟨□+𝑎1, ◇+𝑎2⟩
which explains the relation between our modal operator and
that of [23], [24] stated in Proposition 2. Obviously, our modal
operator cannot be recovered as a term in the language of
[24], because □ is defined using two independent operators
□+ and □− on the underlying Boolean algebra, while [24]
only makes use of one operator (together with its dual).

As with (non-modal) bilattices, it can be shown that every
modal bilattice is isomorphic to a twist-structure. Given a
modal bilattice B, one first defines an (equivalence) relation ≈
by letting 𝑎 ≈ 𝑏 if 𝑎∧ 𝑏 = 𝑎⊕ 𝑏 [8, Definition 3.7]. One then
shows that the quotient B/≈ can be endowed with algebraic
operations that turn it into a bimodal Boolean algebra: for
equivalence classes [𝑎], [𝑏] ∈ 𝐵/≈ one lets

[𝑎] ⊓ [𝑏] := [𝑎 ∧ 𝑏]
[𝑎] ⊔ [𝑏] := [𝑎 ∨ 𝑏]
∼[𝑎] := [𝑎 ⊃ f]

□+[𝑎] := [◇(𝑎 ⊃ f) ⊃ f]

□−[𝑎] := [□(¬(𝑎 ⊃ f) ∨ ⊤)]
◇+[𝑎] := [◇𝑎]

where ◇ abbreviates ¬□¬. We thus obtain the following
representation:

Theorem 12. Every modal bilattice is isomorphic to the twist-
structure (B/≈)⊳⊲ through the map 𝑎 !→ ⟨[𝑎], [¬𝑎]⟩ for 𝑎 ∈ 𝐵.



This result can be extended to an equivalence between cat-
egories corresponding to modal bilattices and twist-structures,
as was done for non-modal bilattices in [19], [7].

This algebraic representation theorem further suggests that it
ought to be possible to encode modal bilattice logic in classical
modal logic (albeit one with two independent modalities). We
leave this for further research.

VI. DUALITY

In this section we develop a topological duality for modal
bilattices based on the duality for bilattices introduced in [18],
to which we also refer for further details and proofs.

Classical implicative bilattices, viewed as a category, are
dually equivalent to a category of topological spaces that we
called Stone bispaces (see [18, Theorem 3.16] and subsequent
remarks). The two key ingredients for developing this duality
are, firstly, that the ⟨∧,∨,⊃,¬, f, t⟩-reduct of a classical
implicative bilattice is an N4-lattice [20], and, secondly, that
the knowledge lattice operations are term-definable in the
language ⟨∧,∨, f, t,⊥,⊤⟩ (this is the so-called 90-degree
lemma [18, Lemma 1.5]). A duality for classical implicative
bilattices can thus be obtained by specializing the duality
for N4-lattices introduced in [22]. We recall the relevant
definitions and results.

Definition 13. A Stone bispace is a structure 𝒳 =
⟨𝑋,𝑋1, 𝑋2, 𝜏, 𝑔⟩ such that:

(i) ⟨𝑋, 𝜏⟩ is a Stone space
(ii) 𝑋1 is closed in 𝜏 and 𝑋2 = 𝑋∖𝑋1

(iii) 𝑔 : 𝒳 → 𝒳 is a homeomorphism such that 𝑔2 = Id𝒳
and 𝑔[𝑋1] = 𝑋2.

A Stone bifunction 𝑓 : 𝒳 → 𝒴 between Stone bispaces 𝒳
and 𝒴 is a continuous function such that:

(i) 𝑓 [𝑋1] ⊆ 𝑌 1

(ii) 𝑓 [𝑋2] ⊆ 𝑌 2

(iii) 𝑓 ∘ 𝑔𝑋 = 𝑔𝑌 ∘ 𝑓 .

To any classical implicative bilattice B corresponds the
Stone bispace ⟨𝑋(B), 𝑋1(B), 𝑋2(B), 𝜏B, 𝑔B⟩ where:

∙ 𝑋(B) is the set of prime filters of the truth lattice
⟨𝐵,∧,∨, f, t⟩

∙ 𝜏B is the topology generated by the sets Φ(𝑥) := {𝑃 ∈
𝑋(B) : 𝑥 ∈ 𝑃} for each 𝑥 ∈ 𝐵

∙ 𝑋1(B) := Φ(⊤)
∙ 𝑋2(B) := Φ(⊥)
∙ 𝑔B(𝑃 ) := {𝑥 : ¬𝑥 /∈ 𝑃} for all 𝑃 ∈ 𝑋(B).

We stress the fact, as this will play a key role in our
completeness proofs, that 𝑋1(B) is precisely the set of all
prime bifilters of B. Also note that the decomposition of 𝑋
into 𝑋1 and 𝑋2 naturally corresponds to the representation
of classical implicative bilattices as a twist-structure, i.e., as a
product of two Boolean algebras.

Conversely, given any Stone bispace 𝒳 = ⟨𝑋,𝑋1, 𝑋2, 𝜏, 𝑔⟩
we define a classical implicative bilattice structure on the set

𝐵(𝒳 ) of clopens of 𝜏 with the operations defined as follows:

f := ∅ t := 𝑋

⊤ := 𝑋1 ⊥ := 𝑋2

𝑈 ∧ 𝑉 := 𝑈 ∩ 𝑉
𝑈 ∨ 𝑉 := 𝑈 ∪ 𝑉
𝑈 ⊗ 𝑉 := (𝑈 ∩ 𝒳 2) ∪ (𝑉 ∩ 𝒳 2) ∪ (𝑈 ∩ 𝑉 )

𝑈 ⊕ 𝑉 := (𝑈 ∩ 𝒳 1) ∪ (𝑉 ∩ 𝒳 1) ∪ (𝑈 ∩ 𝑉 )

𝑈 ⊃ 𝑉 := (𝑋1∖(𝑈∖𝑉 )) ∪ (𝑋2∖(𝑔(𝑈)∖𝑉 ))

¬𝑈 := 𝑋∖𝑔(𝑈).
These translations extend to morphisms in the usual way:

To an algebraic homomorphism ℎ : B → B′ corresponds
a Stone bifunction 𝑋(ℎ) : 𝑋(B′) → 𝑋(B) defined by
𝑋(ℎ)(𝑃 ) := ℎ−1[𝑃 ] for all 𝑃 ∈ 𝑋(B′). Similarly, to a Stone
bifunction 𝑓 : 𝒳 → 𝒳 ′ one associates a classical implicative
bilattice homomorphism 𝐵(𝑓) : 𝐵(𝒳 ′) → 𝐵(𝒳 ) defined by
𝐵(𝑓)(𝑈) := 𝑓−1[𝑈 ] for all 𝑈 ∈ 𝐵(𝒳 ′). Thus we have:

Theorem 14. The category of Stone bispaces and Stone
bifunctions and the category of classical implicative bilattices
and algebraic homomorphisms are dually equivalent.

In order to establish a duality for modal bilattices note
that by dropping □ from the signature we obtain a classical
implicative bilattice and thus the preceding theorem applies.
On the other hand, if we consider the ⟨∧,∨, f, t,□⟩-reduct
we obtain a distributive lattice with a finite-meet preserving
operator for which a version of Jónsson-Tarski duality can be
found in [17]. As we will see, the two dualities can be easily
amalgamated into one.

Let us first recall how the duality in [17] works. To a
distributive lattice B with a meet-preserving modal operator
one associates the Priestley space 𝑋(B) of prime filters where
the topology is defined as usual, [11], and in particular as in
the duality of Theorem 14. The order is just inclusion between
prime filters. On 𝑋(B) one defines a relation 𝑅 by

⟨𝑃,𝑄⟩ ∈ 𝑅 iff □−1[𝑃 ] ⊆ 𝑄. (5)

It then follows that 𝑅 satisfies the following properties:

∙ ⊆ ;𝑅 ;⊆ = 𝑅;
∙ 𝑅[𝑃 ] is a closed set for every 𝑃 ∈ 𝑋(𝐵);
∙ 𝑅−1[𝐷] is a clopen down-set for every clopen down-set
𝐷 ⊆ 𝑋(𝐵).

Conversely, to any Priestley space ⟨𝑋, 𝜏,≤⟩ carrying a
relation 𝑅 with above properties a distributive lattice with
modal operator can be associated. This works as in the
standard Priestley duality; elements of the dual are the clopen
up-sets of 𝑋 and the lattice operations are the set-theoretic
ones. The modal operator is defined by

□𝑅𝑈 := {𝑥 ∈ 𝑋 : 𝑅[𝑥] ⊆ 𝑈}. (6)

For a modal bilattice B we can combine the dualities
because the underlying set 𝑋(B) for the dual is the same,
i.e., the set of prime filters of the truth lattice. Since we know



from Theorem 14 that 𝑋(B) is actually a Stone space, we
can simplify the properties of the induced relation 𝑅 to the
following:

∙ 𝑅[𝑃 ] is a closed set for every 𝑃 ∈ 𝑋(𝐵);
∙ 𝑅−1[𝑈 ] is clopen for every clopen set 𝑈 ⊆ 𝑋(𝐵).

The only outstanding issue is equation (iii) of Definition 7
which is not covered by either of the two constituent dualities.
The following lemma not only remedies this situation but it
will also be the crucial ingredient when we translate 𝑋(B) to
a four-valued Kripke structure.

Lemma 15. Let ⟨𝑋(B), 𝑋1(B), 𝑋2(B), 𝜏B, 𝑔B⟩ be the Stone
bispace corresponding to a modal bilattice B. Then the
relation 𝑅 ⊆ 𝑋(B)×𝑋(B) defined as in (5) satisfies the
following properties:

∙ ⟨𝑃,𝑄⟩ ∈ 𝑅 iff ⟨𝑔(𝑃 ), 𝑔(𝑄)⟩ ∈ 𝑅 for 𝑃,𝑄 ∈ 𝑋1(𝐵),
∙ 𝑅[𝑋2(𝐵)] ⊆ 𝑋2(𝐵).

It may be worth spelling out the two properties identified
in the preceding lemma: (i) says that two points of 𝑋1

are connected by 𝑅 iff the corresponding points in 𝑋2 are
connected; (ii) says that there cannot be a connection from
𝑋2 to 𝑋1.

Our analysis so far justifies the following definition:

Definition 16. A modal (Stone) bispace is a structure 𝒳 =
⟨𝑋,𝑋1, 𝑋2, 𝜏, 𝑔, 𝑅⟩ such that:

(i) ⟨𝑋,𝑋1, 𝑋2, 𝜏, 𝑔⟩ is a Stone bispace;
(ii) 𝑅[𝑥] is a closed set for every 𝑥 ∈ 𝑋;

(iii) 𝑅−1[𝑈 ] is clopen for every clopen 𝑈 ⊆ 𝑋;
(iv) ⟨𝑥, 𝑦⟩ ∈ 𝑅 iff ⟨𝑔(𝑥), 𝑔(𝑦)⟩ ∈ 𝑅 for 𝑥, 𝑦 ∈ 𝑋1;
(v) 𝑅[𝑋2] ⊆ 𝑋2.

The above properties ensure that the clopens of a modal
bispace form a modal bilattice when the □ operator is defined
as in (6). Thus we have established the object part of our
duality between modal bispaces and modal bilattices. Notice
also that properties (i)–(iii) in particular imply that ⟨𝑋, 𝜏,𝑅⟩
is a modal space (see, e.g., [4, Definition 3.1]).

In order to define a suitable notion of morphism for our
spaces we simply adapt the definition of [17] to our special
case.

Definition 17. A modal bifunction 𝑓 : 𝒳 → 𝒴 between modal
bispaces 𝒳 and 𝒴 is a Stone bifunction such that:

(i) if ⟨𝑥, 𝑦⟩ ∈ 𝑅𝒳 , then ⟨𝑓(𝑥), 𝑓(𝑦)⟩ ∈ 𝑅𝒴 for all 𝑥, 𝑦 ∈ 𝑋;
(ii) if ⟨𝑓(𝑥), 𝑧⟩ ∈ 𝑅𝒴 , then there is 𝑦 ∈ 𝑋 such that 𝑓(𝑦) =

𝑧, for every 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑌 .

Altogether we obtain:

Theorem 18. The category of modal bilattices with algebraic
homomorphisms and the category of modal bispaces with
modal bifunctions are dually equivalent.

VII. COMPLETENESS

The duality of Theorem 18 provides us with a state-based
semantics which, thanks to the algebraic completeness results
stated in Section IV, can be proved to be complete with

respect to our modal calculi. Let us sketch the proof for local
consequence:

Assume Γ ∕⊢𝑙 𝜑. Then by Theorem 10 we know that there
exists a matrix ⟨B, 𝐹 ⟩, with B a modal bilattice and 𝐹 ⊆ 𝐵
a bifilter of B, and a homomorphism ℎ : Fm→ B such that
ℎ[Γ] ⊆ 𝐹 but ℎ(𝜑) /∈ 𝐹 . By the Prime Filter Theorem we can
extend 𝐹 to a prime filter 𝑃 such that ℎ(𝜑) /∈ 𝑃 . We then
consider the modal bispace ⟨𝑋(B), 𝑋1(B), 𝑋2(B), 𝜏, 𝑔, 𝑅⟩
dual to B and the valuation 𝑣 from the set 𝐹𝑚 of formulas
to 𝐵(𝑋(B)), the set of clopen subsets of 𝑋(B), defined by:

𝑣(𝜓) := {𝑄 ∈ 𝑋(B) : ℎ(𝜓) ∈ 𝑄}.
Note that 𝑣 is a homomorphism as it is the combination of ℎ
with Φ, the latter being the unit of the dual adjunction between
modal bilattices and modal bispaces. For each element 𝑄
of 𝑋(B) we interpret the valuation as logical satisfaction in
the usual way:

𝑄 ⊨ 𝜓 iff 𝑄 ∈ 𝑣(𝜓).
By construction we have 𝑃 ⊨ 𝛾 for all 𝛾 ∈ Γ and 𝑃 ∕⊨ 𝜑, in
other words, 𝜑 does not follow semantically at point 𝑃 , hence
Γ ∕⊨𝑙 𝜑. ■

This argument is correct (it is, after all, the standard
argument one derives from Jónsson-Tarski duality for classical
modal logic) but the overall set-up can be considered to be
deficient in several ways. To start with, the valuation does
not act homomorphically at each point of 𝑋(B). We would
expect, for example, to be able to say how 𝑄 ⊨ ¬𝜓 is derived
from 𝑄 ⊨ 𝜓 but of course this is not possible in the two-valued
setting of the model. Similarly, the meaning of ⊕ and ⊗ differs
depending on whether the point we consider is in 𝑋1(B) or
in 𝑋2(B). We also observe that modal bispaces are not general
Kripke structures, as the partition into two isomorphic halves
is essential for the interpretation of formulas, and the relation
must satisfy the conditions expressed in Lemma 15. Before we
remedy the situation let us also point out one positive aspect
of the bispace model, namely, that the interpretation of □ is
as one would expect: 𝑄 ⊨ □𝜓 ⇐⇒ ∀⟨𝑄,𝑄′⟩ ∈ 𝑅.𝑄′ ⊨ 𝜓.

Clearly, the mismatch between logic and model appears
because the former is four-valued while the latter is two-
valued in character. What we need to do, therefore, is to
transform the model into a four-valued Kripke structure, which
is in any case the desired semantic model. Our proof attempt
gives us a hint as to how this should be done: a bifilter on
a bilattice always contains the constant ⊤, hence any prime
extension will do so as well. This shows that the point 𝑃
constructed in the proof always belongs to 𝑋1(B) (see the
text following Definition 13). Consequently, given a modal
bispace 𝒳 = ⟨𝑋,𝑋1, 𝑋2, 𝜏, 𝑔, 𝑅⟩ we let 𝑋1 be the carrier set
of our four-valued Kripke structure. Then note that according
to Definition 16, items (iv) and (v), the relation 𝑅 on 𝑋 is
completely determined by two relations 𝑅+, 𝑅− on 𝑋1, where

⟨𝑥, 𝑦⟩ ∈ 𝑅+ iff ⟨𝑥, 𝑦⟩ ∈ 𝑅;
⟨𝑥, 𝑦⟩ ∈ 𝑅− iff ⟨𝑥, 𝑔(𝑦)⟩ ∈ 𝑅.



In other words, 𝑅+ encodes the links internal to 𝑋1 and 𝑅−
those from 𝑋1 to 𝑋2. Definition 16 tells us that the links in-
ternal to 𝑋2 are mirror images of those internal to 𝑋1 and that
there are no links from 𝑋2 to 𝑋1. We combine 𝑅+ and 𝑅−
into a single four-valued relation 𝑅4 : 𝑋

1×𝑋1 → ℱ𝒪𝒰ℛ as
follows:

𝑅4(𝑥, 𝑦) =

⎧⎨
⎩

t iff ⟨𝑥, 𝑦⟩ ∈ 𝑅+ and ⟨𝑥, 𝑦⟩ ∈ 𝑅−
⊤ iff ⟨𝑥, 𝑦⟩ ∈ 𝑅+ and ⟨𝑥, 𝑦⟩ /∈ 𝑅−
⊥ iff ⟨𝑥, 𝑦⟩ /∈ 𝑅+ and ⟨𝑥, 𝑦⟩ ∈ 𝑅−
f iff ⟨𝑥, 𝑦⟩ /∈ 𝑅+ and ⟨𝑥, 𝑦⟩ /∈ 𝑅−

Standard duality theory tells us that the valuation 𝑣 in our
proof attempt takes values in the bilattice 𝐵(𝒳 ) of clopen
subsets of 𝑋 . These, too, can be represented as subsets of 𝑋1

alone, making use of the homeomorphism 𝑔 that exchanges
𝑋1 and 𝑋2. We set8

𝑣+(𝜓) := 𝑋1 ∩ 𝑣(𝜓)
𝑣−(𝜓) := 𝑔(𝑋2 ∖ 𝑣(𝜓))

As we did with 𝑅+ and 𝑅−, we combine these two maps into
a single four-valued valuation 𝑣4 : 𝐹𝑚×𝑋1 → ℱ𝒪𝒰ℛ:

𝑣4(𝜓, 𝑥) =

⎧⎨
⎩

t iff 𝑥 ∈ 𝑣+(𝜓) and 𝑥 /∈ 𝑣−(𝜓)
⊤ iff 𝑥 ∈ 𝑣+(𝜓) and 𝑥 ∈ 𝑣−(𝜓)
⊥ iff 𝑥 /∈ 𝑣+(𝜓) and 𝑥 /∈ 𝑣−(𝜓)
f iff 𝑥 /∈ 𝑣+(𝜓) and 𝑥 ∈ 𝑣−(𝜓)

With these definitions we can now check that 𝑣4 acts homo-
morphically at the points of 𝑋1. For example:

𝑣4(𝜓 ∧ 𝜓′, 𝑥) = t
⇐⇒ 𝑥 ∈ 𝑣+(𝜓 ∧ 𝜓′) and 𝑥 /∈ 𝑣−(𝜓 ∧ 𝜓′)
⇐⇒ 𝑥 ∈ 𝑣(𝜓 ∧ 𝜓′) and 𝑔(𝑥) ∈ 𝑣(𝜓 ∧ 𝜓′)
⇐⇒ 𝑥 ∈ 𝑣(𝜓) ∩ 𝑣(𝜓′) and 𝑔(𝑥) ∈ 𝑣(𝜓) ∩ 𝑣(𝜓′)

...
⇐⇒ 𝑣4(𝜓, 𝑥) = t and 𝑣4(𝜓′, 𝑥) = t

We are ready to transform our proof from the beginning of
this section into one for four-valued Kripke structures:

Theorem 19. For all Γ ∪ {𝜑} ⊆ 𝐹𝑚, the following are
equivalent:

(i) Γ ⊢𝑙 𝜑;
(ii) for every four-valued Kripke model 𝑀 = ⟨𝑊,𝑅, 𝑣⟩ and

every 𝑤 ∈𝑊 , it holds that 𝑀,𝑤 ⊨ Γ implies 𝑀,𝑤 ⊨ 𝜑.

Proof: The argument proceeds exactly as before but we
now translate the modal bispace obtained from duality into a
four-valued Kripke model as laid out above. Local satisfaction
becomes:

𝑄 ⊨ 𝜓 iff 𝑄 ∈ 𝑣(𝜓)
iff 𝑄 ∈ 𝑣+(𝜓)
iff 𝑣4(𝜓,𝑄) ∈ {t,⊤}

since we know that 𝑄 belongs to 𝑋1(B). We then have 𝑃 ⊨ 𝛾
for all 𝛾 ∈ Γ and 𝑃 ∕⊨ 𝜑, in other words, Γ ∕⊨𝑙 𝜑.

8The asymmetry between the two definitions being exactly the “twist” in
the twist-structure construction of Section V.

Theorem 20. For all Γ ∪ {𝜑} ⊆ 𝐹𝑚, the following are
equivalent:

(i) Γ ⊢𝑔 𝜑;
(ii) for any four-valued Kripke model 𝑀 = ⟨𝑊,𝑅, 𝑣⟩, if

𝑀,𝑤 ⊨ Γ for all 𝑤 ∈𝑊 , then 𝑀,𝑤 ⊨ 𝜑 for all 𝑤 ∈𝑊 .

Proof: Only a small adjustment is needed. By Theorem 9
we know that the algebraic countermodel is of the form
⟨B, 𝐹0⟩ where 𝐹0 is the least bifilter of B. Hence for all
𝑄 ∈ 𝑋1(B) we have that 𝑄 ∈ 𝑣+(𝛾) for every 𝛾 ∈ Γ, that is,
𝑄 ⊨ Γ. On the other hand, the statement 𝑃 ∕⊨ 𝜑 remains true,
and we conclude that Γ ∕⊨𝑔 𝜑.

VIII. CONCLUSIONS AND FURTHER WORK

Belnap’s four-valued logic is by now one of the standard
candidates for dealing with missing or conflicting information.
Through the work of many researchers, especially Ginsberg,
Fitting, Arieli and Avron, it has been shown that the system has
good mathematical properties and is a flexible and expressive
tool for practical reasoning. We believe that the results pre-
sented here strengthen this argument further. The modal logic
we obtain is very closely related to the classical case and only
one further axiom, □(⊥ → 𝜑) ↔ (⊥ → □𝜑), is required to
obtain an axiomatization that is complete with respect to four-
valued Kripke structures, the natural candidate for a semantics.

From a mathematical perspective, it is tempting to try to
transfer other results from classical modal logic to the four-
valued case. For example, the logic we characterize is the
minimal one, and it is natural to consider stronger axioms
and their manifestation in Kripke structures. As mentioned at
the end of Section V, it may be possible to embed modal
bilattice logic in classical modal logic (with two independent
modalities), and this may provide the basis for a systematic
transfer of results and algorithms.

Research in applications of multi-valued logic to computer
science and artificial intelligence has considered a number of
bilattices other than ℱ𝒪𝒰ℛ. At this point in time we do
not know whether our completeness result extends to such
settings. The authors of [6] do better in this respect, though
we can not use their results without adaptation as bilattices,
viewed as residuated lattices, are not integral in the sense
explained above. Also, the problem of axiomatizing the global
consequence relation seems to be beyond the reach of the
methods employed in [6].

Much progress has been made in recent years in modelling
evolving systems as coalgebras and it has been found that the
logic which is naturally associated with these (via duality) is
modal in character. Given the canonical nature of our four-
valued modal logic it ought to be possible to extract it from
a natural functor on the category of sets.

In computer science, classical modal logic has been ex-
tended in numerous ways and the resulting calculi have been
employed in verification with great success. Still, large systems
continue to pose a formidable challenge to verification tools
and many ideas have been put forward to deal with this
problem. Four-valued logic can be seen as a calculus for



approximate reasoning, within which it is possible to leave
some parameters unspecified or to continue the analysis even
if some submodules have returned conflicting information.
This appears to be an approach very well worth trying but
it clearly requires the extension of our minimal calculus
to richer modal languages. It should also be said that our
particular (Hilbert-style) calculus, while complete, may not
be suitable for automation and — as in the classical case —
alternative calculi may be required. We nevertheless hope that
the techniques and results of this paper will prove to be a
useful toolkit in such an endeavour.
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