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Kron Reduction of Graphs with Applications to

Electrical Networks
Florian Dörfler Francesco Bullo

Abstract—Consider a weighted undirected graph and its corre-
sponding Laplacian matrix, possibly augmented with additional
diagonal elements corresponding to self-loops. The Kron reduc-
tion of this graph is again a graph whose Laplacian matrix is ob-
tained by the Schur complement of the original Laplacian matrix
with respect to a specified subset of nodes. The Kron reduction
process is ubiquitous in classic circuit theory and in related
disciplines such as electrical impedance tomography, smart grid
monitoring, transient stability assessment, and analysis of power
electronics. Kron reduction is also relevant in other physical
domains, in computational applications, and in the reduction
of Markov chains. Related concepts have also been studied as
purely theoretic problems in the literature on linear algebra.
In this paper we analyze the Kron reduction process from the
viewpoint of algebraic graph theory. Specifically, we provide
a comprehensive and detailed graph-theoretic analysis of Kron
reduction encompassing topological, algebraic, spectral, resistive,
and sensitivity analyses. Throughout our theoretic elaborations
we especially emphasize the practical applicability of our results
to various problem setups arising in engineering, computation,
and linear algebra. Our analysis of Kron reduction leads to novel
insights both on the mathematical and the physical side.

Index Terms—Kron reduction, equivalent circuit, algebraic
graph theory, Ward equivalent, network-reduced model

I. INTRODUCTION

Consider an undirected, connected, and weighted graph with

n nodes and adjacency matrix A ∈ Rn×n. The corresponding

loopy Laplacian matrix is the matrix Q ∈ Rn×n with off-

diagonal elements Qij = −Aij and diagonal elements Qii =
Aii +

∑n
j=1 Aij . Consider now a simple algebraic operation,

namely the Schur complement of the loopy Laplacian matrix Q
with respect to a subset of nodes. As it turns out, the resulting

lower dimensional matrix Qred is again a well-defined loopy

Laplacian matrix, and a graph can be naturally associated to it.

This paper investigates this Schur complementation from

the viewpoint of algebraic graph theory. In particular we seek

answers to the following questions. How are the spectrum and

the algebraic properties of Q and Qred related? How about the

corresponding graph topologies and the effective resistances?

What is the effect of a perturbation in the original graph on

the reduced graph, its loopy Laplacian Qred, its spectrum, and

its effective resistance? Finally, why is this graph reduction

process of practical importance and in which application

areas? These are some of the questions that motivate this paper.

Electrical networks and the Kron reduction. To illustrate

the physical dimension of the problem setup introduced above,
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we consider the circuit naturally associated to the adjacency

matrix A. Consider a connected electrical network with n
nodes, current injections I ∈ Rn×1, nodal voltages V ∈ Rn×1,

branch conductances Aij ≥ 0, and shunt conductances Aii ≥
0 connecting node i to the ground. The resulting current-

balance equations are I = QV , where the conductance matrix

Q ∈ Rn×n is the loopy Laplacian. In circuit theory and

related disciplines it is desirable to obtain a lower dimensional

electrically-equivalent network from the viewpoint of certain

boundary nodes α ( {1, . . . , n}, |α| ≥ 2. If β = {1, . . . , n}\α
denotes the interior nodes, then, after appropriately labeling

the nodes, the current-balance equations can be partitioned as

[
Iα
Iβ

]
=

[
Qαα Qαβ

Qβα Qββ

] [
Vα

Vβ

]
. (1)

Gaussian elimination of the interior voltages Vβ in equations

(1) gives an electrically-equivalent reduced network with the

nodes α obeying the reduced current-balance equations

Iα +QacIβ = QredVα , (2)

where the reduced conductance matrix Qred ∈ R|α|×|α| is

given by the Schur complement of Q with respect to the

interior nodes β, that is, Qred = Qαα−QαβQ
−1
ββQβα, and the

accompanying matrix Qac = −QαβQ
−1
ββ ∈ R|α|×(n−|α|) maps

internal currents to boundary currents in the reduced network.

This reduction of an electrical network via a Schur comple-

ment of the associated conductance matrix is known as Kron

reduction due to the seminal work of Gabriel Kron [1]. In case

of a star-like network without interior current injections and

shunt conductances, the Kron reduction of a network reduces

to the (generalized) star-triangle transformation [2], [3].

Literature review. The Kron reduction of networks is

ubiquitous in circuit theory and related applications in order

to obtain lower dimensional electrically-equivalent circuits. It

appears for instance in the behavior, synthesis, and analysis of

resistive circuits [4]–[6], particularly in the context of large-

scale integration chips [7], [8]. When applied to the impedance

matrix of a circuit rather than the admittance matrix, Kron

reduction is also referred to as the “shortage operator” [9],

[10]. Kron reduction is a standard tool in the power systems

community to obtain so-called “network-reduced” or “Ward-

equivalent” models for power flow studies [11], [12], to

reduce differential-algebraic power network models to purely

dynamic models [13]–[16], and it is crucial for reduced order

modeling, analysis, and efficient simulation of induction mo-

tors [17] and power electronics [18], [19]. A recent application

of Kron reduction is monitoring in smart power grids [20]

via synchronized phasor measurement units. Kron reduction
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is also known in the literature on electrical impedance tomog-

raphy, where Qred is referred to as the “Dirichlet-to-Neumann

map” [21]–[23]. More generally, the Schur complement of

a matrix and its associated graph is known in the context

of Gaussian elimination of sparse matrices [24]–[26] and its

application to Laplacian matrices can be found, for example,

in sparse multi-grid solvers [27] and in finite-element analysis

[17]. It serves as popular application example in linear algebra

[28]–[31], a similar concept is employed in the cyclic reduc-

tion [32] or the stochastic complement [33] of Markov chains,

and a related concept is the Perron complement [34], [35] of

a matrix and its associated graph with applications in data

mining [36]. Finally, Kron reduction is also crucial in model

reduction of water supply networks [37] and in the context of

the Yang-Baxter equation and its applications in knot theory,

high-energy physics, and statistical mechanics [38].

This brief literature review shows that Kron reduction is

both a practically important and theoretically fascinating prob-

lem occurring in numerous applications. Each of the aforemen-

tioned communities has different approaches and insights into

Kron reduction. Engineers understand the physical dimension

of Kron reduction very well, the computation community

investigates the sparsity pattern of the Kron-reduced matrix,

and the linear algebra community is interested in eigenvalue

problems. Surprisingly, across different scientific communities

little is known about the graph-theoretic properties of the

Kron reduction process. Yet the graph-theoretic analysis of

Kron reduction provides novel and deep insights both on the

mathematical and the physical side of the considered problem.

Contributions. In this paper we provide a detailed and

comprehensive graph-theoretic analysis of the Kron reduction

process. Our general graph-theoretic framework and analysis

of Kron reduction encompasses various theoretical problem

setups as well as practical applications in a unified language.

Essentially, Kron reduction of a connected graph, possibly

with self-loops, is a Schur complement of corresponding loopy

Laplacian matrix with respect to a subset of nodes. We relate

the topological, the algebraic, and the spectral properties of the

resulting Kron-reduced Laplacian matrix to those of the non-

reduced Laplacian matrix. Furthermore, we relate the effective

resistances in the original graph to the elements and effective

resistances induced by the Kron-reduced Laplacian. Thereby,

we complement and extend various results in the literature

on the effective resistance of a graph [10], [39]–[42]. In

our analysis, we carefully analyze the effects of self-loops,

which typically model loads and dissipation. We also present

a sensitivity analysis of the algebraic, spectral, and resistive

properties of the Kron-reduced matrix with respect to per-

turbations in the non-reduced network topology. Finally, our

analysis of Kron reduction complements the literature in linear

algebra [28]–[31], and we construct an explicit relationship to

analogous results on the Perron complement side [33]–[36]

such that our results apply also to Markov chain reductions.

Throughout the paper, we will remark whenever certain basic

lemmas are known or partially known to some community.

In our analysis we do not aim at deriving only mathematical

elegant results but also useful tools for practical applications.

Our general graph-theoretic framework encompasses the appli-

cations of Kron reduction in circuit theory [4]–[8], electrical

impedance tomography [21]–[23], sensitivity in power flow

studies [11], [12], monitoring in smart grids [20], transient sta-

bility assessment in power grids [13]–[16], and the stochastic

reduction of Markov chains [29], [33]–[36]. Furthermore, we

demonstrate how each of these applications benefits from the

graph-theoretic viewpoint and analysis of the Kron reduction.

We believe that our general analysis is a first step towards more

detailed results in specific applications of Kron reduction.

Paper organization. The remainder of this section intro-

duces some notation recalls some preliminaries in matrix anal-

ysis and algebraic graph theory. Section II presents the general

framework of Kron reduction and reviews various application

areas. Section III presents the graph-theoretic analysis of the

Kron reduction process. Finally, Section IV concludes the

paper and suggests some future research directions.

Preliminaries and Notation. Given a finite set Q, let |Q| be

its cardinality, and define for n ∈ N the set In = {1, . . . , n}.

Vectors and matrices: Let 1p×q and 0p×q be the p × q
dimensional matrices of unit and zero entries, and let In
be the n-dimensional identity matrix. For vectors, we adopt

the shorthands 1p = 1p×1 and 0p = 0p×1 and define ei
to be vector of zeros of appropriate dimension with entry

1 at position i. For a real-valued 1d-array {xi}
n
i=1, we let

diag({xi}
n
i=1) ∈ Rn×n be the associated diagonal matrix.

Given a real-valued 2d-array {Aij} with i, j ∈ In, let

A ∈ Rn×n denote the associated matrix and AT the trans-

posed matrix. We use the following standard notation for

submatrices [43]: for two non-empty index sets α, β ⊆ In
let A[α, β] denote the submatrix of A obtained by the rows

indexed by α and the columns indexed by β and define the

shorthands A[α, β) = A[α, In \ β], A(α, β] = A[In \ α, β],
and A(α, β) = A[In \ α, In \ β]. We adopt the shorthand

A[{i}, {j}] = A[i, j] = Aij for i, j ∈ In, and for x ∈ Rn

the notation x[α, {1}] = x[α] and x(α, {1}) = x(α). For

illustration, equation (1) can be written unambiguously as
[

I[α]
I(α)

]
=

[
Q[α, α] Q[α, α)
Q(α, α] Q(α, α)

] [
V [α]
V (α)

]
.

If A(α, α) is nonsingular, then the Schur complement of A
with respect to the block A(α, α) (or equivalently the indices

α) is the |α| × |α| dimensional matrix A/A(α, α) defined by

A/A(α, α) , A[α, α]−A[α, α)A(α, α)−1A(α, α] .

If A is Hermitian, then we implicitly assume that its eigen-

values are arranged in increasing order: λ1(A)≤ . . .≤λn(A).
The reader is referred to [44] for a review of matrix analysis.

Algebraic graph theory: Consider the undirected, connected,

and weighted graph G = (In, E , A) with node set In and

edge set E ⊆ In × In induced by a symmetric, nonnegative,

and irreducible adjacency matrix A ∈ Rn×n. A non-zero

off-diagonal element Aij > 0 corresponds to a weighted

edge {i, j} ∈ E , and a non-zero diagonal elements Aii > 0
corresponds to a weighted self-loop {i, i} ∈ E . We define the

corresponding degree matrix by D , diag
(
{
∑n

j=1 Aij}
n
i=1

)
.

The Laplacian matrix is the symmetric matrix defined by

L,D −A. Note that self-loops, even though apparent in the

adjacency matrix A, do not appear in the Laplacian matrix L.



3

For these reasons and motivated by the conductance matrix in

circuit theory, we define the loopy Laplacian matrix Q(A) =
Q , L+diag({Aii}

n
i=1) ∈ Rn×n. Note that adjacency matrix

A can be recovered from the loopy Laplacian Q as A = −Q+
diag({

∑n
j=1,j 6=i Qij}

n
i=1), and thus Q uniquely induces the

graph G. We refer to Q as strictly loopy (respectively loop-

less) Laplacian, if the graph induced by Q features at least

one (respectively no) positively-weighted self-loop.

For a connected graph ker(L) = span(1n), and all n − 1
remaining non-zero eigenvalues of L are strictly positive.

Specifically, the second-smallest eigenvalue λ2(L) is a spectral

connectivity measure called the algebraic connectivity. Recall

that irreducibility of either A, L, or Q is equivalent to

connectivity of G, which is again equivalent to λ2(L) > 0.

We refer to [45] for further details on algebraic graph theory.

The effective resistance Rij between two nodes i, j ∈ In
of an undirected connected graph with loopy Laplacian Q is

Rij , (ei − ej)
TQ†(ei − ej) = Q†

ii +Q†
jj − 2Q†

ij , (3)

where Q† is the Moore-Penrose pseudo inverse of Q. Since Q†

is symmetric (follows from the singular value decomposition),

the matrix of effective resistances R is again a symmetric

matrix with zero diagonal elements Rii = 0. The effective

resistance Rij can be thought of as a graph-theoretic metric,

and it is mostly analyzed for a loop-less and uniformly

weighted graph with Q ≡ L. We do not restrict ourselves to

this case here. We refer the reader to [10], [16], [39]–[42] for

various applications and properties of the effective resistance

as well as interesting results relating R, L, Q, L†, and Q−1.

Remark I.1 (Physical interpretation) If the graph is under-

stood as a resistive circuit with conductance matrix Q, the

effective resistance Rij corresponds to the potential difference

between the nodes i and j when a unit current is injected in i
and extracted in j. In this case, the current-balance equations

are ei−ej = QV . The effective resistance Rij , defined as the

potential difference Rij = (ei − ej)
TV , can be obtained via

the impedance matrix Q† as Rij = (ei − ej)
TQ†(ei − ej). �

II. PROBLEM SETUP, BASIC RESULTS, AND APPLICATIONS

A. The Kron Reduction Process

Consider an undirected, connected, and weighted graph

G = (In, E , A) and its associated symmetric and irreducible

matrices: the adjacency matrix A ∈ Rn×n, Laplacian matrix

L(A), and loopy Laplacian matrix Q(A). Furthermore, let

α ( In be a proper subset of nodes with |α| ≥ 2. We define

the (|α| × |α|) dimensional Kron-reduced matrix Qred by

Qred , Q/Q(α, α) . (4)

In the following, we refer to the nodes α and In \α as bound-

ary nodes and interior nodes, respectively. The following

lemma establishes the existence of the Kron-reduced matrix

Qred as well as some structural closure properties.

Lemma II.1 (Structural Properties of Kron Reduction) Let

Q ∈ Rn×n be a symmetric irreducible loopy Laplacian and let

α be a proper subset of In with |α| ≥ 2. The following state-

ments hold for the Kron-reduced matrix Qred = Q/Q(α, α):

1) Existence: The Kron-reduced matrix Qred is well defined.

2) Closure properties: If Q is a symmetric loopy, strictly

loopy, or loop-less Laplacian matrix, respectively, then

Qred is a symmetric loopy, strictly loopy, or loop-less

Laplacian matrix, respectively.

3) Accompanying matrix: The accompanying matrix

Qac , −Q[α, α)Q(α, α)−1 ∈ R|α|×(n−|α|) is non-

negative. If the subgraph among the interior nodes

is connected and each boundary node is adjacent to

at least one interior node, then Qac is positive. If

additionally, Q ≡ L is a loop-less Laplacian, then

Qac = Lac , −L[α, α)L(α, α)−1 is column stochastic.

An interesting consequence of Lemma II.1 is that Qred, as

a loopy Laplacian matrix, induces again an undirected and

weighted graph. Hence, Kron reduction, originally defined as

an algebraic operation in equation (4), can be equivalently

interpreted as a graph-reduction process, or as physical re-

duction of the associated circuit. This interplay between linear

algebra, graph theory, and physics is illustrated in Figure 1.
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Fig. 1. Illustration of an electrical network with 4 boundary nodes ��,
8 interior nodes •◦ , and unit-valued branch and shunt conductances. The
associated loopy Laplacian Q and the graph G are equivalent representations.
Kron reduction of the interior nodes •◦ results in a reduced network among
the boundary nodes �� with the Kron-reduced matrix Qred and graph Gred.

In the following we denote the reduced graph induced

by Qred as Gred, and define the corresponding reduced

adjacency, degree, and loop-less Laplacian matrices by

Ared , −Qred + diag({
∑n

j=1,j 6=i Qred[i, j]}i∈α), Dred ,

diag
(
{
∑n

j=1 Ared[ij]}
n
i=1

)
, and Lred , Dred−Ared. We remark

that Lemma II.1 is partially also noted in [4], [5], [13], [27],

[28], [30], and we present a self-contained proof here.

Proof of Lemma II.1. First, consider the case when the

graph among the interior nodes is connected, or equivalently

Q(α, α) is irreducible. By definition, Q is (weakly) diagonally

dominant since Qii =
∑n

j=1,j 6=i |Qij | + Aii for all i ∈ In.

Due to the irreducibility of Q the strict inequality Qii >∑n
j=1,j 6=i,j 6∈α |Qij |+Aii holds at least for one i ∈ In \ α. It

follows that Q(α, α) is also irreducible, diagonally dominant,

and has at least one row with strictly positive row sum.

Hence, Q(α, α) is invertible [44, Corollary 6.2.27]. If the
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graph among the interior nodes consists of multiple connected

components, then, after appropriately labeling the interior

nodes, the matrix Q(α, α) is block-diagonal with irreducible

diagonal blocks corresponding to the connected components.

The previous arguments applied to each diagonal block yield

that Q(α, α) is nonsingular, and statement 1) follows.

Statement 2) is a consequence of the closure properties

of the Schur complement [43, Chapter 4], which includes

the classes of symmetric, positive definite, and M -matrices.

Since Q is a symmetric M -matrix, we conclude that Qred =
Q/Q(α, α) is also a symmetric M -matrix. Hence, Qred is a

symmetric loopy Laplacian. This fact together with the closure

of positive definite matrices reveals that the class of symmetric

strictly loopy Laplacians is closed under Kron reduction. To

prove the closure of symmetric loop-less Laplacians, assume

without loss of generality that α = I|α|, and consider the fol-

lowing equality for the row sums of the loop-less LaplacianQ:
[

Q[α, α] Q[α, α)
Q(α, α] Q(α, α)

] [
1|α|

1n−|α|

]
=

[
0|α|

0|α|

]
. (5)

Elimination of the second block of equations in (5) results

in 0|α| = Qred1|α|, which shows that Qred is a loop-less

Laplacian and concludes the proof of statement 2).

The second block of equations in (5) can be rewritten as

1n−|α| = QT
ac1|α|. Hence, Qac is a column stochastic matrix

in the loop-less case. In general, Qac = −Q[α, α)Q(α, α)−1

is nonnegative, since −Q[α, α) and the inverse of the M -

matrix Q(α, α) are both nonnegative. If additionally each

boundary node is connected to at least one interior node and

the graph among the interior nodes is connected, then each row

of −Q[α, α) has at least one positive entry. Moreover, since

Q(α, α) is an irreducible non-singular M -matrix, Q(α, α)−1

is positive [28, Theorem 5.12]. The latter two facts guarantee

positivity of Qac and complete the proof of statement 3).

As mentioned in Section I, the Kron reduction has various

applications, and its general purpose is to construct low dimen-

sional “equivalent” matrices, graphs, or circuits. In the follow-

ing we describe different examples arising in Markov chains,

circuit theory, impedance tomography, power flow studies,

transient stability assessment, and smart grid monitoring.

B. Stochastic Complements and Markov Chain Reduction

A concept related to Kron reduction is the reduction of

nonnegative, irreducible, and row stochastic matrices via the

Perron complement [29], [34], [35]. The latter concept finds

application in Markov chain reduction [33] and in data mining

[36], where it is termed stochastic complement. Here we relate

the Schur complement of a Laplacian with the stochastic

complement of the corresponding Markov chain transition

matrix. Hence, our results pertaining to Kron reduction can

be analogously stated for the stochastic complement. For

instance, the topological properties are identical, and the

spectral, algebraic, and resistive properties can be easily and

naturally related via the degree matrix of the boundary nodes.

Given a loop-less graph induced by a symmetric, non-

negative, and irreducible adjacency matrix A ∈ Rn×n with

corresponding degree matrix D, we define the corresponding

transition matrix by P , D−1A. The transition matrix

P induces the state transition map x+ = Px of a finite-

state Markov chain, it is nonnegative, irreducible, and row

stochastic, that is, P1n = 1n. Generally, P is not symmetric.

By the definitions of D, L = D − A, and P = D−1A,

we have that L = D(In − P ). For α ∈ [2, n− 1], the

Kron-reduced Laplacian is given by the Schur complement

Lred = L/L(α, α) = Dred − Ared, and we define the reduced

transition matrix Pstc by the stochastic complement [33]

Pstc , P [α, α] + P [α, α)(Iα − P (α, α))−1P (α, α] .

The reduced transition matrix Pstc has various interesting

properties. For instance, analogously to Lemma II.1, Pstc

is again nonnegative, irreducible, and row-stochastic [33,

Theorem 2.3]. We refer to [29], [33]–[35] for further de-

tails. Finally, we define the pseudo-reduced adjacency matrix

Astc , A[α, α]+A[α, α)(D(α, α)−A(α, α))−1A(α, α]. Then,

based on the fundamental relation between Schur and Perron

complements shown in [33]–[36], we can state the following

lemma relating Kron reduction and the stochastic complement.

Lemma II.2 (Kron Reduction and Stochastic Complemen-

tation) Consider a loop-less graph induced by a symmetric,

nonnegative, and irreducible adjacency matrix A ∈ Rn×n with

degree matrix D, Laplacian L = D−A, and transition matrix

P = D−1A. Let α be a proper subset of In with |α| ≥ 2, and

consider the Kron-reduced Laplacian Lred = L/L(α, α) =
Dred−Ared, the reduced transition matrix Pstc, and the pseudo-

reduced adjacency matrix Astc. The following identities hold:

Pstc=D[α, α]−1Astc , (6)

Lred=Dred −Ared=D[α, α]−Astc=D[α, α](Iα − Pstc). (7)

Identity (6) gives an intuitive relation of the reduced transi-

tion matrix, the degree matrix D[α, α], and the pseudo-reduced

adjacency matrix Astc among the boundary nodes. Identity (7)

implies that Ared[i, j] = Astc[i, j] = Pstc[i, j]·Di for all distinct

i, j ∈ α, that is, the matrics Ared and Astc induce the same re-

duced graph besides self-loops. The diagonal elements satisfy

Ared[i, i] = 0 and Astc[i, i] = Di − Dred[i, i] = Pstc[i, i] · Di.

In case that the original graph features self-loops, then the

identities stated later in Theorem III.6 allow to directly relate

the Kron-reduced strictly loopy Laplacian Qred and identity (7).

Proof of Lemma II.2. To prove identity (6), recall that P =
D−1A, and consider the following set of equalities

Pstc =D[α, α]−1(A[α, α] +A[α, α)

× ((Iα −D(α, α)−1A(α, α))−1D(α, α)−1A(α, α]

=D[α, α]−1(A[α, α] +A[α, α)

× ((D(α, α)−A(α, α))−1A(α, α] = D[α, α]−1Astc ,

where we used (Iα − V −1U)−1 = (V − U)−1V (for a

nonsingular (α× α)-matrix V ), see [46, Equation (13)].

To prove identity (7) consider the following set of equalities,

Lred = L[α, α]− L[α, α)L(α, α)−1L(α, α]

=(D[α, α]−A[α, α])−A[α, α)(D(α, α)−A(α, α))−1A(α, α]

= D[α, α]−Astc = D[α, α]−D[α, α]Pstc ,

where we used identity (6) in the last inequality.
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C. Kron Reduction in Large-Scale Integration Chips

In large-scale integration chips, it is of interest to reduce

the complexity of large-scale circuits by replacing them with

equivalent lower dimensional circuits with the same terminals

(boundary nodes) [7], [8]. The circuit reduction problem also

stimulated a matrix-theoretic and behavioral analysis from

the viewpoint of boundary nodes [4]–[6], [13]. For resistive

networks, Kron reduction leads to such an equivalent reduced

circuit. A particular reduction goal in [7] is to reduce the fill-

in of the Kron-reduced matrix Qred for computation of the

effective resistance. The proper choice of the boundary nodes

has a tremendous effect on the sparsity of the Kron-reduced

matrix and saves numerical effort in subsequent computations,

see Figure 2. Reduction of the fill-in is also a pervasive

objective in the computational applications [24]–[27].
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Fig. 2. a) Illustration of an integration chip with a symmetric top-level
network connecting the interior nodes with the terminals. The Kron reduction
of all interior nodes of a network with 59 terminals results in a Kron-reduced
matrix of dimension 592 with 592 = 3481 non-zero entries. If all but five
specifically chosen interior nodes are eliminated, then the Kron-reduced matrix
is of dimension 642 but has only 1506 non-zero entries. The corresponding
sparsity patterns are shown in subfigures b) and c), which are taken from [7].

In [7] it is argued that reduction of a connected compo-

nent of Q results in a dense component in Qred and the

effective resistance among boundary nodes is invariant under

Kron reduction. We remark that these arguments are based

on numerical observations and physical intuition. This paper

puts the statements of [7] on solid mathematical ground.

We prove invariance of the effective resistance under Kron

reduction and rigorously show under which conditions a sparse

topology becomes dense or even complete. Moreover, our

setup encompasses shunt loads and currents drawn from the

interior network, thereby generalizing results in [4]–[6], [13].

D. Electrical Impedance Tomography

In electrical impedance tomography the goal is to determine

the conductivity inside a compact spatial domain Ω ⊂ R2 from

simultaneous measurements of currents and voltages at the

boundary of Ω, that is, from measurement of the Dirichlet-to-

Neumann map. Electrical impedance tomography finds appli-

cations in geophysics and medical imaging. A natural approach

is a discretization of the spatial domain to a resistor network

with conductance matrix Q. As seen in equations (2) with

Iβ = 0n×1, when a unit potential is imposed at boundary

node j and a zero potential at all other boundary nodes, the

current measured at boundary node i gives the reduced transfer

conductance Qred[i, j]. Other methods iteratively construct the

reduced impedance matrix Q†
red from measurements of the

effective resistance R [23]. The goal is then to invert the Kron

reduction and recover the original network Q from the reduced

Q

Ω

Qred

Fig. 3. In electric impedance tomography the conductivity of the spatial
domain Ω is estimated by measuring the Kron-reduced matrix Qred at the
boundary nodes ��. From these measurements the conductance matrix Q is
re-constructed and serves as a spatial discretization of Ω.

network Qred, as illustrated in Figure 3. This is feasible only

for highly symmetric networks [21]–[23], but generally it is

not possible to infer structural properties from Qred to Q.

This paper provides non-iterative identities relating the

effective resistance matrix R and the Kron-reduced impedance

matrix Q†
red as well as explicit identities relating R and Qred

for uniform networks. Furthermore, our analysis allows to

partially invert the Kron reduction by estimating the spectrum

of Q or its effective resistance from the spectrum or resistance

of Qred. Finally, our framework allows also for dissipation of

energy in the spatial domain via loads in the resistor network.

E. Sensitivity of Reduced Power Flow

Large-scale power transmission networks can be modeled as

circuits, with generators and load buses as nodes, see Figure

4. Each transmission line {i, j} is weighted by a (typically
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Fig. 4. Single line diagram of the New England Power Grid [14], an
equivalent schematic representation with generators �� and buses •◦ , and the
corresponding Kron-reduced network

inductive) admittance Aij = Aji ∈ C. Whereas generator i
injects a current Ii ∈ C, the load at a bus j draws a current

Ij ∈ C and features a shunt admittance Ajj ∈ C. Hence,

the power network obeys the current-balance equations I =
QV , where the nodal admittance matrix Q ∈ Cn×n is the

loopy Laplacian induced by the admittances Aij . Depending

on the application, the current balance equations are sometimes

converted to the power flow equations S = V ◦(QV )∗, where ◦
is the Hadamard product, ∗ denotes the conjugate transposed,

and S = V ◦ I∗ is the vector of power injections.

A critical task in power network operation is monitoring

and control of the power flow. The determining equationsS=
V ◦ (QV )∗ are too complicated to admit an analytic solution

and often too onerous for a computational approach [11], [12].

If a set of nodes α is identified for sensing or control purposes,

then all remaining nodes can be eliminated via Kron reduction

leading to the reduced current-balance equations (2). The cor-

responding reduced power flow is obtained as Sred = V [α] ◦
(QredV [α])∗, where Sred = V [α] ◦ I[α]∗ + V [α] ◦ (QacI(α))

∗.

For the lossless case when Q is purely imaginary, this

paper provides insightful and explicit results showing how
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perturbations in weights or topology of Q affect the reduced

transfer admittance matrix Qred. We also show the effect

of shunt and current loads on the reduced network. For

instance, a positive shunt load Qii > 0 in the non-reduced

network weakens the mutual transfer admittances Qred[i, j] in

the reduced network and increases the reduced loads Qred[i, i].

F. Monitoring of DC Power Flow in Smart Grid

The linearized DC power flow equations are P = Bθ, where

P = ℜ(S) ∈ Rn are the real power injections, θ ∈ Rn are

the voltage phase angles, and B = −ℑ(Q) ∈ Rn×n is the

susceptance matrix. Consider the problem of monitoring an

area Ω of a smart power grid equipped with synchronized

phasor measurement units at the buses α = {α1, α2} bordering

Ω [20]. Kron reduction of the DC power flow with respect to

the interior nodes In \ α yields the reduced DC power flow

P [α] + BacP (α) = Bredθ[α], where Bred and Bac are defined

analogously to Qred and Qac. From here various scalar stress

measures over the area Ω can be defined [20]. Let σ ∈ R|α|

be the indicator vector for the boundary buses α1, that is,

σi = 1 if i ∈ α1 and zero otherwise. The cutset power flow

over the area Ω is Pcut = σTP [α] + σTBacP (α), the cutset

susceptance is bcut = σTBredσ, and the corresponding cutset

angle is θcut =Pcut/bcut. Hence, the area Ω is reduced to two

nodes {1, 2} exchanging the power flow Pcut with angle θcut

over the susceptance bcut, see Figure 5. These scalar quantities

α1 α1

α2

1

2

P [α] P [α] +BacP (α) Pcut

bcutP (α) BredΩ

α2

Fig. 5. Reduction of the area Ω with boundary buses �� to a single line
equivalent {1, 2} describing the electrical characteristics between the set of
boundary buses α1 and the set of boundary buses α2.

indicate the stress within the area Ω. For instance, a large

cutset angle θcut could be a blackout risk precursor. Of special

interest are how load changes, line outages, or loss of nodes

within Ω or on its boundary α affect the cutset angle θcut.

This paper provides a comprehensive and detailed analysis

of how changes in topology and weighting of the network

affect the Kron-reduced matrix Bred. These results include the

self-loops in the graph (modeling shunt loads) and can be

easily translated to the cutset angle θcut to show its sensitivity

with respect to perturbations in the network.

G. Transient Stability Assessment in Power Networks

Transient stability is the ability of a power network to remain

in synchronism when subjected to large disturbances such as

faults of system components or severe fluctuations in genera-

tion or load. If the power transmission is lossless with purely

imaginary admittance matrix Q and the loads are modeled as

constant current injections and shunt admittances, the network

can be reduced to the generators nodes via Kron reduction. In

this case, Qred is also purely imaginary, and the dynamics of

generator i are given by the swing equations [14]–[16]

Miθ̈i = −Diθ̇i+Pi−
∑|α|

j=1
Pij sin(θi−θj), i ∈ In , (8)

where (θi, θ̇i) are the generator rotor angle and speed, Mi > 0
and Di > 0 are the inertia and damping constant, the coupling

weight Pij = |Vi||Vj |ℑ(Qred[i, j]) > 0 is the maximum power

transfer between generators i and j, and the effective power

input Pi = Pm,i + ℜ(Vi

∑n−|α|
j=1 Q∗

ac[i, j]I
∗
|α|+j)) results from

the mechanical power input Pm,i and the current loads I|α|+j .

In [47], we derived sufficient conditions under which the

reduced model (8) synchronizes, that is, all frequency differ-

ences θ̇i(t)− θ̇j(t) converge to zero. For notational simplicity,

we assume uniform damping here, that is, Di = D for all

i ∈ α. Then two sufficient conditions for synchronization are

|α|min
i 6=j

{Pij} > max
i,j∈I|α|

{Pi − Pj} , (9)

λ2(L(Pij)) >
(∑|α|

i,j=1, i<j
(Pi − Pj)

2
)1/2

. (10)

The right-hand sides of conditions (9)-(10) measure the non-

uniformity in effective power inputs Pi, and the left-hand

sides reflect the connectivity in the reduced network: the

term |α|mini 6=j{Pij} lower-bounds mini
∑|α|

j=1 Pij , the worst

coupling of one generator to the network, and λ2(L(Pij))
is the algebraic connectivity of the coupling. In summary,

conditions (9)-(10) read as “the reduced network connectivity

has to dominate the non-uniformity in effective power inputs.”

For uniformly lower-bounded voltage magnitudes at all

generators |Vi| ≥ V > 0 the analysis of this paper will reveal

that the spectral condition (9) in the reduced network can be

converted to the spectral synchronization condition

λ2(L) >
(∑|α|

i,j=1, i<j
(Pi − Pj)

2
)1/2 1

V 2
+max

i∈In

{Ared[i, i]} ,

(11)

where L is the Laplacian of the original lossless power net-

work (weighted by ℑ(−Aij)) and Ared[i, i] is the ith shunt load

in the reduced network. Similarly, if the effective resistance

among all generators takes the uniform value R and the

effective resistance between the generators and the ground

is uniform as well, then the results of this paper render the

element-wise condition (10) in the reduced network to a re-

sistive synchronization condition in the non-reduced network:

1

R
> max

i,j∈I|α|

{Pi − Pj}
1

2V 2
+max

i∈In

{Ared[i, i]} . (12)

Conditions (11)-(12) state that the network connectivity has to

overcome the non-uniformity in effective power inputs and the

dissipation by the loads, such that the network synchronizes.

III. KRON REDUCTION OF GRAPHS

This section analyzes the algebraic, topological, spectral,

and sensitivity properties, as well as the effective resistance

of the Kron-reduced matrix Qred and its associated graph.

Throughout this section we assume that Q ∈ Rn×n is a

symmetric and irreducible loopy Laplacian matrix (corre-

sponding to an undirected, connected, and weighted graph with
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n nodes), and we let α be a proper subset of In with |α| ≥ 2.

For notational simplicity and without loss of generality, we

assume that the n nodes are labeled such that α = I|α|.

A. The Augmented Laplacian and Iterative Kron Reduction

The concepts presented in this subsection will be central to

the subsequent developments both for illustration and analysis.

The role of the self-loops induced by a strictly loopy

Laplacian Q ∈ Rn×n can be better understood by introducing

the additional grounded node with index n+1. Then the strictly

loopy Laplacian Q is the principal n× n block embedded in

the (n+1)×(n+1) dimensional augmented Laplacian matrix

Q̂ ,

[
Q −diag({Aii}

n
i=1)1n

−1
T
ndiag({Aii}

n
i=1)

∑n
i=1 Aii

]
, (13)

where A ∈ Rn×n is the adjacency matrix corresponding to Q.

The augmented Laplacian Q̂ is the Laplacian of the augmented

graph Ĝ with node set V̂ = {In, n + 1} and edge set Ê =
{E , Eaugment}. Here a node i ∈ In is connected to the grounded

node n + 1 via a weighted edge {i, n + 1} ∈ Eaugment if and

only if Aii > 0, see Figure 6 for an illustration.
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Ĝ

Fig. 6. Illustration of the graph G associated with the circuit from Figure 1

and the corresponding augmented graph Ĝ with additional grounded node �♦.

Lemma III.1 (Properties of the augmented Laplacian)

Consider the symmetric and irreducible strictly loopy Lapla-

cian Q ∈ Rn×n and the corresponding augmented Laplacian

matrix Q̂ ∈ R(n+1)×(n+1). The following statements hold:

1) Algebraic properties: Q̂ is an irreducible and symmet-

ric loop-less Laplacian matrix.

2) Spectral properties: The eigenvalues of Q and Q̂
interlace each other, that is, 0 = λ1(Q̂) < λ1(Q) ≤
λ2(Q̂) ≤ λ2(Q) ≤ · · · ≤ λn(Q̂) ≤ λn(Q) ≤ λn+1(Q̂).

3) Kron reduction: Consider the strictly loopy Laplacian

Qred and the loop-less Laplacian Q̂red , Q̂/Q̂({α, n +
1},{α, n + 1}), both obtained by Kron reduction of the

interior nodes In \α. The following diagram commutes:

Q

Qred Q̂red

Q̂
augment

augment

Kron reduction
of In \ α

Kron reduction
of In \ α

In equivalent words, Q̂red is the augmented Laplacian

associated to Qred, that is, Q̂red takes the form
[

Qred −diag({Ared[i, i]}i∈α)1|α|

−1
T
|α|diag({Ared[i, i]}i∈α)

∑n
i=1 Ared[i, i]

]
. (14)

Properties 2) and 3) of Lemma III.1 intuitively illustrate the

effect of self-loops on the spectrum of Q and its Kron-reduced

matrix. Specifically, the elegant relationship 3) implies that the

Kron reduction can be equivalently applied to the strictly loopy

network G or to the augmented loop-less network Ĝ.

Proof of Lemma III.1. Property 1) follows trivially from

the construction of the augmented Laplacian Q̂. Property 2)

is a direct application of the interlacing theorem for bordered

matrices [44, Theorem 4.3.8], where 0 = λ1(Q̂) < λ1(Q)
since Q̂ is an irreducible loop-less Laplacian and Q is non-

singular. In property 3), the upper left block of the matrix on

the right-hand side of identity (14) follows by writing out the

Schur complement of a matrix partitioned in 3× 3 blocks, as

in the proof of the Quotient Formula [43, Theorem 1.4]. The

remaining blocks follow immediately since Kron reduction of

the loop-less Laplacian Q̂red yields again a loop-less Laplacian

by Lemma II.1. This completes the proof of property 3).

Gaussian elimination of interior voltages from the current-

balance equations I = QV can either be performed via Kron

reduction in a single step, as in equation (2), or in multiple

steps, each interior node ℓ ∈ {1, . . . , n − |α|} at a time. The

following concept addresses exactly this point.

Definition III.2 (Iterative Kron reduction) Iterative Kron

reduction associates to a symmetric irreducible loopy Lapla-

cian matrix Q ∈ Rn×n and indices {1, . . . , |α|}, a sequence of

matrices Qℓ ∈ R(n−ℓ)×(n−ℓ), ℓ ∈ {1, . . . , n−|α|}, defined by

Qℓ = Qℓ−1/Qℓ−1
kℓkℓ

, (15)

where Q0 = Q and kℓ = n+1−ℓ, that is, Qℓ−1
kℓkℓ

is the lowest

diagonal entry of Qℓ−1.

If the sequence (15) is well-defined, then each Qℓ is a loopy

Laplacian matrix inducing a graph by Lemma II.1. Before

going further into the details of iterative Kron reduction,

we illustrate the unweighted graph corresponding to Qℓ (the

sparsity pattern of the corresponding adjacency matrix) in

Figure 7. When no self-loops are present, then the topological

...
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Fig. 7. Sparsity pattern (or topolgical evolution) corresponding to the iterative
Kron reduction (15) of a graph with 3 boundary nodes �� and 7 interior nodes
•◦ . The dashed red lines indicate the newly added edges in a reduction step.

iteration illustrated in Figure 7 is also known under the name

vertex elimination in the sparse matrix community [26].

The following observations can be made from Figure 7: (1)

The connectivity is maintained. (2) At the ℓth reduction step a

new edge between two nodes appears if and only if both were

connected to kℓ before the reduction, and (3) all other edges

persist. (4) Likewise, a new self-loop appears at a node i 6= kℓ
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if and only if i was connected to kℓ and kℓ featured a self-loop

before the reduction. Theorem III.4 in the next subsection will

turn these observations into rigorous theorems.

In components, Qℓ is defined by the celebrated Kron reduc-

tion formula illustrating the step-wise Gaussian elimination:

Qℓ
ij = Qℓ−1

ij −
Qℓ−1

ikℓ
Qℓ−1

jkℓ

Qℓ−1
kℓkℓ

, i, j ∈ {1, . . . , n− ℓ} . (16)

For a well-defined sequence {Qℓ}
n−|α|
ℓ=1 , we let Aℓ and Lℓ be

the corresponding adjacency and loop-less Laplacian matrix

of the ℓth reduction step. The following lemma states some

important properties of iterative Kron reduction. In particular,

the iterative Kron reduction is well-posed, it ultimately results

in the Kron-reduced matrix, and the weights of the self-loops

are non-decreasing due to non-decreasing diagonal dominance.

Lemma III.3 (Properties of iterative Kron reduction) Con-

sider the matrix sequence {Qℓ}
n−|α|
ℓ=1 defined via iterative Kron

reduction in equation (15). The following statements hold:

1) Well-posedness: Each matrix Qℓ, ℓ ∈ {1, . . . , n− |α|},

is well defined, and the classes of loopy, strictly loopy,

and loop-less Laplacian matrices are closed throughout

the iterative Kron reduction.

2) Quotient property: The Kron-reduced matrix Qred =
Q/Q(α, α) can be obtained by iterative reduction of all

interior nodes kℓ ∈ In \ α, that is, Qred ≡ Qn−|α|.

Equivalently, the following diagram commutes:

Q = Q0

Kron reduction of In \ α

Qred = Qn−|α|

iterative Kron reduction

Q1
Q2 Qn−|α|+1. . .

3) Diagonal dominance: For i ∈ {1, . . . , n − ℓ} the ith
row sum of Qℓ,

∑n−ℓ
j=1 Q

ℓ
ij = Aℓ

ii , is given by

Aℓ
ii =





Aℓ−1
ii , if Aℓ−1

kℓkℓ
= 0 ,

Aℓ−1
ii +Aℓ−1

ikℓ

(
1−

Lℓ−1

kℓkℓ

Lℓ−1

kℓkℓ
+Aℓ−1

kℓkℓ

)
, if Aℓ−1

kℓkℓ
> 0 .

Proof: Statement 2) is simply the Quotient Formula [43,

Theorem 1.4] stating that Schur complements (or Gaussian

elimination for that matter) can be taken iteratively or in a

single step. Furthermore, the Quotient Formula states that all

intermediate Schur complements Qℓ exist. This fact together

with the closure properties in Lemma II.1 proves statement 1).

For notational simplicity and without loss of generality, we

prove statement 3) for ℓ = 1 and k1 = n. Note that A0 = A,

L0 = L, Q0 = Q, and consider the ith row sum of Q1 given by

n−1∑

j=1

Q1
ij =

n−1∑

j=1

(
Qij−

Qin Qjn

Qnn

)
=

n−1∑

j=1

(
Qij−

Ain Ajn

Lnn +Ann

)

= Aii +Ain −
Ain

Lnn +Ann
Lnn , (17)

where we used equality (16), the identities Q = L +
diag({Aii}

n
i=1),

∑n−1
j=1 Qij = Aii + Ain, and

∑n−1
j=1 Ajn =

Lnn. Since Ann ≥ 0 (due to property 1) nonnegative row sums

follow also in the general case), we are left with evaluating

identity (17) for the two cases presented in statement 3).

B. Topological, Spectral, and Algebraic Properties

In this subsection we begin our characterization of the prop-

erties of Kron reduction. We start by discussing how the graph

topology of G changes under the Kron reduction process.

Theorem III.4 (Topological Properties of Kron Reduction)

Let G, Gred, and Ĝ be the undirected weighted graphs asso-

ciated to Q, Qred = Q/Q(α, α), and the augmented loopy

Laplacian Q̂, respectively. The following statements hold:

1) Edges: Two nodes i, j ∈ α are connected by an edge

in Gred if and only if there is a path from i to j in G
whose nodes all belong to {i, j} ∪ (In \ α).

2) Self-loops: A node i ∈ α features a self-loop in Gred if

and only if there is a path from i to the grounded node

n+1 in Ĝ whose nodes all belong to {i, n+1}∪(In\α).
Equivalently, a node i ∈ α features a self-loop in Gred

if and only if i features a self-loop in G or there is a

path from i to a loopy interior node j ∈ In \ α whose

nodes all belong to {i, j} ∪ (In \ α).
3) Reduction of connected components: If the interior

nodes β ⊆ In \α form a connected subgraph of G, then

the boundary nodes ᾱ ⊆ α adjacent to β in G form a

clique in Gred. Moreover, if one node in β features a

self-loop in G, then all boundary nodes adjacent to β
in G feature self-loops in Gred.

The topological evolution of the graph corresponding to

the iterative Kron reduction (16) is illustrated in Figure 7.

Statement 1) of Theorem III.4 can be observed in each

reduction step, statement 2) is nicely visible in the third step,

and statement 3) is visible in the final step of the reduction in

Figure 7 as well as in Figures 1 and 4. We remark that Theorem

III.4 is also partially stated in [13], [26], [28], [31]. Given our

prior results on iterative Kron reduction and the augmented

Laplacian matrix, the following proof is rather straightforward.

Proof of Theorem III.4. To prove statement 1), we initially

focus on the reduction of a single interior node k via the one-

step iterative Kron reduction (16). Due to the closure of loopy

Laplacian matrices under iterative Kron reduction, see Lemma

III.3, we restrict the discussion to the non-positive off-diagonal

elements of Q1 , Q/Qkk inducing the mutual edges in the

graph. Any non-zero and thus strictly negative element Qij is

rendered to a strictly negative element Q1
ij since the first term

on the right-hand side of equation (16) is strictly negative and

the second term is non-positive. Therefore, all edges in the

graph induced by Qij persist in the graph induced by Q1
ij .

According to the iterative Kron reduction formula (16), a zero

element Qij = 0 is converted into a strictly negative element

Q1
ij < 0 if and only if both nodes i and j are adjacent to k.

Consequently, a reduction of node k leads to a complete graph

among all nodes that were adjacent to k.

Recall from Lemma III.3 that the one-step reduction of

all interior nodes is equivalent to iterative reduction of each

interior node. Hence, the arguments of the previous paragraph

can be applied iteratively, which proves statement 1).

Statement 2) pertains to the diagonal elements. In the

strictly loopy case, it follows simply by applying the previous

arguments to the augmented Laplacian Q̂ defined in (13).
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Alternatively, an element-wise analysis of A1
ii together with

statement 3) of Lemma III.3 lead to the same conclusion. In

the loop-less case, there will be no self-loops arising in the

Kron iterative reduction by statement 1) of Lemma III.3.

Finally, statement 3) of Theorem III.4 follows by applying

statements 1) and 2) to the connected component β.

By Theorem III.4, the topological connectivity among the

boundary nodes becomes only denser under Kron reduction.

Hence, the algebraic connectivity λ2(L) – a spectral connec-

tivity measure – should increase accordingly. Indeed, for the

graph in Figure 7 (with initially unit weights) we have λ2(L)=
0.30≤ λ2(Lred) = 0.45. Physical intuition suggests that loads

in a circuit weaken the influence of nodes on another. Thus,

self-loops should weaken the reduced algebraic connectivity

λ2(Lred) accordingly. We can confirm these intuitions.

Theorem III.5 (Spectral Properties of Kron Reduction)

The following statements hold for the spectrum of the Kron-

reduced matrix Qred = Q/Q(α, α):

1) Spectral interlacing: For any r ∈ I|α| it holds that

λr(Q) ≤ λr(Qred) ≤ λr(Q[α, α]) ≤ λr+n−|α|(Q) . (18)

In particular, in the loop-less case, it follows for the

algebraic connectivity that 0 < λ2(L) ≤ λ2(Lred).
2) Effect of self-loops: For any r ∈ I|α| it holds that

λr(Lred) + max
i∈α

{Ared[i, i]} ≥ λr(L) + min
i∈In

{Aii} , (19)

λr(Lred)+ min
i∈I|α|

{Ared[i, i]}≤λr+n−|α|(L)+max
i∈In

{Aii}. (20)

To illustrate the effect of self-loops, consider the graph

in Figure 1 with zero-valued self-loops satisfying λ2(L) =
0.39 ≤ λ2(Lred) = 0.69. In the strictly loopy case inequalities

(19)-(20) imply that self-loops weaken the algebraic connec-

tivity tremendously.: the same graph (in Figure 1) with unit-

valued self-loops satisfies λ2(L) = 0.39 ≥ λ2(Lred) = 0.29.

Proof of Theorem III.5. To prove statement 1), recall

the spectral interlacing property [29, Theorem 3.1] for the

spectrum of a Hermitian matrix A ∈ Rn×n and its Schur

complement A/A[β, β] (provided that A[β, β] is nonsingular):

λr(A) ≤ λr(A/A[β, β]) ≤ λr(A(β, β)) ≤ λr+|β|(A) , (21)

where r ∈ In−|β|. Since Q is a loopy Laplacian matrix and

hence positive semidefinite, the interlacing property (21) can

be applied with β = In \ α and results in the bounds (18).

To prove statement 2), recall Weyl’s inequality [44, Theorem

4.3.1] for the spectrum of the sum of two Hermitian matrices

A,B ∈ Rn×n. Namely, for any k ∈ In it holds that

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B) . (22)

Consider now the following set of spectral (in)equalities:

λr(Lred) = λr(Qred − diag({Ared[i, i]}i∈α))

≥ λr(Qred)−maxi∈α{Ared[i, i]}

≥ λr(Q)−maxi∈α{Ared[i, i]}

= λr(L+ diag({Aii}
n
i=1))−maxi∈α{Ared[i, i]}

≥ λr(L) + mini∈In
{Aii} −maxi∈α{Ared[i, i]} ,

where we subsequently made use of the identity Lred =
Qred − diag({Ared[i, i]}i∈α), Weyl’s inequality (22), the fact

λ1(−diag({Ared[i, i]}i∈α)) = −maxi∈α{Ared[i, i]}, the spec-

tral interlacing property (21), the identity Q = L +
diag({Aii}

n
i=1), and again Weyl’s inequality (22) with

λ1(diag({Aii}
n
i=1)) = mini∈In

{Aii}. This proves the spectral

bound (19). The spectral bound (20) follows analogously.

In the following, we investigate some algebraic properties of

Kron reduction. In particular, the following theorem quantifies

the topological properties in Theorem III.4, it quantifies the re-

duced self-loops occurring in Theorem III.5, and it shows that

both edge and self-loop weights among the boundary nodes

are non-decreasing, as seen in Figure 1. Furthermore, the

following result shows the closure of the class of undirected

connected graphs under Kron reduction, and it reveals some

more subtle properties concerning the effect of self-loops.

Theorem III.6 (Algebraic Properties of Kron Reduction)

Consider the Kron-reduced matrix Qred and the accompa-

nying matrices Qac = −Q[α, α)Q(α, α)−1 and Lac =
−L[α, α)L(α, α)−1. The following statements hold:

1) Closure of irreducibility: Qred is irreducible if and only

if Q is irreducible.

2) Monotonic increase of weights: For all i, j ∈ α it

holds that Ared[i, j] ≥ Aij . Equivalently, it holds that

Qred[i, j] ≤ Qij for all i, j ∈ α.

3) Effect of self-loops I: Define ∆i , Aii ≥ 0, for i ∈ In,

so that loopy and loop-less Laplacians Q and L are

related by Q = L + diag({∆i}i∈In
). Then the Kron-

reduced matrix takes the form

Qred = L/L(α, α) + diag({∆i}i∈α) + S , (23)

where S=Lac(In−|α|+diag({∆i}i∈In\α)L(α, α)
−1)−1

× diag({∆i}i∈In\α)L
T
ac is a symmetric nonnegative

|α| × |α| matrix. Furthermore, the reduced self-loops

satisfy Ared[i, i]=∆i+
∑n−|α|

j=1 Qac[i, j]∆|α|+j for i ∈ α.

4) Effect of self-loops II: If the subgraph among the

interior nodes In \α is connected, each boundary node

α is connected to at least one interior node, and at least

one of the interior nodes has a positively weighted self-

loop, then S and Qac are both positive matrices.

Statements 1) and 2) are not surprising given our knowl-

edge from Theorems III.4 and III.5. Statement 3) reveals an

interesting fact that can be nicely illustrated by considering the

reduction of a single interior node k with a self-loop ∆k ≥ 0.

In this case, the matrix S in identity (23) specializes to the

symmetric and nonnegative matrix S = ck · L(k, k]L[k, k) ∈
R(n−1)×(n−1), where ck = ∆k/(Lkk(Lkk+∆k)) ≥ 0. Hence,

the reduction of node k decreases the mutual coupling {i, j}
in Q/Qkk by the amount ck · Aik Ajk > 0 and increases

each self-loop i in Q/Qkk by the corresponding amount

ck ·Aik Aik > 0. This argument can also be applied iteratively.

In statement 4) the reduction of a connected set of interior

nodes implies that a single positive self-loop in the interior

network will affect the entire reduced network by decreasing

all mutual weights and increasing all self-loops weights.

For the proof of Theorem III.6, we recall the Sherman-

Morrison identities for the inverse of the sum of two matrices.
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Lemma III.7 (Sherman-Morrison Formula, [46]). Let

A,B ∈ Cn×n. If A and A+B are nonsingular, then

(A+B)−1 = A−1 −A−1(I +BA−1)−1BA−1 . (24)

If additionally B = ∆ · uvT for ∆ ∈ R and u, v ∈ Rn, then

(A+∆ · uvT )−1 = A−1 −∆ ·
A−1uvTA−1

1 + ∆ · vTA−1u
. (25)

Proof of Theorem III.6. First we prove the sufficiency part

of statement 1). Let Q be irreducible. In the loop-less case,

the spectral inequality (18) in Theorem III.5 implies non-

decreasing algebraic connectivity λ2(Lred) ≥ λ2(L) > 0 and

thus irreducibility of Lred. In the strictly loopy case, note that

the Kron-reduced graph features the same edges (excluding

self-loops) as in the loop-less case, by Theorem III.4. Thus,

connectivity and irreducibility follow, which proves the suffi-

ciency part of statement 1). The necessity part of statement 1)

follows directly from statement 1) of Theorem III.4.

The element-wise bound Qred[i, j] ≤ Qij for i, j ∈ α
follows directly from [48, Lemma 1], where this bound is

stated for the reduction of one node. By Lemma III.3, a one-

step reduction is equivalent to iterative one-dimensional re-

ductions. Hence, [48, Lemma 1] can be applied iteratively and

yields Qred[i, j] ≤ Qij . For the negative off-diagonal elements

i 6= j, this bound is readily converted to Ared[i, j] ≥ Aij .

The same bound follows for the diagonal elements since

diagonal dominance is non-decreasing under Kron reduction,

see Lemma III.3. This completes the proof of statement 2).

Identity (23) in statement 3) follows by expanding the Kron-

reduced matrix Qred and by applying the matrix identity (24)

with A = L(α, α) and B = diag({∆i}i∈In\α) as

Qred = Q/Q(α, α) = diag({∆i}i∈α)+L[α, α]

− L[α, α)
(
L(α, α) + diag({∆i}i∈In\α)

)−1
L(α, α]

= L/L(α, α) + diag({∆i}i∈α) + S ,

where S is defined statement 3). This proves identity (23).

By Lemma III.3, the Schur complement Q/Q(α, α) is

equivalent to iterative one-dimensional reduction of all interior

nodes In \ α, and the matrix Qℓ = Qℓ−1/Qℓ−1
kℓkℓ

at the ℓth
reduction step is again a loopy Laplacian. If we abbreviate

the self-loops at the ℓth reduction step by ∆ℓ
i , Aℓ

ii, then Qℓ

can be reformulated according to identity (23) as

Qℓ= Qℓ−1/Qℓ−1
kℓkℓ

= Lℓ−1/Lℓ−1
kℓkℓ

+diag({∆ℓ
i}

n−ℓ
i=1 )+Sℓ, (26)

where Sℓ is the symmetric and nonnegative matrix Sℓ = cℓ ·
Lℓ−1(kℓ, kℓ]L

ℓ−1[kℓ, kℓ) = cℓ·A
ℓ−1(kℓ, kℓ]A

ℓ−1[kℓ, kℓ) is and

cℓ = ∆ℓ
k/(Lkℓkℓ

(Lkℓkℓ
+ ∆ℓ

kℓ
)) ≥ 0. Iterative application of

this argument implies that S is symmetric and nonnegative.

To obtain an explicit expression for the reduced self-loops,

re-consider the identity (5) defining the self-loops of L. In the

general loopy case identity (5) reads as Q1n = ∆. Block-

Gaussian elimination of the interior nodes yields Qred1|α| =
∆[α] + Qac∆(α). Hence, the ith row sum of Qred satisfies

Ared[i, i] =
∑|α|

j=1 Qred[i, j] = ∆i +
∑n−|α|

j=1 Qac[i, j]∆|α|+j .

Under the assumptions of statement 4), the positivity of

Qac follows from Lemma II.1. To prove positivity of S, note

that iterative reduction of all but one interior node yields

one remaining interior node kn−|α|+1 , h. According to

equality (26), reduction of this last loopy node gives the

matrix Sh = ch · Ah(h, h]Ah[h, h). Under the assumptions

of statement 4), Theorem III.4 implies that h features a self-

loop and is connected to all boundary nodes. It follows that

ch > 0 and Ah
ih > 0 for all i ∈ I|α|+1. Therefore, Sh is a

positive matrix, and the same can be concluded for S.

C. Kron Reduction and Effective Resistance

The physical intuition behind the Kron reduction and the

effective resistance in Remark I.1 suggests that the trans-

fer conductances Qred[i, j] are related to the corresponding

effective conductances 1/Rij . The following theorem gives

the exact relation between the Kron-reduced matrix Qred, the

effective resistance matrix R, and the augmented Laplacian Q̂.

Theorem III.8 (Resistive Properties of Kron Reduction)

Consider the Kron-reduced matrix Qred = Q/Q(α, α), the

effective resistance matrix R defined in (3), and the augmented

Laplacian Q̂ defined in (13). The following statements hold:

1) Invariance under Kron reduction: The effective re-

sistance Rij between any two boundary nodes is equal

when computed from Q or Qred, that is, for any i, j ∈ α

Rij = (ei−ej)
TQ†(ei−ej) ≡ (ei−ej)

TQ†
red(ei−ej). (27)

2) Invariance under augmentation: If Q is a strictly loopy

Laplacian, then the effective resistance Rij between any

two nodes i, j ∈ In is equal when computed from Q or

Q̂, that is, for any i, j ∈ In

Rij = (ei−ej)
TQ−1(ei−ej) ≡ (ei−ej)

T Q̂†(ei−ej). (28)

In other words, statements 1) and 2) imply that, if Q is a

strictly loopy Laplacian, then the following diagram commutes:

Q

Qred Q̂red

Q̂
augment

augment

Kron reduction
of In \ α

Kron reduction
of In \ α

Rij

i, j ∈ α

3) Effect of self-loops: If Q is a strictly loopy Laplacian

and R̄ij , (ei − ej)
TL†(ei − ej), i, j ∈ In, is the

effective resistance computed from the corresponding

loop-less Laplacian L, then Rij ≤ R̄ij for all i, j ∈ In.

Theorem III.8 is illustrated in Figure 8. Identity (27) states

that the effective resistances between the boundary nodes are

invariant under Kron reduction of the interior nodes. Spoken

in terms of circuit theory, the effective resistance between the

terminals α can be obtained from either the impedance matrix

Q† or the transfer impedance matrix Q†
red. Identity (28) gives a

resistive interpretation of the self-loops: the effective resistance

among the nodes in a strictly loopy graph G is equivalent to

the effective resistance among the corresponding nodes in the

augmented loop-less graph Ĝ. According to statement 3), the

self-loops do not increase the effective resistance, which is in

accordance with the physical interpretation in Remark I.1.
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Ĝ3

1
A12

30

1

A23

284A11

A11

A12

30

A23

A33

22

2 2

2

Fig. 8. Illustration of Theorem III.8: According to statement 1), the effective
resistance R13 between the boundary nodes �� is equal when computed in the
graph G1 or in the Kron-reduced graph G1,red. According to statement 2), the
effective resistance R13 is equal when computed in the strictly loopy graph

G2 (respectively G3) or in the augmented loop-less graph Ĝ2 (respectively

Ĝ3) with grounded node �♦. According to statement 3), the effective resistance
R13 in the strictly loopy graphs G2 and G3 is not larger than in the loop-less
graph G1 (with equality for {G1, G2} and strict inequality for {G1, G3}).

For the proof of Theorem III.8 we establish some identities

relating R and L via regularizations of the pseudo inverse.

Lemma III.9 (Laplacian and Effective Resistance Identi-

ties) Let L ∈ Rn×n be a symmetric irreducible loop-less

Laplacian matrix. Then for any δ 6= 0 it holds that

(L+ (δ/n)1n×n)
−1

= L† + (1/δn)1n×n . (29)

Consider for i, j ∈ In the effective resistance defined by Rij =
(ei − ej)

TL†(ei − ej). For δ 6= 0 it holds that

Rij ≡ (ei−ej)
T (L+(δ/n)1n×n)

−1(ei−ej), i, j ∈ In. (30)

If n ≥ 3, then, by taking node n as reference, it holds that

Rij ≡ (ei − ej)
TL(n, n)−1(ei − ej) , i, j ∈ In−1 . (31)

Proof: Since 1n×n1n×n = n · 1n×n and LL† = L†L =
In − (1/n) · 1n×n (by definition of L† via the singular value

decomposition, see also [39, Lemma 3]), identity (29) can be

verified since (L+ (δ/n)1n×n) ·
(
L† + (1/δn)1n×n

)
= In.

The identity (30) follows then by multiplying equation (29)

from the left by (ei − ej)
T and from the right by (ei − ej).

To prove identity (31), let L̄ , L(n, n). It follows from [42,

Appendix B, eq. (17)] that L̄−1
ij =L†

ij −L†
in−L†

jn−L†
nn. The

identity (31) can then be verified by direct computation.

Proof of Theorem III.8. We begin by proving statement

1) in the strictly loopy case when Q is nonsingular (due

to irreducible diagonal dominance [44, Corollary 6.2.27]).

Note that we are interested in the effective resistances only

among the nodes α, that is, the |α| × |α| block of Q−1.

The celebrated Schur complement formula [43, Theorem 1.2]

gives the |α| × |α| block of Q−1 as (Q/Q(α, α))−1 = Q−1
red .

Consequently, for i, j ∈ α the defining equation (3) for

the effective resistance Rij is simply rendered to Rij =
(ei−ej)

TQ−1
red (ei−ej), which proves the claimed identity (27).

In the loop-less case when Q ≡ L is singular, a similar line

of arguments holds on the image of L. Let δ > 0 and consider

the modified and non-singular Laplacian L̃ , L+(δ/n)1n×n.

Due to identity (29) we have that L̃−1 = L† + (1/δn)1n×n.

We can then rewrite identity (30) in expanded form as

Rij = (ei − ej)
T (L† + (1/δn)1n×n)(ei − ej)

= (ei − ej)
T L̃−1(ei − ej) .

(32)

As before, the |α| × |α| block of L̃−1 is (L̃/L̃(α, α))−1.

Consequently, for i, j ∈ α the identity (32) is rendered to

Rij = (ei − ej)
T (L̃/L̃(α, α))−1(ei − ej) . (33)

Since (ei−ej)
T
1n×n(ei−ej) = 0, the right-hand side of (32),

or equivalently (33), is independent of δ since the matrices are

evaluated on the subspace orthogonal to 1n, the nullspace of

L̃ as δ ↓ 0. Thus, on the image of L the limit of the right-hand

side of (33) exists as δ ↓ 0. By definition, L† acts as regular

inverse on the image of L, and equation (33) is rendered to

Rij=(ei−ej)
T (L/L(α, α))†(ei−ej)=(ei−ej)

TL†
red(ei−ej),

which proves the claimed identity (27) in the loop-less case.

To prove statement 2), note that the strictly loopy Laplacian

Q is invertible. Hence, the defining equation (3) for the

resistance features a regular inverse. The matrix Q can also be

seen as the principal n×n block of the augmented Laplacian

Q̂, that is, Q = Q̂(n + 1, n + 1). The identity (28) follows

then directly from identity (31) (with n replaced by n+ 1).

To prove statement 3), we appeal to Rayleigh’s celebrated

monotonicity law and short/cut principle [41]. Since the Lapla-

cian L induces the same graph as Q̂ with node n+1 removed,

the monotonicity law states that the effective resistance R̄ij

in the graph induced by L is not smaller than the effective

resistance Rij in the graph induced by Q̂. The latter again

equals the effective resistance in the graph induced by Q
due to identity (28). Equivalently, for i, j ∈ In it holds that

R̄ij = (ei − ej)
TL†(ei − ej) ≥ (ei − ej)

T Q̂†(ei − ej) =
(ei − ej)

TQ−1(ei − ej) = Rij , which proves statement 3).

Theorem III.8 allows to compute the effective resistance

matrix R from the transfer impedance matrix Q†
red. We are

now interested in a converse result to construct Q†
red from

R. Iterative methods constructing Q†
red from R can be found

in [23]. However, it is also possible to recover the (pseudo)

inverses of the loopy Laplacian Q, the augmented Laplacian Q̂,

or the corresponding Kron-reduced Laplacians directly fromR.

Lemma III.10 (Impedance and Effective Resistance Iden-

tities) Let Q ∈ Rn×n be a symmetric irreducible loopy

Laplacian matrix. Consider the following three cases:

1) Loop-less case: Let R ∈ Rn×n be the effective resis-

tance matrix. Then for i, j ∈ In it holds that

Q†
ij=−

1

2

(
Rij −

1

n

n∑

k=1

(Rik +Rjk) +
1

n2

n∑

k,ℓ=1

Rkℓ

)
. (34)

2) Strictly loopy case: Consider the grounded node n+1,

the corresponding augmented Laplacian matrix Q̂ ∈
R(n+1)×(n+1) defined in (13), and the corresponding

matrix of effective resistances R ∈ R(n+1)×(n+1) de-

fined in (3). Then the following two identities hold:

Q̂†
ij =−

1

2

(
Rij −

1

n+ 1

n+1∑

k=1

(Rik +Rjk)

+
1

(n+ 1)2

n+1∑

k,ℓ=1

Rkℓ

)
, i, j ∈ In+1 , (35)

Q−1
ij =

1

2

(
Ri,n+1 +Rj,n+1 −Rij

)
, i, j ∈ In . (36)

3) Kron reduced case: The identities (34), (35), and (36)

also hold when Q†, Q̂†, and Q−1 on the left-hand sides

are replaced by Q†
red, Q̂†

red, and Q−1
red , respectively, and

n on the right-hand sides is replaced by |α|.
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Proof: Identity (34) is stated in [40, Theorem 4.8] for the

weighted case and in [49, Theorem 7] for the unweighted case.

According to statement 2) of Theorem III.8, the resistance

is invariant under augmentation. Hence, identity (34) applied

to the augmented Laplacian Q̂ yields identity (35). Identity

(36) follows directly from [40, Theorem 4.9]. According to

Theorem III.8, the effective resistance is invariant under Kron

reduction. Thus, the effective resistance corresponding to Qred

is simply R[α, α]. Hence, the formulas (34), (35), and (36)

can be applied to the Kron-reduced matrix as stated in 3).

By Theorem III.8 and Lemma III.10, the effective resistance

matrix R in the original non-reduced network can be computed

from the (pseudo) inverse of the Kron-reduced Laplacian Qred,

and vice versa. In some applications, it is desirable to know

an explicit algebraic relationship between R and Qred without

the (pseudo) inverse. However, such an explicit relationship

between can be found only if closed-form solutions of Q†
red,

Q−1
red , or Q̂†

red are known. These are generally not available.

Generally, it is also infeasible to relate bounds on R to

bounds on Qred since element-wise bounding of inverses of

interval matrices is known to be NP-hard [50]. Fortunately,

closed forms of Q†
red, Q−1

red or Q̂†
red can be derived in an ideal

electric network, with uniform effective resistances among the

boundary nodes as well as between the boundary nodes and

the ground. In fact, this ideal case is equivalent to uniform

transfer conductances (weights) in the Kron-reduced network.

Theorem III.11 (Equivalence of Uniformity in Effective

Resistance and Kron Reduction) Consider the Kron-reduced

Laplacian Qred = Q/Q(α, α) and the corresponding adja-

cency matrix Ared. Consider the following two cases:

Loop-less case: Let R ∈ Rn×n be the matrix of effective

resistances. Then the following two statements are equivalent:

1) The effective resistances among the boundary nodes α
are uniform, that is, there is r > 0 such that Rij = r
for all distinct i, j ∈ α; and

2) The weighting of the edges in the Kron-reduced network

is uniform, i.e., there is a > 0 such that Ared[i, j] = a >
0 for all distinct i, j ∈ α.

If both statements 1) and 2) are true, then it holds that r= 2
|α|a .

Strictly loopy case: Consider additionally the grounded

node n+1 and the augmented Laplacian matrices Q̂ and Q̂red

defined in (13) and (14), respectively. Let R ∈ R(n+1)×(n+1)

be the matrix of effective resistances in the augmented net-

work. Then the following two statements are equivalent:

3) The effective resistances both among the boundary nodes

α and between all boundary nodes α and the grounded

node n + 1 are uniform, that is, there is r > 0 and

g > 0 such that Rij = r for all distinct i, j ∈ α and

Ri,n+1 = g for all i ∈ α; and

4) The weighting of the edges and the self-loops in the

Kron-reduced network is uniform, that is, there are a >
0 and b > 0 such that Ared[i, j] = a > 0 and Ared[i, i] =
b > 0 for all distinct i, j ∈ α.

If both statements 3) and 4) are true, then it holds that r =
2

|α|a+b and g = a+b
b(a|α|+b) .

Remark III.12 (Engineered networks and uniform graph

topologies) The uniformity assumption in statements 1) and

3) corresponds to an ideal network, where all boundary nodes

are electrically uniformly distributed with respect to each other

and with respect to the shunt loads. In the applications of

electrical impedance tomography and smart grid monitoring,

this assumption can be met by choosing the boundary nodes

corresponding to sensor locations. In the transient stability

problem, the generators corresponding to boundary nodes are

distributed over the power grid ideally in such a way that the

loads can be effectively and uniformly sustained . Hence, the

uniformity assumptions are ideally met in man-made networks.

Independently of engineered networks, uniform resistances

occur for various graph topologies, even when weights as

additional degrees of freedom are neglected. In the trivial case,

|α| = 2, Theorem III.11 reduces to [10, Corollary 4.41] and

the resistance among the boundary nodes is clearly uniform.

Second, if the boundary nodes are 1-connected leaves of a

highly symmetric graph among the interior nodes, such as a

star, a complete graph, or a combination of these two, then the

resistance among the boundary nodes is uniform. Third, the

effective resistance in large random geometric graphs, small

word networks, and lattices and their fuzzes becomes uniform

among sufficiently distant nodes, see [16] for further details.�

To prove Theorem III.11, we need the following identities.

Lemma III.13 (Inverses of Uniform Laplacian Matrices)

Let a > 0 and b ≥ 0 and consider the loopy Laplacian matrix

Q , a
(
nIn−1n×n

)
+bIn corresponding to a complete graph

with n nodes, uniform positive edge weights a > 0 between

any two distinct nodes, and nonnegative and uniform self-loops

b ≥ 0 attached to every node. The following statements hold:

1) For zero self-loops b = 0, Q† is the loop-less Laplacian

Q† =
1

n2a2
·Q =

1

n2a
·
(
nIn − 1n×n) .

2) For positive self-loops b > 0, Q−1 is the positive matrix

Q−1 = −
a

b(an+ b)

(
nIn − 1n×n

)
+

1

b
In .

3) Consider the augmented Laplacian Q̂ given by

Q̂ =

[
a
(
nIn − 1n

)
+ bIn −b1n

−b1T
n n · b

]
.

Then Q̂† is given by the (augmented) loop-less Laplacian

Q̂† =

[
c
(
nIn − 1n

)
+ dIn −d1n

−d1T
n n · d

]
,

where d = 1
b(n+1)2 and c = d · (n+2)b−a

an+b .

Proof: The identities can be verified by direct computa-

tion. Since Q and Q† (respectively Q̂ and Q̂†) satisfy the Pen-

rose equations [44], the loop-less Laplacian Q† (respectively

Q̂†) is the unique pseudo inverse, which proves statements 1)

and 3). Statement 2) follows since QQ−1=Q−1Q=In.

We now have all three ingredients to prove Theorem III.11:

the invariance formulas (27)-(28) for the effective resistance
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stated in Theorem III.8, the relations between effective resis-

tance and the Kron-reduced impedance matrix in statement 3)

of Lemma III.10, and the Laplacian identities in Lemma III.13.

Given these formulas, the proof of Theorem III.14 reduces to

mere computation. For the sake of brevity, it will be omitted.

D. Sensitivity of Kron Reduction to Perturbations

In the final subsection of our analysis of Kron reduction

we discuss the sensitivity of the Kron-reduced matrix Qred to

perturbations in the original matrix Q. A number of interesting

perturbations can be modeled by adding symmetric matrix

W ∈ Rn×n and considering the perturbed loopy Laplacian

Q̃ = Q+W , where Q is the nominal loopy Laplacian matrix.

The case when W is diagonal is fully discussed in Theorem

III.6. A perturbation of the form when W [α, α] is a non-zero

matrix and all other entries of W are zero can model the

emergence, loss, or change of a self-loop or an edge among

boundary nodes. Such a perturbation acts additively on Qred as

Q̃red , Q̃/Q̃(α, α) = Qred +W [α, α] . (37)

If the perturbation affects the interior nodes, then W (α, α) is a

non-zero matrix. Inspired by [12], [13], we put more structure

on the perturbation matrix W and consider symmetric rank

one perturbations of the form W = ∆ · (ei − ej)(ei − ej)
T ,

where ∆ ∈ R. Such a perturbation changes the weight of the

edge {i, j} from Aij to Aij +∆ and also can model the loss

or emergence of the edge {i, j}. Since a perturbation among

the boundary nodes is fully captured by (37), we consider now

perturbations of the edge between the ith and jth interior node.

Theorem III.14 (Perturbation of the Interior Network)

Consider the Kron-reduced matrix Qred = Q/Q(α, α), the ac-

companying matrix Qac=−Q[α, α)Q(α, α)−1, and a symmet-

ric rank one perturbation. W , ∆ · (ei+|α|− ej+|α|)(ei+|α|−
ej+|α|)

T for distinct i, j ∈ In−|α| and such that the perturbed

matrix Q̃ , Q+W remains an irreducible loopy Laplacian.

The following statements hold:

1) Algebraic perturbation: Qred undergoes the rank one

perturbation Q̃/Q̃(α, α) = Q̃red given by

Q̃red , Qred +
Qac(ei − ej)∆(ei − ej)

TQT
ac

1 + ∆ ·Rint[i, j]
, (38)

where Rint[i, j] , (ei − ej)
TQ(α, α)−1(ei − ej) ≥ 0.

2) Resistive perturbation: Let R and R̃ be the matrices

of effective resistances corresponding to Q and Q̃,

respectively. For any k, ℓ ∈ In it holds that

R̃kℓ=Rkℓ−
∆ · ‖(ek − eℓ)

TQ†(ei+|α| − ej+|α|)‖
2
2

1 + ∆ ·Ri+|α|,|j+α|
. (39)

If ∆ > 0 (respectively ∆ < 0) then it holds that R̃kℓ ≤
Rkℓ (respectively R̃kℓ ≥ Rkℓ).

The term Rint[i, j] in (38) is the effective resistance between

the perturbed nodes in the interior network. Likewise, the

physical interpretation of the term Qac(ei− ej)∆(ei− ej)
T =

QacW (α, α) is well-known in network theory. The perturba-

tion W has the same effect on the equations I = (Q+W )V

as the current injection Ĩ = −WV , that is, the perturbation of

the interior edge {i, j} by a value ∆ is equivalent to injecting

the current ∆ · (Vi+|α|−Vj+|α|) into the jth interior node and

extracting it from the ith interior node. In the reduced network

equations (2) the current injection Ĩ translates to the current

injection QacĨ(α) = −Qac(ei − ej)∆(ei − ej)
TV (α) into the

boundary nodes. Finally, the additive term in identity (39)

resembles the sensitivity factor in network theory [12], [20].

From Remark I.1, notice that (ek−eℓ)
TQ†(ei+|α|−ej+|α|) is

the potential drop between nodes k and ℓ if a unit current is

injected in the ith interior node and extracted at the jth interior

node. As before, the current flowing along the perturbed edge

is redistributed in the network according to identity (39).

Various spectral bounds can be derived from identity (38).

For instance, for ∆ < 0, Weyl’s inequalities (22) give

λr(Qred) ≥ λr(Q̃red) ≥ λr(Qred) +
∆ · ‖Qac(ei − ej)‖

2
2

1 + ∆ ·Rint[i, j]
,

where r ∈ I|α|. These bounds can be further related to Q and

Q̃ via the interlacing inequalities (18) or [44, Theorem 4.3.4].

Proof of Theorem III.14. Since the perturbed matrix Q̃ =
Q + W is a symmetric and irreducible loopy Laplacian, the

reduced matrix Q̃red = Q̃/Q̃(α, α) exists by Lemma II.1. By

the matrix identity (25), the Schur complement Q̃red given by

Q̃red =
(
Q+W

)
/
(
Q(α, α) + ∆(ei − ej)

T (ei − ej)
)

further simplifies to identity (38) in statement 1). For the proof

of statement 2), we initially consider the strictly loopy case.

Here, Q̃−1 = (Q+W )−1 can be obtained from identity (25) as

Q̃−1=Q−1−
∆ ·Q−1(ei+|α| − ej+|α|)

T(ei+|α| − ej+|α|)Q
−1

1 + ∆(ei+|α| − ej+|α|)TQ−1(ei+|α| − ej+|α|)
.

A multiplication of Q̃−1 from the left by (ek−eℓ)
T and from

the right by (ek−eℓ) yields then identity (39). In the loop-less

case when Q is singular, the same arguments can be applied

on the image of Q by considering the non-singular matrix

Q + (δ/n)1n×n for δ 6= 0 and identity (30). This results in

the more general identity (39). The second part of statement

2) follows again from Rayleigh’s monotonicity law [41].

IV. CONCLUSIONS

We studied the Kron reduction process from the viewpoint

of algebraic graph theory. Our analysis is motivated by various

applications spanning from classic circuit theory over electrical

impedance tomography to power network applications and

Markov chains. Prompted by these applications, we presented

a detailed and comprehensive graph-theoretic analysis of Kron

reduction. In particular, we carried out a thorough topological,

algebraic, spectral, resistive, and sensitivity analysis of the

Kron-reduced matrix. This analysis led to novel results in alge-

braic graph theory and new physical insights in the application

domains of Kron reduction. We believe our results can be

directly employed in the application areas of Kron reduction.

Of course, the results contained in this paper can and need

to be further refined to meet the specific problems in each

particular application area. Our analysis also demands answers

to further general questions, such as the extension of this work

to directed graphs or complex-valued weights occurring in all
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disciplines of circuit theory [8], [11], [12], [14]. Finally, it

would be of interest to analyze the effects of Kron reduction on

centrality measures, clustering coefficients, and more general

graph-theoretic metrics than the effective resistance.
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