Krylov subspace methods for linear systems with tensor product structure

Christine Tobler

Seminar for Applied Mathematics, ETH Zürich
19. August 2009

Outline

(9) Introduction
(2) Basic Algorithm
(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Outline

2 Basic Algorithm
(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Linear system with tensor product structure

We consider the linear system

$$
\mathcal{A} x=b
$$

with

$$
\begin{aligned}
\mathcal{A} & =\sum_{s=1}^{d} I_{n_{1}} \otimes \cdots \otimes I_{n_{s-1}} \otimes A_{s} \otimes I_{n_{s+1}} \otimes \cdots \otimes I_{n_{d}} \\
b & =b_{1} \otimes \cdots \otimes b_{d}
\end{aligned}
$$

$A_{s} \in \mathbb{R}^{n_{s} \times n_{s}}$ positive definite, $b_{s} \in \mathbb{R}^{n_{s}}$.
Example for 3 dimensions:

Linear system with tensor product structure

We consider the linear system

$$
\mathcal{A} x=b
$$

with

$$
\begin{aligned}
\mathcal{A} & =\sum_{s=1}^{d} I_{n_{1}} \otimes \cdots \otimes I_{n_{s-1}} \otimes A_{s} \otimes I_{n_{s+1}} \otimes \cdots \otimes I_{n_{d}} \\
b & =b_{1} \otimes \cdots \otimes b_{d}
\end{aligned}
$$

$A_{s} \in \mathbb{R}^{n_{s} \times n_{s}}$ positive definite, $b_{s} \in \mathbb{R}^{n_{s}}$.
Example for 3 dimensions:

$$
\left(A_{1} \otimes I \otimes I+I \otimes A_{2} \otimes I+I \otimes I \otimes A_{3}\right) x=b_{1} \otimes b_{2} \otimes b_{3}
$$

Tensor decompositions

CP decomposition:

$$
\operatorname{vec}(\mathcal{X})=\sum_{r=1}^{k} a_{r} \otimes b_{r} \otimes c_{r}
$$

$$
a_{r} \in \mathbb{R}^{m}, b_{r} \in \mathbb{R}^{n}, c_{r} \in \mathbb{R}^{p}
$$

Tucker decomposition:

About this system

The eigenvalues of the matrix \mathcal{A} are given by all possible sums

$$
\lambda_{i_{1}}^{(1)}+\lambda_{i_{2}}^{(2)}+\ldots+\lambda_{i_{d}}^{(d)}
$$

where $\lambda_{i_{s}}^{(s)}$ denotes an eigenvalue of A_{s}. For A_{s} positive definite, the system has a unique solution.

> Note that x and b are vector representations of tensors in $\mathbb{R}^{n_{1}}$ and b represents a rank-one tensor.

> A tensor arising from the discretization of a sufficiently smooth
> function f can be approximated by a short sum of rank-one tensors.
> By superposition, we can insert such a tensor as right-hand side into
> our system.

About this system

The eigenvalues of the matrix \mathcal{A} are given by all possible sums

$$
\lambda_{i_{1}}^{(1)}+\lambda_{i_{2}}^{(2)}+\ldots+\lambda_{i_{d}}^{(d)}
$$

where $\lambda_{i_{s}}^{(s)}$ denotes an eigenvalue of A_{s}. For A_{s} positive definite, the system has a unique solution.

Note that x and b are vector representations of tensors in $\mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, and b represents a rank-one tensor.

A tensor arising from the discretization of a sufficiently smooth
function f can be approximated by a short sum of rank-one tensors.
By superposition, we can insert such a tensor as right-hand side into
our system

About this system

The eigenvalues of the matrix \mathcal{A} are given by all possible sums

$$
\lambda_{i_{1}}^{(1)}+\lambda_{i_{2}}^{(2)}+\ldots+\lambda_{i_{d}}^{(d)}
$$

where $\lambda_{i_{s}}^{(s)}$ denotes an eigenvalue of A_{s}. For A_{s} positive definite, the system has a unique solution.

Note that x and b are vector representations of tensors in $\mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, and b represents a rank-one tensor.

A tensor arising from the discretization of a sufficiently smooth function f can be approximated by a short sum of rank-one tensors. By superposition, we can insert such a tensor as right-hand side into our system.

Tensorized Krylov subspaces

A Krylov subspace is defined as

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\} .
$$

We define a tensorized Krylov subspace as

$$
K_{\AA}^{\otimes}(A, B):=\operatorname{span}\left(K_{k_{1}}\left(A_{1}, b_{1}\right) \otimes \cdots \otimes K_{k_{d}}\left(A_{d}, b_{d}\right)\right)
$$

Note that

for $\mathfrak{K}=\left(k_{0}, \ldots, k_{0}\right)$.
\Rightarrow Tensorized Krylov subspaces are richer than standard Krylov subspaces.

Tensorized Krylov subspaces

A Krylov subspace is defined as

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\} .
$$

We define a tensorized Krylov subspace as

$$
\mathcal{K}_{\mathfrak{K}}^{\otimes}(\mathcal{A}, b):=\operatorname{span}\left(\mathcal{K}_{k_{1}}\left(A_{1}, b_{1}\right) \otimes \cdots \otimes \mathcal{K}_{k_{d}}\left(A_{d}, b_{d}\right)\right) .
$$

Note that

for $\mathfrak{K}=\left(k_{0}, \ldots, k_{0}\right)$.
\Rightarrow Tensorized Krylov subspaces are richer than standard Krylov subspaces.

Tensorized Krylov subspaces

A Krylov subspace is defined as

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\} .
$$

We define a tensorized Krylov subspace as

$$
\mathcal{K}_{\mathfrak{K}}^{\otimes}(\mathcal{A}, b):=\operatorname{span}\left(\mathcal{K}_{k_{1}}\left(A_{1}, b_{1}\right) \otimes \cdots \otimes \mathcal{K}_{k_{d}}\left(A_{d}, b_{d}\right)\right) .
$$

Note that

$$
\mathcal{K}_{k_{0}}(\mathcal{A}, b) \subset \mathcal{K}_{\mathfrak{R}}^{\otimes}(\mathcal{A}, b)
$$

for $\mathfrak{K}=\left(k_{0}, \ldots, k_{0}\right)$.
\Rightarrow Tensorized Krylov subspaces are richer than standard Krylov subspaces.

Outline

(1) Introduction

(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Reminder: CG method $(A x=b)$

The best approximation of x in $\mathcal{K}_{k}(A, b)$ is defined by:

$$
\left\|x_{k}-x\right\|_{A}=\min _{\tilde{x} \in \mathcal{K}_{k}(A, b)}\|\tilde{x}-x\|_{A} .
$$

Find U_{k} with (orthonormal) columns that span the Krylov subspace $\mathcal{K}_{k}(A, b)$. Set $x_{k}=U_{k} y$, then y is the solution of the compressed system

Convergence bound $\left(\kappa=\kappa_{2}(A)\right)$

Reminder: CG method $(A x=b)$

The best approximation of x in $\mathcal{K}_{k}(A, b)$ is defined by:

$$
\left\|x_{k}-x\right\|_{A}=\min _{\tilde{x} \in \mathcal{K}_{k}(A, b)}\|\tilde{x}-x\|_{A} .
$$

Find U_{k} with (orthonormal) columns that span the Krylov subspace $\mathcal{K}_{k}(A, b)$. Set $x_{k}=U_{k} y$, then y is the solution of the compressed system

$$
H_{k} y=\tilde{b}, \quad H_{k}=U_{k}^{\top} A U_{k}, \tilde{b}=U_{k}^{\top} b .
$$

Convergence bound $\left(\kappa=\kappa_{2}(A)\right)$

Reminder: CG method $(A x=b)$

The best approximation of x in $\mathcal{K}_{k}(A, b)$ is defined by:

$$
\left\|x_{k}-x\right\|_{A}=\min _{\tilde{x} \in \mathcal{K}_{k}(A, b)}\|\tilde{x}-x\|_{A} .
$$

Find U_{k} with (orthonormal) columns that span the Krylov subspace $\mathcal{K}_{k}(A, b)$. Set $x_{k}=U_{k} y$, then y is the solution of the compressed system

$$
H_{k} y=\tilde{b}, \quad H_{k}=U_{k}^{\top} A U_{k}, \tilde{b}=U_{k}^{\top} b .
$$

Convergence bound $\left(\kappa=\kappa_{2}(A)\right)$

$$
\left\|x_{k}-x\right\|_{A} \leq C(A, b, \kappa)\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} .
$$

Tensorized Krylov: $\mathcal{A} \operatorname{vec}(\mathcal{X})=b$

Applying the Arnoldi method to A_{s}, b_{s} results in U_{s}, H_{s} with

$$
U_{s}^{\top} A_{s} U_{s}=H_{s},
$$

U_{s} column-orthogonal, H_{s} upper Hessenberg matrix.

The columns of U_{s} span $\mathcal{K}_{k_{s}}\left(A_{s}, b_{s}\right)$, and similarly the columns of $\mathcal{U}:=U_{1} \otimes \cdots \otimes U_{d} \operatorname{span} \mathcal{K}_{\mathfrak{K}}^{\otimes}(\mathcal{A}, b)$.

Solve the compressed system
with $x_{\mathfrak{K}}=\mathcal{U} y, \tilde{b}=\mathcal{U}^{\top} b$ and $\mathcal{H}=\mathcal{U}^{\top} \mathcal{A} \mathcal{U}$.

Tensorized Krylov: $\mathcal{A} \operatorname{vec}(\mathcal{X})=b$

Applying the Arnoldi method to A_{s}, b_{s} results in U_{s}, H_{s} with

$$
U_{s}^{\top} A_{s} U_{s}=H_{s},
$$

U_{s} column-orthogonal, H_{s} upper Hessenberg matrix.
The columns of U_{s} span $\mathcal{K}_{k_{s}}\left(A_{s}, b_{s}\right)$, and similarly the columns of $\mathcal{U}:=U_{1} \otimes \cdots \otimes U_{d} \operatorname{span} \mathcal{K}_{\mathfrak{K}}^{\otimes}(\mathcal{A}, b)$.

Solve the compressed system
with $x_{\mathfrak{K}}=\mathcal{U} y, \tilde{b}=\mathcal{U}^{\top} b$ and $\mathcal{H}=\mathcal{U}^{\top} \mathcal{A} \mathcal{U}$.

Tensorized Krylov: $\mathcal{A} \operatorname{vec}(\mathcal{X})=b$

Applying the Arnoldi method to A_{s}, b_{s} results in U_{s}, H_{s} with

$$
U_{s}^{\top} A_{s} U_{s}=H_{s},
$$

U_{s} column-orthogonal, H_{s} upper Hessenberg matrix.
The columns of U_{s} span $\mathcal{K}_{k_{s}}\left(A_{s}, b_{s}\right)$, and similarly the columns of $\mathcal{U}:=U_{1} \otimes \cdots \otimes U_{d}$ span $\mathcal{K}_{\mathfrak{K}}^{\otimes}(\mathcal{A}, b)$.

Solve the compressed system

$$
\mathcal{H} y=\tilde{b}
$$

with $x_{\mathfrak{K}}=\mathcal{U} y, \tilde{b}=\mathcal{U}^{\top} b$ and $\mathcal{H}=\mathcal{U}^{\top} \mathcal{A} \mathcal{U}$.

Compressed system

The structure of $\mathcal{H} y=\tilde{b}$ corresponds to that of $\mathcal{A} x=b$:

$$
\begin{aligned}
\mathcal{H} & =\sum_{s=1}^{d} I_{k_{1}} \otimes \cdots \otimes I_{k_{s-1}} \otimes H_{s} \otimes I_{k_{s+1}} \otimes \cdots \otimes I_{k_{d}} \\
\tilde{b} & =\tilde{b}_{1} \otimes \cdots \otimes \tilde{b}_{d}=\|b\|_{2}\left(e_{1} \otimes \cdots \otimes e_{1}\right)
\end{aligned}
$$

For dense core tensor $y, x_{\mathfrak{K}}$ is a tensor in Tucker decomposition:

$$
x_{\mathfrak{K}}=\left(U_{1} \otimes \cdots \otimes U_{d}\right) y
$$

Outline

(1) Introduction

2 Basic Algorithm
(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Convergence, s.p.d. case (1)

Similarly to CG, we have:

$$
\left\|x_{\mathfrak{K}}-x\right\|_{\mathcal{A}}=\min _{\tilde{x} \in \mathcal{K}_{\tilde{R}}^{\otimes}(\mathcal{A}, b)}\|\tilde{x}-x\|_{\mathcal{A}}
$$

Every vector in a Krylov subspace $\mathcal{K}_{k_{s}}\left(A_{s}, b_{s}\right)$ can be seen as $p\left(A_{s}\right) b_{s}$, with p a polynomial of order at most $k_{s}-1$. A similar thought reduces the bound calculation to the min-max problem

$$
E_{\Omega}(\mathfrak{K}):=\min _{p \in \Pi_{\mathfrak{K}}^{\otimes}}\left\|p\left(\lambda_{1}, \ldots, \lambda_{d}\right)-\frac{1}{\lambda_{1}+\cdots+\lambda_{d}}\right\|_{\Omega},
$$

where $\Pi_{\mathfrak{K}}^{\otimes}$ is a space of multivariate polynomials, and Ω contains the eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$, with $\lambda_{i} \in\left[\lambda_{\min }\left(A_{i}\right), \lambda_{\max }\left(A_{i}\right)\right]$.

Convergence, s.p.d. case (2)

Inserting an upper bound for $E_{\Omega}(\mathfrak{K})$, we find

$$
\left\|x_{\mathfrak{K}}-x\right\|_{\mathcal{A}} \leq \sum_{s=1}^{d} C\left(\mathcal{A}, b, \kappa_{s}\right)\left(\frac{\sqrt{\kappa_{s}}-1}{\sqrt{\kappa_{s}}+1}\right)^{k_{s}}
$$

with $\kappa_{s}=1+\frac{\lambda_{\max }\left(A_{s}\right)-\lambda_{\text {min }}\left(A_{s}\right)}{\lambda_{\text {min }}(\mathcal{A})}$.
For the case A_{s}, k_{s} constant:

$$
\left\|x_{\mathfrak{K}}-x\right\|_{\mathcal{A}} \leq C(\mathcal{A}, b, d)\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k},
$$

with $\kappa=\frac{d-1}{d}+\frac{\kappa_{2}(\mathcal{A})}{d}$.
Note that the convergence rate improves with increasing dimension.

Convergence, non-symmetric positive definite case

General convergence bound:

$$
\left\|x_{\mathfrak{K}}-x\right\|_{2} \leq \sum_{s=1}^{d} \int_{0}^{\infty} e^{-\hat{\alpha}_{s} t}\left\|U_{s} e^{-t H_{s}} e_{1}-e^{-t A_{s}} b_{s}\right\|_{2} \mathrm{~d} t
$$

with $\hat{\alpha}_{s}:=\sum_{j \neq s} \alpha_{j}$ and $\alpha_{j}=\lambda_{\min }\left(A_{j}+A_{j}^{\top}\right) / 2$.

The bound on $\left\|U_{s} e^{-t H_{s}} e_{1}-e^{-t A_{s}} b_{s}\right\|_{2}$ will depend on additional knowledge on A_{s}.

For example, when the field of values of each matrix A_{s} is contained in a known ellipse, an explicit convergence bound can be found.

Outline

(1) Introduction

2) Basic Algorithm
(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Grasedyck's method, system $\mathcal{H} y=\tilde{b}$

For \mathcal{H} positive definite:

$$
\mathcal{H}^{-1}=\int_{0}^{\infty} \exp (-t \mathcal{H}) d t
$$

The exponential of \mathcal{H} has a Kronecker product structure, too:

$$
\exp (-t \mathcal{H})=\exp \left(-t \sum_{s=0}^{d} \hat{H}_{s}\right)=\prod_{s=1}^{d} \exp \left(-t \hat{H}_{s}\right)=\bigotimes_{s=1}^{d} \exp \left(-t H_{s}\right)
$$

Approximation y_{m} :

$$
y_{m}=\sum_{j=1}^{m} \omega_{j} \bigotimes_{s=1}^{d} \exp \left(-\alpha_{j} H_{s}\right) \tilde{b}_{s},
$$

with certain coefficients α_{j}, ω_{j}.

Coefficients of the exponential sum (1)

The coefficients α_{j}, ω_{j} should minimize

$$
\sup _{z \in \Lambda(\mathcal{H})}\left|\frac{1}{z}-\sum_{j=1}^{m} \omega_{j} e^{-\alpha_{j} z}\right|
$$

Case 1: \mathcal{H} symmetric and condition number known
The eigenvalues of \mathcal{H} are real: $\Lambda(\mathcal{H}) \subset\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]$. There are coefficients α_{j}, ω_{j} s.t.

$$
\left\|y-y_{m}\right\|_{2} \leq C(\mathcal{H}, \tilde{b}) \exp \left(\frac{-m \pi^{2}}{\log \left(8 \kappa_{2}(\mathcal{H})\right)}\right)
$$

These coefficients may be found using a variant of the Remez algorithm. Tabellated values have been made available by Hackbusch.

Coefficients of the exponential sum (2)

Case 2: Nonsymmetric \mathcal{H} and/or unknown condition number There is an explicit formula for α_{j}, ω_{j}, where the eigenvalues of \mathcal{H} only need to have positive real part.

$$
\begin{aligned}
\left\|y-y_{2 m+1}\right\|_{2} & \leq C(\mathcal{H}, \tilde{b}) \exp (\mu / \pi) \exp (-\sqrt{m}), \\
\text { where } \mu & =\max \{|\Im m(\wedge(\mathcal{H}))|\} .
\end{aligned}
$$

The convergence is significantly slower than for Case 1.

Theoretical convergence bounds for the coefficients

Outline

(1) Introduction

(2) Basic Algorithm
(3) Convergence bounds

4 Solving the compressed equation
(5) Numerical experiments

Symmetric example: Poisson Equation

Finite difference discretization of the Poisson equation in d dimensions:

$$
\begin{aligned}
\Delta u & =f & \text { in } \Omega=[0,1]^{d} \\
u & =0 & \text { on } \Gamma:=\partial \Omega,
\end{aligned}
$$

where the right-hand side f is a separable function.

$$
A_{s}=\frac{1}{h^{2}}\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right), b_{s}: \text { random numbers. }
$$

The approximation error is measured by relative residual, $\frac{\left\|\mathcal{A} x_{\mathcal{R}}-b\right\|_{2}}{\|b\|_{2}}$.

Convergence for system size $200^{\text {d }}$

Numerical convergence

Theoretical convergence rate

Convergence for system size 1000^{d}

Numerical convergence

Theoretical convergence rate

Extended Krylov subspaces

Using extended Krylov subspaces

$$
\widetilde{\mathcal{K}}_{k_{s}}\left(A_{s}, b_{s}\right):=\operatorname{span}\left(\mathcal{K}_{k_{s}}\left(A_{s}, b_{s}\right) \cup \mathcal{K}_{k_{s}+1}\left(A_{s}^{-1}, b_{s}\right)\right),
$$

the algorithm works analogously.
Convergence bound (A_{s}, k_{s} constant):

$$
\left\|x_{\mathfrak{K}}-x\right\|_{2} \leq C(\mathcal{A}, b, d)\left(\frac{\sqrt{\tilde{\kappa}}-1}{\sqrt{\tilde{\kappa}}+1}\right)^{k} .
$$

The convergence rate depends on $\tilde{\kappa}$:

$$
\begin{gathered}
\tilde{\kappa} \approx \frac{d-1}{d}+\frac{1}{d^{2}}(d-1)^{\frac{d-1}{d}} \kappa_{2}(\mathcal{A})^{\frac{d-1}{d}} \\
d=2: \tilde{\kappa}=\frac{1}{2}+\frac{\sqrt{\kappa_{2}(\mathcal{A})}}{4}, \quad d \gg 0: \tilde{\kappa} \approx \frac{d-1}{d}+\frac{\kappa_{2}(\mathcal{A})}{d} .
\end{gathered}
$$

Extended Krylov, system size $200^{\text {d }}$

Numerical convergence

Theoretical convergence rate

Non-symmetric example

Finite difference discretization in d dimensions of the convection-diffusion equation

$$
\begin{aligned}
\Delta u-(c, \ldots, c) \nabla u & =f & & \text { in } \Omega=[0,1]^{d} \\
u & =0 & & \text { on } \Gamma:=\partial \Omega,
\end{aligned}
$$

where f is again a separable function.
$A_{s}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2\end{array}\right)+\frac{c}{4 h}\left(\begin{array}{ccccc}3 & -5 & 1 & & \\ 1 & 3 & -5 & \ddots & \\ & \ddots & \ddots & \ddots & 1 \\ & & 1 & 3 & -5 \\ & & & 1 & 3\end{array}\right)$.
For $c=10$, all eigenvalues of \mathcal{A} are real. For $c=100$, this is not the case, and the convergence is significantly worsened.

Non-symmetric case, system size 200 ${ }^{\text {d }}$

Convergence for $c=10$

Convergence for $c=100$

Conclusions

- An efficient algorithm to calculate a low-rank approximation of the solution tensor
- The computational complexity is linear in the number of dimensions
- Only matrix-vector operations with the full system matrices are required
- A theoretical convergence bound was found.

Conclusions

- An efficient algorithm to calculate a low-rank approximation of the solution tensor
- The computational complexity is linear in the number of dimensions
- Only matrix-vector operations with the full system matrices are required
- A theoretical convergence bound was found.

Thank you for your attention!

Literature

D. Kressner, C. Tobler, "Krylov subspace methods for linear systems with tensor product structure", Research report No. 2009-16, SAM, ETH Zurich, 2009.
L. Grasedyck, "Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure", Computing, 72(3-4):247-265, (2004).
D. Braess, W. Hackbusch, "Approximation of $1 / x$ by exponential sums in [1, ∞)", IMA J. Numer. Anal., 25(4):685-697, (2005).

