
Kronos: A Model-Checking Tool for Real-Time Systems*

Marius Bozga], Conrado Daws 1, Oded Maler 1,
Alfredo Olivero 2, Stavros Tripakis 1 and Sergio Yovine 3 ~

1 VERIMAG, Centre]~quation, 2 avenue de Vignate, 38610 Gi~res, France.
e-mail: {bozga, daws, maler, tripakis}~imag.fr

2 Instituto de Computaci6n, Universidad de la Repdblica, Montevideo, Uruguay.
e-maih alfredo~ungs, edu. ar

3 VERIMAG, currently visiting California PATH, UC Berkeley.
e-mail: yovine@imag, f r , sergio@path.berkeley, edu

G e n e r a l Presentat ion

KRONOS [9, 11,8, 21, 17, 4, 3, 10] is a software tool aiming at assisting designers
of real-time systems to develop projects meeting the specified requirements.

One major objective of KRONOS is to provide a verification engine to be
integrated into design environments for real-time systems in a wide range of ap-
plication areas. Real-time communication protocols [9, 11], timed asynchronous
circuits [17,4], and hybrid systems [19,11] are some examples of application
domains where KRONOS has already been used.

KRONOS has been also used in analyzing real-time systems modeled in several
other process description formalisms, such as ATP [18], AORTA [5], ET-LOTOS [9],
and T-ARGOS [16]. On the other direction, the tool itself provides an interface
to untimed formalisms such as labeled-transition systems (LTS) which has been
used to exploit untimed verification techniques [21].

Theoret ical Background

The system-description language of KRONOS is the model of timed automata [2],
which are communicating finite-state machines extended with continuous real-
valued variables (clocks) used to measure time delays. Usually a system is mod-
eled as a network of automata. Communication is achieved by label synchro-
nization ~ la CCS or CSP (binary or n-ary rendez-vous), or shared variables (of
bounded integer or enumeration type).

System requirements can be specified in KRONOS using a variety of for-
malisms, such as the real-time logic TCTL [1, 15], timed Biichi automata, or
nntimed LTS. These formalisms are useful for expressing most interesting classes
of (timed or untimed) properties about systems, namely, safety properties (for

* KRONOS is developed at VERIMAQ, a joint laboratory of UJF, Ensimag and CNRS.
http ://www-verimag. imag. fr/TEMPORISE/kronos/.

** C. Daws, A. Olivero and S. Yovine partially supported by European Contract KIT
139 HYBSYS.

547

example, absence of deadlock, invariant, bounded-delay response, etc), as well
as liveness properties (for example, time progress, regular occurrence of certain
events, etc) 1

The main verification engine of the tool is based on the model-checking ap-
proach which comprises both analysis: (a) checking whether requirements are
satisfied, (b) providing diagnostic trails (i.e., execution sequences) demonstrat-
ing why a property holds or does not hold; and synthesis: adjusting the system
(for instance, by computing a restricted sub-system) so that it meets its require-
ments.

Model-checking is done using two methods: (a) the fixpoint method, which,
given a timed automaton and a TCTL formula, performs a nested fixpoint compu-
tation starting from an initial set of states and iterating a precondition operator
until stabilization (the operator depends on the type of the formula); (b) the
explorative method, which, given a network of timed automata and a specifica-
tion (in terms of a TCTL formula or a timed Bfichi automaton), generates the
reachability graph of the system while checking at the same time whether the
property holds.

In the case of safety properties a simple (depth-first or breadth-first) search
of the reachability graph suffices. In the case of general properties, specified as
timed Bfichi automata, a double search is performed, refining parts of the graph
whenever necessary. Both methods are interesting: the main advantage of the
fixpoint method is that it can be implemented in a purely symbolic manner,
using structures like BDD for efficiency (see below); on the other hand, the
explorative method is more suitable for on-the-fly verification (see below) and
can also provide diagnostic trails.

Apart from model-checking, K~tONOS offers the possibility to (a) generate
the system's reachable state space (to check, for instance, whether an error state
can be reached), and (b) compute the coarsest partition of the state space with
respect to the time-abstracting bisimulation, an equivalence relating states which
lead to the same untimed behavior regardless the exact time delays. This method
provides an interface to LTS and verification by bisimulation or simulation equiv-
alences [21] using the ALDEBARAN tool suite [14].

Supported Verification Techniques

The main obstacle in the applicability of model-checking is the so-called state-
explosion problem reflecting the fact that the size of the system's state space is
often huge. In order to tackle this, KRONOS offers a number of efficient verifica-
tion techniques, each of which is best suited for different applications.

- Symbolic representation of states means dealing with predicates representing
sets of states rather than individual states. This results into a much more
compact representation and storage. In the current KRONOS implementation,

1 To our knowledge, KRONOS is the only real-time verification toot which can handle
liveness properties.

548

sets of clock values are represented using the difference bounds matrix (DBM)
structure introduced in [13], whereas discrete variables are encoded as binary
decision diagrams (BDD) [6].

- On-the-fig model-checking means dynamically building the state space dur-
ing the model-checking process, as directed by the model-checking goal (for
instance, the property to be verified); this results in saving up space and
time, as well as in giving diagnostics as soon as possible.

- Abstractions are used for the exploration of a coarser state space than the
"real" (concrete) one; they result into space and time savings, at the cost of
loosing information, so that sometimes definite conclusions cannot be made.

- Forward or backward techniques: in the former (typically used in the explo-
rative method) the exploration starts from initial states and tries to reach
some target, while in the latter (typically used in the fixpoint method) it
is the inverse that happens. Combined with various search algorithms (such
as depth-first or breadth-first) implemented in the model-checking engine of
the tool, these alternative techniques result in a large flexibility with respect
to the different application needs.

- Minimization: it is used to generate the time-abstracting minimal model of
the system, which can then be visualized as an untimed graph, compared
or further reduced with respect to untimed equivalences, or checked using
untimed temporal logics.

Apart from the above techniques which are internal to KRONOS, other tools can
be used to preprocess the input timed automata, in order to reduce their size.
For example, OPTIKRON [7, 12] can be used to reduce the number of redundant
clocks, and ALDEBARAN can be used to minimize the input automata with re-
spect to a bisimulation relation (applied only to the syntactic structure of the
automata).

Case Studies

KRONOS has been used to verify various industrial communication protocols,
such as an audio-transmission protocol by Philips [11] (where errors have been
found to the previously hand-made proofs) or an ATM protocol by CNET [20]
(where a bug was also found relative to the consistency of the network com-
ponents). Other communication protocols modeled and verified by KaONOS in-
clude the carrier-sense multiple-access with collision detection (CSMA-CD) pro-
tocol [9] and the fiber-optic data-interface (FDDI) protocol [10]. Well-known
benchmark case studies verified by KRONOS include Fischer's real-time mutual-
exclusion protocol [10] and a production-plant case study [11]. Finally, the tool
has been also applied to the verification of the STARI chip [4] and to the synthesis
of real-time schedulers ~

The most recent enhancements of KRONOS include the implementation of
different abstraction mechanisms [10], the implementation of a symbolic on-

2 Unpublished work.

549

the-fly algorithm for checking timed Biichi automata emptiness [3] and a BDD-
based implementation oriented towards the timing analysis of circuits [4]. Table 1
presents some typical experimental results extracted from the cited papers. The
measurements were taken on a Sparc Ultra-1 with 128 Mbytes of main memory.
Time is given in seconds. The size of the state space (when available) is given
in symbolic states (i.e., control location plus DBM), BDD nodes, or states and
transitions. "OTF" stands for "on-the-fly".

Table 1. Some performance results.

Case study Method
Production plant
CNET
Philips
Fischer (5 processes)
Fischer (6 processes)
Fischer (9 processes)
FDDI (7 stations)
FDDI (12 stations)
FDDI (50 stations)
STARI (17 stages)

Time
Fixpoint 26
Forward 3
Forward 2
Minimization 32
OTF 2783

OTF & Abstractions 17098!
OTF & Btichi aut. 4813
Forward 1123
Forward & Abstractions' 3900
Fixpoint & BDD 1000001

State space,
not available
not available
not available

3000 states & trans.
164935 symb. states

1096194 symb. states
57500 symb. states
13000 symb. states
4000 symb. states

1000000 BDD nodes

It is worth noting that the entire machinery of KRONOS has been useful for
handling the above examples. In particular, the fixpoint method has been used
in earlier versions of the tool for liveness properties, as well as for synthesis
(see, for instance, [11], where initial constraints have been tightened so that the
system behaves correctly). Forward model-checking using timed B/ichi au tomata
has been recently used for checking liveness on the FDDI protocol for up to 7
processes, as well as to provide diagnostics in the real-time scheduling problem.
Minimization has been used for visualizing the behavior of timed automata.
On-the-fly techniques have been used whenever syntactic parallel composition
could not be applied due to state explosion. Abstractions and clock-reduction
techniques have been essential to the verification of the FDDI example for up to
50 processes, and Fischer's protocol for up to 9 processes [10].

A v a i l a b i l i t y

KRONOS is freely available for universities or any other non-profit organisms. It
can be obtained through the web at:

http ://w~-verimag. imag. fr/TEMPORISE/kronos/
or by anonymous ftp at:

host: ftp. imag. fr, directory: VERIMAG/KRONOS/tool/.
The distribution package includes executables for various architectures (Sun5,
Linux, Windows NT), documentation and examples.

550

References

1. R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time. In-
formation and Computation, 104(1):2-34, 1993.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

3. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proc. of the 18th IEEE Real-Time Systems Symposium, 1997.

4. M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic
verification of t imed automata. In CAV'97, 1997.

5. S. Bradley, W. Henderson, D. Kendall, and A. Robson. Validation, verification
and implementation of t imed protocols using AORTA. In Proc. 15th PSTV, 1995.

6. R.E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. Technical report, Carnegie Mellon University, 1992.

7. C. Daws. Optikron: a tool suite for enhancing model-checking of real-time systems.
1998. TO appear in CAV'98.

8. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid
Systems III, 1996.

9. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-
NOS. In FORTE'94, 1994.

10. C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In TA CAS'98, 1998.

11. C. Daws and S. Yovine. Two examples of verification of multirate timed au tomata
with KRONOS. In RTSS'95, 1995.

12. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In RTSS'96, 1996.

13. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
CA V'89, 1989.

14. J.C1. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis.
A tool box for the verification of lotos programs. In 14th International Conference
on Software Engineering, 1992.

15. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193-244, 1994.

16. M. Jourdan, F. Maraninchi, and A. Olivero. Verifying quanti tat ive real-time prop-
erties of synchronous programs. In CAV'93, 1993.

17. O. Maler and S. Yovine. Hardware timing verification using KRONOS. In Proc.
7th Israeli Conference on Computer Systems and Software Engineering, 1996.

18. X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into ex-
tended automata. IEEE TSE Special Issue on Real-Time Systems, 18(9):794-804,
September 1992.

19. A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification of
linear hybrid systems. In CAV'94, 1994.

20. S. Tripakis and S .Yovine. Verification of the fast-reservation protocol with delayed
transmission using Kronos. Technical Report 95-23, Verimag, 1995.

21. S. Tripakis and S. Yovine. Analysis of t imed systems based on t ime-abstract ing
bisimulations. In CAV'96, 1996.

