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G e n e r a l  Presentat ion  

KRONOS [9, 11,8, 21, 17, 4, 3, 10] is a software tool aiming at assisting designers 
of real-time systems to develop projects meeting the specified requirements. 

One major objective of KRONOS is to provide a verification engine to be 
integrated into design environments for real-time systems in a wide range of ap- 
plication areas. Real-time communication protocols [9, 11], timed asynchronous 
circuits [17,4], and hybrid systems [19,11] are some examples of application 
domains where KRONOS has already been used. 

KRONOS has been also used in analyzing real-time systems modeled in several 
other process description formalisms, such as ATP [18], AORTA [5], ET-LOTOS [9], 
and T-ARGOS [16]. On the other direction, the tool itself provides an interface 
to untimed formalisms such as labeled-transition systems (LTS) which has been 
used to exploit untimed verification techniques [21]. 

Theoret ical  Background 

The system-description language of KRONOS is the model of timed automata [2], 
which are communicating finite-state machines extended with continuous real- 
valued variables (clocks) used to measure time delays. Usually a system is mod- 
eled as a network of automata.  Communication is achieved by label synchro- 
nization ~ la CCS or CSP (binary or n-ary rendez-vous), or shared variables (of 
bounded integer or enumeration type). 

System requirements can be specified in KRONOS using a variety of for- 
malisms, such as the real-time logic TCTL [1, 15], timed Biichi automata,  or 
nntimed LTS. These formalisms are useful for expressing most interesting classes 
of (timed or untimed) properties about systems, namely, safety properties (for 
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example, absence of deadlock, invariant, bounded-delay response, etc), as well 
as liveness properties (for example, time progress, regular occurrence of certain 
events, etc) 1 

The main verification engine of the tool is based on the model-checking ap- 
proach which comprises both analysis: (a) checking whether requirements are 
satisfied, (b) providing diagnostic trails (i.e., execution sequences) demonstrat- 
ing why a property holds or does not hold; and synthesis: adjusting the system 
(for instance, by computing a restricted sub-system) so that  it meets its require- 
ments. 

Model-checking is done using two methods: (a) the fixpoint method, which, 
given a timed automaton and a TCTL formula, performs a nested fixpoint compu- 
tation starting from an initial set of states and iterating a precondition operator 
until stabilization (the operator depends on the type of the formula); (b) the 
explorative method, which, given a network of timed automata  and a specifica- 
tion (in terms of a TCTL formula or a timed Bfichi automaton),  generates the 
reachability graph of the system while checking at the same time whether the 
property holds. 

In the case of safety properties a simple (depth-first or breadth-first) search 
of the reachability graph suffices. In the case of general properties, specified as 
timed Bfichi automata,  a double search is performed, refining parts of the graph 
whenever necessary. Both methods are interesting: the main advantage of the 
fixpoint method is that  it can be implemented in a purely symbolic manner, 
using structures like BDD for efficiency (see below); on the other hand, the 
explorative method is more suitable for on-the-fly verification (see below) and 
can also provide diagnostic trails. 

Apart from model-checking, K~tONOS offers the possibility to (a) generate 
the system's reachable state space (to check, for instance, whether an error state 
can be reached), and (b) compute the coarsest partition of the state space with 
respect to the time-abstracting bisimulation, an equivalence relating states which 
lead to the same untimed behavior regardless the exact time delays. This method 
provides an interface to LTS and verification by bisimulation or simulation equiv- 
alences [21] using the ALDEBARAN tool suite [14]. 

Supported Verification Techniques 

The main obstacle in the applicability of model-checking is the so-called state- 
explosion problem reflecting the fact that  the size of the system's state space is 
often huge. In order to tackle this, KRONOS offers a number of efficient verifica- 
tion techniques, each of which is best suited for different applications. 

- Symbolic representation of states means dealing with predicates representing 
sets of states rather than individual states. This results into a much more 
compact representation and storage. In the current KRONOS implementation, 

1 To our knowledge, KRONOS is the only real-time verification toot which can handle 
liveness properties. 
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sets of clock values are represented using the difference bounds matrix (DBM) 
structure introduced in [13], whereas discrete variables are encoded as binary 
decision diagrams (BDD) [6]. 

- On-the-fig model-checking means dynamically building the state space dur- 
ing the model-checking process, as directed by the model-checking goal (for 
instance, the property to be verified); this results in saving up space and 
time, as well as in giving diagnostics as soon as possible. 

- Abstractions are used for the exploration of a coarser state space than the 
"real" (concrete) one; they result into space and time savings, at the cost of 
loosing information, so that sometimes definite conclusions cannot be made. 

- Forward or backward techniques: in the former (typically used in the explo- 
rative method) the exploration starts from initial states and tries to reach 
some target, while in the latter (typically used in the fixpoint method) it 
is the inverse that happens. Combined with various search algorithms (such 
as depth-first or breadth-first) implemented in the model-checking engine of 
the tool, these alternative techniques result in a large flexibility with respect 
to the different application needs. 

- Minimization: it is used to generate the time-abstracting minimal model of 
the system, which can then be visualized as an untimed graph, compared 
or further reduced with respect to untimed equivalences, or checked using 
untimed temporal logics. 

Apart from the above techniques which are internal to KRONOS, other tools can 
be used to preprocess the input timed automata, in order to reduce their size. 
For example, OPTIKRON [7, 12] can be used to reduce the number of redundant 
clocks, and ALDEBARAN can be used to minimize the input automata with re- 
spect to a bisimulation relation (applied only to the syntactic structure of the 
automata). 

Case Studies  

KRONOS has been used to verify various industrial communication protocols, 
such as an audio-transmission protocol by Philips [11] (where errors have been 
found to the previously hand-made proofs) or an ATM protocol by CNET [20] 
(where a bug was also found relative to the consistency of the network com- 
ponents). Other communication protocols modeled and verified by KaONOS in- 
clude the carrier-sense multiple-access with collision detection (CSMA-CD) pro- 
tocol [9] and the fiber-optic data-interface (FDDI) protocol [10]. Well-known 
benchmark case studies verified by KRONOS include Fischer's real-time mutual- 
exclusion protocol [10] and a production-plant case study [11]. Finally, the tool 
has been also applied to the verification of the STARI chip [4] and to the synthesis 
of real-time schedulers ~ 

The most recent enhancements of KRONOS include the implementation of 
different abstraction mechanisms [10], the implementation of a symbolic on- 

2 Unpublished work. 
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the-fly algorithm for checking timed Biichi automata  emptiness [3] and a BDD- 
based implementation oriented towards the timing analysis of circuits [4]. Table 1 
presents some typical experimental results extracted from the cited papers. The 
measurements were taken on a Sparc Ultra-1 with 128 Mbytes of main memory. 
Time is given in seconds. The size of the state space (when available) is given 
in symbolic states (i.e., control location plus DBM), BDD nodes, or states and 
transitions. "OTF" stands for "on-the-fly". 

Table 1. Some performance results. 

Case study Method 
Production plant 
CNET 
Philips 
Fischer (5 processes) 
Fischer (6 processes) 
Fischer (9 processes) 
FDDI (7 stations) 
FDDI (12 stations) 
FDDI (50 stations) 
STARI (17 stages) 

Time 
Fixpoint 26 
Forward 3 
Forward 2 
Minimization 32 
OTF 2783 

OTF & Abstractions 17098! 
OTF & Btichi aut. 4813 
Forward 1123 
Forward & Abstractions' 3900 
Fixpoint & BDD 1000001 

State space, 
not available 
not available 
not available 

3000 states & trans. 
164935 symb. states 

1096194 symb. states 
57500 symb. states 
13000 symb. states 
4000 symb. states 

1000000 BDD nodes 

It is worth noting that  the entire machinery of KRONOS has been useful for 
handling the above examples. In particular, the fixpoint method has been used 
in earlier versions of the tool for liveness properties, as well as for synthesis 
(see, for instance, [11], where initial constraints have been tightened so that  the 
system behaves correctly). Forward model-checking using timed B/ichi au tomata  
has been recently used for checking liveness on the FDDI protocol for up to 7 
processes, as well as to provide diagnostics in the real-time scheduling problem. 
Minimization has been used for visualizing the behavior of timed automata.  
On-the-fly techniques have been used whenever syntactic parallel composition 
could not be applied due to state explosion. Abstractions and clock-reduction 
techniques have been essential to the verification of the FDDI example for up to 
50 processes, and Fischer's protocol for up to 9 processes [10]. 

A v a i l a b i l i t y  

KRONOS is freely available for universities or any other non-profit organisms. It 
can be obtained through the web at: 

http ://w~-verimag. imag. fr/TEMPORISE/kronos/ 
or by anonymous ftp at: 

host: ftp. imag. fr, directory: VERIMAG/KRONOS/tool/. 
The distribution package includes executables for various architectures (Sun5, 
Linux, Windows NT), documentation and examples. 
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