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KRYLOV BASED MODEL ORDER REDUCTION OF TIME-DELAY

SYSTEMS

WIM MICHIELS , ELIAS JARLEBRING , AND KARL MEERBERGEN∗

Abstract. We present a model order reduction method which allows the construction of a
reduced, delay free model of a given dimension for linear time-delay systems, whose characteristic
matrix is nonlinear due to the presence of exponential functions. The method builds on the equiva-
lent representation of the time-delay system as an infinite-dimensional linear problem. It combines
ideas from a finite-dimensional approximation via a spectral discretization on the one hand, and a
Krylov-Padé model reduction approach on the other hand. The method exhibits a good spectral
approximation of the original model, in the sense that the smallest characteristic roots are well ap-
proximated and the non-converged eigenvalues of the reduced model have a favorable location, and
it preserves moments at zero and at infinity. The spectral approximation is due to an underlying
Arnoldi process that relies on building an appropriate Krylov space for the linear infinite-dimensional
problem. The preservation of moments is guaranteed, because the chosen finite-dimensional approxi-
mation preserves moments and, in addition, the space on which one projects is constructed in such a
way that the preservation of moments carries over to the reduced model. The implementation of the
method is dynamic, since the number of grid points in the spectral discretization does not need to
be chosen beforehand and the accuracy of the reduced model can always be improved by doing more
iterations. It relies on a reformulation of the problem involving a companion like system matrix and
a highly structured input matrix, whose structure are fully exploited.

Key words. model reduction, Padé via Krylov, time-delay system

1. Introduction. The article concerns the development of reduced models for
time-delay systems. Reduced models are useful in many situations and can, for in-
stance, be used to reduce the computational cost for the solution in the time domain
or the evaluation of the transfer function, or allow to use the reduced models in a
control design. We consider a time-delay system of the form

{

ẋ(t) = A0x(t) +
∑m

i=1 Aix(t − τi) + Bu(t),
y = Cx(t) + Du(t),

(1.1)

where x(t) ∈ C
n is the state variable at time t, u ∈ C is the input, y ∈ C is the output

and τi, i = 0, . . . ,m, represent time-delays. We assume that

0 < τ1 < · · · < τm.

The transfer function of the system (1.1) is given by

γ(s) := C

(

sI − A0 −

m
∑

i=1

Aie
−sτi

)−1

B + D. (1.2)

The general problem we consider is to approximate the system (1.1) with a standard
linear dynamical system without delay, in our context conveniently written as

{

Gż(t) = z(t) + Hu(t),
y(t) = Fz(t) + Du(t),

(1.3)

where z(t) ∈ C
k+1. As usual in a model reduction setting, we wish to find a reduced

model of a given dimension, which is typically much smaller than the dimension of the
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original model, i.e., k ≪ n. More precisely, in this paper, we will present an efficient
algorithm for computing G, H, F and D of small dimension such that the reduced
system (1.3) approximates the original system (1.1) both in terms of approximation
of the characteristic roots and in terms of derivatives of the transfer function at the
origin and at infinity.

The problem we consider is hence the reduction of the infinite-dimensional system
(1.1) to the system without delay (1.3). Results on these types of reduction techniques
are rare in the literature, and, in fact, many problems related to such model reduction
of time-delay systems are generally considered to be unsolved [21].

In the derivation of the proposed method we start by rewriting the system (1.1)
as an equivalent infinite-dimensional linear system, as in [8]. The discretization of this
system leads to a standard finite-dimensional linear problem, which is more suitable
for model reduction purposes. The followed discretization approach is based on a
spectral approximation, inspired by [5] where the corresponding eigenvalue problem
was addressed. The accuracy depends on the choice of interpolation points in the
interval [−τm, 0]. Different choices of these points lead to different discretizations.
We will choose the points in such a way that the accuracy of the eigenvalues is
optimized and, at the same time, structure and sparsity can be introduced in the
system matrices. Furthermore we prove that the transfer function of the discretized
system matches several moments with the original transfer function (1.2). In the next
step, where we project the (large) discretized system on a subspace, we guarantee
that these moment matching properties are carried over to the reduced model by
using a Padé via Krylov like model reduction method. In addition, by exploiting the
structure of the problem during the construction of the Krylov space, as in [15], the
process can be made dynamic in the sense that the number of discretization points in
the spectral approximation does not need to be chosen be forehand, and the model
reduction process can always be resumed if the accuracy of the reduced model is not
sufficient.

For model reduction of linear systems based on moment matching, the Padé via
Lanczos method and its variations are probably best known [9, 12, 11, 2]. These
methods build a two-sided Krylov subspace with the system matrix and the input
and output vectors as starting vectors. Krylov methods are also used for balanced
truncation type of methods, see e.g. [13], and for parameterized model order reduction,
see e.g. [1]. The advantage of two-sided methods is that both the input and the output
are taken into account in the reduced models, which leads to matching twice as many
moments for a given dimension of the reduced model compared to the case where
only the input is taken into account. In many applications only one-sided methods
are used. In particular, one-sided Krylov-Padé methods have become popular for the
solution of large scale finite element models in structures and vibrations, which often
lead to polynomial eigenvalue problems, see, e.g., [24, 3]. The proposed approach to
derive a reduced model for (1.1) relies on a one-sided Krylov-Padé method, because
this allows to fully exploit the structure of the problem. In addition, the proposed
method leads to a good approximation of the smallest characteristic roots of the time-
delay system. Since the rightmost characteristic roots are typically among the smallest
ones [20], this makes the reduced models suitable for control design purposes. Two-
sided methods use operations with the transpose of the matrices. Matrix operations
with the transpose cannot exploit the special structure of the matrices, which implies
that two sided methods do not preserve the structure and do not have the same
dynamic properties as the one-sided method.
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In the context sketched above, we recall that for linear systems of the form (1.3),
the moments at zero are −FH + D,−FGH,−2FG2H, . . . The moments at infinity,
called Markov moments, are D,FG−1H,FG−2H, . . . In this paper, we will derive a
reduced model from the Krylov sequence

{G−1H, H,GH, G2H, . . . Gk−2H},

which matches the first two moments at infinity and k − 1 moments at zero. The
reason why moments are added at infinity is that the spectral discretization satisfies
this property, and we want to keep it in the reduced model.

We note that Padé type model order reduction methods for nonlinear systems
can also be used for (1.2), whose matrix is clearly nonlinear in s. The idea is to
approximate the nonlinear system by a piecewise linear model, and then use a standard
Krylov model reduction method on each piece separately [23]. This approach is not
followed. Instead, we derive one reduced linear model, obtained — by approximation
and projection — from a linear infinite-dimensional problem equivalent to (1.2).

We finally mention a series of results for a different type of approximation of time-
delay systems. In [22, 16, 17] and derivative works, the authors propose a number of
ways to approximate the time-delay system (1.1) by a finite-dimensional system and at
the same time preserve important properties of the system. The approach can mostly
be interpreted as a rational approximation of the exponential or the exponential times
a rational function. Hence, if applied to the system (1.1) the corresponding reduced
system does not contain a delay, but is however normally larger than the original
system. In our approach we wish to find a reduced model (1.3) of a prescribed
dimension, k, where typically k ≪ n. There is also an interpolatory model reduction
method applicable to time-delay systems[4].

The structure of the paper is as follows. In Section 2, we formulate the equivalent
infinite-dimensional problem, outline the spectral discretization and discuss the prop-
erties of the discretized system, with the emphasis on moment matching. In Section 3
we present the dynamic Arnoldi method for the infinite-dimensional linear systems,
and show how moment matching properties can be imposed on the reduced model.
In Section 4, we illustrate the method and its properties by means of a numerical
example. Finally, we formulate the main contributions of the paper in Section 5.

2. Finite-dimensional approximation. An approach to analyze the time-
delay system (1.1) is to rewrite it in a linear infinite-dimensional form. The cor-
responding operators can be discretized, yielding an approximation of (1.1), involving
large matrices and no delays. We will use here a spectral discretization, which is known
to have appealing approximation properties. The discretization, is briefly summarized
in the next paragraph. In §2.2 we discuss some properties of the discretized problem.
As the main result of the section we prove that the discretized problem fulfills a mo-
ment matching property, which will play an important role in the derivation of the
model reduction technique.

2.1. A spectral discretization. Consider the space X := C
n×L2([−τm, 0], Cn),

equipped with the inner product

< (y0, y1), (z0, z1) >X=< y0, z0 >Cn + < y1, z1 >L2 .

We can now rewrite (1.1) as
{

ż(t) = Az(t) + Bu(t),
y(t) = Cz(t) + Du(t),

(2.1)

3



where A : X → X is a derivative operator defined by

D(A) = {z = (z0, z1) ∈ X : z1 ∈ C([−τm, 0], C
n),

z′1 ∈ C([−τm, 0], Cn), z0 = z1(0)} ,

Az =

(

A0z0 +
∑m

i=1 Aiz1(−τi)
z′1

)

, z ∈ D(A)

(2.2)

and the operator B : C → X and C : X → C are given by

Bu =

(

u
0

)

, u ∈ C, Cz = Cz0, z ∈ X.

This is a standard procedure to rewrite the time-delay system (1.1) as an infinite-
dimensional system, see [8].

The relation between the solutions of (1.1) and (2.1) is z0(t) ≡ x(t), z1(t) ≡
x(t + θ), θ ∈ [−τm, 0]. We refer to [20, Chapter 1] for a detailed description of the
spectral properties of the operator A. Important here is that the operator only has a
point spectrum and the eigenvalues of the operator A are equal to the characteristic
roots of (1.1), i.e. the zeros of the characteristic equation,

det

(

sI − A0 −

m
∑

i=1

Aie
−sτi

)

= 0. (2.3)

We outline how the system (2.1) can be discretized using a spectral method (see,
e.g. [25, 5]). Given a positive integer N , we consider a mesh ΩN of N + 1 distinct
points in the interval [−τm, 0]:

ΩN = {θN,i, i = 1, . . . , N + 1} , (2.4)

where

−τm ≤ θN,1 < . . . < θN,N < θN,N+1 = 0.

This allows to replace the continuous space X with the space XN of discrete functions
defined over the mesh ΩN , i.e. any function φ ∈ X is discretized into a block vector
x = [xT

1 · · · xT
N+1]

T ∈ XN with components

xi = φ(θN,i) ∈ C
n, i = 1, . . . , N + 1.

We let PNx, x ∈ XN , be the unique C
n valued interpolating polynomial of degree

smaller than or equal to N , satisfying

PNx(θN,i) = xi, i = 1, . . . , N + 1.

In this way we can approximate the operator A over X with the matrix AN : XN →
XN , defined as

{

(AN x)i = (PNx)
′
(θN,i), i = 1, . . . , N,

(AN x)N+1 = A0PNx(0) +
∑m

i=1 AiPNx(−τi).
(2.5)

Using the Lagrange representation of PNx,

PNx =
∑N+1

k=1 lN,k xk,
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where the Lagrange polynomials lN,k are real valued polynomials of degree N satis-
fying

lN,k(θN,i) =

{

1 i = k,
0 i 6= k,

we get an explicit form for the matrix AN ,

AN =











d1,1 . . . d1,N+1

...
...

dN,1 . . . dN,N+1

a1 . . . aN+1











∈ R
(N+1)n×(N+1)n, (2.6)

where
{

di,k = l′N,k(θN,i)In, i ∈ {1, . . . , N}, k ∈ {1, . . . , N + 1},

ak = A0lN,k(0) +
∑m

i=1 AilN,k(−τi), k ∈ {1, . . . , N + 1}.

In the same way we can approximate B and C by

BN = [0 · · · 0 1]T ⊗ B, CN = [0 · · · 0 1] ⊗ C

and we arrive at the finite-dimensional approximation of (1.1),
{

ż(t) = ANz(t) + BNu(t), z(t) ∈ R
(N+1)n×1,

y(t) = CNz(t) + Du(t).
(2.7)

Accordingly, we can approximate (1.2) by the transfer function of (2.7), given by

γN (s) := CN (sI − AN )
−1

BN + D. (2.8)

2.2. Properties. The discretization of the operator formulation of the time-
delay system in the previous section resulted in the construction of a large standard
dynamical system (2.7). It is natural to expect that the discretized system approxi-
mates the time-delay system. We now see that apart from the expected approximation
properties of the spectrum the approximation also automatically fulfills a moment
matching property. Several derivatives at the origin and the first derivative at infin-
ity of the transfer function original (1.2) and the corresponding approximation (2.8)
coincide.

Theorem 2.1. The transfer functions (1.2) and (2.8) satisfy,

diγN (s)

dsi

∣

∣

∣

∣

s=0

=
diγ(s)

dsi

∣

∣

∣

∣

s=0

, i = 0, . . . , N, (2.9)

and

diγN (s−1)

dsi

∣

∣

∣

∣

s=0

=
diγ(s−1)

dsi

∣

∣

∣

∣

s=0

, i = 0, 1, (2.10)

that is, the moments of γ(s) and γN (s) at zero match up to the N th moment, and the
moments at infinity match up to the first moment.

Proof. We first prove (2.9). In [14] it is shown that

γN (s) = C

(

sI − A0 −

m
∑

i=1

AipN (−τi; s)

)−1

B + D, (2.11)
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where the function

t ∈ R 7→ pN (t; s)

is the (unique) polynomial of degree N satisfying

{

pN (0; s) = 1,
p′N (θN,i; s) = spN (θN,i; s), i ∈ {−N, . . . ,−1}.

(2.12)

In other words, the effect of the approximating (2.1) by (2.7) can be interpreted in
the frequency domain as the effect of approximating the exponential function e−sτi

in (1.2) by the function pN (−τi; s) for i = 0, . . . , N .
Let us express pN in the monomial basis,

pN =

N
∑

i=0

cit
i.

The conditions (2.12) lead to

(sM − N)







c0

...
cN






= F,

where

M =











1 θ1 θ2
1 · · · θN

1
...

...
1 θN θ2

N · · · θN
N

0 0 0 · · · 0











, N =











0 1 2θ1 3θ2
1 · · · NθN−1

1
...

...

0 1 2θN 3θ2
N · · · NθN−1

N

1 0 0 0 · · · 0











,

and F = [0 · · · 0 − 1]T . In this way we get

pN (t; s) = [1 t t2 · · · tN ](sM − N)−1F

and

∂ipN (t; s)

∂si

∣

∣

∣

∣

s=0

= −i! [1 t t2 · · · tN ] N−1(MN−1)iF, i = 0, . . . , N.

By direct inspection we have

−N−1F = [1 0 · · · 0]T ,

hence,

−N−1(MN−1)F = N−1M [1 0 · · · 0]T

= N−1 [1 · · · 1 0]T = [0 1 0 · · · 0]T .

By applying the same steps we get

−i! N−1((MN)−1)iF = ei, i = 0, . . . , N,

6



where ei is the ith unity vector in C
N+1. We conclude that

∂ipN (t; s)

∂si

∣

∣

∣

∣

s=0

= ti =
∂i (est)

∂si

∣

∣

∣

∣

s=0

, i = 0, . . . , N.

This result on its turn implies

∂ipN (−τk; s)

∂si

∣

∣

∣

∣

s=0

=
∂i (e−sτk)

∂si

∣

∣

∣

∣

s=0

, i = 0, . . . , N, k = 1, . . . , m. (2.13)

Taking into account the equality (2.11), an application of the chain rule leads to the
assertion (2.9)

Assertion (2.10) follows by a direct computation, as both the left and right hand
size of (2.10) are equal to CB for i = 1 and D for i = 0.

It is important to note that the properties described by Theorem 2.1 are indepen-
dent of the choice of the grid points. Hence, other desired properties can be imposed
by an optimal choice of the distribution of the grid points.

In what follows we choose the nonzero grid points as scaled and shifted zeros of
UN , the Chebyshev polynomial of the second kind and order N , i.e. the grid points
are specified as

θN,i =
τm

2
(αN,i − 1), αN,i = − cos

πi

N + 1
, i = 1, . . . , N + 1. (2.14)

With the choice of the Chebyshev grid (2.14) the convergence of the individual eigen-
values of AN to corresponding characteristic roots is fast. More specifically, in [5] it
is proven that spectral accuracy (approximation error O(N−N )) is obtained1.

An additional property of using a Chebyshev grid, observed in extensive nu-
merical simulations, is that the eigenvalues of AN , which have not yet converged to
corresponding characteristic roots, are located to the left of the eigenvalues that have
already converged (see, e.g., the plots in [5]). This property, which is important in
the context of stability assessment, is illustrated with the following example.

Example 2.2. In Figure 3.1 we show the rightmost characteristic roots of the
scalar time-delay system

ẋ(t) = −x(t) − x(t − 1), (2.15)

as well as the corresponding eigenvalues of the matrix (2.6), obtained by a discretiza-
tion using the grid points (2.14), for N = 9 and N = 19. The eigenvalues of AN ,
which have not yet converged to characteristic roots are located to the left of the con-
verged eigenvalues.

Other arguments for choosing the grid points (2.14) are given in the following
section.

1In [5] a grid of (scaled and shifted) Chebyshev extremal points is used, the latter given by
αN,i = − cos πi

N
, i = 0, . . . , N . The slight difference with (2.14) does, however, not affect the property

of spectral converges, because the asymptotic distribution of the grid points, which determines the
convergence properties [25], is the same for both grids.
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Fig. 2.1. The rightmost characteristic roots of (2.15) are indicated with (’+’). The eigenvalues
of AN are shown for N = 9 (indicated with ’o’ -approximation by a 10-by-10 matrix) and N = 19
(indicated with ’✷’ - approximation by a 20-by-20 matrix). Note that the difference between (a) and
(b) is the range of the x-axis.

3. Constructing a reduced-order model. We now know that the discretized
system (2.7) has the nice approximation property that many moments are matched.
It is however not a solution to our main problem to construct a small reduced model
since the state space dimension of (2.7) is n(N + 1), i.e., much larger than the state
space dimension of the original time-delay system (1.1).

However, unlike the original time-delay system (1.1), the discretized system (2.7)
is a standard dynamical system. We could hence conceptually reduce the dimension of
the discretized system by applying a standard Krylov based model reduction technique
on (2.7). This would involve explicitly constructing the large matrices in (2.7). We will
now see that this can be avoided and an efficient implementation becomes possible,
where many properties of (2.7) are exploited. Moreover, the construction is dynamic
in the sense that the value of N in (2.8) does not need to be fixed beforehand.

More specifically, in §3.1 we derive an equivalent representation of (2.7) and (2.8),
where the matrices have a sparse structure. In §3.2 we dynamically construct a
Krylov space. In §3.3 we project the system matrices on this subspace and outline
how moment matching properties can be guaranteed. Finally, in §3.4 we discuss the
various aspects of the resulting model reduction procedure.

The technical derivation of the results makes use of the representation of polyno-
mials related to the spectral discretization in appropriately defined Chebyshev bases.
In what follows we denote by Ti the Chebyshev polynomial of the first kind and order
i, and Ui is the Chebyshev polynomial of the second kind and order i, with i ≥ 0.

3.1. A sparse reformulation of the problem. In the derivation we will use a
slightly different formulation of the discretization. Note that the eigenvalue problem

(sI − AN )x = 0, x ∈ C
(N+1)n, x 6= 0, (3.1)

8



where AN is given by (2.5), can directly be obtained by requiring that there exists a
polynomial of degree N ,

(PNx)(t) =

N
∑

k=0

lN,k(t) xk,

which satisfies the conditions
{

sPNx(θN,i) = (PNx)′(θN,i), i ∈ {1, . . . , N},
sPNx(0) = A0PNx(0) +

∑m
i=1 AiPNx(−τi).

(3.2)

Then the vector x in (3.1) is obtained as x = [xT
0 · · · xT

N ]T . Hence, an eigenvalue
problem equivalent to (3.1) can be obtained by expressing PNx in another basis
and imposing the same conditions. We now represent PNx in a basis of Chebyshev
polynomials:

(PNx)(t) =

N
∑

i=0

ciTi

(

2
t

τm
+ 1

)

, (3.3)

where Ti is the Chebyshev polynomial of the first kind and order i, and ci ∈ C
N×1

for i = 0, . . . , N . By requiring that this polynomial satisfies the conditions (3.2) we
obtain an equivalent sparse eigenvalue problem for (3.1), as expressed in the following
lemma (Theorem 2.1 from [15]).

Lemma 3.1. If the grid points in the spectral discretization of (2.1) are chosen
as (2.14), then the eigenvalue problem (3.1) is equivalent with

(sΠN − ΣN ) c = 0, s ∈ C, c ∈ C
(N+1)n, c 6= 0, (3.4)

where

ΠN =
τm

4





























4
τm

4
τm

4
τm

· · · · · ·
4

τm

2 0 −1
1
2

0 −
1
2

1
3

0
.

.

.

1
4

.

.

. −
1

N−2

.

.

. 0 −
1

N−1
1
N

0





























⊗ I (3.5)

and

ΣN =











R0 R1 · · · RN

In

. . .

In











, (3.6)

with

Ri = A0Ti(1) +

m
∑

k=1

AkTi

(

−2
τk

τm
+ 1

)

, i = 0, . . . , N.
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A comparison between (3.1) and (3.4), taking into account the interpretation of
the vectors c and d as coefficients in polynomial bases, learns that

AN = (SN ⊗ I)(Π−1
N ΣN )(S−1

N ⊗ I), (3.7)

where the matrix SN ∈ R
(N+1)×(N+1) maps coefficients of a polynomial of degree N

in the Chebyshev basis
{

Ti

(

2
t

τm
+ 1

)

: i = 0, . . . , N

}

(3.8)

onto the corresponding coefficients in the Lagrange basis,

{lN,i(t) : i = 1, . . . , N + 1},

defined on the grid (2.14). The relation (3.7) leads to an alternative formulation of
the transfer function γN (s), as expressed in the following theorem.

Theorem 3.2. If the grid points in the spectral discretization of (2.1) are chosen
as (2.14), then we can express

γN (s) = FN (sGN − I)
−1

HN + D, (3.9)

where

GN = Σ−1
N ΠN , (3.10)

HN =















R−1
0

(

I − τm

2 R1

)

R−1
0 B

τm

2 R−1
0 B
0
...
0















(3.11)

and

FN = [CR0 CR1 · · · CRN ], (3.12)

with ΣN and ΠN defined by (3.6) and (3.5).
Proof. Substituting (3.7) into (2.8) we immediately obtain (3.10). Moreover we

can bring (2.8) in the form (3.9), where

HN = G2
N (S−1

N ⊗ I)BN , (3.13)

FN = CN (SN ⊗ I)G−1
N . (3.14)

In order to prove (3.11) we first find an explicit expression for

c := S−1
N [0 · · · 0 1]T . (3.15)

From the definition of SN it follows that the elements of c = [c0 · · · cN ]T are the
coefficients of the Lagrange polynomial lN,N+1, expressed in the Chebyshev basis
(3.8). Therefore, they satisfy the conditions











1 T1(αN,1) · · · TN (αN,1)
...

...
1 T1(αN,N ) · · · TN (αN,N )
1 1 · · · 1





















c0

...
cN−1

cN











=











0
...
0
1











. (3.16)
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When substituting

c =

{ 2
N+1 [0 1 0 1 · · · 0 1]T , N odd,

2
N+1 [ 12 0 1 0 1 · · · 0 1]T , N even

(3.17)

and taking into account the property

T0(t) = U0(t), T1(t) =
1

2
U1(t), Ti(t) =

1

2
(Ui(t) − Ui−2(t)), i ≥ 2,

the left hand side of (3.16) becomes

1

N + 1
[UN (αN,1) · · · UN (αN,N ) N + 1]T .

By the choice of the grid points (2.14) we see that (3.17) solves (3.16). This leads us
to

(S−1
N ⊗ I)BN = c ⊗ B =

{ 2
N+1 [0 1 0 1 · · · 0 1]T ⊗ B, N odd,

2
N+1 [ 12 0 1 0 1 · · · 0 1]T ⊗ B, N even.

(3.18)

When substituting this in (3.13), we get

HN = GN (GN (c ⊗ B)) = GN [(R−1
0 B)T 0 · · · 0]T .

A direct computation yields (3.11).
In order to prove (3.12) we let q = [q0 q1 · · · qN ]T ∈ C

(N+1)⊗1. Then we get

[0 · · · 0 1] SN q =

N
∑

i=0

qiTi

(

2
θN,N+1

τm
+ 1

)

= [1 1 · · · 1]q.

In this way (3.14) becomes

FN = [C · · · C]G−1
N = [C · · · C]Π−1

N ΣN = [C 0 · · · 0]ΣN .

The expression (3.12) follows.
The following property of the matrices in (3.9) plays an important role in the

next paragraphs.
Proposition 3.3. Assume that N1, N2 ∈ N with N1 < N2. Then the matrices

ΣN1
,ΠN1

, FN1
,HN1

in Theorem 3.2 are submatrices of ΣN2
, ΠN2

, FN2
,HN2

.

Proposition 3.3 allows an adaptive construction of the approximation. An increase
of the number of grid points, N , can be dealt with by extending the corresponding
matrices..

3.2. Dynamic construction of a Krylov space. The model reduction tech-
nique presented in the paper is based on projecting the large and sparse matrices
FN , GN and HN , defined in Theorem 3.2, on an appropriately defined subspace.
Instrumental to this we use the dynamic construction of a Krylov space of GN , pre-
sented in [15]. This construction on its turn is inspired by methods for polynomial
eigenvalue problems that exploit structure to reduce the storage cost of the Krylov
vectors [3, 10, 18]. In what follows we summarize this construction (in a slightly
adapted form). In §3.3, we derive reduced models based on a projection on the
Krylov subspace.
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We fix integers k and N , satisfying 1 ≤ k ≤ N and consider the Krylov space

Kk(GN , b) := span{b,GNb, . . . , Gk−1
N b}. (3.19)

Due to the special structure of GN the matrix vector product satisfies the following
property [15, Theorem 3.1].

Theorem 3.4. Assume that (
∑m

i=0 Ai) is non-singular. Let i,N ∈ N with i ≤ N
and let Y ∈ C

n×i. Then

GNvec(Y, 0, 0, . . . , 0) = vec(x̂, Z, 0, . . . , 0),

where Z ∈ C
n×i is given by

Z = Y LT
i , (3.20)

with

Li =
τm

4























2 0 −1
1
2 0 − 1

2

1
3 0

. . .

1
4

. . . − 1
i−2

. . . 0
1
i























∈ R
i×i,

and x̂ ∈ C
n×1 satisfies

x̂ = R−1
0





k−1
∑

i=0

yi − A0

k−1
∑

i=0

zi −

m
∑

j=1

Aj

(

k−1
∑

i=0

Ti+1(1 − 2
τj

τm
)zi

)



 . (3.21)

Theorem 3.4 states in a precise way that a vector having all but the in first elements
equal to zero is mapped by GN on a vector having all but the (i + 1)n first elements
equal to zero. This property is a consequence of the companion-like structure of (3.10).

If we assume that the vector b in (3.19) has the structure

b = [xT
0 0 · · · 0]T , x0 ∈ C

n×1, (3.22)

then the vectors GNb, . . . , Gk−1
N b only have their first 2n, 3n, . . . , kn elements differ-

ent from zero. The Arnoldi algorithm builds the Krylov sequence vector by vector,
where, in addition, the vectors are orthogonalized. In step i, the orthogonalization is
a linear combination of the (i + 1)st vector and the previously computed i vectors.
Hence, the orthogonalization at the ith iteration does not change the general structure
of the (i + 1)st vector. A dynamic implementation of Arnoldi to construct a basis of
(3.19) with the starting vector (3.22), where this property is exploited, is described in
Algorithm 1. In the description we use notation common for Arnoldi iterations: we
let Hi ∈ C

(i+1)×i denote the dynamically constructed rectangular Hessenberg matrix
and Hi ∈ C

i×i the corresponding i × i upper part. To simplify the notation we will
further denote the Krylov space (3.19) with starting vector (3.22) by Kk(GN , x0).

Remark 3.5. The construction of Algorithm 1 and, in particular, the Hessenberg
matrix Hk, do not depend on the value of N . The only constraint is that N ≥
k. By taking the limit N → ∞ and by taking into account that GN and A−1

N are

12



Algorithm 1 Dynamic construction of Krylov space

Require: k ≥ 1, x0 ∈ C
n×1.

1: Let v1 = x0/‖x0‖2, V1 = v1, H0 = empty matrix
2: Factorize R0 =

∑m
i=0 Ai

3: for i = 1, 2, . . . , k do

4: Let vec(Y ) = vi

5: Compute Z according to (3.20) with sparse Li

6: Compute x̂ according to (3.21) using the factorization of the inverse computed
in Step 2

7: Expand Vi with one block row (zeros)
8: Let wi := vec(x̂, Z), compute hi = V ∗

i wi and then ŵi = wi − Vihi

9: Compute βi = ‖ŵi‖2 and let vi+1 = ŵi/βi

10: Let Hi =

[

Hi−1 hi

0 βi

]

∈ C
(i+1)×i

11: Expand Vi into Vi+1 = [Vi, vi+1]
12: end for

Output: Hk, Hk Vk, Vk+1 vk+1,
basis Kk(GN , x0), with N ≥ k, by extending Vk with (N +1−k)n zero rows.

similar matrices, the algorithm can be interpreted as an Arnoldi algorithm applied
to the infinite-dimensional operator A−1, with A defined in §2.1. This connection is
formalized and proven in [15, Section 4].

Remark 3.6. Because the rightmost characteristic roots of (1.1), which corre-
spond to the eigenvalues of A, are typically among the smallest characteristic roots
(this is apparent in Figure 2.1, see also [20, Chapter 2] for a detailed analysis of
spectral properties of time-delay systems), an application of Algorithm 1, followed by
computing the Ritz values (the eigenvalues of Hk), are very efficient for computing
the rightmost characteristic roots of the time-delays system (1.1). We refer to [15]
for a detailed analysis.

3.3. Projection and moment matching properties. We now arrive at the
derivation of an approximation of γN (s), defined by (2.8) or, equivalently, (3.9), having
a prescribed order k. An approach to do so consists of constructing the Krylov
space Kk(GN , x0) by Algorithm 1 and projecting the matrices FN , GN ,HN , defined
in Theorem 3.2, on this Krylov space. Assuming k ≤ N , an orthogonal projection on
Kk(GN , x0) yields the following approximation of γN (s):

γ(k)(s) := F (k) (sG(k) − I)−1 H(k) + D, (3.23)

where

F (k) = Fk−1 Vk,
G(k) = Hk,
H(k) = V T

k Hk−1,

(3.24)

and the matrices

Vk = [v1 · · · vk] ∈ R
kn×k,Hk ∈ R

k×k

refer to the output of Algorithm 1. It is important to note that the matrices F (k) and
H(k) are submatrices of F (k+1) and H(k+1). Therefore, they can be constructed in a
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dynamic way when doing iterations of Algorithm 1, as is the case with the Hessenberg
matrix Hk.

With a particular choice of the vector x0, the transfer function (3.23) satisfies the
following moment matching property with the (original) transfer function (1.2) of the
time-delay system (1.1).

Theorem 3.7. Let N, k ∈ N with N ≥ k ≥ 2, and let Vk ∈ R
kn×k. Assume that

the columns of the matrix Vk, possibly extended with zero rows, form an orthogonal
basis of Kk(GN , R−1

0 B). Then the transfer function (3.23) satisfies

diγ(k)(s)

dsi

∣

∣

∣

∣

s=0

=
diγ(s)

dsi

∣

∣

∣

∣

s=0

, i = 0, . . . , k − 2 (3.25)

and

diγ(k)(s−1)

dsi

∣

∣

∣

∣

s=0

=
diγ(s−1)

dsi

∣

∣

∣

∣

s=0

, i = 0, 1. (3.26)

Proof. The proof is performed in two steps. First, we observe that

G−1
N HN =

[

(R−1
0 B)T 0 · · · 0

]T
,

from which we conclude

Kk(GN , R−1
0 B) = span

{

G−1
N HN , HN , GNHN , . . . , Gk−2HN

}

. (3.27)

It follows that the transfer function γ(k)(s) matches k − 1 moments at zero and two
at infinity with the transfer function γN (s). Second, this moment matching property
carries over to the transfer function γ(s) of the delay equation by Theorem 2.1.

The principle behind the proof of Theorem 3.7, along with an overview of the
results obtained so far, are shown in Figure 3.1.

Remark 3.8. The derivation of the matrices (FN , GN ,HN ) in the proof of The-
orem 3.2 was based on the choice

HN = G2
N (S−1

N ⊗ I)BN ,

FN = CN (SN ⊗ I)G−1
N .

Another realization of the transfer function γN (s) can be obtained by taking

HN = Gj
N (S−1

N ⊗ I)BN ,

FN = CN (SN ⊗ I)G1−j
N ,

for any j ∈ Z. With the choice j = 2 the matrix HN has the structure that leads to
(3.27).

Observe that in the reduced model (3.23)-(3.24) none of the system matrices
depend on N . This is a consequence of Proposition 3.3 and the special structure of the
starting vector of the Arnoldi process. Since (3.23) corresponds to a projection on a k-
dimensional subspace of (2.7) for any N ≥ k, we can take a limit argument (N → ∞),
and interpret (3.23) as the transfer function of a projection of the infinite-dimensional
linear system (2.1). This is consistent with the moment matching property described
in Theorem 3.7. In the light of this comment, the discretized system (2.7) only serves
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approximation

finite−dimensional N+1 moments 0

dimension (N + 1)n

(Section 2)

sparse
(§3.1)

2 moments ∞

(Thm. 2.1)

(§3.2 − §3.3)

(k ≤ N)

projection on

(CN , AN , BN , D) → (FN , GN , HN , D)

A0, . . . , Am, B, C, D, τ1, . . . , τm, Ai ∈ Rn×n

equivalent infinite-dimensional linear sytem:

2 moments ∞

time-delay system

(C,A,B, D)

(Thm. 3.7)

k-1 moments 0

2 moments ∞

k-1 moments 0

dimension k

range Vk

(

F (k), G(k), H(k), D
)

Fig. 3.1. Overview of Sections 2-3. The results on moment matching are shown in red.

as an intermediate step in the technical derivation of the moment matching property,
see Figure 3.1.

Remark 3.9. The matching of k− 1 moments at zero is due to the fact that the
space on which we project, contains an appropriately defined right Krylov space of
GN . It is well known that twice as many moments can be matched by constructing
both a right and a left Krylov space (bi-orthogonal bases can be found by, e.g., the
two-sided Arnoldi algorithm [7]) and an oblique projection. This approach has not
been followed because of the following reasons.

1. The efficient and dynamic construction of the (right) Krylov space, described in
Algorithm 1, relies on the companion-like structure of the matrix GN , where the
system-dependent information is in the first block row. This construction does not
carry over to the left Krylov space. By taking the transpose of the transfer function
the role of the left and right Krylov spaces are interchanged, but a simultaneous
dynamic construction of a left and a right Krylov space as in Algorithm 1 is not
possible.

2. Among the main arguments for deriving the reduced model starting from a spectral
discretization of the time-delay system (Section 2) are the excellent properties of
a spectral discretization in approximating the rightmost characteristic roots [5]
and the interpretation of Algorithm 1 as an Arnoldi algorithm applied to the
inverse of the infinite-dimensional operator A, whose eigenvalues correspond the
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characteristic roots [15].

To conclude the section, we describe the overall model reduction approach in Algo-
rithm 2.

Algorithm 2 Derivation reduced model of dimension k (k ≥ 2).

1: Apply Algorithm 1 with x0 = R−1
0 B and construct G(k) = Hk. At the same time

dynamically construct F (k) and H(k), defined in (3.24).

Output: Matrices (F (k), G(k), H(k), D) of the reduced model;
γ(k)(s) = F (k)(sG(k) − I)−1H(k) + D.

3.4. Note on the computational complexity. Many model reduction appli-
cations involve the reduction of a very large original system. We will now describe the
complexity of Algorithm 2 for the case where n is large and k is small or moderate.

Algorithm 2 delay free system
nof. backward solves k + 1 k − 1
nof. matrix vector products O(k) 1
nof. scalar products (orthogonalization) O(k3) O(k2)

Table 3.1

Operation count and computational complexity for Algorithm 2 and the standard Krylov model
reduction technique for delay free systems.

The asymptotic complexity for the possibly dominating parts of Algorithm 2 are
given in the first column of Table 3.1. We use the terminology backward solve to refer
to the solving of the corresponding linear system of equations, in this case solving the
linear system in (3.21). To ease the comparison we have given the counts (for the
first column) in terms of the number of operations associated with vectors of length
n. That is, computing the product V ∗

i wi in Step 8 of Algorithm 1 has essentially the
same computational effort as computing i2 scalar products for vectors of length n.
Moreover, in each iteration of Algorithm 1 we need m + 1 matrix vector operations
to compute x̂ in (3.21). Hence in total, we need O(k) matrix vector multiplications
and O(k3) scalar products.

Consider a standard dynamical (delay-free) system given in the form (2.7). Such
a system can be reduced with a standard Krylov moment matching technique. Note
that in order to match 2 moments at infinity and k − 1 moments at s = 0 we need
1 matrix vector product, k − 1 backward solves and O(k2) scalar products. We give
the corresponding counts in the last column of Table 3.1.

We will now see that several advantages in terms of complexity of Algorithm 2
are apparent from Table 3.1.

Time-delay systems are generally considered more difficult to analyze than delay-
free systems, as they are in fact infinite-dimensional systems. In a modeling situation
one might be faced with the choice of incorporating the delay or settling for a cruder
model by neglecting the delay entirely. From Table 3.1 we conclude that the differ-
ence between carrying out a model reduction algorithm for a time-delay system of
dimension n and doing a model reduction on a (cruder) model without delay (also of
dimension n) is not tremendous. In fact, for sufficiently large n, the computational
effort for the matrix vector product is typically not dominating and the quotient is
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essentially k (which is considered small or moderate). Hence, taking a delay into
account in a model does not introduce a big additional computational cost.

From the counts in Table 3.1 we can also compare Algorithm 2 with a direct
model-reduction approach, which we refer to as discretize+reduce. The discretized
system (2.7), where we choose N = k − 2, is of dimension n(k − 1). Since it is a
standard dynamical system with moments coinciding with the original system (1.1),
more precisely k − 1 at zero and two at infinity, an intuitive approach to model
reduction of (1.1) would be to use a standard Padé via Krylov technique on (2.7) such
that these matching moments are carried over to the reduced model. In this approach
we would need k−1 backward solves for a (k−1)n×(k−1)n matrix. The matrix AN is
not sparse even if the original problem is sparse. This should be compared with k +1
solves with a n×n matrix for Algorithm 2. Clearly, k +1 backward solves with n×n
matrix is for sufficiently large n is expected to be much faster than k − 1 backward
solves for (k−1)n× (k−1)n matrix. The computational effort for the scalar products
is also smaller for Algorithm 2. Note that with the discretize+reduce approach, one
would compute k2 scalar products with vectors of length (k−1)n, which is essentially
equivalent to k2(k − 1) scalar product with vectors of length n. Algorithm 1 involves
less scalar products, due to the structure of the basis vectors of the subspace, with
only n, 2n, . . . , kn, elements different from zero.

A major advantage of the proposed method is that Algorithm 2 is an iterative
procedure. This allows inspection of error during the iteration and we have the pos-
sibility to continue the iteration if the accuracy is deemed insufficient. This dynamic
feature is not present in the discretize+reduce approach, where the number of
discretization points has to be chosen before starting the method.

4. Application. We study a heated rod which is cooled using delayed feedback.
The algorithm of this paper can be used in such a study by computing an accurate
dynamical system of small dimension which does not involve a delay. This is here
achieved by first discretizing a heat equation in space and applying the model reduc-
tion algorithm to the discretized problem, which is a time-delay system of the form
(1.1).

The physical model of the heated rod which we consider in this example is given
by the partial differential equation

∂v(x, t)

∂t
=

∂2v(x, t)

∂x2
+ a0(x)v(x, t) + a1(x)v(π − x, t − 1). (4.1)

with a0(x) = −2 sin(x), a1(x) = 2 sin(x) and v(0, t) = v(π, t) = 0, also used in
[15]. The equation is a variant of [6, Example C] and can be interpreted as the heat
equation corresponding to a rod with a distributed heating source and a non-local
weighted delayed feedback. We discretize the differential equation (4.1) in space such
that the corresponding time-delay system is of dimension n and fit it with the output
matrix C = (1, 1, . . . , 1)/‖(1, 1 . . . , 1)‖2, i.e., the output is the average temperature
of the rod. The model reduction algorithm is applied to the system for two different
choices of the input matrix B,

i) B = B1 := CT , and,
ii) B = B2 := en/5, i.e., the control Bu(t) is localized at position x = π/5.

The corresponding time-delay systems of dimension n = 100 are now reduced
by Algorithm 2 with k = 20. As expected from the theory, the reduced model is
accurate both in terms of frequency response and in terms of approximation of the
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characteristic roots of the system. We illustrate this with figures, which should be
interpreted as follows.

The frequency response and the point-wise error in the frequency response for
both choices of B are plotted in Figure 4.1. We clearly see that the approximation
is good at ω = 0 where many moments are matched and also decreasing for large
frequencies.

Because the model reduction approach has a connection with a spectral discretiza-
tion of the linear infinite-dimensional system (2.1) and Algorithm 1 can be interpreted
as an Arnoldi algorithm applied to the operator A−1, we also expect the relevant eigen-
values of the reduced system to be good approximations of the characteristic roots
of the original time-delay system. In Figure 4.2 we observe that many roots close to
the origin are well approximated in the reduced model. Note that for B = B1 some
characteristic roots are not in the reduced model, e.g., s ≈ −1.3 ± 2i. This property
is consistent with the fact that Algorithm 2 corresponds to a projection on a Krylov
space. The roots that are not captured correspond to eigenvalues for which the left
eigenfunctions are orthogonal to B (as an illustration, the sum of the elements of
the eigenvector corresponding to s ≈ −1.3 − 2i vanish due to the symmetry of the
problem, see Figure 4.3). In a control setting these characteristic roots are so-called
uncontrollable modes. The fact that they are not present in the reduced model can be
seen as a positive feature, because they do not appear as poles in the original transfer
function. In Figure 4.4 we illustrate the convergence of the first eigenvalues of G(k).
The convergence is exponential, which is in accordance with an Arnoldi method.

Finally we note that the rightmost eigenvalues of (G(k))−1 coincide with the
rightmost characteristic roots, see Figure 4.2. As a consequence, the reduced models
preserve the stability of the system.

5. Conclusions. We proposed an approach for deriving reduced order models
for infinite-dimensional time-delay systems. It relies on a dynamic construction of a
Krylov space and a projection on this space. Because the matrices involved stem from
a spectral discretization, the method has the property of well capturing the rightmost
characteristic roots. The construction is dynamic in the sense that the number of
discretizaton points, N + 1, does not need to be chosen and the construction can
always be resumed if the accuracy of the reduced model turns out to be insufficient.
This property further allows to interpret the reduced model directly as a projection of
the infinite-dimensional system (2.1). In particular, the matrix G(k) = Hk, with k the
number of iterations, can be interpreted as the result of k Arnoldi iterations applied
to the inverse of the infinite-dimensional operator A, whose eigenvalues correspond
to the characteristic roots.

The model reduction approach also results in a moment matching property : the
transfer function of the reduced model matches k − 1 moments at zero and two mo-
ments at infinity with the transfer function of the time-delay system.

In all our experiments the rightmost eigenvalues of the reduced model corre-
sponded to the rightmost characteristic roots (provided a controllability condition is
satisfied), or, equivalently, the eigenvalues of the reduced model that had not yet
converged to characteristic roots were located to the left of the converged eigenvalues.
This favorable property, which carries over from the spectral discretization, makes
the reduced model suitable in the context of control design. A detailed analysis of
this phenomenon, including the connection with the position of the pseudospectra
contours [19, 26] is beyond the scope of this paper and topic of further research.

As a byproduct we showed that a spectral discretization of an infinite-dimensional
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Fig. 4.1. Frequency response and error for the example in Section 4. The reduced model is of
dimension k = 20

time-delay systems results in a moment matching property (Theorem 2.1), indepen-
dently of the choice of the grid points. This illustrates the importance of imposing
additional conditions. In the article the grid points were chosen in such a way that
the right most characteristic roots were well approximated (spectral convergence of
the individual eigenvalues) and, in addition, a reformulation of the discretized system
in a sparse, companion-like representation became possible (Theorem 3.2). The latter
was at the basis of the dynamic construction of the Krylov space. The choice of the
grid points also led to the special structure of the matrix HN , which allowed to apply
Algorithm 1 in the context of a Krylov-Padé reduction approach.

The approach of the paper can be extended to systems with multiple inputs
and multiple outputs provided that ’block versions’ of the algorithms are used (in
particular, block Arnoldi in Algorithm 1).
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