
Krypton clearly distinguishes between definitional andfactual
information by using both frame-based and logic-based languages.
The result is a system defined in functional not structural terms.

Krypton: A Functional Approach

to Knowledge Representation

Ronald J. Brachman, Fairchild Laboratory for Artificial Intelligence Research

Richard E. Fikes, Xerox Palo Alto Research Center

Hector J. Levesque, Fairchild Laboratory for Artificial Intelligence Research

Although much of the current work in knowledge
representation is fraught with disagreement, some trends
seem to be emerging. In particular, a great deal of effort
has focused on developing "frame-based" languages
with the following features:

* The principal representational objects, or frames,
are nonatomic descriptions of some complexity.

* Frames are defined as specializations of more
general frames.

* Individuals are represented by instantiations of
generic frames.

* The resulting connections between frames form tax-

onomies.

The widespread appeal of frame taxonomies seems due
to how closely they match our intuitions about how to

structure the world (as illustrated in folk taxonomies, for

example). They also suggest enticing directions for
processing (inheritance, defaults, etc.) and have found ap-
plications in other areas of computer science, such as data-
base management and object-oriented programming.

While the basic ideas of frame systems are straightfor-
ward, complications arise in their design and use. These

difficulties typically arise because (1) structures are inter-

preted in different ways at different times (the principal
ambiguity being between definitional and factual inter-

pretations) and (2) the meaning of the representation
language is specified only in terms of the data structures

used to implement it (typically inheritance networks).
We have developed a design strategy for avoiding these

types of problems and have implemented a representa-
tion system based on it. The system, called Krypton,
clearly distinguishes between definitional and factual in-

formation. In particular, Krypton has two represen-

tation languages, one for forming descriptive terms and
one for making statements about the world using these
terms. Further, Krypton provides a functional view of a
knowledge base, characterized in terms of what it can be

asked or told, not in terms of the particular structures it
uses to represent knowledge.

The trouble with frames

As we have noted, a recurring theme in various
knowledge-representation languages is the taxonomy of
structured descriptions. In such a language, we might
have the following description of a family:

family
IS-A social social-structure
male-parent: man (exactly 1)
female-parent: woman (exactly 1)
child: person

Even uninterpreted, this type of data structure is unde-
niably useful. For knowledge representation, however,
we must impose an interpretation on the representational
objects-that is, they have to mean something. As it
turns out, we can make an extraordinary number of in-
terpretations of links and nodes in a taxonomy of
frames, and typical frame systems leave much of the
semantical work to the reader. (The article on p. 30 of
this issue gives a compendium of the ambiguous inter-
pretations one finds for the IS-A link.')

Yet, despite the multitude of possible interpretations,
two approaches to the meaning of frames seem to recur.

In the first, frames are assertions or statements about the
way things are in the world. Under this interpretation,
which P. Hayes investigates in some depth,2 the presence

0018-9162/83/1000-0067$01.00 1983 IEEE 67October 1983

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

of the "family" frame in a frame system would be under-
stood as asserting that every family is a social structure
with a male parent, a female parent, and some number of
children.

Unfortunately, the assertional point of view turns out
to be quite restrictive, principally for two reasons. The
first is that instantiation (filling in the slots of a frame),
the basic form of assertion in frame systems, makes ex-
pressions of incomplete knowledge either difficult or im-
possible. For example, a statement such as "either Elsie
or Bessie is the cow standing in Farmer Jones's field"
cannot be made in a typical assertional frame system.
The second reason is that truly composite descriptions

cannot be expressed. For example, instead of being able
to form a description "A family with no children," we
can only create a childless-family frame and assert that
families of this type have no children, as if it were an in-
cidental property like having both parents working.
(Space does not permit an in-depth treatment of these
issues here; the distinction between assertional and struc-
tural links,3 the inadequacy of instantiation as an asser-
tional mechanism,4 and the failure of frame systems to
handle structured descriptions' are discussed in detail
elsewhere.)

Frustration with the limitations of viewing frames as
assertions might lead us to adopt the other predominant
view of frames, as descriptions that have no direct asser-
tional import. Representation languages such as KL-
One5 and others take the view that frames and the links
between them make up the structure of descriptions;
some other mechanism is needed to use the descriptions-
to state facts. Under this interpretation, the symbol
"family" in our example would be taken as an abbrevia-
tion for a description such as "a social structure with,
among other things,* a male parent who is a man, a
female parent who is a woman, and some number of
children, all persons." Those who support this inter-
pretation of frames claim that it produces a cleaner
language, which does not suffer from the problems
plaguing strictly assertional frame systems.

Unfortunately, the cleanliness of the nonassertional
approach does not quite allay all the fears of misinter-
preting links and frames in these systems. What we get

*Whether or not the frame expresses sufficiency conditions is essentially
independent of the choice to read it structurally or assertionally.

Figure 1. Structure depicting the "kinds of rock." Unfor-
tunately, as Figure 2 Illustrates, we cannot count kinds
using a structural network.

with a frame system-even a strictly interpreted struc-
tural one-is a package for manipulating symbolic data
structures. Consequently the user or the user program
can draw unwarranted conclusions. Consider, for exam-
ple, Figure 1. We might think it is easy to answer the
question, "How many kinds of rocks are there?" by
simply looking at the structure. All we would have to do,
apparently, is to count the nodes immediately below
"rock." As Figure 2 illustrates, however, counting kinds
in a structural network is meaningless, since the language
allows the formation of an arbitrary number of descrip-
tive terms such as "large, gray igneous rock" to be on a

par with "igneous rock."
A similarly seductive phenomenon arises from the

user's access to links in a network. Figure 3 shows two
different representations of "bachelor." In the two
cases, the distances between "bachelor" and "person"
are different. Spreading activation theories of processing
in semantic nets might consider this distance to be signifi-
cant. (The distance between nodes is also considered
significant in the inheritance of default properties in
which a search is made for the "closest" value.) The links
in a nonassertional frame system, however, are simply
for forming terms and have no contingent assertional
consequence or psychological import.

In sum, then, we seem to be faced with at least two
serious problems in our frame-representation systems.
We must be careful to interpret structures unambiguous-
ly, so that we do not in one breath interpret a link as mak-
ing an assertion and in the next interpret it as part of the
meaning of a term. Even when we are extremely careful
about interpreting these structures, however, we must
still deal with the fundamental problem of having only
data structures to manipulate. We are thus prey to unwar-
ranted inferences in counting data structures or assuming
that their presence or absence means something.

Krypton: a functional approach

Over the last year, we have been designing and im-
plementing an experimental knowledge-representation
system, called Krypton. The primary goal of our effort is
to avoid the kinds of problems engendered by the more
traditional structure-oriented approaches. We focused
on a functional specification of the knowledge base,
replacing any question like "What structures should the
system maintain for a user?" with one that asked "What
exactly should the system do for a user?" In other words,
we decided what kind of operations were needed for in-
teracting with a knowledge base without assuming
anything about its internal structure. By making only
those operations available to a Krypton user, we felt we
could control precisely how the system would be used
while having the freedom to implement the operations in
any convenient way.
Of course, taking a functional view buys us nothing if

the operations we provide are precisely the same as the
standard ones. In such a case, our system would succumb
to the same confusions between structural and asser-
tional uses mentioned earlier. To avoid this problem, we
have split the operations into two separate kinds,

COMPUTER
68

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

yielding two main components for our representation
system: a terminological one, or TBox, and an asser-
tional one, orA Box. TheTBox allows us to establish tax-
onomies of structured terms and answer questions about
analytical relationships among these terms; the A Box
allows us to build descriptive theories of domains of in-
terest and to answer questions about those domains.
The separation between the two components arises

naturally in the two kinds of expressions used to repre-
sent knowledge-(nominal) terms and sentences. The
T Box deals with the formal equivalent of noun phrases
such as "a person with at least three children," and
understands that this expression is subsumed by (the for-
mal version of) "a person with at least one child," and is
disjoint from "a person with at most one child." The
A Box, on the other hand, operates with the formal
equivalent of sentences such as "Every person with at
least three children owns a car" and understands the im-
plications (in the logical sense) of assertions such as this
one. Furthermore, just as a user has no way to specify
after the fact what sentences are logical consequences of

others in theA Box, he has no way to specify after the fact
where a term fits in a taxonomy in the T Box.The sub-
sumption and disjointness relationships are based only
on the structure of the T Box terms and not on any
(domain-dependent) facts maintained by the A Box.

In the following sections, we describe the T Box and
A Box languages, the operations that are available on
these languages, and how these operations are being im-
plemented in Krypton.

Two languages for representation. Given its division
of representational labor, Krypton can afford to take a
strict view of the constructs in its two languages. The
expressions in the T Box language are used as structured
descriptions and have no direct assertional import. The
A Box language, on the other hand, is used strictly for
assertions.

The language of the terminological component.
Rather than simply using an existing frame language in
our T Box, we have chosen to break out the primitives

Figure 2. Figure 1 rock terms rapidly multiply because the representation language allows the formation of descriptive
terms like "large rock" and "gray rock."

Figure 3. Two representations of "bachelor." Note that the conceptual distance between bachelor and person in (a) is
different from that in (b).

October 1983 69

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

that seem to make up the essence of frames, to carefully
specify their meanings, and to put them together in a
compositional framework. In particular, theT Box sup-
ports two types of expressions: concept expressions,
which correspond roughly to frames (or, more closely,
KL-One concepts), and role expressions, the counter-
parts of slots (or KL-One roles).

In general, concepts and roles are formed by combin-
ing or restricting other concepts and roles. For example,
the language includes an operator Conj Generic (for con-
joined generic), which takes any number of concepts,
and forms the concept corresponding to their conjunc-
tion. This operator could be used to define the symbol
"bachelor" by assigning it the expression (Conj Generic
unmarried-person man), assuming that the symbols
unmarried-person and man had appropriate definitions
as concepts. (As we will describe later, expressions can be
assigned as definitions to atomic symbols. This use of
defined symbols is purely for the user's convenience,
however.) Concepts can also be formed by restricting
other concepts using roles. For example, Krypton has a
VR Generic(value-restricted generic) operator that takes
two concepts cl and c2 and a role r and yields the term
meaning "a cl any r of which is a c2, " as in (VR Generic
person child bachelor), for "a person all of whose
children are bachelors." The language also has an
NR Generic (number-restricted generic) operator that
restricts the cardinality of the set of fillers for a given
role; for example, (NR Generic person child 1 3), for
"a person with at least one and not more than three
children. "

Roles, like concepts, can be defined as specializations
of other roles. One basic role-specialization operator
VR DiffRole (value-restricted differentiation) takes a
role r and a concept c, and defines the derivative role cor-

responding to the phrase "an r that is a c. " For example,
"son" could be defined as (VR Diff Role child man),
given the terms "child" (a role) and "man" (a concept).

All term-forming operators can be composed in the
obvious way, as in the following example:

(VR Generic (Conj Generic unmarried-p- son man)
(VR Diff Role sibling man)
(NR Generic person child 1 oo)).

Table 1.
The T Box language.

EXPRESSION INTERPRETATION

Concepts
(Conj Generic cl ... cn) 'a cl and ... and a cn''
(VR Generic cl r c2) ''a c1 any r of which is a c2'
(NR Generic c r nI n2) ''a c with between n1 and n2 r's'
(Prim Generic c i) "a c of the ith kind''
(Decomp Generic c i j 'a c of the ith type from the
disjoint?) jth [disjoint] decomposition''

Roles
(VR Diff Role c r) ''an r that is a c''
(Role Chain r, rn) ''an rn of ... of an r1''
(Prim Role r i) 'an r of the ith kind''
(Decomp Role r ij ''an r of the ith type from the
disloint?) jth [disjoint] decomposition'

DESCRIPTION

Conjunction
Value restriction

" Number restriction
Primitive subconcept
Decom position

Role differentiation
Role chain
Primitive subrole
Decomposition

This expression can be read as "a bachelor whose
brothers have children" or, more literally, "an unmar-
ried person and a man all of whose siblings that are men
have between one and o children."

In many domains we want to give necessary but not
sufficient conditions for a definition. To this end, Kryp-
ton includes facilities for specifying "only-if" defini-
tions. The Prim Generic and Prim Roleoperators are used
to form primitive specializations of a concept or role. A
primitive concept is subsumed by its superconcept, but
no sufficient conditions are given for determining if
something is described by it.

To see how the T Box language relates to a language of
frames, consider the "family" frame used as an example
earlier. As a concept, this frame might be expressed in
Krypton as

(Prim Generic (Conj Generic
(NR Generic
(VR Generic social-structure male-parent man)

male-parent 1 1)
(NR Generic
(VR Generic social-structure female-parent woman)

female-parent 1 1)
(VR Generic social-structure child person))).

We have been experimenting with several different
languages in the TBox; the principal operators con-

sidered in the current version are summarized in Table 1.

The language of the assertional component. As with
the expressions of the T Box language, the sentences of
the A Box language are construc-ted compositionally
from simpler ones. The concerns behind the choice of
sentence-forming operators, however, are quite different
from those motivating the ones in the T Box language.
The issue of expressive power in an assertional represen-
tation language is really the issue of the extent to which
incomplete knowledge can be represented.6 Moreover,
this issue motivates the standard logical sentential con-
structs of disjunction, negation, and existential quan-
tification. To provide the ability to deal systematically
with incomplete knowledge and to compensate for the
fact that the T Box has been purged of any assertional
ability, our A Box language is structured like a first-order
predicate calculus language. In other words, the sen-
tence-forming operators are the usual ones: Not, Or,
There Exists, and so on.

The major difference between ourA Box language and
a standard first-order logical language lies in the
primitive sentences. The nonlogical symbols of a stan-
dard logical language- that is, the predicate symbols
(and function symbols, if any)-are taken to be indepen-
dent, primitive, domain-dependent terms. In our case,
we already have a facility for specifying a collection of
domain-dependent terms; namely the T Box. Our ap-
proach, therefore, is to make the nonlogical symbols of
theA Box language be the terms of the T Box language.
As Hayes2 and others have observed, when the language
of frames and slots is translated into predicate calculus,
the frames and slots become one- and two-place predi-
cates, respectively. The main difference between what

70 COM PUTER

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

these researchers are suggesting and what we have done is
that the resulting predicates are not primitive; they can be
definitionally related to each other independently of any
theory expressed in the A Box language.

Overall, a Krypton system has the structure shown in
Figure 4: a T Box of structured terms organized tax-
onomically, an A Box of (roughly) first-order sentences
whose predicates come from the T Box, and a symbol
table maintaining the names of the T Box terms so that a
user can refer to them.

Operations on the components. So far, we have
described the Krypton T Box and A Box in terms of two
distinct but interconnected languages without saying
what a user actually does with expressions in these
languages. Figure 4 is a somewhat misleading depiction
of Krypton's structure, since a user does not have access
to either a network in the T Box or a collection of
sentences in the A Box.What a user does get access to is a
certain fixed set of operations over the TBox andA Box
languages. All interactions between a user and a Krypton
knowledge base are mediated by these operations.
The operations on a Krypton knowledge base can be

divided into two groups: Tell operations, which are used
to augment a knowledge base and Ask operations, which
are used to extract information. In either case, the opera-
tion can be definitional or assertional.

In terms of the ABox, Tell takes an ABoxsentence and
asserts that it is true. The effect is to change the
knowledge base into one whose theory of the world im-
plies that sentence. Ask takes a sentence and asks if it is
true. The result is determined on the basis of the current
theory held by the knowledge base and the vocabulary
used in the sentence, as defined in the T Box. Sche-
matically, we can describe these operations by

A Box:

Tell: KB x Sentence - KB
(Sentence is true.)

Ask: KB x Sentence - [yes, no, unknown]
(Is sentence true?)

For the T Box, Tell takes a symbol and associates it
with aT Box term (noun phrase). The effect is to change
the knowledge base into one whose vocabulary includes
the symbol defined by the term. We have focused on two
Ask operations: the first asks whether one T Box term
subsumes another, and the second whether one T Box
term is conceptually disjoint from another. Schematical-
ly, this gives us

T Box:

Tell: KB x Symbol x Term - KB
(By symbol, I mean term.)

Ask,: KB x Term x Term- [yes, no]
(Does term, subsume term2?)

Ask2: KB x Term x Term - [yes, no]
(Is term, disjoint from term2?)

Of course, there have to be additional Ask operations
on a knowledge base. So far, for instance, we cannot get

anything but a yes/no answer. In the A Box,we have to
be able to find out what individuals have a given prop-
erty; in the T Box, we need some way of getting informa-
tion from the definitions that is not provided by the sub-
sumption and disjointness questions (e.g., the number of
"angles" of a "triangle").
The service provided by Krypton as a knowledge-

representation system is completely specified by these
operations. In particular, the notions of a taxonomy or a
set of first-order clauses in normal form are not part of
the interface provided by the system. The actual sym-
bolic structures used by Krypton to realize Tell and Ask
are not available to the user. In this functional view, a
knowledge base is treated like an abstract data type,
characterized by a set of operations rather than by a cer-
tain implementation structure.

Building Krypton. The following discussion is a
generalized accounting of how we are currently con-
structing Krypton. Because the T Box can be considered
to support the A Box, we will discuss the A Box first.

Making an A Box. The first thing to notice about an
implementation of theA Box is that the expressive power
of the assertional language necessitates the use of very
general reasoning strategies to answer questions. Spe-
cifically, we cannot limit ourselves to the special-purpose
methods typical of frame-based representation systems.
For example, to find out ifa cow is in the field, we can-

not simply search for a representational object standing
for it (i.e., an instantiation of the "cow-in-the-field"
concept), since, among other things, we may not know
all the cows or even how many there are. Yet, we may
very well have been told that Jones owns nothing but
cows and that at least one of his animals has escaped into
the field.

4

Figure 4. An overview of Krypton's structure. The T Box has structured
terms organized taxonomically, the A Box contains first-order
sentences whose predicates come from the T Box, andthe symbol table
maintains the names of T Box terms.

October 1983 71

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

Yhe second point worth noticing about the A Box is
that if the predicate symbols are indeedT Box terms, then
the A Box reasoner needs to have access to theT Box
definitions of those terms. For example, once told that
Elsie is a cow, the A Box should know that Elsie is an
animal and is not a bull. A Box predicates are not sim-
ply unconnected primitives (as in first-order logic), so if
we want to use standard first-order reasoning techni-
ques, we have to somehow make the connections im-
plied by the T Box.

Conceptually, the simplest way to make these connec-
tions is to make the definition of a T Box term assert a
sentence in the A Box and then to perform standard first-
order reasoning over the resulting expanded theory. For
example, after defining the concept "cow," we could
automatically assert sentences saying that every cow is an
animal and that cows are not bulls, as if these were ob-
served facts about the world. As far as theA Box is con-
cerned, the definition of a term would be no more than
the assertion of a "meaning postulate."*

In some sense, this approach would yield a hybrid
system like the kind discussed by C. Rich,7 since we
would have two notations stating the same set of facts.
Our goal, however, is to develop an A Box reasoner that
avoids such redundancies, maintains the distinction be-
tween definitional and assertional information, and pro-
vides a significant gain in efficiency over simply asserting
the meaning postulates as axioms. To this end, we are
developing extensions to standard inference rules that
take into account dependencies among predicates that
can be derived from T Box definitions.

For example, the reasoning of a standard resolution
theorem prover depends on noticing that an occurrence
of ¢~(x) in one clause is inconsistent with ii(x) in
aniother. Given that realization, the two clauses can be
used to infer a resolvent clause. The scope of this in-
ference rule can be increased by using subsumption and
disjointness information from the T Box as an additional
means of recognizing the inconsistency of two literals.
(Stickel8 gives a similar approach to augmenting resolu-
tion by "building in" a theory.) That is, if 0 and ; are
disjoint, then p5(x) and V'(x) are inconsistent, and if i
subsumes , then -i (x) and ~(x) are inconsistent. The
situation is complicated by the fact that T Box definitions
also imply "conditional" inconsistencies. For example,
assume that "rectangle" has been defined as "a polygon
any angle of which is a right-angle." "Polygon" (x) is in-
conisistent with - "rectangle" (x) only when all the angles
of x are right angles. In such cases, the clauses containing
the conditionally inconsistent literals can still be resolved,
if we include the negation of the condition in the resolvent.
Thus, if the T Box is asked whether "polygon" is disjoint
from -"rectangle," it should answer, in effect, "only
when all the angles are right angles."

Making a TBox. If we take the point of view that an
A Box reasoner has to be able to access T Box subsump-
tion and disjointness information between steps in a de-

*indeed, by tar the most conmmon rendering of definitions in systems
based oni first-order logic is as assertions of a ceitain form (universally
q'antified biconditionals), a treatment that fails to distinguish them from
thd rinure arhitrarv facts with the same togical form.

duction, we have to be very careful about how long it

takes to compute that information. Absolutely nothing
will be gained by our implementation strategy if the
T Box operations are as hard as theorem proving; we

might just as well have taken the standard "meaning
postulate" route. We are taking three steps to ensure that
the T Box operations can be performed reasonably quick-
ly with respect to the time needed by the A Box.
The first and perhaps most important limit on the

T Box operations is provided by the T Box language itself.
We can certainly imagine wanting a language that would
allow arbitrary "lambda-definable" predicates to be
specifed. The trouble is that no complete algorithm for
subsumption would then be possible, much less an effi-
cient one. By restricting the T Box language to what
might be called the "frame-definable" predicates (in
terms of operators such as those already discussed), we
stand a chance of getting a usable algorithm and still pro-
viding a set of term-forming facilities that have been
found useful in Al applications.
The situation is far from resolved, however. The com-

putational complexity of term subsumption seems to be
extremely sensitive to the choice of term-forming
operators. For example, given a simple T Box language
without the VR Diff Role operator, the term-subsump-
tion algorithm will apparently be 0(n2) at worst; with
this operator, however, the problem is not likely to have
a nonexponential solution.9
As a second step towards fulfilling the efficiency re-

quirement for the T Box, we have adopted a caching
scheme in which we store subsumption relationships for
symbols defined by the user in a tree-like data structure.
We are, in effect, mnaintaining an explicit taxonomy of
the defined symbols. We are also developing methods for
extending this cache to include both absolute and condi-
tional disjointness information about T Box terms. The
key question, which has not yet been answered, is how to
determine a useful subset of all the conditional relation-
ships that could be defined between the symbols.
As final step towards an efficient T Box, we have

adopted the notion of a classifier much like the one pre-
sent in KL-One, I0 wherein a background process sequen-
tially determines the subsumption relationship between
the new symbol and each symbol for which it is still un-
known. Because the taxonomy reflects a partial ordering,
we can incrementally move the symbol down toward its
correct position. In this way, the symbol taxonomy slow-
ly becomes increasingly informed about the relationship
of a symbol to all the other defined symbols.
One important thing to notice about an implementa-

tion strategy based on a taxonomy and classification is
that it is only an implementation strategy. The meaning
of the T Box language and the definition of the T Box
operators do not depend at all on the taxonomy or on
how well the classifier is doing at some point.

Problems arise when frames are used as a repre-
sentation language: structural and assertional facilities
are often confused, the expressive power is limited
(particularly when instantiation is the principal oper-

COMPUTER72

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

ation), and frame systems are defined only in terms of the
data structures used to implement them.
The Krypton system represents an attempt to deal

directly with these problems in terms of a strict func-
tional design strategy. By severely limiting the interface
between a user and a knowledge base, certain misuses of
the system can be minimized. A user is forced to concen-
trate on what his knowledge base is for, rather than on
the implementation details supporting this functionality.

Krypton also advocates that a representation system be
divided into two distinct components: terminological
and assertional. The terminological component supports

the formation of structured descriptions organized tax-

onomically, while the assertional component allows
these descriptions to be used to characterize some do-
main of interest. In either case, we have a compositional
language that is used to interact with a knowledge base.
The Krypton system is now being implemented in

Interlisp-D. As of this writing, we have implemented the
operations of the terminological component using the
taxonomy/classification methodology and are currently
investigating its interaction with a version of the Stickel
theorem-prover.11l

6. R. J. Brachman and H. J. Levesque, "Competence in
Knowledge Representation," Proc. AAAI, 1982, pp.
189-192.

7. C. Rich, "Knowledge Representation Languages and
Predicate Calculus: How to Have Your Cake and Eat It
Too," Proc. AAAI, 1982, pp. 192-196.

8. M. E. Stickel, "Theory Resolution: Building-In Nonequa-
tional Theories," Proc. AAAI, 1983.

9. H. J. Levesque, "Some Results on the Complexity of Sub-
sumption in a Frame-based Language," Fairchild
Laboratory for Artificial Intelligence, Palo Alto, Calif. (in
preparation).

10. J. G. Schmolze and T. A. Lipkis, "Classification in the
KL-ONE Knowledge Representation System," Proc. Int'l
Joint Conf. Artificial Intelligence, 1983.

11. M. E. Stickel, "A Nonclausal Connection-Graph Resolu-
tion Theorem-Proving Program," Proc. AAAI, 1982, pp.
229-233.

Ronald J. Brachman is the author of an article appearing earlier
in this issue. His photo and biography are on p. 36.

Acknowledgments

Many people have made significant contributions to this
work. Much of Krypton is derived from KL-One, whose
development was strongly influenced by Rusty Bobrow,
David Israel, Jim Schmolze, and Bill Woods. We also

thank Bill Mark, Tom Lipkis, Phil Cohen, and especially
Danny Bobrow, Austin Henderson, and Mark Stefik for

their participation in many discussions on Krypton and

their help in the design ofthe incipient system. Thanks also

to Mark Stickel for the use of his theorem-prover and for

the time he spent explaining it to us.

References

I. R. J. Brachman, "What IS-A Is and Isn't," Computer,
Vol. 16, No. 10, Oct. 1983, pp. 30-36.

2. P. J. Hayes, "The Logic of Frames," Frame Conceptions
and Text Understanding, D. Metzing, ed., Walter de
Gruyter and Co., Berlin, 1979, pp. 46-61.

3. W. A. Woods, "What's in a Link?: Foundations for
Semantic Networks," Representation and Understanding,
D. G. Bobrow and A. M. Collins, eds., Academic Press,
New York, 1975, pp. 35-82.

4. H. J. Levesque, A Formal Treatment ofIncomplete Knowl-
edge Bases, tech. report 3, Fairchild Laboratory for Ar-
tificial Intelligence Research, Palo Alto, Calif., Feb. 1982.

5. Proc. 1981 KL-ONE Workshop, J. G. Schmolze and R. J.
Brachman, eds., tech. report 4, Fairchild Laboratory for
Artificial Intelligence Research, Palo Alto, Calif., May
1982.

Richard E. Fikes is a member of the
Cognitive and Instructional Sciences
Group at the Xerox Palo Alto Research
Center, where he has been since 1975.
Prior to joining PARC, he was a member
of the Artificial Intelligence Center at SRI
International for six years. Fikes has pub-
lished numerous papers in automatic plan-
ning systems, expert help systems,
automation of procedural office work,

deductive information retrieval, constraint satisfaction, and
knowledge representation, and holds a PhD in computer science
from Carnegie-Mellon University. He has served as chairman of
Sigart and editor of Sigart Newsletter and is on the editorial
board of Decision Support Systems.

Fikes's address is Xerox Palo Alto Research Center, 3333
Coyote Hill Rd., Palo Alto, CA 94304.

Hector J. Levesque is a computer scientist
11 i at the Fairchild Laboratory for Artificial

Intellience Research. His previous work
includes the development of the Pro-
cedural Semantic Network formalism, or

PSN, and participation in the KL-One
project at Bolt Beranek and Newman,

E Inc., in Cambridge, Mass. Levesque
received a PhD from the University of
Toronto in 1981. His doctoral dissertation

dealt with the problems of incomplete knowledge within a
logical representation framework.

Levesque's address is Fairchild Laboratory for Artificial In-
telligence Research, 4001 Miranda Ave., Palo Alto, CA 94304.

October 1983 73

Authorized licensed use limited to: Stanford University. Downloaded on April 25,2010 at 21:38:48 UTC from IEEE Xplore. Restrictions apply.

