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Linear system with tensor product structure

We consider the linear system

Ax = b

with

A =
d∑

s=1

In1 ⊗ · · · ⊗ Ins−1 ⊗ As ⊗ Ins+1 ⊗ · · · ⊗ Ind ,

b = b1 ⊗ · · · ⊗ bd ,

As ∈ Rns×ns positive definite, bs ∈ Rns .

Example for 3 dimensions:

(A1 ⊗ I ⊗ I + I ⊗ A2 ⊗ I + I ⊗ I ⊗ A3)x = b1 ⊗ b2 ⊗ b3
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Tensor decompositions

CP decomposition:

vec(X ) =
k∑

r=1

ar ⊗ br ⊗ cr

ar ∈ Rm,br ∈ Rn, cr ∈ Rp

c1

a1

b1

ck

ak

bk

X

Tucker decomposition:

vec(X ) =
m̃∑

i=1

ñ∑
s=1

p̃∑
l=1

Gijl ai ⊗ bj ⊗ cl

=(A⊗ B ⊗ C) vec(G)

G ∈ Rm̃×ñ×p̃,

ai ∈ Rm,bj ∈ Rn, cl ∈ Rp

X GA

B

C
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About this system

The eigenvalues of the matrix A are given by all possible sums

λ
(1)
i1 + λ

(2)
i2 + ...+ λ

(d)
id

where λ(s)
is denotes an eigenvalue of As. For As positive definite, the

system has a unique solution.

Note that x and b are vector representations of tensors in Rn1×···×nd ,
and b represents a rank-one tensor.

A tensor arising from the discretization of a sufficiently smooth
function f can be approximated by a short sum of rank-one tensors.
By superposition, we can insert such a tensor as right-hand side into
our system.
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Tensorized Krylov subspaces

A Krylov subspace is defined as

Kk (A,b) = span
{

b, Ab, . . . , Ak−1b
}
.

We define a tensorized Krylov subspace as

K⊗K (A,b) := span
(
Kk1 (A1,b1)⊗ · · · ⊗ Kkd (Ad ,bd )

)
.

Note that
Kk0 (A,b) ⊂ K⊗K (A,b)

for K = (k0, . . . , k0).
⇒ Tensorized Krylov subspaces are richer than standard Krylov
subspaces.
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Reminder: CG method (Ax = b)

The best approximation of x in Kk (A,b) is defined by:

‖xk − x‖A = min
x̃∈Kk (A,b)

‖x̃ − x‖A.

Find Uk with (orthonormal) columns that span the Krylov subspace
Kk (A,b). Set xk = Uk y , then y is the solution of the compressed
system

Hk y = b̃, Hk = U>k AUk , b̃ = U>k b.

Convergence bound (κ = κ2(A))

‖xk − x‖A ≤ C(A,b, κ)
(√κ− 1√

κ+ 1

)k
.
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Tensorized Krylov: A vec(X ) = b

Applying the Arnoldi method to As,bs results in Us,Hs with

U>s AsUs = Hs,

Us column-orthogonal, Hs upper Hessenberg matrix.

The columns of Us span Kks (As,bs), and similarly the columns of
U := U1 ⊗ · · · ⊗ Ud span K⊗K (A,b).

Solve the compressed system

Hy = b̃

with xK = Uy , b̃ = U>b and H = U>AU .
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Compressed system

The structure of Hy = b̃ corresponds to that of Ax = b:

H =
d∑

s=1

Ik1 ⊗ · · · ⊗ Iks−1 ⊗ Hs ⊗ Iks+1 ⊗ · · · ⊗ Ikd

b̃ = b̃1 ⊗ · · · ⊗ b̃d = ‖b‖2 (e1 ⊗ · · · ⊗ e1)

For dense core tensor y , xK is a tensor in Tucker decomposition:

xK = (U1 ⊗ · · · ⊗ Ud )y
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Convergence, s.p.d. case (1)

Similarly to CG, we have:

‖xK − x‖A = min
x̃∈K⊗K (A,b)

‖x̃ − x‖A

Every vector in a Krylov subspace Kks (As,bs) can be seen as
p(As)bs, with p a polynomial of order at most ks − 1. A similar thought
reduces the bound calculation to the min-max problem

EΩ(K) := min
p∈Π⊗K

‖p(λ1, . . . , λd )− 1
λ1 + · · ·+ λd

‖Ω,

where Π⊗K is a space of multivariate polynomials, and Ω contains the
eigenvalues (λ1, . . . , λd ), with λi ∈ [λmin(Ai ), λmax(Ai )].
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Convergence, s.p.d. case (2)

Inserting an upper bound for EΩ(K), we find

‖xK − x‖A ≤
d∑

s=1

C(A,b, κs)
(√κs − 1
√
κs + 1

)ks

,

with κs = 1 + λmax(As)−λmin(As)
λmin(A) .

For the case As, ks constant:

‖xK − x‖A ≤ C(A,b,d)
(√κ− 1√

κ+ 1

)k
,

with κ = d−1
d + κ2(A)

d .

Note that the convergence rate improves with increasing dimension.
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Convergence, non-symmetric positive definite case

General convergence bound:

‖xK − x‖2 ≤
d∑

s=1

∫ ∞
0

e−α̂s t ‖Use−tHs e1 − e−tAs bs‖2 dt

with α̂s :=
∑

j 6=s αj and αj = λmin(Aj + A>j )/2.

The bound on ‖Use−tHs e1 − e−tAs bs‖2 will depend on additional
knowledge on As.

For example, when the field of values of each matrix As is contained
in a known ellipse, an explicit convergence bound can be found.
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Grasedyck’s method, system Hy = b̃

For H positive definite:

H−1 =

∫ ∞
0

exp(−tH)dt

The exponential of H has a Kronecker product structure, too:

exp(−tH) = exp(−t
d∑

s=0

Ĥs) =
d∏

s=1

exp(−tĤs) =
d⊗

s=1

exp(−tHs),

Approximation ym:

ym =
m∑

j=1

ωj

d⊗
s=1

exp
(
− αjHs

)
b̃s,

with certain coefficients αj , ωj .



Introduction Basic Algorithm Convergence bounds Solving the compressed equation Numerical experiments

Coefficients of the exponential sum (1)

The coefficients αj , ωj should minimize

sup
z∈Λ(H)

∣∣1
z
−

m∑
j=1

ωje−αj z
∣∣

Case 1: H symmetric and condition number known
The eigenvalues of H are real: Λ(H) ⊂ [λmin, λmax]. There are
coefficients αj , ωj s.t.

‖y − ym‖2 ≤ C(H, b̃) exp
( −mπ2

log(8κ2(H))

)
.

These coefficients may be found using a variant of the Remez
algorithm. Tabellated values have been made available by
Hackbusch.
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Coefficients of the exponential sum (2)

Case 2: Nonsymmetric H and/or unknown condition number
There is an explicit formula for αj , ωj , where the eigenvalues of H only
need to have positive real part.

‖y − y2m+1‖2 ≤ C(H, b̃) exp(µ/π) exp(−
√

m),

where µ = max{|=m(Λ(H))|}.

The convergence is significantly slower than for Case 1.
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Theoretical convergence bounds for the coefficients
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Symmetric example: Poisson Equation

Finite difference discretization of the Poisson equation in d
dimensions:

∆u = f in Ω = [0,1]d

u = 0 on Γ := ∂Ω,

where the right-hand side f is a separable function.

As =
1
h2


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 ,bs : random numbers.

The approximation error is measured by relative residual, ‖AxK−b‖2
‖b‖2

.
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Convergence for system size 200d

Numerical convergence
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Theoretical convergence rate
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Convergence for system size 1000d

Numerical convergence
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Extended Krylov subspaces

Using extended Krylov subspaces

K̃ks (As,bs) := span(Kks (As,bs) ∪ Kks+1(A−1
s ,bs)),

the algorithm works analogously.
Convergence bound (As, ks constant):

‖xK − x‖2 ≤ C(A,b,d)
(√κ̃− 1√

κ̃+ 1

)k
.

The convergence rate depends on κ̃:

κ̃ ≈ d − 1
d

+
1
d2 (d − 1)

d−1
d κ2(A)

d−1
d

d = 2 : κ̃ =
1
2

+

√
κ2(A)

4
, d � 0 : κ̃ ≈ d − 1

d
+
κ2(A)

d
.
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Extended Krylov, system size 200d

Numerical convergence
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Non-symmetric example

Finite difference discretization in d dimensions of the
convection-diffusion equation

∆u − (c, . . . , c)∇u = f in Ω = [0,1]d

u = 0 on Γ := ∂Ω,

where f is again a separable function.

As =
1
h2


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

+
c

4h



3 −5 1

1 3 −5
. . .

. . . . . . . . . 1
1 3 −5

1 3

 .

For c = 10, all eigenvalues of A are real. For c = 100, this is not the
case, and the convergence is significantly worsened.
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Non-symmetric case, system size 200d

Convergence for c = 10
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Convergence for c = 100
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Conclusions

An efficient algorithm to calculate a low-rank approximation of
the solution tensor
The computational complexity is linear in the number of
dimensions
Only matrix-vector operations with the full system matrices are
required
A theoretical convergence bound was found.
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Thank you for your attention!
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