
KRUSKAL’S THEOREM

J.M. LANDSBERG

Abstract. This is just a short proof of Kruskal’s theorem regarding uniqueness of expressions
for tensors, phrased in geometric language.

Let A,B,C be complex vector spaces of dimensions a,b, c. Consider a tensor T ∈ A⊗B ⊗C
and say we have an expression

(1) T = u1 ⊗ v1 ⊗w1 + · · · + ur ⊗ vr ⊗wr

where uj ∈ A, vj ∈ B,wj ∈ C, and we want to know if the expression is unique up to re-ordering
the factors (call this essentially unique). The rank of T is by definition the smallest such r such
that T admits an expression of the form (1). For the tensor product of two vector spaces, an
expression as a sum of r elements is never unique unless r = 1. Thus an obvious necessary
condition for uniqueness is that we cannot be reduced to a two factor situation. For example,
an expression of the form

T = a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3 + . . . + ar ⊗ br ⊗ cr

where each of the sets {ai}, {bj}, {ck} are linearly independent is not unique because of the first
two terms. In other words if we consider for (1) the sets SA = {[ui]} ⊂ PA, SB = {[vi]} ⊂ PB,
SC = {[wi]} ⊂ PC each of the sets must consist of r distinct points.

We recall the classical fact:

Proposition 1. Let n > 2. Let T ∈ A1⊗ · · · ⊗ An have rank r. Say T ∈ A′
1⊗ · · · ⊗ A′

n, where
A′

j ⊆ Aj , with at least one inclusion proper. Then any expression T =
∑ρ

i=1 u1
i⊗ · · · ⊗ un

i with

some us
j 6∈ A′

s has ρ > r.

Proof. Choose complements A′′
t so At = A′

t ⊕A′′
t . Assume ρ = r and write ut

j = ut
j
′
+ ut

j
′′

with ut
j
′
∈ A′

t, ut
j
′′
∈ A′′

t . Then T =
∑ρ

i=1 u1
i
′
⊗ · · · ⊗ un

i
′ so all the other terms must cancel.

Assume ρ = r, and say, e.g., some u1
j0

′′
6= 0. Then

∑r
j=1 u1

j
′′
⊗ (u2

j
′
⊗ · · · ⊗ un

j
′) = 0, but all the

terms (u2
j
′
⊗ · · · ⊗ un

j
′) must be linearly independent in A′

2⊗ · · · ⊗ A′
n otherwise r would not be

minimal, thus all the u1
j
′′

must all be zero, a contradiction. �

Definition 2. Let S = {x1, ..., xp} ⊂ PW be a set of points. We say the points of S are in
2-general linear position if no two points coincide, they are in 3-general linear position if no
three lie on a line and more generally they are in r-general linear position if no r − 1 of them lie
in a P

r−2. We let the Kruskal rank of S, kS , be the maximum number r such that the points of
S are in r-general linear position.

If one chooses a basis for W so that the points of S can be written as columns of a matrix
(well defined up to rescaling columns), then kS will be the maximum number r such that all
subsets of r column vectors of the corresponding matrix are linearly independent. (This was
Kruskal’s original definition.)

Supported by NSF grant DMS-DMS-0805782.

1



2 J.M. LANDSBERG

Theorem 3 (Kruskal,[1]). Let T ∈ A⊗B ⊗C. Say T admits an expression T =
∑r

i=1 ui ⊗ vi ⊗wi.
Let SA = {[ui]},SB = {[vi]},SC = {[wi]}. If

(2) r ≤
1

2
(kSA

+ kSB
+ kSC

) − 1

then T has rank r and its expression as a rank r tensor is essentially unique.

Above, we saw a necessary condition for uniqueness is that kSA
, kSB

, kSC
≥ 2 and it is an easy

exercise to show that if (2) holds, then kSA
, kSB

, kSC
≥ 2. (Hint: a priori kSA

≤ r.)
Note that if a = b = c and T : (A⊗B)∗ → C and similar permutations are surjective, then

it is very easy to see such an expression is unique when r = a. Kruskal’s Theorem extends the
uniqueness to a ≤ r ≤ 3

2a − 1.
The key to the proof of Kruskal’s theorem is the following lemma:

Lemma 4 (Permutation lemma). Let W be a complex vector space and let S = {p1, ..., pr},
S̃ = {q1, ..., qr} be sets of points in PW and assume no two points of S coincide (i.e., that

kS ≥ 2) and that 〈S̃〉 = W . If all hyperplanes H ⊂ PW that have the property that they contain

at least dim (H) + 1 points of S̃ also have the property that #(S ∩H) ≥ #(S̃ ∩H), then S = S̃.

If one chooses a basis for W = C
n and writes the two sets of points as matrices M,M̃ , then the

hypothesis can be rephrased (in fact this was the original phrasing) as to say that for all x ∈ C
n

such that the number of nonzero elements of the vector tM̃x is less than r − rank(M̃ ) + 1 also

has the property that the number of nonzero elements of the vector tM̃x is at most the number
of nonzero elements of the vector tMx. To see the correspondence, the vector x should be
thought of as point of W ∗ giving an equation of H, zero elements of the vector tM̃x correspond
to columns that pair with x to be zero, i.e., that satisfy an equation of H, i.e., points that are
contained in H.

Note a slight discrepancy with the original formulation: we have assumed 〈S̃〉 = W so

rank(M̃) = n. Our hypothesis is slightly different, but it is all that is needed by Proposi-
tion 1. Had we not assumed this, there would be trivial cases to eliminate at each step of our
proof.

Proof. First note that if one replaces “hyperplane” by “point” in the hypotheses of the lemma,
then it follows immediately as the points of S are distinct. The proof will proceed by induction
going from hyperplanes to points. Assume (k + 1)-planes M that have the property that they

contain at least k + 2 points of S̃ also have the property that #(S ∩ M) ≥ #(S̃ ∩ M) and we

will show the same holds for k-planes. Fix a k-plane L containing µ ≥ k + 1 points of S̃, and
let {Mα} denote the set of k + 1 planes containing L and at least µ + 1 elements of S̃. We have

#(S̃ ∩ L) +
∑

α

#(S̃ ∩ (Mα\L)) = R

#(S ∩ L) +
∑

α

#(S ∩ (Mα\L)) ≤ R

the first line because every point of S̃ not in L is in exactly one Mα and the second because
every point of S not in L is in at most one Mα. Rewrite these as

(#Mα − 1)#(S̃ ∩ L) −
∑

α

#(S̃ ∩ Mα) = −R

(#Mα − 1)#(S ∩ L) −
∑

α

#(S ∩ Mα) ≥ −R

But by our induction hypothesis
∑

α #(S ∩Mα) ≥ #(S̃ ∩Mα) so putting the two lines together,
we obtain the result for L. �



KRUSKAL’S THEOREM 3

Proof of theorem. Given decompositions φ =
∑r

j=1 uj ⊗ vj ⊗wj, φ̃ =
∑r

j=1 ũj ⊗ ṽj ⊗ w̃j of length

r we want to show they are essentially the same. (Note that if there were a decomposition φ̃ of
length e.g., r−1, we could construct from it a decomposition of length r by replacing ũ1 ⊗ ṽ1 ⊗ w̃1

by 1
2 ũ1 ⊗ ṽ1 ⊗ w̃1 + 1

2 ũ1 ⊗ ṽ1 ⊗ w̃1, so uniqueness of the length r decomposition implies the rank

is r.) We first show SA = S̃A,SB = S̃B,SC = S̃C . By symmetry it is sufficient to prove the last
statement. By the permutation lemma it is sufficient to show that if H ⊂ PC is a hyperplane
such that #(S̃C ∩H) ≥ c− 1 then #(SC ∩H) ≥ #(S̃C ∩H) because we already know kSC

≥ 2.
Recall the classical fact about matrices (due to Sylvester): if M ∈ A⊗B and U ⊂ A, V ⊂ B,

then
rank(M) ≥ rank(M |U⊥×B∗) + rank(M |A∗×V ⊥) − rank(M |U⊥×V ⊥).

Let AH := 〈uj | [wj ] 6∈ H〉, BH := 〈vj | [wj ] 6∈ H〉

#(S̃c 6⊂ H) ≥ rank(T (H⊥))

≥ rank(T (H⊥)|AH
⊥×B∗) + rank(T (H⊥)|A∗×BH

⊥) − rank(T (H⊥)|AH
⊥×BH

⊥)

≥ min(kA,#(SC 6⊂ H)) + min(kB ,#(SC 6⊂ H)) − #(SC 6⊂ H)

where the last line follows by the definition of Kruskal rank. Finally we need to show that
#(SC 6⊂ H) ≤ min(kA, kB). But this follows because

r − #(SC 6⊂ H) = #(SC ⊂ H) ≥ c− 1 ≥ kC − 1 ≥ 2r − kA − kB + 1

i.e., kA + kB − #(SC 6⊂ H) ≥ r + 1, which can only hold if #(SC 6⊂ H) ≤ min(kA, kB).

Now that we have SA = S̃A etc.. , say we have two expressions

T = u1 ⊗ v1 ⊗w1 + · · · + ur ⊗ vr ⊗wr

T = u1 ⊗ vσ(1) ⊗wτ(1) + · · · + ur ⊗ vσ(r) ⊗wτ(r)

for some σ, τ ∈ Sr. First observe that if σ = τ then we are reduced to the two factor case
which is easy, i.e., if T ∈ A⊗B of rank r has expressions T = a1 ⊗ b1 + · · · + ar ⊗ br and
T = a1 ⊗ bσ(1) + · · · + ar ⊗ bσ(r), then it is easy to see that σ = Id.

So assume σ 6= τ , then there exists a smallest j0 ∈ {1, ..., r} such that σ(j0) =: s0 6= t0 :=
τ(j0). We claim there exist subsets S, T ⊂ {1, ..., r} with the properties

• s0 ∈ S, t0 ∈ T ,
• S ∩ T = ∅,
• #(S) ≤ r − kSB

+ 1, #(T ) ≤ r − kSC
+ 1 and

• 〈vj | j ∈ Sc〉 =: HS ⊂ B, 〈wj | j ∈ T c〉 =: HT ⊂ C are hyperplanes.

Here Sc = {1, ..., r}\S.
To prove the claim take a hyperplane HT ⊂ C containing ws0

but not containing wt0 , and
let T v be the set of indices of the wj contained in HT , so in particular #(T c) ≥ kSC

− 1
insuring the cardinality bound for T . Now consider the linear space 〈vt | t ∈ T 〉 ⊂ B. Since
#(T ) ≤ r − kSC

+ 1 ≤ kSB
− 1 (the last inequality because kSA

≤ r), adding any vector of SB

to 〈vt | t ∈ T 〉 would increase its dimension, in particular, vs0
/∈ 〈vt | t ∈ T 〉. Thus there exists a

hyperplane HS ⊂ B containing 〈vt | t ∈ T 〉 and not containing vs0
. Let S be the set of indices

of the vj contained in HS. Then S, T have the desired properties.
Now by construction T |HS

⊥×HT
⊥ = 0, which implies there is a nontrivial linear relation among

the uj for the j appearing in S ∩ T , but this number is at most min(r − kSB
+ 1, r − kSC

+ 1)
which is less than kSA

. �

Remark 5. There were several inequalities used in the proof that were far from sharp. In fact,
Kruskal proves versions of his theorem with weaker hypotheses designed to be more efficient
regarding the use of the inequalities.
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Remark 6. The proof above is essentially Kruskal’s. The reduction from a 16 page proof to the
2 page proof above is mostly due to writing statements invariantly rather than in coordinates.

More generally, Kruskal shows that for d factors, if
∑d

i=1 Ski
≥ 2r + d − 1 then uniqueness

holds.
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