
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 350, Number 7, July 1998, Pages 2847–2870
S 0002-9947(98)02204-1

KRUŽKOV’S ESTIMATES FOR

SCALAR CONSERVATION LAWS REVISITED

F. BOUCHUT AND B. PERTHAME

Abstract. We give a synthetic statement of Kružkov-type estimates for multi-
dimensional scalar conservation laws. We apply it to obtain various estimates
for different approximation problems. In particular we recover for a model
equation the rate of convergence in h1/4 known for finite volume methods on
unstructured grids.

Les estimations de Kružkov pour les lois de conservation scalaires

revisitées

Résumé Nous donnons un énoncé synthétique des estimations de type de
Kružkov pour les lois de conservation scalaires multidimensionnelles. Nous
l’appliquons pour obtenir d’estimations nombreuses pour problèmes différents
d’approximation. En particulier, nous retrouvons pour une équation modèle
la vitesse de convergence en h1/4 connue pour les méthodes de volumes finis
sur des maillages non structurés.

1. Introduction and main results

This paper deals with error estimates for a multidimensional scalar conservation
law {

∂tv + div f(v) = 0 in ]0,∞[×RN ,
v(0, x) = v0(x).

(1.1)

Here the flux function f : R → RN is assumed to be Lipschitz continuous for
simplicity. The equation has to be supplemented with the entropy inequalities, for
any S : R → R convex and Lipschitz:

∂tS(v) + div η(v) ≤ 0 in ]0,∞[×RN ,(1.2)

with η′ = S′f ′. Throughout the paper, all partial differential equations and inequa-
tions are understood in the usual sense of distributions. After the works of P.D.
Lax [12], O.A. Oleinik [15], A.I. Vol′pert [20], S.N. Kružkov [10], it is well-known
that for any v0 ∈ L1

loc(RN ), there exists a unique solution v ∈ C([0,∞[, L1
loc(RN ))

to (1.1)-(1.2).
We are given an approximate solution u and we wish to estimate the difference

u−v. The famous method of S.N. Kružkov [10] has been used in many situations to
obtain such estimates. It relies on a doubling of the variables and on a penalization
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2848 F. BOUCHUT AND B. PERTHAME

procedure. When applied to numerical approximations (such as finite volumes or
finite elements), following the ideas of N.N. Kuznetsov [11], it becomes extremely
intricate because the technicalities due to the large number of variables are added
to notational difficulties for the numerical approximation itself. This is especially
true for unstructured grids.

In this context, the derivation of the rate of convergence for first-order finite
volumes methods, in several dimensions and for unstructured grids, is still compli-
cated. On the other hand the final result, a convergence rate in h1/4 rather than
h1/2 in one space dimension (see R. Sanders [17]), is very easy to explain. This loss
just comes from the BV estimate, which blows like h−1/2 (while it is bounded in one
dimension); see S. Champier, T. Gallouët, R. Herbin [3], B. Cockburn, F. Coquel,
P. Le Floch [4][5], A. Szepessy [18], J.-P. Vila [19], B. Cockburn, P.-A. Gremaud
[7], R. Eymard, T. Gallouët, R. Herbin [9]. For fluctuation splitting schemes this
also applies; see B. Perthame [16].

In order to simplify these proofs, we propose to formalize Kružkov’s method as
follows. We assume that u solves the entropy inequalities with error terms which
are partial derivatives. For k ∈ R

∂t|u− k|+ div sgn(u− k)[f(u)− f(k)]

≤ ∂tGk + divHk +Kk +
∑

1≤i,j≤N

∂2L
(ij)
k

∂xi∂xj
in ]0,∞[×RN ,

(1.3)

where Gk, H
(j)
k , Kk, L

(ij)
k are local Radon measures, and satisfy, in the sense of

measures,

|Gk(t, x)| ≤ αG(t, x), |H(j)
k (t, x)| ≤ α

(j)
H (t, x),

|Kk(t, x)| ≤ αK(t, x), |L(ij)
k (t, x)| ≤ α

(ij)
L (t, x),

(1.4)

with αG, α
(j)
H , αK , α

(ij)
L are non-negative k-independent Radon measures.

Using Kružkov’s method, we claim that one can estimate ‖u− v‖L1 in terms of
‖αG‖Mt,x , ‖αH‖Mt,x , etc. And it is the very striking and fundamental idea behind
all the error estimates that the right estimates are always of the type

‖u− v‖L1 ≤ C
√
‖ sup

k
|Gk|‖Mt,x + C

√
‖ sup

k
|Hk|‖Mt,x + ...

(see the precise statement in Theorem 2.1). The derivatives in the error terms are
paid, for the final estimate, only by a square root of the appropriate norm, which
is taken in Mt,x(L

∞
k ). This is the main contribution of this paper, to indicate how

to reduce the estimates to the form above.
More precisely, we claim that in many situations, it is not necessary to perform

the doubling of variables explicitly—it is enough to use the abstract estimate of
Theorem 2.1, and this greatly improves the understanding. This strategy was
initiated in a paper by the authors and C. Bourdarias [2]. This approach is shown
to be successful in the most classical situations, which we develop independently
in §§3, 4, 5. Moreover, we are able to improve the corresponding results. For
multidimensional monotone finite volume methods, it is also possible to write an
equation of the form (1.3)—see the recent paper of R. Eymard, T. Gallouët, R.
Herbin [9].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In §3, we study the following problem. We assume that u is an entropy solution
of

∂tu+ div g(u) = 0 in ]0,∞[×RN ,(1.5)

with g another Lipschitz flux function. Then using Theorem 2.1, we are able to
estimate ‖u− v‖L1 in terms of g − f . We indeed recover the estimate in lip(g − f)
that was used by C.M. Dafermos [8] and by B.J. Lucier [14] in the context of
front tracking methods. But our formalism also enables to get a new estimate, in

‖g − f‖1/2L∞ . We refer to §3 for a precise statement.
In §4, we consider the nonlinear diffusion equation

∂tu+ div f(u)−∆φ(u) = 0 in ]0,∞[×RN ,(1.6)

with φ : R → R a Lipschitz and nondecreasing function. We refer to Ph. Benilan,
R. Gariepy [1] for recent results on that equation. We here consider an entropy
solution in the sense that for any S : R → R convex and Lipschitz,

∂tS(u) + div η(u)−∆ν(u) ≤ 0 in ]0,∞[×RN ,(1.7)

with η′ = S′f ′ and ν′ = S′φ′. It is easy to see that it is equivalent to requiring that
(1.7) holds for the entropies Sk(ξ) = |ξ − k|, k ∈ R:

∂t|u− k|+ div sgn(u− k)[f(u)− f(k)]−∆|φ(u)− φ(k)| ≤ 0 in ]0,∞[×RN .

(1.8)

Notice also that the equation (1.6) is recovered by letting k → ±∞ .
Our approach allows us to recover the usual estimate of ‖u − v‖L1 in “ε1/2”,

i.e., lip(φ)1/2 for v, u ∈ L∞t (BV (RN )), and also the recent result of B. Cockburn,
P.-A. Gremaud [6] which states that v ∈ L∞t (BV (RN )) and only u ∈ L∞t (L1(RN ))
is enough to get the same estimate. Moreover our result (see (ii) below) explains
how the regularity of φ is involved in this matter, and we also give a new result for
“irregular” diffusions φ. We have the following results.

Theorem 1.1. Assume that u ∈ L∞loc([0,∞[, L1(RN )) is right-continuous with val-
ues in L1

loc(RN ) and is an entropy solution in the sense of (1.8). Let v be an entropy
solution of (1.1) with initial data v0 ∈ L1 ∩ BV (RN ). Then, for any T ≥ 0, we
have:

(i) If TV (u(t, .)) ≤ V for any t ≥ 0, then

‖ u(T, .)− v(T, .) ‖L1≤‖ u0 − v0 ‖L1 +C
√
TV (v0)V

√
T lip(φ).(1.9)

(ii) If ‖ u(t, .) ‖L1≤ U for any t ≥ 0, then, denoting Q = sup
ξ 6=0

|φ(ξ) − φ(0)|/|ξ|,

‖ u(T, .)− v(T, .) ‖L1≤‖ u0 − v0 ‖L1 +CNTV (v0)2/3(TQU)1/3.(1.10)

(iii) The following inequality holds:

‖ u(T, .)− v(T, .) ‖L1≤‖ u0 − v0 ‖L1 +C TV (v0)
√
T lip(φ).(1.11)

Here and throughout this paper, the total variation TV (v0) of a function v0 ∈
BV (RN ) is defined by

TV (v0) =
N∑
j=1

∫
RN

∣∣∣∣∂v0

∂xj

∣∣∣∣ .
The letter C denotes various absolute constants, while CN denotes a possible de-
pendence in the dimension N .
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2850 F. BOUCHUT AND B. PERTHAME

Notice that if v is bounded, say a ≤ v ≤ b, then the Lipschitz constant of φ in
(1.11) can be replaced by lip

[a,b]

(φ) by using Appendix A2 (ii) instead of (i) in the

proof (see §4).
For the sake of completeness, let us also recall that another classical analysis

leading to local estimates in lip(φ)1/4 can be carried out when φ(ξ) = σξ, σ > 0,
by using the entropy dissipation equation (for u0 ∈ L2(RN ))

∂t
u2

2
+ div η(u)−∆

(
σ
u2

2

)
= −σ|∇u|2,

with η′(ξ) = ξf ′(ξ) (see [3], [18], [4], [5], [19], [7], [9] and §5). To deal with a general
φ, the inequalities (1.7) are not sufficient since the entropy dissipation is neglected.

In §5, we present a relaxation model towards piecewise constant functions. It
does not involve notations as complicated as those of finite volumes, but leads to
basically the same kind of theoretical difficulties. We show that error estimates can
again be reduced to studying (1.3)-(1.4). We are given a general grid (Ci)i∈I of
RN : I is a countable set; Ci is a Borel set for any i ∈ I; |Ci ∩ Cj | = 0 for i 6= j;
RN = N ∪⋃i∈I Ci with |N | = 0; and

h = sup
i∈I

diam(Ci) <∞.(1.12)

For technical reasons we assume that the following L1 −BV condition is satisfied:
there exists a constant Kh ≥ 0 such that

∀i ∈ I ICi ∈ BV (RN ), TV (ICi) ≤ Kh|Ci|.(1.13)

Notice that this is not a “regularity” assumption on the grid since Kh is allowed
to blow up very fast when h → 0. It only means that there is no degeneracy at
infinity. We define the piecewise constant projector P 0 : L1

loc(RN ) → L1
loc(RN ) by

(P 0u)|Ci
=

1

|Ci|
∫
Ci

u .(1.14)

We consider for a given ε > 0 the unique solution u ∈ C([0,∞[, L1(RN )) of ∂tu+ div f(u) =
P 0u− u

ε
in ]0,∞[×RN ,

u(0, .) = u0 ∈ L1(RN ),
(1.15)

with the entropy inequalities

∂tS(u) + div η(u) ≤ S′(u)
P 0u− u

ε
in ]0,∞[×RN(1.16)

for any S convex, Lipschitz and C1 (or equivalently for any entropy Sk(ξ) = |ξ−k|).
Again we may estimate the difference from the exact solution.

Theorem 1.2. With the above notations and assumptions, if u0 ∈ L1 ∩ L2(RN )
then ∫∫

]0,T [×ω

∣∣∣∣P 0u− u

ε

∣∣∣∣ ≤
√
T |ω|
2ε

‖ u0 ‖L2(1.17)

for any T > 0 and any bounded subset ω of RN . Denoting by v an entropy solution
of (1.1) with initial data v0 ∈ BV (RN ), we have for any T > 0, x0 ∈ RN and
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R > 0

∫
|x−x0|<R

|u(T, x)− v(T, x)| dx ≤
∫

|x−x0|<R+MT+
√
R̂`

|u0(x) − v0(x)| dx

+ CN
√
`
[
TV (v0)

√
R̂+ ‖ u0 ‖L2 R̂N/4−1/2(R̂N/4 + `N/4)

]
(1.18)

with M = lip(f), R̂ = R+MT + h and ` = h
√
T/ε.

In other words, the estimate is of order h1/2/ε1/4. When ε ∼ h, which is similar
to the limitation imposed by a CFL condition for finite volumes, we recover the
usual rate in h1/4. However, the estimate (1.18) is not really interesting because we
have in mind to approximate the solution v by a piecewise constant function. Thus,
it is more appropriate to estimate P 0u − v. This can be performed by combining
(1.17) and (1.18), and yields an estimate in L1(]0, T [×B(x0, R)).

Notice also that it is very natural to choose u0 = P 0v0. Then, assuming that
v0 ∈ L1

⋂
L2
⋂
BV (RN ), the L2 norm of u0 in (1.18) can be majorized by ‖ v0 ‖L2.

Thus, if the grid is regular in the sense that Ci is open and convex, and

diam(Ci)
N+1 ≤ κ|Ci|h,(1.19)

then the initial error can be estimated by

‖ u0 − v0 ‖L1(RN )≤ CNκTV (v0)h.(1.20)

This is just a straightforward application of the Poincaré-Wirtinger inequality for
a convex domain.

The paper is organized as follows. In §2 we state and prove our abstract version
of Kružkov’s estimates. In §§3, 4 and 5 we treat in detail the above independent
applications. The appendix is devoted to two independent lemmas. The first deals
with a special “inverse” of the “div” operator which furnishes the link between
finite volumes and the formulation (1.3). It is needed for the proof of Theorem
1.2. The second deals with a general estimate on the gradient ∇[g(u)], where g is
Lipschitz and u ∈ BV. It is used frequently in this paper.

2. An error estimate for partial derivatives in the right-hand side

This section is devoted to the main estimate of this paper, the reformulation of
Kružkov type estimates. We give two versions of the result.

Theorem 2.1. Let u, v ∈ L∞loc([0,∞[, L1
loc(RN )) be right-continuous with values

in L1
loc(RN ). Assume that u solves the entropy inequalities with right-hand side

(1.3)-(1.4), and that v is an exact solution: for k ∈ R

∂t|v − k|+ div sgn(v − k)[f(v)− f(k)] ≤ 0 in ]0,∞[×RN .(2.1)

Moreover, assume that

αG ∈ L∞loc([0,∞[, L1
loc(RN )).(2.2)

Then, for any T ≥ 0, x0 ∈ RN , R > 0,∆ > 0, δ > 0, ν ≥ 0, denoting

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2852 F. BOUCHUT AND B. PERTHAME

M = lip(f), Bt = B(x0, R+M(T − t) + ∆ + ν),(2.3)

we have

∫
|x−x0|<R

|u(T, x)− v(T, x)| dx

≤
∫
B0

|u(0, x)− v(0, x)| dx + C(Et + Ex + EG + EH + EK + EL),

(2.4)

with C an absolute constant and

Et = sup
0<s−t<δ
t=0 or T

∫
Bt

|v(s, x)− v(t, x)| dx,

Ex = sup
|h|<∆

t=0 or T

∫
Bt

|v(t, x+ h)− v(t, x)| dx,
(2.5)

EK =

∫∫
x∈Bt

0<t≤T

αK(t, x), EH =
1

∆

N∑
j=1

∫∫
x∈Bt

0<t≤T

α
(j)
H (t, x),

EL =
1

∆2

∑
1≤i,j≤N

∫∫
x∈Bt

0<t≤T

α
(ij)
L (t, x),

(2.6)

EG =

(
1 +

T

δ
+

MT

∆ + ν

)
sup

0<t<2T

∫
Bt

αG(t, x) dx.(2.7)

Before we prove Theorem 2.1, some comments are in order.
1. If u is an exact solution, the right-hand side of (1.3) is zero. Hence, only

the error terms Et and Ex remain in (2.4). Therefore, we can choose ν = 0 and
let δ,∆ → 0 so that by the assumed regularity of v we get Et, Ex → 0. We hence
recover Kružkov’s estimate [10]∫

|x−x0|<R

|u(T, x)− v(T, x)| dx ≤
∫

|x−x0|<R+MT

|u(0, x)− v(0, x)| dx.(2.8)

When the right-hand side of (1.3) is not zero, we can use the well-known TV D
property of the exact solution v. If v0 ∈ BV (RN ), we obtain

Et ≤M TV (v0)δ, Ex ≤ TV (v0)∆.(2.9)

Then, we choose the time and space regularization parameters δ and ∆ so as to
minimize the error terms in (2.4). The parameter ν either is chosen to be 0 for a
local estimate or tends to +∞ for a global one.

2. Our assumption that u and v are L1
loc right-continuous is motivated by nu-

merical schemes; it is well suited for such problems. We refer to T.-P. Liu, M. Pierre
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[13] for uniqueness results in one dimension when the initial data is recovered only
in weak L1.

3. For numerical schemes, the assumption (2.2) on αG is somehow related to
an estimate on the time modulus of continuity of u. In fact, αG is comparable
with ∆t ∂tu, with ∆t the time step (see [2]). However, when no such estimate is
available, it is possible to get an estimate of ‖ u− v ‖L1

t,x
with only the regularity

of αG stated in (1.4) and an estimate of αG only for small t. In order to obtain this
result, just average (2.4) with respect to T and then observe that when averaged,
the last inequality of (2.28) in the proof below can be replaced by a suitable one
since |χ′(t)| ≤ Y ′ε (t)+Y ′ε (t−T ). It is also possible to choose a different test function
χ, see R. Eymard, T. Gallouët, R. Herbin [9].

Proof of Theorem 2.1. Let us introduce two test functions, Φ ∈ C∞c (]0,∞[×RN),
Φ ≥ 0, and ζ ∈ C∞c (]−∞, 0[×RN), ζ ≥ 0, to be chosen later on, and set

ϕ(t, x, s, y) = Φ(t, x)ζ(t − s, x− y).(2.10)

This choice is slightly different from that of S.N. Kružkov in [10], and is in-
spired by that of N.N. Kuznetsov [11] (who takes Φ = I0<t<T ). Notice that
ϕ ∈ C∞c ((]0,∞[×RN )2).

For each (s, y) ∈]0,∞[×RN and k ∈ R, let us take ϕ as a test function in (t, x)
for (1.3). We get with (1.4)

−
∫∫

]0,∞[×RN

[
|u− k|∂tϕ+ sgn(u − k)[f(u)− f(k)] · ∇xϕ

]
(t, x) dtdx

≤
∫∫

]0,∞[×RN

−Gk∂tϕ−Hk · ∇xϕ+Kkϕ+
∑

1≤i,j≤N
L

(ij)
k

∂2ϕ

∂xi∂xj

 (t, x) dtdx

≤
∫∫

]0,∞[×RN

αG|∂tϕ|+ N∑
j=1

α
(j)
H

∣∣∣∣ ∂ϕ∂xj
∣∣∣∣+ αKϕ+

∑
1≤i,j≤N

α
(ij)
L

∣∣∣∣ ∂2ϕ

∂xi∂xj

∣∣∣∣
 (t, x) dtdx.

(2.11)

Similarly, for each (t, x) ∈ ]0,∞[×RN and l ∈ R, we take ϕ as a test function in
(s, y) for (2.1), and obtain

−
∫∫

]0,∞[×RN

[
|v − l|∂sϕ+ sgn(v − l)[f(v)− f(l)] · ∇yϕ

]
(s, y) dsdy ≤ 0.(2.12)

Now we take k = v(s, y) in (2.11) and integrate with respect to (s, y); then we take
l = u(t, x) in (2.12) and integrate with respect to (t, x). By summing up the results
we obtain
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−
∫∫∫∫ [

|u(t, x)− v(s, y)|∂tΦ(t, x)

+ sgn(u(t, x)− v(s, y))[f(u(t, x)) − f(v(s, y))] · ∇xΦ(t, x)
]

ζ(t− s, x− y) dsdtdxdy

≤
∫∫∫∫ [

αG(t, x)
∣∣∣∂tΦ(t, x)ζ(t − s, x− y) + Φ(t, x)∂tζ(t − s, x− y)

∣∣∣
+

N∑
j=1

α
(j)
H (t, x)

∣∣∣∂jΦ(t, x)ζ(t − s, x− y) + Φ(t, x)∂jζ(t − s, x− y)
∣∣∣

+ αK(t, x)Φ(t, x)ζ(t − s, x− y)

+
∑

1≤i,j≤N
α

(ij)
L (t, x)

∣∣∣∂2
ijΦ(t, x)ζ(t − s, x− y) + ∂iΦ(t, x)∂jζ(t− s, x− y)

+ ∂jΦ(t, x)∂iζ(t− s, x− y) + Φ(t, x)∂2
ijζ(t− s, x− y)

∣∣∣] dsdtdxdy
≡Rα.

(2.13)

Let us now make the choice of Φ precise. Let θ > 0 and set Yθ(t) =
∫ t
−∞ Y ′θ (s) ds

with Y ′θ (t) = 1
θY

′
1( tθ ) and Y ′1 ∈ C∞c (]0, 1[), Y ′1 ≥ 0 and

∫
Y ′1 = 1.

We introduce another parameter ε > 0 and a function χ ∈ C∞c (]0, T + ε[), χ ≥ 0,
to be chosen later. We define

Φ(t, x) = χ(t)ψ(t, x),

ψ(t, x) = 1− Yθ
(|x− x0| −R−∆/2−M(T − t)

) ≥ 0.
(2.14)

Then Φ ∈ C∞(R× RN ) as soon as Mε ≤ R+ ∆/2. We have

∂tΦ(t, x) = χ′(t)ψ(t, x) −Mχ(t)Y ′θ (),

∇xΦ(t, x) = −χ(t)Y ′θ ()
x− x0

|x− x0| .
(2.15)

Therefore, by the Lipschitz condition on f we get

|u(t, x)− v(s, y)|∂tΦ(t, x)
+ sgn(u(t, x)− v(s, y))[f(u(t, x)) − f(v(s, y))] · ∇xΦ(t, x)

= |u(t, x)− v(s, y)|χ′(t)ψ(t, x) − χ(t)Y ′θ ()
[
M |u(t, x)− v(s, y)|

+ sgn(u(t, x)− v(s, y))[f(u(t, x)) − f(v(s, y))] · x− x0

|x− x0|
]

≤ |u(t, x)− v(s, y)|χ′(t)ψ(t, x).

(2.16)

Together with (2.13), this yields

−
∫∫∫∫

|u(t, x)− v(s, y)|χ′(t)ψ(t, x)ζ(t − s, x− y) dsdtdxdy ≤ Rα.

(2.17)

Now, by the triangle inequality we get

0 ≤ I +Rt +Rx + Rα(2.18)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with

I =

∫∫∫∫
|u(t, x)− v(t, x)|χ′(t)ψ(t, x)ζ(t − s, x− y) dsdtdxdy,

Rt =

∫∫∫∫
|v(t, y)− v(s, y)||χ′(t)|ψ(t, x)ζ(t − s, x− y) dsdtdxdy,

Rx =

∫∫∫∫
|v(t, x) − v(t, y)||χ′(t)|ψ(t, x)ζ(t − s, x− y) dsdtdxdy.

(2.19)

We now prescribe ζ to be a regularizing sequence

ζ(t, x) = ζt(t)ζx(x), ζt, ζx ∈ C∞c ,≥ 0,

∫
ζt dt =

∫
ζx dx = 1,

ζt(t) =
1

δ
ζt1(

t

δ
), supp ζt1 ⊂ ]− 1, 0[,

ζx(x) =
1

∆N
ζx1

( x
∆

)
, supp ζx1 ⊂ B (0, 1/4) .

(2.20)

We also choose ζx to be a product ζx1 (x) =
∏N

j=1 ζ
xj
1 (xj). For χ we take

χ(t) = Yε(t)− Yε(t− T )(2.21)

so that 0 ≤ χ ≤ 1. We are going to take the lim supε→0 in (2.18), θ fixed.
We notice that

I|x−x0|<R+M(T−t)+∆/2 ≤ ψ(t, x) ≤ I|x−x0|<R+M(T−t)+∆/2+θ,

(2.22)

and obtain

Rt ≤
∫∫∫

|y−x0|<R+M(T−t)+3∆/4+θ

|v(t, y)− v(s, y)|(Y ′ε (t) + Y ′ε (t− T ))ζt(t− s) dsdtdy.

Then by right continuity of v at 0 and T ,

lim sup
ε→0

Rt ≤
∑
t=0,T

∫∫
|y−x0|<R+M(T−t)+3∆/4+θ

|v(t, y)− v(s, y)|ζt(t− s) dsdy ≤ 2Et

(2.23)

just by choosing θ = ∆/4 + ν.
For the term Rx we have

Rx ≤
∫∫∫

|x−x0|<R+M(T−t)+∆/2+θ

|v(t, x) − v(t, y)|(Y ′ε (t) + Y ′ε (t− T ))ζx(x− y) dtdxdy,

and by the same continuity property of v

lim sup
ε→0

Rx ≤
∑
t=0,T

∫∫
|x−x0|<R+M(T−t)+∆/2+θ

|v(t, x) − v(t, y)|ζx(x − y) dxdy

≤ 2Ex.

(2.24)
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For I we have, using (2.22),

I =

∫∫
|u(t, x)− v(t, x)|[Y ′ε (t)− Y ′ε (t− T )]ψ(t, x) dtdx

≤
∫∫

|x−x0|<R+M(T−t)+∆/2+θ

|u(t, x)− v(t, x)|Y ′ε (t) dtdx

−
∫∫

|x−x0|<R+M(T−t)+∆/2

|u(t, x)− v(t, x)|Y ′ε (t− T ) dtdx,

and by right continuity of u and v at 0 and T ,

lim sup
ε→0

I ≤
∫

|x−x0|<R+MT+∆/2+θ

|u(0, x)− v(0, x)| dx

−
∫
|x−x0|<R+∆/2

|u(T, x)− v(T, x)| dx.
(2.25)

It now remains to estimate Rα defined in (2.13). Using the bounds

|∇xΦ(t, x)| ≤ C

θ
, |∂tΦ(t, x)| ≤ |χ′(t)|+ C

M

θ
,(2.26)

and denoting by Ω the set

Ω =

{
t, x; 0 < t < T + ε, |x− x0| < R+M(T − t) + ∆/2 + θ

}
,

(2.27)

we get the estimates

∫∫∫∫
αK(t, x)Φ(t, x)ζ(t − s, x− y) ≤

∫∫
Ω

αK(t, x),∫∫∫∫
α

(j)
H (t, x)Φ(t, x) |∂jζ(t− s, x− y)| ≤ C

∆

∫∫
Ω

α
(j)
H (t, x),∫∫∫∫

αG(t, x)Φ(t, x) |∂tζ(t− s, x− y)| ≤ C

δ

∫∫
Ω

αG(t, x),∫∫∫∫
α

(j)
H (t, x) |∂jΦ(t, x)| ζ(t− s, x− y) ≤ C

θ

∫∫
Ω

α
(j)
H (t, x),

(2.28)

∫∫∫∫
αG(t, x) |∂tΦ(t, x)| ζ(t− s, x− y)

≤ C (1 +M(T + ε)/θ) sup
0<t<T+ε

∫
|x−x0|<R+M(T−t)+∆/2+θ

αG(t, x) dx.

For the second-order terms of Rα, we notice that in the support of ∇xΦ(t, x) we
have |x− x0| ≥ R + ∆/2−Mε+ C0θ ≥ C0θ for some C0 > 0. This yields∣∣∣∣ ∂2Φ

∂xi∂xj

∣∣∣∣ ≤ C

θ2
.(2.29)
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We hence get

∫∫∫∫
α

(ij)
L (t, x)Φ(t, x)

∣∣∂2
ijζ(t− s, x− y)

∣∣ ≤ C

∆2

∫∫
Ω

α
(ij)
L (t, x),∫∫∫∫

α
(ij)
L (t, x) |∂iΦ(t, x)| |∂jζ(t − s, x− y)| ≤ C

∆θ

∫∫
Ω

α
(ij)
L (t, x),∫∫∫∫

α
(ij)
L (t, x)

∣∣∂2
ijΦ(t, x)

∣∣ ζ(t − s, x− y) ≤ C

θ2

∫∫
Ω

α
(ij)
L (t, x).

(2.30)

Taking into account that θ = ∆/4 + ν, we obtain, by combining (2.28) and (2.30),

lim sup
ε→0

Rα ≤ C(EG + EH + EK + EL),(2.31)

and the lim supε→0 in (2.18) together with the estimates (2.23), (2.14), (2.25) gives
the result.

Notice that in Theorem 2.1 and its proof, we never use any specific property of
the exact solution v. We only use the entropy inequalities (2.1) in the distributional
sense for any k ∈ R. Therefore, our result actually contains Kružkov’s uniqueness
theorem with the stated regularity. Moreover, it is possible to modify the proof in
order to also consider error terms for v. The result is the following.

Proposition 2.2. We make the same assumptions as in Theorem 2.1, except that
we replace the inequalities (2.1) on v by

∂t|v − k|+ div sgn(v − k)[f(v)− f(k)]

≤ ∂tGk + divHk +Kk +
∑

1≤i,j≤N

∂2L
(ij)

k

∂xi∂xj
in ]0,∞[×RN ,

(2.32)

where Gk, H
(j)

k ,Kk, L
(ij)

k are local measures, and

|Gk| ≤ βG, |H(j)

k | ≤ β
(j)
H , |Kk| ≤ βK , |L(ij)

k | ≤ β
(ij)
L ,(2.33)

with βG, β
(j)
H , βK , β

(ij)
L being k-independent non-negative measures.

Then we have the same estimate (2.4), with the additional terms

C(EG + EH + EK + EL),(2.34)

where

EK =

∫∫
x∈B0

0<t≤T+δ

βK(t, x), EH =
1

∆

N∑
j=1

∫∫
x∈B0

0<t≤T+δ

β
(j)
H (t, x),

EL =
1

∆2

∑
1≤i,j≤N

∫∫
x∈B0

0<t≤T+δ

β
(ij)
L (t, x),

(2.35)

EG =
1

δ

∫∫
x∈B0

0<t≤T+δ

βG(t, x).(2.36)
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Proof. The inequality (2.12) becomes

−
∫∫

]0,∞[×RN

[
|v − l|∂sϕ+ sgn(v − l)[f(v)− f(l)] · ∇yϕ

]
(s, y) dsdy

≤
∫∫

]0,∞[×RN

−Gl∂sϕ−H l · ∇yϕ+K lϕ+
∑

1≤i,j≤N
L

(ij)

l

∂2ϕ

∂yi∂yj

 (s, y) dsdy

≤
∫∫

]0,∞[×RN

βG|∂sϕ|+ N∑
j=1

β
(j)
H

∣∣∣∣ ∂ϕ∂yj
∣∣∣∣+ βKϕ+

∑
1≤i,j≤N

β
(ij)
L

∣∣∣∣ ∂2ϕ

∂yi∂yj

∣∣∣∣
 (s, y) dsdy,

(2.37)

and gives a new term in (2.13).

Rβ =

∫∫∫∫ [
βG(s, y)Φ(t, x)|∂tζ(t− s, x− y)|

+

N∑
j=1

β
(j)
H (s, y)Φ(t, x) |∂jζ(t− s, x− y)|

+ βK(s, y)Φ(t, x)ζ(t − s, x− y)

+
∑

1≤i,j≤N
β

(ij)
L (s, y)Φ(t, x)

∣∣∂2
ijζ(t− s, x− y)

∣∣] dsdtdxdy.

(2.38)

Since where Φ(t, x)ζ(t − s, x− y) 6= 0 we have (s, y) ∈ Ω̃, with

Ω̃ =

{
s, y; 0 < s < T + ε+ δ, |y − x0| < R+MT + 3∆/4 + θ

}
,

(2.39)

we get

Rβ ≤ C

δ

∫∫
Ω̃

βG(s, y)

+
C

∆

N∑
j=1

∫∫
Ω̃

β
(j)
H (s, y) +

∫∫
Ω̃

βK(s, y) +
C

∆2

∑
1≤i,j≤N

∫∫
Ω̃

β
(ij)
L (s, y).

(2.40)

Therefore, lim supε→0 R
β ≤ C(EG + EH + EK + EL), and we get the result.

3. Estimates for two different flux functions

In this section we apply Theorem 2.1 to prove various estimates for the following
problem. Given two globally Lipschitz flux functions f, g : R → RN and u0, v0 ∈
L1
loc(RN ), we consider the entropy solutions u and v of

∂tu+ div g(u) = 0, ∂tv + div f(v) = 0 in ]0,∞[×RN(3.1)

with initial data u0 and v0 respectively. Then, what kind of estimate can we expect
for u− v in terms of g − f? We have the following result.
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Theorem 3.1. Let v0 ∈ BV (RN ). Then, with the above notations, for any T ≥ 0:
(i) The following estimate holds :

‖ u(T, .)− v(T, .) ‖L1(RN )≤‖ u0 − v0 ‖L1(RN ) +C TV (v0)T lip(g − f).

(3.2)

(ii) Moreover,

‖ u(T, .)− v(T, .) ‖L1(RN )

≤‖ u0 − v0 ‖L1(RN ) +CN
(‖ u0 ‖L1(RN ) TV (v0)T Q(f, g)

)1/2
,

(3.3)

with

Q(f, g) = sup
ξ∈R\{0}

|g(ξ)− f(ξ)− g(0) + f(0)|/|ξ|.(3.4)

(iii) If g − f ∈ L∞(R), then for x0 ∈ RN and R > 0

∫
|x−x0|<R

|u(T, x)− v(T, x)| ≤
∫

|x−x0|<R+MT

|u0(x) − v0(x)|

+ CN

(
(R+MT )N TV

|x−x0|<R+MT
(v0)T ‖ g − f − (g − f)(0) ‖L∞

)1/2

,

(3.5)

with M = max(lip(f), lip(g)).

The estimate (i) is known (see C.M. Dafermos [8], B.J. Lucier [14]), but the
much stronger estimates (ii) and (iii) seem fairly new.

Proof of Theorem 3.1. For k ∈ R we have

∂t|v − k|+ div sgn(v − k)[f(v)− f(k)] ≤ 0,

∂t|u− k|+ div sgn(u− k)[g(u)− g(k)] ≤ 0.

Therefore, we can write

∂t|u− k|+ div sgn(u − k)[f(u)− f(k)] ≤ div γk(u),(3.6)

with

γk(ξ) = sgn(ξ − k)[(f − g)(ξ)− (f − g)(k)]

− sgn(−k)[(f − g)(0)− (f − g)(k)]

= sgn(ξ − k)[(f − g)(ξ)− (f − g)(0)]

+ [sgn(ξ − k)− sgn(−k)][(f − g)(0)− (f − g)(k)].

(3.7)

Notice that γk ∈ lip(R,RN ).
(i) Assume that u0 ∈ BV (RN ). Then

γk(u) ∈ C([0,∞[, L1
loc(RN )) ∩ B([0,∞[, BV (RN ))

(where B(X,Y ) denotes the set of bounded functions X → Y ), and by Appendix
A2 ∣∣∣∣ ∂∂xi γ(j)

k (u)

∣∣∣∣ ≤ lip(γ
(j)
k )

∣∣∣∣ ∂u∂xi
∣∣∣∣ ≤ lip(g − f)

∣∣∣∣ ∂u∂xi
∣∣∣∣ .(3.8)
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Therefore, Kk ≡ div γk(u) ∈ L∞(]0,∞[,M(RN )) with

|Kk| ≤ lip(g − f)

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣ ≡ αK .

We estimate αK by∫
RN

αK(t, dx) = lip(g − f)TV (u(t, .)) ≤ lip(g − f)TV (u0).

Now, the inequalities (1.3)-(1.4) are satisfied with a single term Kk of order zero.
Hence, we can apply Theorem 2.1. Then, we just let δ → 0, then ∆ → 0 and finally
R→∞ in (2.4), and we obtain∫

RN

|u(T, .)− v(T, .)| ≤
∫

RN

|u0 − v0|+ C T lip(g − f)TV (u0).

The estimate (i) follows by exchanging u and v.
(ii) The right-hand side of (3.6) can also be viewed as divHk, with

Hk = γk(u).(3.9)

We have

|γk(ξ)| ≤ |(f − g)(ξ)− (f − g)(0)|+ 2 I|k|≤|ξ||(f − g)(0)− (f − g)(k)|
≤ Q(f, g)|ξ|+ 2 I|k|≤|ξ|Q(f, g)|k|
≤ 3 Q(f, g)|ξ|.

(3.10)

Therefore, we get |Hk| ≤ 3Q(f, g)|u| ≡ αH . Since u0 ∈ L1(RN ), we find that∫
RN

αH(t, x) dx = 3 Q(f, g)

∫
RN

|u(t, x)| dx ≤ 3 Q(f, g) ‖ u0 ‖L1 .

Now we can apply Theorem 2.1 with a single divergence term in the right-hand
side. Since v0 ∈ BV (RN ), we can use (2.9). We let δ → 0, and, for any ∆ > 0, we
get∫
|x−x0|<R

|u(T, .)−v(T, .)| ≤
∫

RN

|u0−v0|+CN

(
TV (v0)∆ +

1

∆
Q(f, g) ‖ u0 ‖L1 T

)
.

Finally, we let R tend to ∞, we choose the optimal ∆, and we obtain (ii).
(iii) This estimate is a localized version of (ii), but we have to be careful in order

to get the right domain of dependence. Assume that v0 ∈ BVloc(RN ), and let us

denote R̂ = R+MT and B̂ = B(x0, R̂). There exists an extension v̂0 of v0|B̂ such

that v̂0 ∈ L1 ∩BV (RN ), supp v̂0 ⊂ B(x0, 2R̂), and

‖ v̂0 ‖L1(RN )≤ CN ‖ v0 ‖L1(B̂),

TVRN (v̂0) ≤ CN

(
TVB̂(v0) +

1

R̂
‖ v0 ‖L1(B̂)

)
.

(3.11)

Let us define

û0(x) =

{
u0(x) if x ∈ B̂,
v̂0(x) if x /∈ B̂,
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and consider the entropy solutions û and v̂ associated with the flux functions g and

f , and with initial data û0 and v̂0. Since supp û0 ⊂ B(x0, 2R̂), for any t ≥ 0 we
have

supp û(t, .) ⊂ B(x0, 2R̂+ t lip(g)).

Therefore, for any t ≥ 0

|γk(û(t, x))| ≤ 3 ‖ g − f − (g − f)(0) ‖L∞ IB(x0,2R̂+t Lip(g))(x) ≡ αH(t, x).

Then we apply Theorem 2.1 to û and v̂ with Hk = γk(û), and by letting δ → 0 we
see that for any ∆ > 0∫
|x−x0|<R

|û(T, x)− v̂(T, x)| ≤
∫

RN

|û0 − v̂0|

+ CN

[
TV (v̂0)∆ +

T

∆

∣∣∣B(x0, 2R̂+ T lip(g))
∣∣∣ ‖ g − f − (g − f)(0) ‖L∞

]
.

Choosing the optimal ∆ and taking into account the definition of û0 and v̂0 and
the finite speed of propagation for û and v̂, we get∫

|x−x0|<R

|u(T, x)− v(T, x)|

≤
∫

|x−x0|<R̂

|u0 − v0|+ CN

[
R̂NTV (v̂0)T ‖ g − f − (g − f)(0) ‖L∞

]1/2
.

It remains to estimate TVRN (v̂0). By the Poincaré-Wirtinger inequality we have∫
B̂

∣∣∣∣∣v0 − 1

|B̂|

∫
B̂

v0

∣∣∣∣∣ ≤ CN R̂ TVB̂(v0).

Therefore, by (3.11), the result holds as soon as
∫
B̂
v0 = 0. If not, let c =

∫
B̂
v0/|B̂|.

The functions u− c and v− c are entropy solutions associated to the flux functions
g(ξ + c)− g(0) and f(ξ + c)− f(0), and have initial data u0 − c and v0 − c. Since∫
B̂

(v0− c) = 0, the result holds for these functions, and so it holds for u and v.

4. The nonlinear diffusion model

This section is devoted to the proof of Theorem 1.1.
Let us prove (i). Since u ∈ B([0,∞[, BV (RN )) (B(X,Y ) denotes the set of

bounded functions X → Y ), we have g(u) ∈ B([0,∞[, BV (RN )) for any Lipschitz
continuous function g by Appendix A2. Moreover, ∂

∂xj
g(u) ∈ L∞(]0,∞[,M(RN )),

and ∣∣∣∣ ∂∂xj g(u)
∣∣∣∣ ≤ lip(g)

∣∣∣∣ ∂u∂xj
∣∣∣∣ .(4.1)

By choosing

gk(ξ) = |φ(ξ) − φ(k)| − |φ(0)− φ(k)|,(4.2)

we get ∣∣∣∣ ∂∂xj gk(u)
∣∣∣∣ ≤ lip(φ)

∣∣∣∣ ∂u∂xj
∣∣∣∣ ≡ α

(j)
H .(4.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2862 F. BOUCHUT AND B. PERTHAME

Now the error term in (1.8) can be written as

∆|φ(u)− φ(k)| = divHk, Hk = ∇[gk(u)],(4.4)

and we have |H(j)
k | ≤ α

(j)
H . Therefore we can apply Theorem 2.1 with this single

error term. We choose ν = 0 and we let δ → 0, so that Et → 0. Then Ex is
estimated by (2.9), and

EH ≤ T

∆
V lip(φ).

We hence obtain that for any ∆ > 0∫
|x−x0|<R

|u(T, x)− v(T, x)| dx

≤
∫

|x−x0|<R+MT+∆

|u(0, x)− v(0, x)| dx + C

(
TV (v0)∆ +

T

∆
lip(φ)V

)
.

We then let R→∞, and by choosing the optimal value of ∆ we get (1.9).
Now let us prove (ii). We consider the error term in (1.8) as

∆|φ(u)− φ(k)| =
∑

1≤i,j≤N

∂2L
(ij)
k

∂xi∂xj
, L

(ij)
k = δijgk(u),(4.5)

with gk defined in (4.2). Since we have∣∣∣L(ij)
k

∣∣∣ ≤ δijQ|u| ≡ α
(ij)
L ,(4.6)

we can apply Theorem 2.1. As above, we choose ν = 0 and let δ → 0, so that
Et → 0. We have

EL ≤ T

∆2
NQU,

and Ex is estimated by (2.9). Therefore we get that for any ∆ > 0∫
|x−x0|<R

|u(T, x)− v(T, x)| dx

≤
∫

|x−x0|<R+MT+∆

|u(0, x)− v(0, x)| dx+ C

(
TV (v0)∆ +

T

∆2
NQU

)
.

We then let R→∞, and by choosing the optimal value of ∆ we get (1.10).
In order to prove (iii) we need a preliminary result, which is another version of

Theorem 2.1. It formalizes the method of B. Cockburn and P.-A. Gremaud [6] to
replace the BV regularity of u by the BV regularity of v.

Proposition 4.1. Under the same hypothesis as in Theorem 2.1, assume moreover
that

Hk = H(t, x, k), L
(ij)
k = L(ij)(t, x, k)(4.7)

are Borel functions satisfying

|H(t, x, k1)−H(t, x, k2)| ≤MH |k1 − k2|,
|L(ij)(t, x, k1)− L(ij)(t, x, k2)| ≤M

(ij)
L |k1 − k2|.(4.8)

Assume also that v ∈ B([0,∞[loc, BVloc(RN )).
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Then, we can replace EH and EL in (2.4) by EH
∗ and EL

∗ , where

EH
∗ =

1

∆ + ν

N∑
j=1

∫∫
x∈Bt
0<t≤T

α
(j)
H (t, x), EL

∗ =
1

∆(∆ + ν)

∑
1≤i,j≤N

∫∫
x∈Bt
0<t≤T

α
(ij)
L (t, x),

(4.9)

provided that we add the term C(E∂H + E∂L), with

E∂H = MH

N∑
j=1

∫∫
x∈B0

0<t≤T+δ

∣∣∣∣ ∂v∂xj (t, x)

∣∣∣∣ , E∂L =
1

∆

∑
1≤i,j≤N

M
(ij)
L

∫∫
x∈B0

0<t≤T+δ

∣∣∣∣ ∂v∂xj (t, x)

∣∣∣∣ .
(4.10)

Moreover, if a ≤ v ≤ b, it is sufficient that (4.8) holds for a ≤ k1, k2 ≤ b.

Notice that the only difference between EH and EH∗ (respectively EL and EL∗ )
is that we replace a factor 1/∆ by 1/(∆+ν), which is bounded when ∆ → 0. Then
for a local estimate we choose for ν a finite positive value, and for a global estimate
we just let ν → ∞. The result also holds when considering error terms for v as in
Proposition 2.2.

Proof of Proposition 4.1. In the proof of Theorem 2.1, instead of using (1.4) in
(2.11), we keep the terms H(t, x, k) and L(ij)(t, x, k). Hence, the terms we have to
estimate are

RH =

∫∫∫∫
−H(t, x, v(s, y)) · ∇xϕdsdtdxdy,

RL =

∫∫∫∫ ∑
ij

L(ij)(t, x, v(s, y))
∂2ϕ

∂xi∂xj
dsdtdxdy.

(4.11)

They can be written RH = R∂H +RH∗ , RL = R∂L +RL∗ , with

R∂H =

∫∫∫∫
H(t, x, v(s, y)) · ∇yϕdsdtdxdy,

R∂L =

∫∫∫∫ ∑
ij

L(ij)(t, x, v(s, y))
∂2ϕ

∂yi∂yj
dsdtdxdy,

(4.12)

and RH
∗ , R

L
∗ take into account ∇xϕ+∇yϕ and ∂2ϕ

∂xi∂xj
− ∂2ϕ

∂yi∂yj
. Then we estimate

RH∗ and RL∗ as in the proof of Theorem 2.1. The only difference is that we no longer
have the terms corresponding to the maximal order of derivation for ζ. Therefore,
in (2.28) and (2.30) we retain only terms in 1/θ and 1/∆θ respectively, instead of
1/∆ and 1/∆2 as before. We hence get

lim sup
ε→0

|RH
∗ | ≤ CEH

∗ , lim sup
ε→0

|RL
∗ | ≤ CEL

∗ .

Now, in order to estimate R∂H and R∂L, we notice that for fixed s, t, x, the function
v(s, .) belongs to BVloc. By the Lipschitz conditions (4.8) and by Appendix A2, we
obtain that H(t, x, v(s, .)) ∈ BVloc and L(ij)(t, x, v(s, .)) ∈ BVloc. Therefore, we
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integrate by parts to get

R∂H =

∫∫∫∫
−ϕdivy

[
H(t, x, v(s, y))

]
,

R∂L =

∫∫∫∫
−
∑
ij

∂ϕ

∂yi

∂

∂yj

[
L(ij)(t, x, v(s, y))

]
.

(4.13)

Then, by Appendix A2 (i), or (ii) if a ≤ v ≤ b,

|R∂H | ≤
∫∫∫∫

ϕ

N∑
j=1

MH

∣∣∣∣ ∂v∂xj (s, y)

∣∣∣∣ ,
|R∂L| ≤

∫∫∫∫ ∑
ij

∣∣∣∣ ∂ϕ∂yi
∣∣∣∣M (ij)

L

∣∣∣∣ ∂v∂xj (s, y)

∣∣∣∣ .
(4.14)

These terms are finally estimated as in the proof of Proposition 2.2, and we obtain

lim sup
ε→0

|R∂H | ≤ E∂H , lim sup
ε→0

|R∂L| ≤ CE∂L,

which ends the proof of Proposition 4.1.

Proof of Theorem 1.1 (iii). We begin as in the proof of (ii). We notice that L
(ij)
k =

δijgk(u) can be written L
(ij)
k = L(ij)(t, x, k), with

L(ij)(t, x, k) = δij

[
|φ(u(t, x)) − φ(k)| − |φ(0)− φ(k)|

]
.

Therefore, the Lipschitz condition (4.8) is fulfilled with M
(ij)
L = 2δij lip(φ), and we

can apply Proposition 4.1. We obtain∫
|x−x0|<R

|u(T, x)− v(T, x)|

≤
∫

|x−x0|<R+MT+∆+ν

|u0(x) − v0(x)| + C(Et + Ex + E∂L + EL
∗ ).

We have

EL
∗ ≤

NQ

∆(∆ + ν)

∫∫
]0,T [×RN

|u(t, x)| dtdx, E∂L ≤ 2(T + δ)

∆
lip(φ)TV (v0),

and Ex is estimated by (2.9). By letting δ → 0 and ν → ∞ (so that EL∗ → 0) we
get for any ∆ > 0∫
|x−x0|<R

|u(T, x)−v(T, x)| ≤
∫

RN

|u0(x)−v0(x)|+C
(
TV (v0)∆ +

T

∆
lip(φ)TV (v0)

)
.

By choosing the optimal value of ∆ and letting R→∞ we obtain (iii).
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5. A relaxation model for finite volume methods

In this section we use Theorem 2.1 to deduce an estimate in h1/4 for the finite
volume type model presented in the introduction. We first state an existence result.

Proposition 5.1. With the notations of the introduction, for any ε > 0 and any
u0 ∈ L1(RN ) there exists a unique solution u ∈ C([0,∞[, L1(RN )) of (1.15) satis-
fying the entropy inequalities (1.16) for all convex, Lipschitz and C1 functions S,
or equivalently for all Kružkov entropies.

Since this result uses very standard techniques, we only give a short sketch of
the proof. First let us notice that for an arbitrary convex and Lipschitz S, S′(u)
is not well defined because of possible jumps of S′. That is why we require S to
be C1. Then, if (1.16) holds for these C1 test functions, it is easy to see that it
also holds for the entropies Sk, with the convention that S′k(ξ) = sgn(ξ − k) and
sgn(0) = 0.

The uniqueness is obtained by Kružkov’s method. We actually get that for two
solutions u, v of (1.16),

∂t|u− v|+ div sgn(u− v)[f(u)− f(v)]

≤ |P 0(u − v)| − |u− v|
ε

in ]0,∞[×RN ,
(5.1)

which yields the contraction property

‖ u(t, .)− v(t, .) ‖L1≤‖ u0 − v0 ‖L1 .(5.2)

For existence, we use the small diffusion approximation method. Here the L1 −
BV hypothesis (1.13) on the grid is involved. It is actually equivalent to asserting
that P 0 maps L1(RN ) into BV (RN ) with

TV (P 0w) ≤ Kh ‖ w ‖L1 , w ∈ L1(RN ).(5.3)

This yields the following a priori estimate for a solution u of (1.15)-(1.16) of initial
data u0 ∈ L1 ∩BV (RN ):

‖ ∂u

∂xj
(t, .) ‖M≤ e−t/ε ‖ ∂u

0

∂xj
‖M +(1− e−t/ε)Kh ‖ u0 ‖L1 .(5.4)

This allows us to prove existence for u0 ∈ L1∩BV. Then by the contraction property
(5.2) we obtain the existence of a solution for any u0 ∈ L1(RN ).

Now we can prove the convergence rate to the continuous solution.

Proof of Theorem 1.2. If u0 ∈ L1∩Lp(RN ) for some p, 1 ≤ p <∞, we can actually
choose S(ξ) = |ξ|p in (1.16). Integrating this inequality with respect to x, we get

d

dt

∫
RN

|u|p dx ≤
∫

RN

S′(u)
P 0u− u

ε
dx in ]0,∞[.

Then, since S′(P 0u) is constant in each cell, and since the integral of P 0u − u on
each cell vanishes, we have∫

RN

S′(u)
P 0u− u

ε
=

∫
RN

[
S′(u)− S′(P 0u)

] P 0u− u

ε
≤ 0.(5.5)

Therefore, we obtain

d

dt

∫
RN

|u|p +

∫
RN

[
S′(P 0u)− S′(u)

] P 0u− u

ε
≤ 0 in ]0,∞[,
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and for any T ≥ 0∫
RN

|u(T, .)|p +

∫∫
]0,T [×RN

[
S′(P 0u)− S′(u)

] P 0u− u

ε
≤
∫

RN

|u0|p.(5.6)

In the case where u0 ∈ L1 ∩ L2(RN ) (p = 2), we find that∫∫
]0,∞[×RN

(P 0u− u)2

ε
≤
∫

RN

|u0|2
2

.(5.7)

The announced inequality (1.17) easily follows by Hölder’s inequality. Now we write
the entropy inequalities, for k ∈ R

∂t|u− k|+ div sgn(u− k)[f(u)− f(k)]

≤ sgn(u− k)
P 0u− u

ε

=
[
sgn(u− k)− sgn(P 0u− k)

] P 0u− u

ε
+ sgn(P 0u− k)

P 0u− u

ε

≤ sgn(P 0u− k)
P 0u− u

ε
.

(5.8)

Since the integral in each cell of the right-hand side vanishes (for a fixed t), we can
invert the “div” operator as in Appendix A1, and therefore

sgn(P 0u− k)
P 0u− u

ε
= divHk(5.9)

for some Hk ∈ L∞(]0,∞[, L1(RN )), which can be bounded above by (A.7) and
(1.17): ∫∫

]0,T [×B(x0,R)

|Hk(t, x)| dtdx ≤ h

√
T |B(x0, R+ 2h)|

2ε
‖ u0 ‖L2 .

By examining the proof in Appendix A1, it is easy to see that since the sign in
(5.9) is bounded by 1, we have indeed

|Hk(t, x)| ≤ αH(t, x)(5.10)

for some αH independent of k, and which also satisfies∫∫
]0,T [×B(x0,R)

αH(t, x) dtdx ≤ h

√
T |B(x0, R+ 2h)|

2ε
‖ u0 ‖L2 .(5.11)

Therefore, combining (5.8) and (5.9), we may apply Theorem 2.1 with the sole error
term (5.9). By choosing ν = 0 and letting δ → 0 (so that Et → 0) we obtain, using
(2.9) for Ex and (5.11) for EH , that for any ∆ > 0

∫
|x−x0|<R

|u(T, x)− v(T, x)| dx ≤
∫

|x−x0|<R+MT+∆

|u0(x)− v0(x)| dx

+ CN

(
TV (v0)∆ +

h

∆

√
T (R+MT + ∆ + h)N

ε
‖ u0 ‖L2

)
.

(5.12)
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Finally, we choose

∆ =
√
R̂`(5.13)

and we get the inequality (1.18).

Remark. It is an open problem to obtain an estimate in h1/2 (except in one di-
mension see R. Sanders [17]). Notice that Proposition 4.1 cannot be applied, since
the term Hk is not Lipschitz continuous in k. When all the cells are star-shaped,
denoting by H(t, x) the function obtained Appendix A1 such that

divH =
P 0u− u

ε
,(5.14)

we actually have, by the support property (A.4),

Hk = sgn(P 0u− k)H.(5.15)

So in this case the bound (5.11) is obvious.

Appendix. Inversion of the “div” operator;

composition of Lipschitz and BV functions

A1. Inversion of the “div” operator. We consider a question arising from the
finite volume type of approximations in §5. In this context, we need the result
below in order to use the error estimates stated in §2.

Lemma A1.1. Let (Ci)i∈I be a general grid of RN as described in the introduction.
Assume that m ∈ L1(RN ) satisfies∫

Ci

m(x) dx = 0, i ∈ I.(A.1)

Then there exists a vector field H(x) such that

divH = m in RN ,(A.2)

‖ H ‖L1(RN )≤ h ‖ m ‖L1(RN ) .(A.3)

Remark A1.2. (1) If all the cells Ci are star-shaped (there is a point xi ∈ Ci such
that for any x ∈ Ci the segment [xi, x] is included in Ci), then the construction of
H is purely local. More precisely,

H =
∑
i∈I

Hi, Hi = 0 in RN\Ci,(A.4)

with

divHi = mICi ,(A.5)

‖ Hi ‖L1(RN )≤ h ‖ mICi ‖L1(RN ) .(A.6)

(2) The estimate (A.3) can be localized: for any bounded Borel set ω ⊂ RN , we
have

‖ H ‖L1(ω)≤ h ‖ m ‖L1(ωh),(A.7)

ωh =
⋃

dist(Ci,ω)≤h
Ci.(A.8)
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Actually, Hi = 0 in ω as soon as dist(Ci, ω) > h, with Hi defined in the proof
below.

Proof of Lemma A1.1. To solve (A.2) in the distributional sense means that we
look for a function H such that, for all test functions ϕ ∈ C∞c (RN ),

−
∫

RN

H(x) · ∇ϕ(x) dx =

∫
RN

m(x)ϕ(x) dx

=
∑
i∈I

∫
Ci

m(x) (ϕ(x) − ϕ(xi)) dx

=
∑
i∈I

∫
Ci

m(x)

∫ 1

0

∇ϕ (xi + θ(x− xi)) · (x− xi) dθdx

=
∑
i∈I

∫
RN

∫ 1

0

(mICi)

(
xi +

y − xi
θ

)
∇ϕ(y) · y − xi

θ
dθ
dy

θN
.

(A.9)

Here xi denotes an arbitrary point of Ci, but in the star-shaped case it should
possess the property in Remark A1.2 (1). Therefore we choose

H =
∑
i∈I

Hi,(A.10)

Hi(y) = −
∫ 1

0

(mICi)

(
xi +

y − xi
θ

)
y − xi
θN+1

dθ.(A.11)

We may majorize the L1 norm of Hi,∫
RN

|Hi(y)| dy ≤
∫

RN

∫ 1

0

(|m|ICi)

(
xi +

y − xi
θ

) |y − xi|
θN+1

dθdy

=

∫ 1

0

∫
RN

(|m|ICi)(x)|x − xi| dxdθ

≤ diam(Ci)

∫
Ci

|m(x)| dx.

(A.12)

Adding these inequalities, we obtain the statement of Lemma A1.1. In the star-
shaped case, we notice from formula (A.11) that if Hi(y) 6= 0, then zθ = xi+

y−xi
θ ∈

Ci for some θ ∈ ]0, 1[. This means that y = xi + θ(zθ −xi) also belongs to Ci. This
proves (A.4). The properties (A.5) and (A.6) are contained in the above proof.

A2. Composition of Lipschitz and BV functions. Let Ω be an open subset
of RN and consider a function u ∈ BVloc(Ω), and g : R → R Lipschitz continuous.
The well-known theory of A.I. Vol′pert [20] allows us to compute the gradient of
g(u) provided that g ∈ C1. However, for a general Lipschitz function g we have the
following simple result.

Lemma A2.1. With the above notations, g(u) belongs to BVloc(Ω) and :
(i) in the sense of measures,∣∣∣∣ ∂∂xj [g(u)]

∣∣∣∣ ≤ lip(g)

∣∣∣∣ ∂u∂xj
∣∣∣∣ .(A.13)

(ii) if a ≤ u ≤ b, then ∣∣∣∣ ∂∂xj [g(u)]

∣∣∣∣ ≤ lip
[a,b]

(g)

∣∣∣∣ ∂u∂xj
∣∣∣∣ .(A.14)
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Proof. Let us define gn = ρn ∗g, un = ρn ∗u, where ρn ≥ 0 is a standard smoothing
sequence (in 1 or N dimensions). Since these functions are smooth, we have∣∣∣∣ ∂∂xj gn(un)

∣∣∣∣ = ∣∣∣∣g′n(un)
∂un
∂xj

∣∣∣∣ ≤‖ g′n ‖L∞ ∣∣∣∣∂un∂xj

∣∣∣∣ ≤ lip(g)

∣∣∣∣∂un∂xj

∣∣∣∣ .
From the formula ∂un

∂xj
= ρn ∗ ∂u

∂xj
we get

∣∣∣∂un∂xj

∣∣∣ ≤ ρn ∗
∣∣∣ ∂u∂xj ∣∣∣, and hence∣∣∣∣ ∂∂xj gn(un)

∣∣∣∣ ≤ lip(g) ρn ∗
∣∣∣∣ ∂u∂xj

∣∣∣∣ .(A.15)

Therefore, for any test function ϕ ∈ C∞c (Ω) we have∣∣∣∣〈 ∂

∂xj
[gn(un)], ϕ

〉∣∣∣∣ ≤ lip(g)

〈
ρn ∗

∣∣∣∣ ∂u∂xj
∣∣∣∣ , |ϕ|〉 ,

and by letting n→∞∣∣∣∣〈 ∂

∂xj
[g(u)], ϕ

〉∣∣∣∣ ≤ lip(g)

〈∣∣∣∣ ∂u∂xj
∣∣∣∣ , |ϕ|〉 .(A.16)

Since the right-hand side is bounded by C ‖ ϕ ‖L∞ , we get that ∂
∂xj

[g(u)] is locally

a measure, and hence g(u) ∈ BVloc(Ω). Then by density (A.16) still holds for any
ϕ ∈ Cc(Ω). By approximation in L1(|∂j [g(u)]|+ |∂ju|), (A.16) is also true for any
ϕ measurable and bounded with compact support in Ω. Therefore,∣∣∣∣∫

E

∂

∂xj
[g(u)]

∣∣∣∣ ≤ lip(g)

∫
E

∣∣∣∣ ∂u∂xj
∣∣∣∣(A.17)

for any Borel set E with compact closure in Ω, and (A.13) follows from the definition
of the absolute value of a measure.

In order to prove (ii) we define

g̃(ξ) =

 g(ξ) if a ≤ ξ ≤ b,
g(a) if ξ ≤ a,
g(b) if ξ ≥ b.

Then lip(g̃) = lip
[a,b]

(g), and g̃(u) = g(u). We get the result by applying (i) to g̃ and

u.
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