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KRULL-SCHMIDT FAILS FOR SERIAL MODULES

ALBERTO FACCHINI

Abstract. We answer a question posed by Warfield in 1975: the Krull-
Schmidt Theorem does not hold for serial modules, as we show via an example.
Nevertheless we prove a weak form of the Krull-Schmidt Theorem for serial
modules (Theorem 1.9). And we show that the Grothendieck group of the
class of serial modules of finite Goldie dimension over a fixed ring R is a free
abelian group.

In 1975 R. B. Warfield published a very interesting paper [8], in which he de-
scribed the structure of serial rings and proved that every finitely presented module
over a serial ring is a direct sum of uniserial modules. On page 189 of that paper,
talking of the problems that remained open, he said that “ . . . perhaps the out-
standing open problem is the uniqueness question for decompositions of a finitely
presented module into uniserial summands (proved in the commutative case and in
one noncommutative case by Kaplansky [5]).” We solve Warfield’s problem com-
pletely: Krull-Schmidt fails for serial modules.

The two main ideas in this paper are the epigeny class and monogeny class of a
module. We say that modules U and V are in the same monogeny class, and we
write [U ]m = [V ]m, if there exist a module monomorphism U → V and a module
monomorphism V → U . In the same spirit, we say that U and V are in the same
epigeny class, and write [U ]e = [V ]e, if there exist a module epimorphism U → V
and a module epimorphism V → U . The significance of these definitions is that
uniserial modules U, V are isomorphic if and only if [U ]m = [V ]m and [U ]e = [V ]e
(Proposition 1.6). Our technical starting point is that the endomorphism ring
of a uniserial module has at most two maximal ideals, and modulo those ideals it
becomes a division ring (Theorem 1.2).

We show (Theorem 1.9) that if U1, . . . , Un, V1, . . . , Vt are non-zero uniserial
modules, then U1 ⊕ · · · ⊕ Un ∼= V1 ⊕ · · · ⊕ Vt if and only if n = t and there are two
permutations σ, τ of {1, 2, . . . , n} such that [Uσ(i)]m = [Vi]m and [Uτ(i)]e = [Vi]e for
every i = 1, 2, . . . , n. And we show that for every n ≥ 2 there exist 2n pairwise
non-isomorphic finitely presented uniserial modules U1, U2, . . . , Un, V1, V2, . . . ,
Vn over a suitable serial ring such that U1 ⊕ U2 ⊕ · · · ⊕ Un ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vn
(Example 2.2).

The weakened form of the Krull-Schmidt Theorem that serial modules satisfy
(Theorem 1.9) is sufficient to allow us to compute the Grothendieck group of the
class of serial modules of finite Goldie dimension over a fixed ring R. As is well
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known, if the Krull-Schmidt Theorem holds for a certain class of modules, its
Grothendieck group is a free abelian group. Though the Krull-Schmidt Theo-
rem does not hold for the class of serial modules of finite Goldie dimension, its
Grothendieck group is a free abelian group. The Krull-Schmidt Theorem fails
because the Grothendieck group is free as an abelian group, but it is not order
isomorphic to a free abelian group with the pointwise order (Section 3.2).

There is a vague resemblance between the behavior of serial modules and that
of artinian modules. For instance, in Section 3 we show that endomorphism rings
of serial modules of finite Goldie dimension are semilocal rings, that is, they are
semisimple artinian modulo their Jacobson radical. Camps and Dicks proved that
endomorphism rings of artinian modules also are semilocal [1]. Here we prove that
Krull-Schmidt fails for serial modules. In [2] Herbera, Levy, Vámos and the author
proved that Krull-Schmidt fails for artinian modules, thus answering a question
posed by Krull in 1932.

The author thanks Larry Levy and the referee for some most useful suggestions
on previous versions of this paper.

We shall consider right unital modules over an associative ring R with 1 6= 0. A
module is uniserial if its lattice of submodules is linearly ordered under inclusion,
and is a serial module if it is a direct sum of uniserial modules. A ring is serial if
it is a serial module both as a right module and as a left module over itself. The
symbol ⊂ will denote proper inclusion, and, if S is a ring, J(S) will denote the
Jacobson radical of S.

A serial module is of finite Goldie dimension if and only if it is the direct sum
of a finite number of uniserial modules. More precisely, a serial module M has
finite Goldie dimension n if and only if it is the direct sum of n non-zero uniserial
modules, so that the number n of direct summands of M that appear in any de-
composition of M as a direct sum of non-zero uniserial modules does not depend
on the decomposition.

1. Monogeny and epigeny

The following elementary lemma will often be useful in the sequel.

Lemma 1.1. Let A,C be non-zero right modules over an arbitrary ring R, B a
uniserial right R-module and α : A→ B, β : B → C homomorphisms. Then

(a) βα is a monomorphism if and only if β and α are both monomorphisms;
(b) βα is an epimorphism if and only if β and α are both epimorphisms.

Proof. (a) We must prove that if βα is a monomorphism, β also is a monomorphism.
Now if βα is a monomorphism, then α(A)∩ ker(β) = 0. Since B is uniserial, either
α(A) = 0 or ker(β) = 0. Now α(A) = 0 implies βα = 0, and this is not a
monomorphism because A 6= 0. Hence ker(β) = 0.

(b) We must prove that if βα is an epimorphism, α also is an epimorphism. Now
if βα is an epimorphism and C 6= 0, then βα 6= 0, so that β 6= 0. Hence ker(β) ⊂ B.
If α(A) ⊂ B, then ker(β)+α(A) ⊂ B. Now β induces a one-to-one order preserving
mapping between the set of all submodules of B containing ker(β) and the set of all
submodules of β(B). Hence ker(β) + α(A) ⊂ B implies β(ker(β) + α(A)) ⊂ β(B),
that is, βα(A) ⊂ β(B) ⊆ C. Hence βα is not an epimorphism, a contradiction.
This proves that α(A) = B and α is an epimorphism.
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Theorem 1.2. Let AR be a non-zero uniserial module and E = End(AR) its en-
domorphism ring. Let I be the subset of E consisting of all the endomorphisms of
AR that are not monomorphisms, and J be the subset of E consisting of all the
endomorphisms of AR that are not epimorphisms. Then I and J are completely
prime two-sided ideals of E, every right (or left) proper ideal of E is contained
either in I or in J , and either

(a) the ideals I and J are comparable, so that E is a local ring with maximal ideal
I ∪ J , or

(b) the ideals I and J are not comparable, I ∩ J is the Jacobson radical J (E) of
E, and E/J (E) is canonically isomorphic to the direct product E/I×E/J of
the two division rings E/I and E/J .

Proof. Obviously I and J are additively closed. They are two-sided completely
prime ideals of E by Lemma 1.1.

Let K be an arbitrary proper right or left ideal of E. Since I ∪ J is exactly
the set of non-invertible elements of E, it follows that K ⊆ I ∪ J . But then either
K ⊆ I or K ⊆ J . (Otherwise there exist x ∈ K \ I and y ∈ K \J . Then x+y ∈ K,
x ∈ J , and y ∈ I. Thus x + y /∈ I and x + y /∈ J . Hence x + y /∈ I ∪ J . This is a
contradiction because K ⊆ I ∪ J .)

Thus every proper right or left ideal of E is contained either in I or in J .
Therefore the unique maximal right ideals of E are at most I and J , and similarly
for left ideals. If I ⊆ J or J ⊆ I, then E is local ring with maximal ideal I ∪ J and
case (a) holds. Otherwise I and J are the two unique maximal right ideals of E.
Therefore I∩J is the Jacobson radical of E and hence there is a canonical injective
ring morphism E/J (E) → E/I × E/J . Since I + J = R, this ring morphism is
onto by the Chinese Remainder Theorem.

Corollary 1.3. Uniserial modules cancel from direct sums, that is, if A is a serial
module of finite Goldie dimension and B, C are arbitrary modules, then A⊕ B ∼=
A⊕ C implies B ∼= C.

Proof. This follows from Theorem 1.2 and results of Bass and Evans. See [4, Th. 2].

By Theorem 1.2, if N is a non-zero uniserial module and End(N) is its endo-
morphism ring, then either End(N)/J(End(N)) is a division ring (that is, End(N)
is a local ring) or End(N)/J(End(N)) is the direct product of two division rings.
We shall say that a non-zero uniserial module is of type 1 if its endomorphism ring
is local, and of type 2 otherwise. Hence a non-zero uniserial module N is of type
d if and only if End(N)/J(End(N)) is the direct product of d division rings (and
only d = 1 or d = 2 can occur).

For instance, every commutative valuation ring is a uniserial module of type 1 as
a module over itself. Further examples of uniserial modules of type 1 and examples
of uniserial modules of type 2 will be given in Section 2.

Lemma 1.4. Let A,B be non-zero uniserial modules over an arbitrary ring R.

(a) If f, g : A → B are two homomorphisms, f is injective and non-surjective,
and g is surjective and non-injective, then f + g is an isomorphism.

(b) Conversely, suppose that f1, . . . , fn : A → B are n homomorphisms none of
which is an isomorphism. If f1 + · · · + fn is an isomorphism, then there
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exist two distinct indices i, j = 1, 2, . . . , n such that fi is injective and non-
surjective, and fj is surjective and non-injective.

Proof. The proof of (a) is elementary. For the proof of (b), consider the n el-
ements (f1 + · · · + fn)−1fi of End(AR). Their sum is 1A and none of them is
invertible in End(AR). Hence End(AR) is not a local ring. By Theorem 1.2 the
ring End(AR)/J(End(AR)) is canonically isomorphic to the direct product of two
division rings End(AR)/I and End(AR)/J . Now the conclusion follows easily.

The next proposition reduces the study of the Krull-Schmidt property for serial
modules to the case of a direct sum of two uniserial modules. Its proof was inspired
by the proof of [6, Lemma V.5.2].

Proposition 1.5. Suppose A⊕B = C1⊕· · ·⊕Cn, with n ≥ 2 and A uniserial. Then
there are two distinct indices i and j and a direct decomposition A′⊕B′ = Ci⊕Cj
of Ci ⊕ Cj such that A ∼= A′ and B ∼= B′ ⊕ (

⊕
k 6=i,j Ck).

Proof. If A = 0 the statement is trivial. Hence we can suppose A 6= 0. If the
endomorphism ring E = End(A) of A is local the proposition follows immediately
from [6, Lemma V.5.2]. Hence we can suppose that the endomorphism ring E has
exactly two maximal ideals I and J . Let ιA, πA, ιB , πB and ιi, πi (i = 1, 2, . . . , n)
denote the injections and projections associated to the two direct decompositions
A⊕B and C1 ⊕ · · · ⊕ Cn. In E we have

1 = πAιA = πA

(∑
i

ιiπi

)
ιA =

∑
i

πAιiπiιA.

If one of the terms in this sum is invertible in E, πAιiπiιA is invertible in E say,
then the composite mapping of πiιA : A → Ci and (πAιiπiιA)−1πAιi : Ci → A is
the identity mapping of A, so that A is isomorphic to a non-zero direct summand
A′ of Ci. In this case we can take any index j 6= i and we’re done. Therefore we
can suppose that none of the terms πAιiπiιA is invertible in E. Then there exist
two indices i and j such that πAιiπiιA ∈ I \ J and πAιjπjιA ∈ J \ I by Lemma
1.4(b). Then α = πAιiπiιA + πAιjπjιA is invertible in E by Lemma 1.4(a), that is,
α is an automorphism of A. Let ι′ : Ci ⊕ Cj → A ⊕ B and π′ : A ⊕ B → Ci ⊕ Cj
denote the injection and the projection associated to the direct summand Ci⊕Cj of
A⊕B = C1⊕· · ·⊕Cn, so that α = πAι

′π′ιA. Set γ = α−1πAι
′ : Ci⊕Cj → A. Then

γπ′ιA = α−1πAι
′π′ιA = α−1α = 1A, and therefore γ is a splitting epimorphism,

that is, A′ ⊕B′ = Ci ⊕ Cj , where A′ = π′ιA(A) ∼= A and B′ = ker γ.

Let A and B be two modules. We shall say that A and B belong to the same
monogeny class if there exist a monomorphism A → B and a monomorphism
B → A. Similarly, we shall say that A and B belong to the same epigeny class if
there exist an epimorphism A→ B and an epimorphism B → A. Clearly, these are
two equivalence relations. Let [A]m and [A]e denote the monogeny class and the
epigeny class of a module A.

The relationship between isomorphism, monogeny and epigeny classes is de-
scribed in the next proposition.

Proposition 1.6. Let A and B be uniserial modules. Then A ∼= B if and only if
[A]m = [B]m and [A]e = [B]e.
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Proof. The “only if” implication is obvious. Conversely, suppose [A]m = [B]m
and [A]e = [B]e. Then there exist a monomorphism A → B and an epimorphism
A → B. If one of these two homomorphisms is an isomorphism, then A ∼= B. If
both these homomorphisms are not isomorphisms, then their sum is an isomorphism
by Lemma 1.4(a).

Proposition 1.7. Let A,U1, . . . , Un be uniserial modules, n ≥ 2 and A 6= 0. Sup-
pose that A is isomorphic to a direct summand of U1 ⊕ · · · ⊕ Un and A 6∼= Ui for
every i. Then there are two distinct indices i, j = 1, 2, . . . , n such that [A]m = [Ui]m
and [A]e = [Uj]e.

Conversely, let A,U, V be uniserial modules such that [A]m = [U ]m and [A]e =
[V ]e. Then A⊕X ∼= U⊕V for some module X, necessarily uniserial, that is unique
up to isomorphism.

Proof. Let A, U1, . . . , Un be uniserial modules, n ≥ 2. Suppose that A is isomor-
phic to a non-zero direct summand of U1 ⊕ · · · ⊕ Un and that A 6∼= Ui for every
i = 1, 2, . . . , n. By Proposition 1.5 there are two distinct indices i and j such that
A is isomorphic to a direct summand of Ui ⊕ Uj . Hence there are two morphisms
A→ Ui ⊕ Uj and Ui ⊕ Uj → A whose composition is the identity morphism 1A of
A. It follows that there are four morphisms f : A → Ui, g : A → Uj , h : Ui → A,
` : Uj → A such that hf + `g = 1A. If hf is an isomorphism, then h and f are
isomorphisms by Lemma 1.1, and this is impossible because A is not isomorphic
to Ui. Hence hf is not an isomorphism. Similarly `g is not an isomorphism. If
E = End(A) is a local ring, then the sum of two morphisms that are not invertible
is not invertible. Since hf + `g = 1A, E cannot be a local ring. By Theorem
1.2 E/J(E) is the direct product of the two division rings E/I and E/J . From
hf + `g = 1A and the fact that hf and `g are not invertible in E it follows that
either hf ∈ I \ J and `g ∈ J \ I or hf ∈ J \ I and `g ∈ I \ J . By symmetry we
can suppose that hf /∈ I and `g /∈ J , that is, hf is a monomorphism and `g is an
epimorphism. By Lemma 1.1 f : A→ Ui and h : Ui → A are monomorphisms, and
g : A→ Uj and ` : Uj → A are epimorphisms.

Conversely, let A,U, V be uniserial modules such that [A]m = [U ]m and [A]e =
[V ]e, so that there exist two monomorphisms α1 : A→ U and α2 : U → A and two
epimorphisms β1 : A → V and β2 : V → A. If A = 0, then U = 0 and V = 0, and
the statement is trivial. Hence we can suppose A 6= 0, so that U 6= 0 and V 6= 0
also. Consider the homomorphisms(

α1

β1

)
: A→ U ⊕ V

and (
α2 β2

)
: U ⊕ V → A,

whose composite mapping is(
α2 β2

)( α1

β1

)
= α2α1 + β2β1 : A→ A.

If α2α1 : A → A is an isomorphism, then both α1 and α2 are isomorphisms by
Lemma 1.1, so that A ⊕ V ∼= U ⊕ V . Hence in this case X = V has the property
required in the second part of the statement. Similarly, if β2β1 : A → A is an
isomorphism, then A⊕U ∼= V ⊕U and X = U has the required property. Hence we
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can suppose that neither α2α1 nor β2β1 are isomorphisms. Then γ = α2α1 + β2β1

is an isomorphism by Lemma 1.4(a). The composite mapping(
γ−1

(
α2 β2

))
◦
(
α1

β1

)
: A→ U ⊕ V → A

is the identity mapping of A. Hence

U ⊕ V ∼= A⊕ ker
(
γ−1

(
α2 β2

))
= A⊕ ker

(
α2 β2

)
.

Moreover

ker
(
α2 β2

)
= { (u, v) ∈ U ⊕ V | α2(u) + β2(v) = 0 }

= { (α−1
2 (β2(−v)), v) | v ∈ V, β2(v) ∈ α2(U) } ∼= β−1

2 (α2(U)),

and β−1
2 (α2(U)) is a uniserial module because it is a submodule of V . Hence

X = ker
(
α2 β2

)
has the required property.

Finally, if X ′ is another module with A ⊕X ′ ∼= U ⊕ V , then A ⊕X ′ ∼= A ⊕X ,
so that X ′ ∼= X by Corollary 1.3.

The next lemma is a further step in the proof of our main theorem (Theorem
1.9).

Lemma 1.8. Let U1, U2, V1, V2 be non-zero uniserial modules and suppose that
U1 ⊕ U2

∼= V1 ⊕ V2. Then {[U1]m, [U2]m} = {[V1]m, [V2]m} and {[U1]e, [U2]e} =
{[V1]e, [V2]e}.

Proof. By symmetry, it is sufficient to prove that {[U1]m, [U2]m} ⊆ {[V1]m, [V2]m}
and {[U1]e, [U2]e} ⊆ {[V1]e, [V2]e}, and for this we must show that for every Uk,
k = 1, 2, there exists an index i such that [Uk]m = [Vi]m and there exists an index
j such that [Uk]e = [Vj ]e. This is obvious if Uk is isomorphic to V1 or V2, and is
shown in Proposition 1.7 if Uk is not isomorphic to V1 and V2.

We are ready to prove our weak form of the Krull-Schmidt Theorem for serial
modules. For the proof, define the “m-e collection” of a finite family of uniserial
modules to be the collection of monogeny classes of its terms, each monogeny class
being counted as often as it occurs, together with the collection of epigeny classes
of the terms, again counting multiplicity.

Theorem 1.9. Let U1, . . . , Un, V1, . . . , Vt be non-zero uniserial modules. Then U1⊕
· · · ⊕Un ∼= V1 ⊕ · · · ⊕ Vt if and only if n = t and there are two permutations σ, τ of
{1, 2, . . . , n} such that [Uσ(i)]m = [Vi]m and [Uτ(i)]e = [Vi]e for every i = 1, 2, . . . , n.

Note that in the terminology just introduced the theorem can be restated: “The
direct sums of two finite families of uniserial modules are isomorphic if and only if
the two families have the same m-e collections.”

Proof. (⇒) We have already remarked in the introduction that U1 ⊕ · · · ⊕ Un ∼=
V1⊕· · ·⊕Vt implies n = t because n and t are the Goldie dimensions of U1⊕· · ·⊕Un
and V1 ⊕ · · · ⊕ Vt respectively.

Suppose, first, that no Vi is isomorphic to U1. Then, by Proposition 1.7, we can
renumber the Vi’s so that [U1]m = [V1]m and [U1]e = [V2]e. Moreover, again by
Proposition 1.7, there is a uniserial module X such that U1 ⊕ X ∼= V1 ⊕ V2. We
now have the following three decompositions of M :

U1 ⊕ U2 ⊕ · · · ⊕ Un ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vn ∼= U1 ⊕X ⊕ V3 ⊕ · · · ⊕ Vn.(1)
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Since uniserial modules cancel from direct sums, we get that U2 ⊕ · · · ⊕ Un ∼=
X⊕V3⊕ · · ·⊕Vn, and thus induction shows that {U2, . . . , Un} and {X,V3, . . . , Vn}
have the same m-e collections. Therefore the first and third decompositions in (1)
have the same m-e collections. Since U1⊕X ∼= V1⊕V2, Lemma 1.8 shows that the
second and the third decompositions in (1) have the same m-e collections. Hence
the first and second decompositions have the same m-e collections, as desired.

Suppose, on the other hand, that some Vi is isomorphic to U1. After renumbering
we can assume that U1

∼= V1. Then, since uniserial modules cancel from direct sums,
we are once again done by induction.

(⇐) Here we assume that the families {U1, . . . , Un} and {V1, . . . , Vn} have the
same m-e collections and we want to show that their direct sums are isomorphic.
Thus we have [U1]m = [Vi]m and [U1]e = [Vj ]e for some i, j.

Suppose first that i 6= j. Then we can renumber the Vi’s so that [U1]m =
[V1]m and [U1]e = [V2]e. By Proposition 1.7 we have U1 ⊕X ∼= V1 ⊕ V2 for some
uniserial X ; and by Lemma 1.8 the families {U1, X} and {V1, V2} have the same
m-e collections. It follows that {U1, X, V3, . . . , Vn} and {V1, V2, V3, . . . , Vn} have the
same m-e collections. Then {U1, X, V3, . . . , Vn} and {U1, . . . , Un} have the same m-e
collections, so that {X,V3, . . . , Vn} and {U2, . . . , Un} have the same m-e collections.
By induction X ⊕ V3 ⊕ · · · ⊕ Vn ∼= U2 ⊕ · · · ⊕ Un, so that V1 ⊕ V2 ⊕ · · · ⊕ Vn ∼=
U1 ⊕X ⊕ V3 ⊕ · · · ⊕ Vn ∼= U1 ⊕ U2 ⊕ · · · ⊕ Un, as desired.

Suppose, on the other hand, that i = j. We may assume, then, that i = 1, so
that U1

∼= V1 by Proposition 1.6. By induction V2 ⊕ · · · ⊕ Vn ∼= U2 ⊕ · · · ⊕ Un, and
thus V1 ⊕ · · · ⊕ Vn ∼= U1 ⊕ · · · ⊕ Un.

Theorem 1.9 is the “best” uniqueness result that holds for serial modules, in the
sense that, as we shall show in Example 2.1, given two arbitrary permutations of
{1, 2, . . . , n}, there are a serial module M of Goldie dimension n over a suitable
ring R and a pair of decompositions of M with those two permutations of the
monogeny classes and the epigeny classes. Hence the isomorphism classes of the
direct summands in a decomposition of a serial module as a finite direct sum of
non-zero uniserial modules do depend on the decomposition, but the monogeny
classes and the epigeny classes of the uniserial direct summands in a decomposition
do not depend on the decomposition itself. Moreover, the isomorphism class of a
uniserial module N is completely determined by its monogeny class and its epigeny
class (Proposition 1.6).

Definition 1.10. We shall say that a non-zero uniserial module A is a Krull-
Schmidt module if either

(a) for every submodule A′ ⊆ A′′ ⊆ A, A′ ∼= A implies A′′ ∼= A, or
(b) for every submodule B′ ⊆ B ⊆ A, A/B ∼= A implies A/B′ ∼= A.

Thus a non-zero uniserial module A is a Krull-Schmidt module if and only if
either for every module B, [A]m = [B]m implies A ∼= B, or for every module B,
[A]e = [B]e implies A ∼= B. In other words, we call a non-zero uniserial module a
Krull-Schmidt module if (up to isomorphism) it is the only module in its monogeny
class or the only module in its epigeny class. The reason for this terminology is:

Corollary 1.11. A non-zero uniserial module A is a Krull-Schmidt module if and
only if whenever U1, . . . , Un are uniserial modules and A is isomorphic to a direct
summand of U1⊕· · ·⊕Un, then A must be isomorphic to Ui for some i = 1, 2, . . . , n.
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Proof. Suppose that A is a uniserial Krull-Schmidt module and U1, . . . , Un are
uniserial modules such that A is isomorphic to a direct summand of U1 ⊕ · · · ⊕Un.
By Proposition 1.7 the monogeny and epigeny classes of A must appear in the m-e
collection of {U1, . . . , Un}. Since A is the unique module in its monogeny class, or
epigeny class, we must have A isomorphic to some Ui as claimed.

Conversely, suppose that A is a non-zero uniserial module that is not a Krull-
Schmidt module. Then there exist a uniserial module U1 6∼= A with [A]m = [U1]m
and a uniserial module U2 6∼= A with [A]e = [U2]e. Hence A is a direct summand of
U1 ⊕ U2 by Proposition 1.7.

From [6, Lemma V.5.2] and Corollary 1.11 we obtain

Proposition 1.12. Every uniserial module of type 1 is a Krull-Schmidt module.

As an application of Theorem 1.9 we shall compute an upper bound for the
number of non-isomorphic uniserial direct summands of a serial module of finite
Goldie dimension.

Corollary 1.13. Let U1, . . . , Un be Krull-Schmidt uniserial modules, V1, . . . , Vr
non-Krull-Schmidt uniserial modules, t1, . . . , tn, u1, . . . , ur non-negative integers,
M = U t11 ⊕· · ·⊕U tnn ⊕V u1

1 ⊕· · ·⊕V urr . Then M has at most n+r2 non-isomorphic
uniserial direct summands 6= 0.

Proof. LetA be a non-zero uniserial direct summand ofM . Then by Proposition 1.7
the monogeny and epigeny classes of A appear in the m-e collection of A. Say
[A]m = [X ]m and [A]e = [Y ]e, where X is some Ui or Vj and the same is true of Y .
We consider two cases.

Case 1. A is a Krull-Schmidt module. Then A is isomorphic to some Ui or Vj .
Since A is a Krull-Schmidt module, we therefore have A ∼= Ui. We conclude that
there are at most n possibilities for A.

Case 2. A is not a Krull-Schmidt module. Then X and Y are among the Vj ’s. Thus
there are at most r possibilities for each of the monogeny and epigeny classes of A.
Hence, by Proposition 1.6, there are at most r2 possibilities for the isomorphism
class of A.

2. Examples

Now we show that Krull-Schmidt fails for finitely presented modules over serial
rings. This answers Warfield’s question in the negative (see the introduction). Our
first example is partially based on a construction due to Luigi Salce and the author
[3, p. 502]

Example 2.1. Let n ≥ 2 be an integer. Then there exist a serial ring R and n2

pairwise non-isomorphic finitely presented uniserial R-modules Ui,j , i, j = 1, . . . , n,
with the following properties:

(a) [Ui,j ]m = [Uk,`]m if and only if i = k;
(b) [Ui,j ]e = [Uk,`]e if and only if j = `.

In particular, if σ, τ are two permutations of {1, 2, . . . , n}, then

U1,1 ⊕ U2,2 ⊕ · · · ⊕ Un,n ∼= Uσ(1),τ(1) ⊕ Uσ(2),τ(2) ⊕ · · · ⊕ Uσ(n),τ(n).
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Proof. Let Q be the field of rational numbers, Z the ring of integers, p and q distinct
primes, Zp and Zq the localizations of Z at the two distinct maximal ideals (p) and
(q) respectively, and Mn(Q) the ring of all n× n-matrices over Q. Let

Λp =


Zp Zp . . . Zp
pZp Zp . . . Zp

...
. . .

pZp pZp . . . Zp


and

Λq =


Zq Zq . . . Zq
qZq Zq . . . Zq

...
. . .

qZq qZq . . . Zq


be the subrings of Mn(Q) whose elements on and above the diagonal are in Zp
(resp. in Zq) and whose elements under the diagonal are in pZp (resp. in qZq). Set

R =

(
Λp 0

Mn(Q) Λq

)
,

so that R is a subring of the ring M2n(Q) of 2n× 2n-matrices.
For any ring S let U(S) denote the group of units of S. It is easily seen that

U(Λp) =


U(Zp) Zp . . . Zp
pZp U(Zp) . . . Zp

...
. . .

pZp pZp . . . U(Zp)


and

U(R) =

(
U(Λp) 0
Mn(Q) U(Λq)

)
,

so that the Jacobson radicals of these rings are

J(Λp) =


pZp Zp . . . Zp
pZp pZp . . . Zp

...
. . .

pZp pZp . . . pZp


and

J(R) =

(
J(Λp) 0
Mn(Q) J(Λq)

)
.

Let ei = eii ∈ R, i = 1, 2, . . . , 2n, be the (i, i) matrix units of the ring M2n(Q).
Easy calculations show that the R-modules Rei and eiR are uniserial, so that R
is a serial ring with 2n simple pairwise non-isomorphic right modules eiR/eiJ(R),
i = 1, 2, . . . , 2n.
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For instance, consider the right ideal

en+1R =



0 . . . 0 0 . . . 0
...

...
0 . . . 0 0 . . . 0
Q . . . Q Zq . . . Zq
...

...
0 . . . 0 0 . . . 0


.

This right ideal of R is isomorphic to the right R-module

V = (Q , . . . ,Q︸ ︷︷ ︸
n

,Zq, . . . ,Zq︸ ︷︷ ︸
n

)

of 1 × 2n-matrices, where the R-module structure on V is given by matrix multi-
plication (the elements of V are 1× 2n-matrices and the elements of the ring R are
2n× 2n-matrices). Set

W = (Q, . . . ,Q︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

),

for every j = 1, 2, . . . , n set

Vj = (Q, . . . ,Q︸ ︷︷ ︸
n

, qZq, . . . , qZq︸ ︷︷ ︸
j−1

,Zq, . . . ,Zq︸ ︷︷ ︸
n−j+1

),

and for every i = 1, 2, . . . , n set

Xi = (pZp, . . . , pZp︸ ︷︷ ︸
i−1

,Zp, . . . ,Zp︸ ︷︷ ︸
n−i+1

, 0, . . . , 0︸ ︷︷ ︸
n

).

It is easily seen that XiJ(R) = Xi+1 for every i = 1, 2, . . . , n− 1, XnJ(R) = pX1,
VjJ(R) = Vj+1 for every j = 1, 2, . . . , n− 1, and VnJ(R) = qV1. Hence the unique
(infinite) composition series of V is

V = V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vn
⊃ qV1 ⊃ qV2 ⊃ qV3 ⊃ · · · ⊃ qVn
⊃ q2V1 ⊃ q2V2 ⊃ q2V3 ⊃ · · · ⊃ q2Vn

⊃ · · · ⊃W ⊃ . . .
⊃ p−1X1 ⊃ p−1X2 ⊃ p−1X3 ⊃ · · · ⊃ p−1Xn

⊃ X1 ⊃ X2 ⊃ X3 ⊃ · · · ⊃ Xn

⊃ pX1 ⊃ pX2 ⊃ pX3 ⊃ · · · ⊃ pXn

⊃ · · · ⊃ 0.

Note that

Xi/Xi+1
∼= eiR/eiJ(R) for every i = 1, 2, . . . , n− 1,

Xn/pX1
∼= enR/enJ(R),

Vj/Vj+1
∼= en+jR/en+jJ(R) for every j = 1, 2, . . . , n− 1,

Vn/qV1
∼= e2nR/e2nJ(R).

We now show that the n2 R-modules Ui,j = Vj/Xi, i, j = 1, 2, . . . , n, have the
required properties.
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(a) (⇒) Suppose that [Ui,j ]m = [Uk,`]m for some i, j, k, `. Then the socle
Soc(Ui,j) of Ui,j and the socle Soc(Uk,`) of Uk,` are isomorphic. But for every
index i, j, the simple module Soc(Ui,j) = Soc(Vj/Xi) is equal to Xi−1/Xi

∼=
ei−1R/ei−1J(R) if i = 2, 3, . . . , n, and is equal to p−1Xn/X1

∼= enR/enJ(R) if
i = 1. Therefore Soc(Ui,j) ∼= Soc(Uk,`) implies i = k.

(⇐) We must show that [Ui,j ]m = [Ui,`]m for every index i, j, `. Without loss
of generality we may suppose j ≤ `, so that Ui,j ⊇ Ui,`. In particular there is a
monomorphism Ui,` → Ui,j. Conversely, multiplication by q is an endomorphism
of V that maps the submodules Vj of V to qVj , and maps the submodules Xi to
Xi. Therefore multiplication by q induces an isomorphism between Vj/Xi = Ui,j
and pVj/Xi ⊆ V`/Xi = Ui,`. Therefore there is a monomorphism Ui,j → Ui,`, and
[Ui,j ]m = [Ui,`]m.

(b) (⇒) An easy computation shows that for every index i, j we have Ui,j/J(Ui,j)
∼= Vj/J(Vj) ∼= en+jR/en+jJ(R). Suppose that [Ui,j ]e = [Uk,`]e for some i, j, k, `.
Then Ui,j/J(Ui,j) ∼= Uk,`/J(Uk,`), so that en+jR/en+jJ(R) ∼= en+`R/en+`J(R),
and thus j = `.

(⇐) We must show that [Ui,j]e = [Uk,j ]e for every i, j, k. By symmetry we may
suppose i ≤ k, so that Xi ⊇ Xk. In particular there is a canonical epimorphism of
Uk,j = Vj/Xk onto Ui,j = Vj/Xi. Conversely, multiplication by p is an endomor-
phism of V that maps the submodules Vj of V to Vj , and maps the submodules Xi

to pXi. Hence multiplication by p induces an isomorphism between Vj/Xi = Ui,j
and Vj/pXi. Since pXi ⊆ Xk, there is an onto mapping Vj/pXi → Vj/Xk = Uk,j .
This shows that there is an epimorphism Ui,j → Uk,j , so that [Ui,j ]e = [Uk,j ]e. This
completes the proof.

The module M = U1,1 ⊕ U2,2 ⊕ · · · ⊕ Un,n in Example 2.1 shows that given
any two permutations σ, τ of {1, 2, . . . , n}, there is a pair of decompositions of M
with those σ, τ satisfying the conditions of Theorem 1.9. In particular M has n!
essentially different decompositions (essentially different in the sense of the Krull-
Schmidt Theorem), and M has n2 non-isomorphic uniserial direct summands 6= 0
(see Corollary 1.13).

Also note that the modules Ui,j are examples of uniserial modules that are not
Krull-Schmidt modules.

If σ and τ are two permutations of {1, 2, . . . , n} with σ(i) 6= τ(i) for every
i = 1, 2, . . . , n and we set Ui = Ui,i and Vi = Uσ(i),τ(i), where the Ui,j are the
modules of Example 2.1, we get

Example 2.2. Let n ≥ 2 be an integer. There exists a serial ring R with 2n
pairwise non-isomorphic finitely presented uniserial modules U1, U2, . . . , Un, V1,
V2, . . . , Vn such that U1 ⊕ U2 ⊕ · · · ⊕ Un ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vn.

Theorem 1.9, Example 2.1 and Example 2.2 answer Warfield’s question com-
pletely.

Example 2.3. Let U be a non-zero uniserial right R-module. Then U is a module
of type 1 if at least one of the following conditions holds:

(a) U is projective;
(b) U is injective;
(c) U is artinian;
(d) U is noetherian;
(e) R is commutative;
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(f) R is right noetherian.

Proof. (a). If U is projective, every surjective endomorphism of U splits. Since U is
indecomposable, every surjective endomorphism of U is an automorphism. Hence
End(U) is local.

(b). Every injective indecomposable module has a local endomorphism ring.
(c). If a uniserial module U is artinian, its lattice of submodules is well ordered

by inclusion, so that every injective endomorphism of U is an automorphism. Hence
End(U) is local.

(d). Dual to (c).
(e) and (f). If a uniserial module U is of type 2, then it has a surjective non-

injective endomorphism f and an injective non-surjective endomorphism g. These

endomorphisms induce two isomorphisms f̃ : U/ ker(f) → U and g̃ : U → g(U). It
follows that g(U)/g(ker(f)) ∼= U , so that U is a shrinkable module in the sense of
[3], that is, it is isomorphic to a proper submodule of a proper quotient of itself.
Now [3, Cor. 3] yields the conclusion.

Example 2.4. There exist uniserial cyclic modules of type 2 that are Krull-
Schmidt modules.

Proof. We can apply Facchini and Salce’s construction [3, p. 502] to Zp, Zq and Q
to get a ring

R =

(
Zp 0
Q Zq

)
and a right ideal

H =

(
Zp 0
Zp 0

)
of R such that R/H is a right uniserial R-module (the right ideals of R containing
H are exactly of the form(

Zp 0
J 0

)
and

(
Zp 0
Q I

)
,

where J is a Zp-submodule of Q containing Zp and I is an ideal of Zq). The
endomorphism ring of R/H is isomorphic to Zp ∩Zq, which is not local. Therefore
R/H is a uniserial module of type 2.

The submodules of R/H isomorphic to R/H are the modules(
Zp 0
Q qnZq

)/
H, n ≥ 0

(they are isomorphic to R/H via multiplication by qn). Hence every submodule
of R/H that contains a submodule isomorphic to R/H is isomorphic to R/H.
Therefore R/H is a Krull-Schmidt uniserial R-module.

3. Miscellaneous minor results

3.1. The endomorphism ring of a serial module of finite Goldie dimen-
sion is semilocal. For a module N let dim(N) and codim(N) denote the Goldie
dimension and the dual Goldie dimension of N respectively (see [4] or [7]). If N is a
non-zero uniserial module, then dim(N) = codim(N) = 1. Since the Goldie dimen-
sion and the dual Goldie dimension are additive functions, that is, their value on a
finite direct sum is the sum of their values on the summands, for a serial module
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M of finite Goldie dimension n one has dim(M) = codim(M) = n. From Theorem
3(3) of [4] it follows immediately that End(M) is a semilocal ring, that is, End(M)
modulo its Jacobson radical is a semisemiple artinian ring. More precisely, by [4,
Th. 3(3)] we have that the Goldie dimension of the ring End(M)/J(End(M)) is
≤ 2n, i.e., the ring End(M)/J(End(M)), as a module over itself, is a direct sum of
at most 2n simple modules. This partially generalizes Theorem 1.2.

An immediate consequence of this fact is the n-th root uniqueness (see [2,
Prop. 2.1]): if A and B are serial modules of finite Goldie dimension, n is a positive
integer and An ∼= Bn, then A ∼= B. But this also follows from Theorem 1.9.

Dolors Herbera and Nguyen Viet Dung (independently) have remarked that most
results of this paper hold not only for uniserial modules, but also for arbitrary
modules N with dim(N) = codim(N) = 1.

3.2. The Grothendieck group of serial modules of finite Goldie dimension
is free. Given a class C of modules over a fixed ring R, if the class C is closed for
finite direct sums and has just a set of isomorphism classes, it is possible to construct
the Grothendieck group of C. The situation is particularly good if C contains the
zero module and the cancellation property holds in C, because in that case the
isomorphism classes form a commutative monoid with the cancellation property,
and the smallest abelian group that contains it is the Grothendieck group of the
class C considered. If the Krull-Schmidt Theorem holds in C, the Grothendieck
group is free, and in fact the structure of the Grothendieck group of C shows how
far the behavior of the direct sum decompositions of the modules in the class is
from uniqueness.

The class SR of serial modules of finite Goldie dimension over a ring R is closed
for finite direct sums, and the cancellation property holds in SR (Corollary 1.3).
We have seen that Krull-Schmidt fails for serial modules, but nevertheless in this
section we shall show that the Grothendieck group of SR is free.

Let R be a fixed associative ring with 1. If U1, . . . , Un, V1, . . . , Vt are non-zero
uniserial right R-modules, we shall say that the (external) direct sums U1⊕· · ·⊕Un
and V1 ⊕ · · · ⊕ Vt are equivalent , and write U1 ⊕ · · · ⊕ Un ∼ V1 ⊕ · · · ⊕ Vt, if
n = t and, after a reordering of the summands, Ui is isomorphic to Vi for every
i = 1, 2, . . . , n. We shall denote the equivalence class of U1 ⊕ · · · ⊕ Un modulo ∼
by [U1 ⊕ · · · ⊕ Un]∼. The set D = { [U1 ⊕ · · · ⊕ Un]∼ | n ≥ 0, U1, . . . , Un non-zero
uniserial right R-modules } of all these equivalence classes is a commutative monoid
with respect to the addition (induced by the external direct sum)

[U1 ⊕ · · · ⊕ Un]∼ + [V1 ⊕ · · · ⊕ Vt]∼ = [U1 ⊕ · · · ⊕ Un ⊕ V1 ⊕ · · · ⊕ Vt]∼.
Similarly, the isomorphism classes [M ] of the modules in the class SR of serial

rightR-modules of finite Goldie dimension form a commutative monoid Groth(SR)+

with the cancellation property with respect to the addition defined by

[M ] + [N ] = [M ⊕N ]

for every M,N ∈ SR. Therefore this monoid is contained in a unique smallest
abelian group, the Grothendieck group Groth(SR) of serial R-modules of finite
Goldie dimension. There is a canonical monoid homomorphism ω : D → Groth(SR)
defined by ω([U1⊕ · · · ⊕Un]∼) = [U1⊕ · · · ⊕Un] for every element [U1⊕ · · · ⊕Un]∼
of D.

Let M = { [V ]m | V a non-zero uniserial R-module } denote the set of all
monogeny classes of non-zero uniserial right R-modules, and E = { [V ]e | V a
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non-zero uniserial R-module } the set of all epigeny classes of non-zero uniserial
right R-modules. Let FMM×E(Z) be the free abelian group of all the M× E-
matrices with entries in Z and at most finitely many non-zero entries. For every
non-zero uniserial right R-module V let EV ∈ FMM×E(Z) denote the matrix whose
entries are all zero except for the ([V ]m, [V ]e) entry that is equal to 1. Let F be
the additive submonoid of FMM×E(Z) generated by all the EV , V an arbitrary
non-zero uniserial right R-module. The EV ’s generate F freely, so that F is a free
additive monoid. There is a monoid homomorphism ϕ : D → FMM×E(Z) defined
by ϕ([U1 ⊕ · · · ⊕Un]∼) = EU1 + · · ·+EUn for every element [U1 ⊕ · · · ⊕Un]∼ of D.
This mapping ϕ is a monomorphism by Proposition 1.6, and its image is F . Hence
D ∼= F is a free commutative monoid.

Now let Z(M) and Z(E) be the abelian groups freely generated by the sets M
and E respectively. Note that if A ∈ FMM×E(Z) and (. . . , 1, 1, 1, . . . ) is the 1×M-
matrix in which all entries are equal to 1, then (. . . , 1, 1, 1, . . . )A is a 1× E-matrix
with at most finitely many non-zero entries, that is, (. . . , 1, 1, 1, . . . )A ∈ Z(E).
Similarly, if At is the transpose of A and (. . . , 1, 1, 1, . . . ) is the 1 × E-matrix in
which all entries are equal to 1, then (. . . , 1, 1, 1, . . . )At is a 1 ×M-matrix with
at most finitely many non-zero entries, that is, (. . . , 1, 1, 1, . . . )At ∈ Z(M). Hence
there is a homomorphism of abelian groups χ : FMM×E(Z)→ Z(M)⊕Z(E) defined
by χ : A 7→ ((. . . , 1, 1, 1, . . . )At, (. . . , 1, 1, 1, . . . )A).

Finally, from Theorem 1.9 it follows that there is a homomorphism of abelian
groups ψ : Groth(SR) → Z(M) ⊕ Z(E) defined by ψ([U ]) = ([U ]m, [U ]e) for every
non-zero uniserial R-module U .

Theorem 3.1. (a) The diagram

D //ω

��
ϕ

Groth(SR)

��
ψ

FMM×E(Z) //χ
Z(M) ⊕ Z(E)

is commutative.

(b) The mapping ψ is injective.
(c) The monoids Groth(SR)+ and χ(F ) are isomorphic.
(d) The Grothendieck group Groth(SR) of serial R-modules of finite Goldie di-

mension is a free abelian group.

Proof. The commutativity of the diagram is obvious. Let [M ] − [N ] be an arbi-
trary element of Groth(SR), M,N ∈ SR, and suppose [M ] − [N ] ∈ kerψ. Then
M = U1 ⊕ · · · ⊕ Ur and N = V1 ⊕ · · · ⊕ Vs for suitable non-zero uniserial modules
U1, . . . , Ur, V1, . . . , Vs, and ψ([U1]) + · · ·+ψ([Ur]) = ψ([V1]) + · · ·+ψ([Vs]), so that
r = s, [U1]m, . . . , [Ur]m is a permutation of [V1]m, . . . , [Vs]m, and [U1]e, . . . , [Ur]e is
a permutation of [V1]e, . . . , [Vs]e. From Theorem 1.9 we get that U1 ⊕ · · · ⊕ Ur ∼=
V1⊕· · ·⊕Vs, and thus [M ] = [N ] and ψ is injective. From the commutativity of the
diagram in (a), we get that Groth(SR)+ ∼= ψ(Groth(SR)+) = ψω(D) = χϕ(D) =
χ(F ). Finally, ψ injective and Z(M) ⊕ Z(E) free imply Groth(SR) free.

The submonoid Groth(SR)+ is the positive cone for a natural partial order ≤ in
Groth(SR). Explicitly, one has [A]−[B] ≤ [C]−[D] if and only if there exists E ∈ SR
such that A⊕D ⊕E ∼= B ⊕ C. The abelian group Z(M) ⊕ Z(E) also has a natural
partial order, the pointwise partial order, in which, for (f, g), (f ′, g′) ∈ Z(M)⊕Z(E),
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we have (f, g) ≤ (f ′, g′) if and only if f([V ]m) ≤ f ′([V ]m) and g([V ]e) ≤ g′([V ]e)
for every non-zero uniserial module V . The mapping ψ : Groth(SR)→ Z(M)⊕Z(E)

is only an injective morphism of partially ordered abelian groups, so that we can
deduce that Groth(SR) is a free abelian group, but we cannot deduce that it is
necessarily order isomorphic to a free abelian group with the pointwise order. This
explains why Krull-Schmidt can fail for serial modules.
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