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Abstract. Many image processing applications require computing approximate solutions of very
large, ill-conditioned linear systems. Physical assumptions of the imaging system usually dictate that
the matrices in these linear systems have exploitable structure. The specific structure depends on
(usually simplifying) assumptions of the physical model and other considerations such as boundary
conditions. When reflexive (Neumann) boundary conditions are used, the coefficient matrix is a
combination of Toeplitz and Hankel matrices. Kronecker products also occur, but this structure
is not obvious from measured data. In this paper we discuss a scheme for computing a (possibly
approximate) Kronecker product decomposition of structured matrices in image processing, which
extends previous work by Kamm and Nagy [SIAM J. Matrix Anal. Appl., 22 (2000), pp. 155–172]
to a wider class of image restoration problems.
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1. Introduction. Image restoration is the process of reconstructing an image of
an unknown scene from an observed image, where

observed image = distortion(original scene) + noise.(1.1)

The “distortion” can arise from many sources; atmospheric turbulence, out of focus
lens, and motion blurs are but a few examples. Typically the distortion is described
mathematically as a point spread function (PSF). Specifically, a PSF is a function
that specifies how points in the image are distorted. PSFs are often classified as either
spatially invariant or spatially variant. Spatially invariant means that the distortion is
independent of position, while spatially variant means that the distortion does depend
on position. Spatially invariant PSFs occur most frequently in applications [8], so this
is what we consider in this paper.

A PSF can be further classified as separable or nonseparable. Separable means
that the distortion in the horizontal and vertical directions is independent. That
is, a two-dimensional distortion is a composition of two one-dimensional distortions.
The topic of separability is often ignored when discussing image restoration problems,
but, as we will see, by exploiting this structure, more choices are available in terms
of image restoration algorithms.

We begin with a mathematical model of the spatially invariant image restoration
problem. The image of an object can be modeled as

g = Kf + n,(1.2)
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where g is an n2-vector representing the distorted image of size n × n, f is a vector
representing the true image, and n is a vector representing additive noise. K is an
n2 × n2 blurring matrix constructed from the PSF, but it has structure that can be
exploited in computations. Because the blurring model is a convolution, g is not
completely determined by f in the same domain where g is defined. Thus in solving f
from g, we need some assumptions on the values of f outside the domain of g. These
assumptions are called the boundary conditions. The structure of the blurring matrix
K depends on the boundary conditions [11].

• Periodic boundary conditions. The image outside the domain of considera-
tion is a repeat, in all directions, of the image inside [4]. In this case, K
will be a block-circulant-circulant-block (BCCB) matrix. We can use two-
dimensional fast Fourier transforms (FFTs) to diagonalize the matrix [4], but
this boundary condition may be unrealistic in many situations.

• Zero boundary conditions. The values of f outside the domain of consideration
are zero [1]. In this case, K will be a block-Toeplitz-Toeplitz-block (BTTB)
matrix. FFTs can be used to implement fast matrix vector multiplications
for K.

• Reflexive boundary conditions. The scene immediately outside the bound-
ary is a reflection of the original scene inside. In this case, the matrix K
is block-Toeplitz-plus-Hankel with Toeplitz-plus-Hankel-blocks (BTHTHB)
[11]. In the following discussion, we express the matrix K as the sum of a
block-Toeplitz-Toeplitz-block (BTTB) matrix, a block-Toeplitz-Hankel-block
(BTHB) matrix, a block-Hankel-Toeplitz-block (BHTB) matrix, and a block-
Hankel-Hankel-block (BHHB) matrix. Although the matrix K has a com-
plicated structure, it can be diagonalized by the two-dimensional fast cosine
transform (FCT) when the PSF is symmetric [11].

In [5, 10, 11], it has been shown that using reflexive boundary conditions in image
restoration or reconstruction can be better than using periodic or zero boundary
conditions.

Aside from the issue of boundary conditions, it is well known that blurring ma-
trices are in general very ill-conditioned and image restoration algorithms will be
extremely sensitive to noise [4]. The ill-conditioning of the blurring matrices stems
from the wide range of magnitudes of their eigenvalues [3]. Therefore excess am-
plification of the noise at small eigenvalues can occur. In [11], classical Tikhonov
regularization is employed to attain the stability of image restoration algorithms. A
fast image restoration algorithm with the reflexive boundary conditions is developed
and proposed. Since the size of the matrix K is very large, iterative methods with
cosine transform based preconditioners are used to speed up the convergence of the
algorithm.

We note that if the blur is separable, then the matrix K can be further decomposed
into a Kronecker product of smaller matrices. In this case we are not restricted (by
size constraints) to using only iterative methods. In particular, we can use singular
value decomposition (SVD) based methods [6] to perform the regularization in the
image restoration process. The problem is determining when a PSF is separable. We
may not have an explicit mathematical formula for the PSF, and thus must recognize
separability from the image data. This has been done in the case of zero boundary
conditions [9]. One aim of this paper is to consider how to do this for reflexive
boundary conditions.

The outline of the paper is as follows. In section 2, definitions and notation are
set up. In section 3, the Kronecker product approximation of the blurring matrix K
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is studied, and we provide an algorithm for constructing this approximation from
the given PSF. In section 4, simulation results are presented to demonstrate the
effectiveness of using this Kronecker approximation. Finally, some concluding remarks
are given in section 5.

2. Definitions and notation. In order to prove the main result of this paper,
we need the following definitions and notation.

2.1. Toeplitz and Hankel matrices. Banded Toeplitz and Hankel matrices
arise frequently in image restoration applications. Here we demonstrate how to use a
column vector to represent these matrices:

• toep(a, k) is an n× n banded Toeplitz matrix whose kth column is a ∈ �n.
For example,

a =

⎡⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎦ ⇔ toep(a, 3) =

⎡⎢⎢⎣
a3 a2 a1 0
a4 a3 a2 a1

0 a4 a3 a2

0 0 a4 a3

⎤⎥⎥⎦ .

• hank(a, k) is an n × n Hankel matrix with its first row and its last column
defined by [ ak+1, . . . , an, 0, . . . , 0] and [0, . . . , 0, a1, . . . , ak−1]

T , respectively,
where a ∈ �n. For example,

a =

⎡⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎦ ⇔ hank(a, 3) =

⎡⎢⎢⎣
a4 0 0 0
0 0 0 0
0 0 0 a1

0 0 a1 a2

⎤⎥⎥⎦ .

• We use the notation Toep(A, k) and Hank(A, k) for similar definitions with
block matrices. For example,

A =

⎡⎢⎢⎣
A1

A2

A3

A4

⎤⎥⎥⎦ implies Toep(A, 3) =

⎡⎢⎢⎣
A3 A2 A1 0
A4 A3 A2 A1

0 A4 A3 A2

0 0 A4 A3

⎤⎥⎥⎦
and

Hank(A, 3) =

⎡⎢⎢⎣
A4 0 0 0
0 0 0 0
0 0 0 A1

0 0 A1 A2

⎤⎥⎥⎦ .

• With the above notation, we can describe the blurring matrices that arise in
image restoration. Let P be an n × n array containing the image of a point
spread function. Suppose the center of the PSF (location of the point source)
is at pij . Let pT

k be the kth row of P , and define

Tk = toep(pk, j) and Hk = hank(pk, j),

T =

⎡⎢⎢⎢⎣
T1

T2

...
Tn

⎤⎥⎥⎥⎦ and H =

⎡⎢⎢⎢⎣
H1

H2

...
Hn

⎤⎥⎥⎥⎦ .
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Then, we can formulate the blurring matrix under
– zero boundary conditions as

K = Toep(T, i),

– or under reflexive boundary conditions as

K = Ktt + Kth + Kht + Khh,(2.1)

where Ktt = Toep(T, i), Kth = Toep(H, i), Kht = Hank(T, i), and
Khh = Hank(H, i).

2.2. The shift matrix. We also need to use the shift matrix:

Z =

⎡⎢⎢⎢⎢⎣
0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

⎤⎥⎥⎥⎥⎦ .

The name shift matrix comes from the fact that if we multiply a vector by Z, the
entries are shifted up, and if we multiply by ZT , the entries are shifted down. The
following properties of the shift matrix will be used in section 3.

1. toep(a, k) =
[
Zk−1a · · · Z0a · · · (Zn−k)Ta

]
.

2. If el is the lth column of the identity matrix, then

Zkel =

{
0, l = 1, 2, . . . , k,
el−k, l = k + 1, . . . , n,

and

(Zk)Tel =

{
el+k, l = 1, 2, . . . , n− k,
0, l = n− k + 1, . . . , n.

3. From Property 2, it is easy to show that

(Zk)T (Zk) = diag( [ 0 · · · 0 1 · · · 1 ] )
↑
k + 1 entry

and

(Zk)(Zk)T = diag( [ 1 · · · 1 0 · · · 0 ] ).
↑

n − k entry

4. From Property 3, it follows that

(Zk)T (Zk) + (Zn−k)(Zn−k)T = (Zk)(Zk)T + (Zn−k)T (Zn−k) = I,

and thus,

n−1∑
k=1

(
(Zk)T (Zk) + (Zk)(Zk)T

)
= (n− 1)I.(2.2)

5. For a, b < n,

(Za)TZb + Zn−a(Zn−b)T =

{
Zb−a if b > a,

(Za−b)T if a > b.
(2.3)
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2.3. Kronecker product matrices. Here we state some properties and defini-
tions related to Kronecker products. A Kronecker product is defined to be

A⊗B =

⎡⎢⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
an1B an2B · · · annB

⎤⎥⎥⎥⎦ .

Two transformations that we need follow.
• The vec operator transforms two-dimensional arrays into one-dimensional

vectors by stacking columns. For example,

X =

⎡⎣ x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤⎦ ⇔ vec(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x12

x22

x32

x13

x23

x33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• The tilde transformation reorders the entries of a block matrix as follows. If
K is a block matrix,

K =

⎡⎢⎢⎢⎣
K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

...
Kn1 Kn2 · · · Knn

⎤⎥⎥⎥⎦ ,

then

K̃ = tilde(K) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(K11)
T

...
vec(Kn1)

T

...
vec(K1n)T

...
vec(Knn)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that in image restoration, with reflexive boundary conditions, from (2.1),
we have

K̃ = K̃tt + K̃th + K̃ht + K̃hh.(2.4)

Van Loan and Pitsianis [12] show, for a general block matrix, that∥∥∥∥∥K −
s∑

k=1

(Ak ⊗Bk)

∥∥∥∥∥
F

=

∥∥∥∥∥K̃ −
s∑

k=1

ãkb̃
T
k

∥∥∥∥∥
F

,
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where ãk = vec(Ak) and b̃k = vec(Bk). The best Kronecker product approximation
is obtained by finding the SVD of K̃. In particular, if

K̃ =

r∑
k=1

σ̃kũkṽ
T
k ,

then the above Frobenius norm is minimized by taking

ãk =
√
σ̃kũk and b̃k =

√
σ̃kṽk.

The problem with this approach is that we need to compute the principal singular
values and vectors of an n2 × n2 matrix, K̃. The purpose of this paper is to show,
for image restoration problems, how this computational effort can be reduced sub-
stantially by computing principal singular values and vectors of arrays of size at most
n× n.

3. Kronecker product approximation. Let K be the n2×n2 blurring matrix
for a spatially invariant image restoration problem using reflexive boundary conditions
(see section 1), and suppose P is the n× n PSF image array. In this section we show
how a Kronecker product approximation of this n2 × n2 matrix can be accomplished
by computing the principal singular values and vectors of an n×n array related to P .
This has been done for zero boundary conditions [9]. The case for reflexive boundary
conditions is a bit more difficult to derive. To simplify notation, we consider only one
term in the sum of Kronecker products; we describe later how to extend this to an
arbitrary number of terms.

Our aim is, given the PSF, P , with center pij , to find vectors a and b of length
n such that the matrices

At = toep(a, i) , Ah = hank(a, i) ,

Bt = toep(b, j) , Bh = hank(b, j)

minimize ||K − (At + Ah) ⊗ (Bt + Bh)||F over all such Kronecker products. We first
state the main result and the corresponding algorithm that comes from it. The proof
will come later.

Theorem 3.1. Let P be an n × n PSF, with center pij. Let R be the Cholesky
factor of the n × n symmetric Toeplitz matrix with its first row [n, 1, 0, 1, 0, 1, . . .].
Then

||K − (At + Ah) ⊗ (Bt + Bh)||F = ||RPRT − (Ra)(Rb)T ||F .

We prove this theorem later. First we note that the Frobenius norm in the left-
hand side involves matrices with dimension n2 × n2, and the Frobenius norm in the
right-hand side involves matrices with dimension n × n. Based on this theorem, the
algorithm for constructing the Kronecker product approximation of K is as follows.

Algorithm. Construct the approximation K ≈ A⊗B.

• Compute R
• Construct Pr = RPRT

• Compute the SVD: Pr =
∑

σkukv
T
k

• Construct the vectors: a =
√
σ1R

−1u1 and b =
√
σ1R

−1v1

• Construct the matrices: At = toep(a, i), Ah = hank(a, i), Bt =
toep(b, j), and Bh = hank(b, j)
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In our experience, for real PSFs, the singular values of Pr decay very quickly
to zero (see the numerical example in section 4). In fact, it is often the case that
σ1 > > σ2 ≈ · · · ≈ σn ≈ 0. Thus, K ≈ A⊗B is generally a very good approximation.
However, if a rank s approximation is desired, where 1 < s ≤ rank(Pr), the last two
steps of the algorithm can be easily modified, as follows, to produce the approximation
K ≈

∑s
k=1 Ak ⊗Bk.

• For k = 1, 2, . . . , s, construct the vectors:

ak =
√
σkR

−1uk and bk =
√
σkR

−1vk

• For k = 1, 2, . . . , s, construct the matrices:

Atk = toep(ak, i), Ahk = hank(ak, i), Btk = toep(bk, j),
and Bhk = hank(bk, j)

In this case, the statement of Theorem 3.1 becomes∥∥∥∥∥K −
s∑

k=1

(Atk + Ahk) ⊗ (Btk + Bhk)

∥∥∥∥∥
F

=

∥∥∥∥∥RPRT −
s∑

k=1

(Rak)(Rbk)
T

∥∥∥∥∥
F

.

We now proceed to prove Theorem 3.1. From Van Loan and Pitsianis [12], we
have

||K − (At + Ah) ⊗ (Bt + Bh)||F = ||K̃ − vec(At + Ah)vec(Bt + Bh)T ||F
= ||K̃ − (ãt + ãh)(b̃t + b̃h)T ||F ,

where ãt = vec(At), ãh = vec(Ah), b̃t = vec(Bt), and b̃h = vec(Bh).
Lemma 3.2. Let P be an n × n PSF with center pij, let Z be the n × n shift

matrix, and define K̃tt, K̃th, K̃ht, and K̃hh as in (2.4). Then
(i) K̃tt = Dt,iP̃DT

t,j ,

(ii) K̃th = Dt,iP̃DT
h,j ,

(iii) K̃ht = Dh,iP̃DT
t,j ,

(iv) K̃hh = Dh,iP̃DT
h,j ,

where

P̃ =

⎡⎢⎢⎢⎣
P P · · · P
P P · · · P
...

...
...

P P · · · P

⎤⎥⎥⎥⎦ ∈ �n2×n2

,(3.1)

Dt,k and Dh,k are block-diagonal matrices given by

Dt,k = diag [Zk−1, Zk−2, . . . , Z1, Z0, ZT , . . . , (Zn−k)T ] ∈ �n2×n2

(3.2)

and

Dh,k = diag [Zk, Zk+1, . . . , Zn−1, Zn, (Zn−1)T , . . . , (Zn−k+1)T ] ∈ �n2×n2

.(3.3)

Proof. We only prove (i); similar techniques can be used to establish the other
relations. First observe that

Ktt =

⎡⎢⎢⎢⎢⎢⎢⎣

toep(pi, j) · · · toep(p1, j)
...

. . .
...

. . .

toep(pn, j) · · · toep(pi, j) · · · toep(p1, j)
. . .

...
. . .

...
toep(pn, j) · · · toep(pi, j)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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where pT
k is the kth row of P . Denote the kth block column of Ktt as [Ktt]k; that is,

[Ktt]k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

toep(pi−k+1, j)
...

toep(pn, j)
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ }
i− k

if 1 ≤ k ≤ i

and

[Ktt]k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

toep(p1, j)
...

toep(pn−k+i, j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
k − i

if i + 1 ≤ k ≤ n.

Then, for 1 ≤ k ≤ i, we have

˜[Ktt]k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(toep(pi−k+1, j))
T

...
vec(toep(pn, j))

T

0T

...
0T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

pT
i−k+1 · · · pT

i−k+1
...

...
pT
n · · · pT

n

0T · · · 0T

...
...

0T · · · 0T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Zj−1)T

. . .

Z0

Z
. . .

Zn−j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Zi−k

[
P · · · P

]
DT

t,j .

Similarly, for i + 1 ≤ k ≤ n, we have

˜[Ktt]k = (Zk−i)T
[
P · · · P

]
DT

t,j ,

and, therefore,

K̃tt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

˜[Ktt]1
...˜[Ktt]i
...˜[Ktt]n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

Zi−1
[
P · · · P

]
DT

t,j
...

Z0
[
P · · · P

]
DT

t,j
...

(Zn−i)T
[
P · · · P

]
DT

t,j

⎤⎥⎥⎥⎥⎥⎥⎦ = Dt,iP̃DT
t,j .
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According to Lemma 3.2, we have

K̃ = (Dt,i + Dh,i)P̃ (Dt,j + Dh,j)
T .

The next lemma states the forms of the vectors ãt, ãh, b̃t, and b̃h.
Lemma 3.3. Let ãt, ãh, b̃t, and b̃h be defined as above. Then

ãt + ãh = (Dt,i + Dh,i)

⎡⎢⎢⎢⎣
a
a
...
a

⎤⎥⎥⎥⎦ and b̃t + b̃h = (Dt,j + Dh,j)

⎡⎢⎢⎢⎣
b
b
...
b

⎤⎥⎥⎥⎦ .

The proof of Lemma 3.3 is similar to that of Lemma 3.2. We just note that ãt =
vec(At), ãh = vec(Ah), b̃t = vec(Bt), and b̃h = vec(Bh) where At = toep(a, i),
Ah = hank(a, i), Bt = toep(b, j), and Bh = hank(b, j).

We now have all of the tools needed to prove our main theorem.
Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, we obtain

K̃ − (ãt + ãh)(b̃t + b̃h)T

= (Dt,i + Dh,i)

⎛⎜⎜⎜⎝P̃ −

⎡⎢⎢⎢⎣
a
a
...
a

⎤⎥⎥⎥⎦ [
bT bT · · · bT

]
⎞⎟⎟⎟⎠ (Dt,j + Dh,j)

T

= (Dt,i + Dh,i)

⎡⎢⎢⎢⎣
I
I
...
I

⎤⎥⎥⎥⎦ (P − abT )
[
I I · · · I

]
(Dt,j + Dh,j)

T .

Let

Q̂ =

⎡⎢⎢⎢⎣
I
I
...
I

⎤⎥⎥⎥⎦
and note that if we find the QR factorizations

(Dt,i + Dh,i)Q̂ = QiRi , (Dt,j + Dh,j)Q̂ = QjRj ,(3.4)

then

||K̃ − (ãt + ãh)(b̃t + b̃h)T ||F = ||Ri(P − abT )RT
j ||F .

The next task is to determine the matrices Ri and Rj . By (3.4), we have

RT
i Ri =

[
I I · · · I

]
(Dt,i + Dh,i)

T (Dt,i + Dh,i)

⎡⎢⎢⎢⎣
I
I
...
I

⎤⎥⎥⎥⎦ ,
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and similarly for RT
j Rj . Let us consider RT

i Ri for the case that i ≤ n
2 . To simplify

the presentation, we define a matrix W as

W = (Dt,i + Dh,i)

⎡⎢⎢⎢⎣
I
I
...
I

⎤⎥⎥⎥⎦ .

Using (3.2) and (3.3) with k = i, we have

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zi−1 + Zi

...
...

Z1 + Z2i−2

Z0 + Z2i−1

(Z1)T + Z2i

...
...

(Zn−2i)T + Zn−1

(Zn−2i+1)T + Zn

(Zn−2i+2)T + (Zn−1)T

...
...

(Zn−i)T + (Zn−i+1)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After multiplication and rearrangement of terms,

RT
i Ri = WTW

= Z0Z0 +

n−1∑
k=1

(
(Zk)TZk + Zk(Zk)T

)
+

i−1∑
k=1

(
Z2k−1 + (Z2k−1)T

)
+

n−i∑
k=i

(
Z2k−1 + (Z2k−1)T

)
,

where the second summation utilizes (2.3) and the remaining terms arise directly from
multiplication. Using (2.2) and simplifying, we get

RT
i Ri = nI +

n−i∑
k=1

(
Z2k−1 + (Z2k−1)T

)
.

Since in this case i ≤ n
2 , we have 2n− 2i− 1 ≥ n− 1, so the largest exponent on Z in

the sum will be at least large enough to “fill” every other off-diagonal of RT
i Ri with

1’s. Therefore, RT
i Ri is the n× n symmetric Toeplitz matrix with first row given by[

n 1 0 1 0 1 · · ·
]
.

Using j in place of i in the argument above, RT
j Rj yields the same matrix when

j ≤ n
2 . In the cases of i > n

2 and j > n
2 , similar proofs generate identical results.

Thus, for all possible values of i and j, RT
i Ri = RT

j Rj = the n×n symmetric Toeplitz
matrix described above. By setting R = Ri = Rj , we complete the proof of our main
theorem.
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Fig. 4.1. The true image, and the blurred, noisy image to be restored.
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Fig. 4.2. Image of the nonsymmetric PSF, and a plot of its first 60 singular values.

4. Numerical examples. Now that we have a Kronecker sum approximation
for the blurring matrix under reflexive boundary conditions, we illustrate how it can
be used for an image restoration example. Recall that the image formation model is
given in (1.2). The test data we use is shown in Figures 4.1 and 4.2. The 256 × 256
blurred and noisy image, g, shown on the right side of Figure 4.1, and its corre-
sponding true image, f , on the left, have been excised from larger 512 × 512 images.
Blurring was performed on the larger image so that the natural boundary elements
would contribute to the blur, and 0.1% Gaussian white noise was added to the pixel
values. All numerical tests reported here were performed on the smaller image using
fabricated (reflexive and zero [9]) boundary conditions. All computations were done
in Matlab 6.1.

The PSF, shown in Figure 4.2, is an example of blurring that occurs in wave-
front coding, where a cubic phase filter is used to improve depth of field resolution in
light efficient wide aperture optical systems [2]. A plot of the first 60 singular values
of the PSF is also shown in Figure 4.2. Note that the largest singular value domi-
nates the spectrum by an order of magnitude. In fact, for all singular values smaller
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Fig. 4.3. TSVD restoration with reflexive boundary conditions and TSVD restoration with zero
boundary conditions.

than σ5, it dominates the spectrum by two orders of magnitude. In our experience,
this is typical in image restoration problems whether the PSF is symmetric or non-
symmetric. For this reason, a Kronecker sum approximation with s ≤ 5 can generally
provide excellent restorations. We remark that since the PSF is nonsymmetric (and
cannot be approximated well by a symmetric PSF), using a cosine transform based
preconditioner with Tikhonov regularization [10] is not effective.

As in [9], the Kronecker product decomposition is used to construct an approx-
imate SVD of K, which can then be used in image restoration algorithms. That is,
suppose K is approximated by T =

∑s
k=1 Ak ⊗ Bk, where Ak and Bk are n × n

Toeplitz plus Hankel matrices computed according to the algorithm in section 3. An
approximate SVD for K can be computed as

K ≈ UΣV T ,
U = UA ⊗ UB ,
V = VA ⊗ VB ,
Σ = diag(UTTV )

= diag(UT (A1 ⊗B1 + A2 ⊗B2 + · · · + As ⊗Bs)V ),

where A1 = UAΣAV
T
A and B1 = UBΣBV

T
B . Since s is usually small (s ≤ 5), the cost of

the above scheme is only O(n3) (as opposed to O(n6), which is the cost of computing
an SVD of K directly). It is therefore computationally viable to consider, for example,
using this approximation with the truncated singular value decomposition (TSVD).
The TSVD solution is given by

fTSV D = V Σ+UTg , Σ† = diag

(
1

σ1
, . . . ,

1

σt
, 0, . . . , 0

)
,

where t is called a truncation index, or regularization parameter. The truncation
index is problem dependent; several approaches may be used to choose an appropriate
value [3, 7]. For our experiments, we use generalized cross validation (GCV):

t = arg min
k

G(k) = arg min
k

||Kfk − g||22
(N − k)2

,
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where N is the number of pixels in the image, and

fk = V diag

(
1

σ1
, . . . ,

1

σk
, 0, . . . , 0

)
UTg .

We computed TSVD restorations using the SVD approximation based on sums of s
Kronecker products, for several values of s, but the results were visually indistinguish-
able, so only those for s = 1 are reported here. Figure 4.3 shows TSVD restorations
using reflexive (relative error 0.3358) and zero (relative error 0.6862) boundary con-
ditions. In each case we used GCV to choose the truncation index, t; in particular,
we obtained t = 4852 for reflexive and t = 7813 for zero boundary conditions. As ex-
pected, the reflexive boundary condition has addressed the problem of ringing effects
at the image boundary.

5. Concluding remarks. In this paper, we have studied SVD-based regular-
ization methods for solving image restoration problems with reflexive boundary con-
ditions. We have shown that a Kronecker product decomposition of block-Toeplitz-
plus-Hankel with Toeplitz-plus-Hankel-block matrices from image restoration prob-
lems can be determined by computing the singular value decomposition of weighted
point spread functions. Numerical results suggest that the reflexive boundary con-
dition provides an effective model for image restoration problems in terms of the
minimization of the ringing effects near the boundary. We also find that the SVD-
based regularization method using the Kronecker product decomposition is efficient
in terms of the computational cost of solving image restoration problems.
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