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ABSTRACT. Let R denote a commutative ring with identity. If there exists
a chain PoCPc...cP, of n *+1 prime ideals of R, where P, »R, but no such
chain of n +2 prime ideals, then we say that R has dimension n. The power
series ring RI[x]] may have infinite dimension even though R has finite dimension.

1. Introduction. We shall write dim R = » to denote that R has dimension 7.
Seidenberg, in [6] and [7], has investigated the theory of dimension in rings of
polynomials. In particular, he has shown in [6] that if dim R = », then » + 1 <
dim R[X] <2n + 1, where X is an indeterminate over R. One might now ask
whether it is also true that 7 + 1 < dim R[[X]1 < 27 + 1. It is easy to show that
n + 1 < dim R[[X]] when dim R = n. In[3] Fields has considered the theory of
dimension in power series rings over valuation rings. Using results obtained by
Fields, Arnold and Brewer have noted in [1] that dim V[[X]] > 4 for any rank one
nondiscrete valuation ring V. Thus, if dim R = n, then 2n + 1 is not, in general,
an upper bound for dim R[[X]]. In this paper we show that we may have
dim R[[X]] =  even though R has finite dimension. Our main result is Theorem
1, which gives sufficient conditions on a ring R in order that dim R [[X]] = . In
fact, the conditions given insure the existence of an infinite ascending chain of
prime ideals in R[[X]].

Throughout this paper, R denotes a commutative ring with identity, @ is the
set of natural numbers, and w, is the set of nonnegative integers. If f(X) =
220 az.X" € R[[X1], then we denote by A, the ideal of R generated by the coeffi-
cients of {(X). For an ideal A of R, we let A[[X]] ={f(x) = 2‘:?:0a1.x"| a. €A
for each 7 € wO} and we define AR[[X]] to be the ideal of R[[X]] which is
generated by A. Thus, AR[[X]] = {/(X)]| A, CB for some finitely generated ideal
B of R, with B C A}. We shall say that the ideal A is an ideal of strong finite
type (or an SFT-ideal) provided there is a finitely generated ideal B CA and
k € w such that a* € B for each a € A. If each ideal of R is an SFT-ideal, then
we say that R satisfies the SFT-property. Throughout, our notation and terminol-
ogy are essentially that of [4].
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2. Main Theorem. Let R be a ring which does not satisfy the SFT-property.
If M is an ideal of R which is not an SFT-ideal, then we may choose a sequence
{aiiz’__o of elements of M so that a,w1 Elag, -, ak) for each k € w,. Set 4, =
(agy+++, @) and let A = U:=0Ak’ For each m € w, we now choose a sequence
mili=0 ©
i €. Having defined the sequence {am lil o for 1<m< n, we defme the

{a f elements of A as follows. For m = 1, we take a, =4 for each
sequence {an o bytakinga .=a
[(n) - 2'1—0 n, le

Definition 1. Suppose that g(X) € RI[X]], g(X) = 2b, X% and let n, m, p, 7
be integers such that m >n > 1, and r > 0. We shall say that the tuple (g, m, , 7)

n—1,i241 for eachi € w,. For eachn € w we set

has property (n) if for i > r there exists an integer t; such that the following
hold, where we assume that a@_ ;= da, k;=41,s;-
(1) bti = a;,;‘i + a for some a € As,--l-
(iii) bj €As;-1 for 0<j< t;.
For n € w, we set S_={g(X) € RIXN| (g, m, p, ) has property (n) tor some
m, p €w and 7 €wy}. S is nonempty since (f(n), n, 1, 0) satisfies property (n).

Lemma 1. If n, n, € w are such that n>n,, then S CS

1 = n="ny’

Proof. Suppose that g(X) € S_ and that (g, m, p, r) has property (n). We
wish to see that (g, m, i, r) also has property (n,). But properties (i) and (iii) of
Definition 1 already hold since they are independent of the choice of n. To see
that (ii) holds, suppose that i > r and that a mi= On k= An . Then &, < v,
and hence ¢, < pk; < pv;. It follows that g(X) €5,,.

Lemma 2. Foreach n €w, S, is a multiplicatively closed subset of RI[X]).

Proof. Let g(X) € RI[X1, g(X) = 2%, bl.Xi. We first. show that if (g, m, p, 7)
has property (n) and if m, > m, then (g, m,, p, r) also has property (n). Thus,
suppose that i > 7 and that ;= dp,j; = dnk; =91,s; Since j, > i >, there

exists an integer f;. such that:

H _ oM
(i) b‘ii =a, .+a for some a € Asi-l'

(i1) tji < p.ki.

(iii) by € Asl._1 for 0< A< t; -

Taking 7, = t;, and using the fact that a,, ; = a4, ;,, we see that 7, satisfies
properties (i), (ii) and (iii) of Definition 1 so (g, My, 7) has property (n).

Now let g(X), h(X) €S _, where g(X) = 3%_yb,X" and h(X) = 2%_,c,X?, and
suppose that (g, m, p;, r,) and (b, m,, p,, r,) satisfy property (n). By the pre-
ceding remarks, we may assume that m, = m, and, clearly, we may assume that
=7, Set m =m

r and r =7, =r,. We wish to show that (gh, m, py+ py, 7)

1 1= ™,
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has property (n). Suppese that i > r and that @i =%k = %5,

. By assumption
there exist integers f, and 7, such that b, =@/l +a and cr, = al2 .+ B for
some a, B € Ag ;- 1. Moreover, b), c5 € As,_1 for O§‘A<t1. and 0< 8 <r.If
g(X)h(X) = 2°° 0 f X', then

é-tl-+ri= bliCTi+ Z bxcs.

AN+8=p,47 ;N wet ;3 87

Butif A£¢; and 0 £ 7;, then either A <t or 6 < 7. Consequently, either b, € As._; or
cs €As,—1- Since bt,Cr = a#l*#z + aa“z + ,Ba#1 + ap, it follows that
&4, :11#2 + 7y for some y e As;—1- By assumption, we have ¢, <p k; and
7; S#zk, Therefore, ¢, + 7, < (g, + p,)k,. Finally, if 0<A<¢; + 7, then &)=
2j=0 b,.cA _; € As;-1 since either j<t¢, or A-j<r.

Lemma 3. Let n, v € w be such that n>v. If g(X) €5 _, then g(X) +
b(X)f(V)(X) €S, for arbitrary h(X) € RI[X1I.

Proof. Suppose that g(X) = 2%7_, biXi and that (g, m, u, r) has property (n).
Let n=min{i €wy| a_,=app; =k;>p} and set 7| = max ir, n}. If q(X) =
g(X) + b(X)/(V)(X) =27, fl.Xi, then we wish to show that (g, m, y, r|) satisfies
sroperty (n). Thus, suppose that i > r, and that a,, ; = Ap,k; = v,\; = 41,5 By
issumption, there exists an integer t, such that by, = a" ;+ @ for some a¢€
As;-1 and such that ¢; <pk; < k Smce )\ > k2 + 1, 1t follows that a,, €A51_1
for 0<j<t,. Consequently, if b(X) = 2°° c; X’ and b(X)f(V)(X) = oy X7,
then y,, = 2’_0 v ]Ct, i €As;—1- Therefore f, =by;+ Ve = a’u i+ O. +Y; and
(i) of Definition 1 is satisfied. We already have that ¢, < pk,, so (1i) is also satis-
fied. To see that (iii) holds, suppose that 0< 6 <¢.. By assumption, we have

8

that b8€ASi_l. AlSO,)/S:E__O v, j
that a, ;€ As;-1. Consequently, &s = bs +ys €As;_1 and our proof is complete.

cy—j €As;_1, since j<8<¢t; < kf implies

We now state our main result.

Theorem 1. Let R be a commutative ring with identity. The following condi-
tions are equivalent and imply that R([X\| bas infinite dimension.

(1) R does not satisfy the SFT-property.

(2) There exists an ideal A of R such that Allx1]¢ JARIIXI.

(3) There exists a prime ideal P of R such that P[[X]] £\/PR [xi.

Proof. Assume that (1) holds. We shall first prove that dim R[[X]] = «. Let
the ideal A be as previously defined. We wish to see that AR[[X]] N §, = &.
Thus, let g(X) € AR[IX]] NS, g(X) =27, biXi. Then A_ CC for some finitely
generated ideal C of R, where C C A. Consequently, there exists k € w, such
that Ag CA,. Suppose that (g, m, p, r) has property (1) and that r has been
chosen so that if 7 > r and a, ;=841,s; then s, > max i, kY. If t; is such that
by, = ai’i + a for some a € Ags._1, then we have ai'i +a €A, CAs .
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" .. . S _ S
Therefore, a, ;€ As;_1, a contradiction since a, =%, ¢A5i_1 and s;> p.

(Since f(1y €Sy, it follows that f € Allx]] - \/AR[[X]]. Thus we see that (1)
implies (2).) But §; N AR[[X]] = & implies the existence of a prime ideal P, of
RI[X1] such that AR[[X1C P, and P, N §, = &. Suppose there exists a chain
P, C-+.CP_ of prime ideals of RI[X] suchthat P, N S = @&, and let C =
P, + ([ (X)) If g(X) €S ., then by Lemma 3, g(X) + h(X)f ,(X) €S . CS_
for arbitrary h(X) € R[[X]]. It follows that g(X) + h(X)f ,(X) £ P, and hence
that g(X) £C_. Thus,C_ NS , = & and there exists a prime 1deal P_,, such
that P CC CP ntl and P 41 NS, 4 =& Ve see by induction that dimR[[X]] = o.

To see that (2) implies (3), we note that if A[[X]] gv\/‘AR [[X]], then there exists a
prime ideal Q of RI[X]] such that AR[IX]1 CQ bur AlIXIIZQ. If P=Q N R, then
PO A and hence P[X]]1 D A[[X]]. Therefore, 0 O PRI[X]] but Q0 2 PI[X]]. It
follows that P[[X]] £\/PRI[X]]. In order to show that (3) implies (1), we require

the following lemma.

Lemma 4. Let A be an ideal of R and suppose that there exists k € @ such
that a* = 0 for each a € A. If {(X) € AI[X]), then {(X) is nilpotent.

Proof. We first prove the existence of an integer m such that m& = 0 for all

. v v
& € A™. Suppose we have integers y,v,,---, v, such that uall al‘ =0 for

t

all a;,...,a, €A (certainly this condition is satisfied if p=t=1 and v, = k)
and suppose that v; > 2 for some 7, 1< i<t For convenience, we suppose that

v, >2. Now let by, b),-++, b, € A. By assumption, we have that
Y1

0=pulby + b)) b5 oo byt = pbg "2 by + 5) 1652 e By = Y £
where f u(vl) bzv1 - zb’b;j2 cee b:jt. If 0<j<v,-2,then v, - j-2>v,
so that fj = 0. Also, &, = by~ 2(uby1 -+« by1) = 0. It follows that 0= £y, _ 1 =
vl-lbril- lblzlz
we may find integers p and ¢ such that pa, ... a,=0 forall a,-++,a, €A I
we set m = pt, then mA™ = (0). Now let f(X) € Al[X]], f(X) = 37, @ Xi Follow-
ing a proof given by erlds [2, Theorem 1] we suppose that m = p is a pnme
integer. Then (/(X))p =27, pk X% _ 0. I m is not prime and m= pl pf’
is a prime factorization for 1, then let P R[[x]] — (R/p; AP [[X]] be the
canonical homomorphism for 1 <j <. By the previous case for m a pnme we
have 0= (6 (NP7, ehat is (f(X)PF € p AIXIL. 1f & = (5% 4 ovv 4 7,
then

pv b cen b:/'. By a finite number of repetitions of this procedure,

(7(xN™ - [((/(x))"’f)"’1 e (X L [(p,A"H X ... (ptA"‘)‘"[[x]]]"'
cmA™[X1] = (0).
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To complete the proof of Theorem 1, suppose that B is an ideal of R which
is an SFT-ideal. By definition, there exists k& € w and a finitely generated ideal
C CB such that b% € C forall b € B. Setting R = R/C and B= B/C, it follows
from Lemma 4 that /(X) is nilpotent for each f(X) € BI[X]l. Therefore, if g(X)€
B([X]], then g(X) € /CI[X]] = JCRI[IXN C \/BRI[X]]. Consequently, if P isa
prime ideal of R such that P[[X]] £ \/FR_[[X—]] then P is not an SFT-ideal. This
proves that (3) implies (1) and the theorem follows.

If dim R = n, then it is natural to ask whether the conditions given in Theorem
1 are necessary in order that dim R[[X]] = . Another interesting question which
arises is whether the following conditions are equivalent:

(1) dim RUXN £ 7 +1.

) dim R{[X]] = o,

We show that both these questions can be answered affirmatively if dimR = 0.

Theorem 2. Let R be a commutative ring with identity and suppose that
dim R = 0. Then the following statements are equivalent:

(1) dim R[[X]] £ 1.

) dimR[[X]] = .

(3) R contains a maximal ideal M such that MI[X]] £ VMR [x1].

Proof. We have already seen that (3) implies (2) and clearly, (2) implies (1).
Suppose that (1) holds and let Oy C 0, CQ, C RI[X]] be a chain of prime ideals
of RIXN. 1f M= Qy MR, then M is a maximal ideal of R so we have M=Q, N
R=0Q,NR=0,NR. Now Qy2 MIX]l since RI[XI/MI[X]] = (R/M)[[X]] is
a rank one discrete valuation ring. But by [1, Proposition 1], either Qo CM [[xn
or 0y 2 MIIX]). Therefore, MRI[X]1 C 0, C MI[X1] and MI[X1] £ \/MRI[XT).

3. Examples. We conclude by providing three examples of finite dimensional
rings R such that dim R[[X]] = .

Example 1. If V is a rank one nondiscrete valuation ring, then dimV[[X]] =e.
More generally, if V is a valuation ring which contains an idempotent prin.le ideal
P, then P is not an SFT-ideal so dim VIX] = .

Example 2. An integral domain D is said to be almost Dedekind provided
D, is a Noetherian valuation ring for each maximal ideal M of D. Let D be any
almost Dedekind domain which is not Dedekind (4, p- 586], and let M be a maxi-
mal ideal of D which is not finitely generated. It follows from Theorem 29.4 of
[4, p. 411] that M is not the radical of a finitely generated ideal. Thus, M is not
an SFT-ideal and dim D [[X]] = «. More generally, if R is a commutative ring with
identity which does not have Noetherian prime spectrum, then dim RIIXN = .
This is an immediate consequence of Corollary 2.4 of [S] which states that a ring
R has Noetherian prime spectrumAif and only if each prime ideal of R is the radi-
cal of a finitely generated ideal. Example 1 and the following example illustrate
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that we may have dim R[[X]] = = even though R has Noetherian prime spectrum.
Example 3. Let {Y,}7 be a collection of indeterminates over Q, the field

of rationals, and set R = Q[Y,, Y ,.. J/(yz, Y7,...), where 7 is a positive

integer and n > 2. We note that dim R = 0 and that M= (Y, Y,,.-.) is the unique

proper prime ideal of R. If f(X) = % (Y X, then Fields proves in [2] that /(X)

is not nilpotent. If g(X) € MR([X]], then g(X) = 2!_( Y b (X) for some ¢ € and

h(X) € RI[X]]. Since Y7 =0 for 0 <i<¢, it follows that g(X) is nilpotent. Conse-

quently, f(X) £ m so, by Theorem 1, dim R[[X]] = .
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