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ABSTRACT. Let  R  denote a commutative ring with identity.  If there exists

a chain  PqCP jC...cP„ of  zz + 1  prime ideals of  R, where  P   X R, but no such

chain of zz + 2 prime ideals, then we say that R has dimension  n.   The power

series ring r?[LX]J may have infinite dimension even though R has finite dimension.

1.  Introduction.   We shall write dim R = n to denote that R  has dimension n.

Seidenberg, in [6] and [7], has investigated the theory of dimension in rings of

polynomials.  In particular, he has shown in [61 that if dim R = n, then n + 1 <

dim R [X] < 2n + 1, where X  is an indeterminate over R.  One might now ask

whether it is also true that n + 1 < dim R [[Xll < 2n + 1.  It is easy to show that

n + 1 < dim R [[X]]  when dim R = n.   In [3l Fields has considered the theory of

dimension in power series rings over valuation rings. Using results obtained by

Fields, Arnold and Brewer have noted in [ll that dim V[[xll > 4 for any rank one

nondiscrete valuation ring V.  Thus, if dim R = n, then 2k + 1  is not, in general,

an upper bound for dim P[[xl]. In this paper we show that we may have

dim R [[Xll = °o  even though R  has finite dimension.  Our main result is Theorem

1, which gives sufficient conditions on a ring R  in order that dim R [[X]] = oo.   In

fact, the conditions given insure the existence of an infinite ascending chain of

prime ideals in P[[Xll.

Throughout this paper, R  denotes a commutative ring with identity, co  is the

set of natural numbers, and oj0  is the set of nonnegative integers. If /(X) =

^iloai^' e R[[X]], then we denote by A, the ideal of R  generated by the coeffi-

cients of fiX). For an ideal A  of R, we let A [[Xll = {fix) = Z^a.X'l a. £ A

for each  i £ cú0\  and we define  AR[[Xll   to be the ideal of P[[X]]  which is

generated by A.  Thus, AR [[Xll = i/(X)| A   C B   for some finitely generated ideal

B   of R, with B C A\. We shall say that the ideal A   is an ideal of strong finite

type (or an SFT-ideal) provided there is a finitely generated ideal B C A   and

k £ co  such that a    £ B  tot each a £ A. If each ideal of R  is an SFT-ideal, then

we say that R  satisfies the SFT-property.   Throughout, our notation and terminol-

ogy are essentially that of [4].
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2. Main Theorem.   Let R  be a ring which does not satisfy the SFT-property.

If M  is an ideal of R  which is not an SFT-ideal, then we may choose a sequence

{a .}°^0  of elements of M so that a, +. /È (aQ, • • •, a.)  for each k £ <oQ. Set A, =

(<zQ, • • ., a,) and let A = {J°1_qA,. For each m £a>, we now choose a sequence

{a     .}°° „  of elements of A  as follows. For ttz = 1, we take a,   . = a. fot each
TO,I    1=0 1,1 z

z ezUq. Having defined the sequence \a m ¿¡7=0  ^or  * - m ^ "■ we define the

sequence {a    .}°° „   by taking a    . = a     ,  .->., for each z e c<)n. For each ?z e &> we set
n 72, Z     Z=U ' ö      72,7 77— 1,Z¿+1 U

/,  , = 2°° na    .X¿.'(Tí) 7=0      72, Z

Definition 1.   Suppose that g(X) e R [[X]],  g(X) =2bX1, and let n, m, p, r

be integers such that  m > n > 1, and r > 0. We shall say that the tuple (g, m, p, r)

has property (72)  if for i > r there exists an integer t. such that the following

hold, where we assume that a_ .. = an ¿. = «j s..
m, z

(i)   />,   = am ¿ + a for some aeA5._,.

(ii)   t.<pk¿.

(iii)  fc. e As._,  for 0< / < t..
7 1   * — ■-'      1

For 72 £ <jj, we set 5   = {g (X) e P.[[X]]| (g, m, p, r)  has property (n)  for some

m, p £ cu and r e a>0\. S    is nonempty since (/,  ,,72, 1, 0) satisfies property (n).

Lemma 1.    // 72, 77,   £ co  are such that n > n,, then S    C S
' 1 —     r n —    ni

Proof.    Suppose that g (X) £ S    and that (g, m, p, r)  has property (72). We

wish to see that (g, 772, p, r)  also has property (n.).  But properties (i) and (iii) of

Definition 1 already hold since they are independent of the choice of 72. To see

that (ii) holds, suppose that  i > r and that a     . = a„ ¿ . = a Then k. < v.,
v ' rr — m,l ".«1 "l'^z 1 —     l

and hence t{ < pk¿ < pv..  It follows that g(X) £ Snl.

Lemma 2.   For each n £ co,  S    is a multiplicatively closed subset of R [[X]].

Proof.   Let g(X) e R[[X]],  g(X) = 2°°=Qb.Xi. We first show that if (g, m, p, r)

has property (72)  and if 772. > 772, then (g, m., p, r) also has property (72).  Thus,

suppose that  i > r  and that &tni,i — am,j- — an,k- = al,s ■•  Since ;:. > i > r, there

exists an integer  t..  such that:

(i)   b,    = a^  .   + a for some a £ A       ..
H        m,H si~l

(ii)   tj{ < pk{.

(iii)   bx£ A       ,   for  0< A < /. .
si~ l — li

Taking r. = tj. and using the fact that am. j = amj., we see that r. satisfies

properties (i), (ii) and (iii) of Definition 1 so (g, mv  p, r)  has property (?z).

Now let g(X),   h(X) £ Sn, where g(X) = 2°°^^ and h(X) = 2°°=0 c .X1', and

suppose that (g, m., zt.^ 7j)  and (¿, 7722, zx2, r2)  satisfy property (n).  By the pre-

ceding remarks, we may assume that  m^ = m2  and, clearly, we may assume that

r   = r?.  Set 772 = 722. = 2222   and r = r. = r2. We wish to show that (gh, m, p^ -t- p2, r)
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has property (zz).  Suppose that  i > r and that a     . = a    ,    = a.      .  By assumption
fit ft 71, K, j Í. . S j

there exist integers /. and  r.  such that b.. = a^l. + a  and cT. = zz^2 . + ß fot
B i i li        m,i ' i m,t      "

some a, ß £ As._ t.  Moreover, bx, c s £ As ._ {  fot 0 < X < t. and 0 < 8 < r.. If

giX)biX) = 2°°J0£.X>, then

Çti+Ti=bticT.+ ¿Z bxcs.
A + S=í¿+r¿;X*£v; W¿

But 'ûXfiti and 8 fi r., then either X < t. ot 8 < r .. Consequently, either bx £ As ._ j  or

CS e ^s-- 1- Since ¿v -cT. = aMi?M2 + a/2 . + ßzzMl. + aß, it follows that
0 l   n     + l        * m'1 m'1 m'1

£ti+Tj = & + y for some y £ As¿_ i. By assumption, we have í¿ < /l¿ t^¿ and

r\ < u2ki. Therefore, t{ + r. < (zij + p2)kv Finally, if 0 < À < t{ + r¿, then  cf^ =

2 . „iir      . £ Aç ._ i   since either  j < t.  or X - j < r..
r=0   i \-j        si    L '       i '       i

Lemma 3.   Let n, v £ co be such that n> v.   If giX) £ S , then giX) +

hiX)f{v)iX) £ Sn for arbitrary hiX) £ P[[Xll.

Proof.   Suppose that giX) = "2,°e_0b.Xl  and that ig, m, p, r)  has property in).

Let 7/ = min {i £ a>0\ a     . = anjt. => k. > p\ and set z-j = max {r, r¡\.   If qiX) =

giX) + hiX)f   AX) = S~0 f.X!, then we wish to show that iq, m, p, rr)  satisfies

Property (zz). Thus, suppose that i > r^  and that am ¿ = anji. = avXi = «it...  By

tssumption, there exists an integer t. such that bt. = a^  . + a tot some  a £

As ._ i and such that t. < pk. < k.. Since X. > k. + 1, it follows that av . £ As._ j

for 0< / < z.. Consequently, if ¿(X) = 2~Q c.X' and hiX)f {v)iX) = S7=0 y;.X',

then yt. = £^n av.ct._j £ As._ t. Therefore, <fí¿ = ¿><. + y(. = a^.+ a + yt. and

(i) of Definition 1 is satisfied. We already have that t. < pk., so (ii) is also satis-

fied. To see that (iii) holds, suppose that 0 < 8 < t..  By assumption, we have

that &seAS|._i. Also, ys = £._„ a„ ríf_y e ASi_i, since j<8<t.<k2 implies

that cZj, . e As ._ ]. Consequently, ¿fg = b% + y g e As ._ ¡  and our proof is complete.

We now state our main result.

Theorem 1.    Let  R   be a commutative ring with identity.   The following condi-

tions are equivalent and imply that  R [[Xll   has infinite dimension.

(1) R  does not satisfy the SFT-property.

(2) There exists an ideal A  of R such that A[[X]] </. \JaR[[X]].

(3) There exists a prime ideal P  of R  such that  P[[X]] fi\fPR~[[X]].

Proof.   Assume that (1) holds. We shall first prove that dim R [[X]] = oo.  Let

the ideal A  be as previously defined. We wish to see that AR[[X]] D S   = 0.

Thus, let g(X) £ AR [[Xl]  OS,,  g(X) = X°°=0 b.X*. Then Ag C C for some finitely

generated ideal C of R, where C CA.  Consequently, there exists k £ coQ  such

that  A    ÇA,.  Suppose that ig, m, p, r)  has property (1) and that  r has been

chosen so that if i > r and a     . = a\ s ., then s. > max {a, k\.  If t. is such that
— zzz.z »    I I ' I

b,. = a^  . + a.  fot some  a e As ._ t, then we have a^   .+ aeA,CA_.    i.
'Z 77!,Z ij-11 m>; £   —        SI_1
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Therefore, a^  . £ As ._ i, a contradiction since a  '.= a.'     ¿A       ,   and s.>u.
'       m.l *l " TO,7 7,S¿rS¿-l z ^

(Since /(1) £5j, it follows that /(1) e A [[X]l - v^P[[X]]. Thus  we see that (1)

implies (2).) But Sj  n AR[[X]] = 0  implies the existence of a prime ideal Pj   of

P[[Xll  such that AP.[[xll C Pj   and P; n  S{ = 0. Suppose there exists a chain

Pj C .,. C P n  of prime ideals of R [[Xl]  such that  P^ n Sn =  0, and let C^ =

Pn + (/(n)(X)).   If g(X) e Sn+1, then by Lemma 3, g(X) + MX)/(n)(X) 6 5n + 1 C S^

for arbitrary ¿(X) e P.[[X]].  It follows that g (X) + h(X)f{n)(X) jé Pn  and hence

that g(X) /Í C  .  Thus, C    O 5  +. = 0 and there exists a prime ideal P  +.   such

that P   CC   CP   ,.   and P   .,   n $  + , = 0. We see by induction that dimP[[Xl] = <x>.
72 72   —        7Z + 1 72 + 1 72 + 1 ^ '_

To see that (2) implies (3), we note that if A[[x]] ¡£ >/AP[[x]], then there exists a

prime ideal Q of P[[x]] such that AR[[X]1 C Q but A[[xll £Q.  If P = Q n R, then

P 2 A  and hence P[[X]] D A [[X]]. Therefore, 2 D PP [[Xl]  but Q 7j P[[X]]. It

follows that P[[X]] 4 \ PR [[X]].   In order to show that (3) implies (1), we require

the following lemma.

Lemma 4.   Let A  be an ideal of R  and suppose that there exists  k £ co such

that ak = 0 for each a £ A.   If f(X) £ A [[x]], z¿e7z f(X)  is nilpotent.

Proof.   We first prove the existence of an integer 722  such that  mç = 0 for all

zf £ Am. Suppose we have integers p, v.,••■, v    such that pa.    ... a    = 0 for

all a., .. ., a   £ A   (certainly this condition is satisfied if p. = t = 1  and v. = k)

and suppose that v. > 2 for some  i,   1 < i < t.   For convenience, we suppose that

v. > 2. Now let ¿q, £>,,..., è   e A.   By assumption, we have that

0,^0 + b/lb? - • »Í1 - K^o + MX2 • • • C = £ *,
7=0

where Ç. = pCl) b^1'''2^^2 ■•■ b"(.  If 0 < / < 1^ - 2, then 2i^ -/- 2> 1^

so that  £.= 0. Also, tfvj = &q1-2(íxí.^1 ... ij'í) = 0.   It follows that 0= fVl-i =
Vi — 1    V, — 1    V9 V.

zxiy.èg        />.        b2    • • . b    .   By a finite number of repetitions of this procedure,

we may find integers p and t such that fizz. ... a   = 0 for all a.,.. ., a   £ A.   If

we set 722 = pt, then 772Am = (0). Now let f(X) £ A[[X]],  f(X) = 2f=Q  aX\ Follow-

ing a proof given by Fields [2, Theorem ll we suppose that m = p  is a prime

integer. Then (f(X))pk = 2°°=Q apk Xipk = 0.  If 772 is not prime and 772 = p^ 1 . • . peA

is a prime factorization for 772, then let (p.: R [[X]] —» (R/p.A  7)[[X]]  be the

canonical homomorphism for  1 < j < t.   By the previous case for 272 a prime, we

have  O=[0.(/(X))1**, that is (f(X))pi  £ p.A^[[X}]. If n = (p\ik + ... + />'<*)«,

then

(/(X))"-[((/(X))^)ei ••• ((f(X)ft)etr £[(PlAPl)ei[[X}]...(ptAPt)et[[XÍ]]m

Ç 722Am[[X]] = (0).
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To complete the proof of Theorem 1, suppose that B   is an ideal of R  which

is an SFT-ideal.  By definition, there exists  k £ co  and a finitely generated ideal

CCS  such that bk £ C tot all b £ B.  Setting R = R/C and B = B/C, it follows

from Lemma 4 that f(X)   is nilpotent for each f(X)   £ ß[[xll.  Therefore, if g(X)e

B[[X]1, then g(X) £ sJc[[X]] = y/CR [Ml Ç JBR [[X]]. Consequently, if P is a

prime ideal of R   such that P[[X]] fi \/PR[[X]], then P is not an SFT-ideal. This

proves that (3) implies (1) and the theorem follows.

If dim R = n, then it is natural to ask whether the conditions given in Theorem

1 are necessary in order that dim R [[X]] = oo. Another interesting question which

arises is whether the following conditions are equivalent:

(1) dimR[[x]]^B + l.

(2) dim R[[X]] = oo.

We show that both these questions can be answered affirmatively if dimR = 0.

Theorem 2.   Let R  be a commutative ring with identity and suppose that

dim R = 0.  Then the following statements are equivalent:

(1) dim R [Ml / 1.

(2) dimR[[Xl] =oo.

(3) R  contains a maximal ideal M such that  M [[Xll fi yMR[[x]].

Proof.   We have already seen that (3) implies (2) and clearly, (2) implies (1).

Suppose that (1) holds and let QQ C Q^ C Q   C R [[x]]  be a chain of prime ideals

of R [[Xll.  If M = Q0  fifi, then M  is a maximal ideal of R  so we have M = QQ O

R = Ö, n R = Q2 n R-   Now  20 1 MtMl  since R [[x]]/M [[X]] » (R//W) [[Xll  is

a rank one discrete valuation ring.  But by [l, Proposition l], either Q0 C zM [[X]]

or Q0 D M[[X]]. Therefore, MR [[X]] Ç QQ C Al[[xl]  and M[[Xll ¿ VMR[[xT].

3. Examples. We conclude by providing three examples of finite dimensional

rings  R   such that  dim R [[X]l = oo.

Example 1.    If V  is a rank one nondiscrete valuation ring, then  dim V [[X]] = oo.

More generally,  if  I7  is a valuation ring which contains an idempotent prime ideal

P, then  P  is not an SFT-ideal-so dim V [[x]] = oo.

Example 2.    An integral domain D   is said to be almost Dedekind provided

D,,   is a Noetherian valuation ring for each maximal ideal M   of D.  Let D  be any

almost Dedekind domain which is not Dedekind [4, p. 586], and let M be a maxi-

mal ideal of D which is not finitely generated. It follows from Theorem 29.4 of

[4, p. 4111 that ¡M  is not the radical of a finitely generated ideal.  Thus, M  is not

an SFT-ideal and dim D[[Xll = oo.  More generally, if R  is a commutative ring with

identity which does not have Noetherian prime spectrum, then dim R [[X]] = =o.

This is an immediate consequence of Corollary 2.4 of [5l which states that a ring

R  has Noetherian prime spectrum if and only if each prime ideal of R is the radi-

cal of a finitely generated ideal.  Example 1 and the following example illustrate
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that we may have dim P [[X]] = oo even though R  has Noetherian prime spectrum.

Example 3.   Let {y}°lo   be a collection of indeterminates over Q, the field

of rationals, and set R = Q[Yq, Yv •>•]/(Yq,  Y", • • •), where 72 is a positive

integer and 72 > 2. We note that dim R = 0 and that zVl = (Yn, Y., ■ • •)  is the unique

proper prime ideal of P. If f(X) = 2'*L0 Y-X1, then Fields proves in [2] that f(X)

is not nilpotent. If g(X) £ MR[[X]], then g(X) = 2'_0 Y.h^X)  for some t £ <u  and

h.(X) £ P[[X]]. Since?" =0 for 0 < i < t, it follows that g (X) is nilpotent. Conse-

quently, j(X) ft JmR [[Xl]  so, by Theorem 1, dim R[[X]] = «,.
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