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Abstract Heatwaves are defined as a set of hot days and nights that cause a
marked short-term increase in mortality. Obtaining accurate estimates of the
probability of an event lasting many days is important. Previous studies of tem-
poral dependence of extremes have assumed either a first-order Markov model
or a particularly strong form of extremal dependence, known as asymptotic de-
pendence. Neither of these assumptions is appropriate for the heatwaves that
we observe for our data. A first-order Markov assumption does not capture
whether the previous temperature values have been increasing or decreasing
and asymptotic dependence does not allow for asymptotic independence, a
broad class of extremal dependence exhibited by many processes including all
non-trivial Gaussian processes. This paper provides a kth-order Markov model
framework that can encompass both asymptotic dependence and asymptotic
independence structures. It uses a conditional approach developed for mul-
tivariate extremes coupled with copula methods for time series. We provide
novel methods for the selection of the order of the Markov process that are
based upon only the structure of the extreme events. Under this new frame-
work, the observed daily maximum temperatures at Orleans, in central France,
are found to be well modelled by an asymptotically independent third-order
extremal Markov model. We estimate extremal quantities, such as the prob-
ability of a heatwave event lasting as long as the devastating European 2003
heatwave event. Critically our method enables the first reliable assessment
of the sensitivity of such estimates to the choice of the order of the Markov
process.
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1 Introduction

Many devastating natural hazards are caused by events that are extreme and
rare. Extreme value theory provides a general framework for modelling such
extreme values. In many situations a singular extreme observation does not
have a great effect, whereas combinations and runs of extreme values can
cause widespread devastation. A heatwave is defined as a set of consecutive
days and/or nights that lead to an increase in mortality. So when estimating
risks attributed to heatwaves we need to account for the fact that one very
hot day may not cause a large increase in mortality whereas a run of consec-
utive less hot days can be far more damaging. Therefore any extreme value
model utilised to help assess the risk of heatwaves must be able to model such
behaviour reliably. In the terminology of extreme value theory, this requires
a model that can capture the extremal temporal dependence structure along-
side marginal tail characteristics. The data that we will model in this paper
relates to summer daily maximum temperatures from a single site observed
over a number of years. Therefore we want to model the extreme events of a
univariate stationary series.

Let {Yt} be a stationary time-series with upper endpoint yF . We are interested
in modelling the behaviour for {Yt} above some high threshold uY . Following
copula time series methods (Joe 1997), our approach is to separately model
the margins and dependence structure of {Yt}. The most common approach to
modelling the marginal distributions of extreme values is to fit a generalized
Pareto distribution (GPD) to exceedances of uY . The GPD takes the form

P(Yt − uY > y | Yt > uY ) =

(

1 +
ξy

σuY

)−1/ξ

+

for y ≥ 0, (1)

where c+ = max(c, 0), σuY
> 0 and ξ ∈ R are the scale and shape param-

eters of the GPD respectively (Coles 2001), with the scale parameter being
threshold dependent. The justification for this model is an asymptotic result
of Pickands (1971) that showed that, under weak conditions on Yt, the dis-
tribution of suitably scaled exceedances of a threshold by Yt converges to the
GPD as the threshold tends to the upper endpoint yF . Thus the GPD model in
equation (1) assumes that the limiting result holds exactly for a large enough
threshold uY .

For heatwaves it is important to be able to model the distribution of the
number of exceedances of a critical level during a block of time. It is also
necessary to be able to estimate other extremal quantities of heatwave events,
here named cluster functionals. Methods exist to split a time-series of tem-
perature data into independent clusters of exceedances of the threshold uY ,
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where within each cluster groups of dependent exceedances occur and between
clusters values are treated as independent. Clusters are not necessarily consec-
utive exceedances, in fact the most popular technique for cluster identification
is the runs method (Smith and Weissman 1994), with run length l, which takes
a cluster to be exceedances of uY that are not separated by a run of l con-
secutive non-exceedances of uY . The value of l can be selected automatically
using methods of Ferro and Segers (2003). The number of clusters is Poisson
distributed (Davison and Smith 1990). We wish to accurately model the tem-
poral dependence of the within cluster values, i.e., the local time-series during
an extreme event. Empirical distributions of cluster functionals could be used
for inference of within cluster behaviour, but they have major limitations for
extrapolation and so are only really suitable for model checking. Our approach
is to use a kth-order Markov chain for {Yt}, using only values of Yt within lag
k of an exceedance of uY . We term such a model an extremal Markov chain.

Many different approaches exist for modelling the multivariate dependence
structure of extreme values. First, consider two random variables (Y0, Yτ ) at a
time lag τ . A key way to discriminate between approaches is through the lag
τ extremal dependence measure χτ , often termed the tail coefficient, where

χτ = lim
y→yF

P(Yτ > y | Y0 > y). (2)

When χτ > 0, i.e., the largest values of the variables can occur together,
the pair are termed asymptotically dependent. Asymptotic dependence arises
when the conditions for multivariate regular variation hold and for max-stable
distributions/processes; see de Haan and Ferreira (2006), Resnick (1987) and
Davison et al (2012). When χτ = 0, i.e., the largest values of the variables can-
not occur together, the pair are termed asymptotically independent. Asymp-
totic independence arises for all non-trivial Gaussian processes and for a broad
range of examples identified by Ledford and Tawn (1997) and Heffernan (2000).
The conditional extremes approach of Heffernan and Tawn (2004) currently
is the only model that has the flexibility to capture both of these extremal
dependence classes whilst being generalisable to higher-dimensional problems.
We shall base our inference on this class.

A range of temporal dependence models for extreme values have been pro-
posed, with some specific to heatwave applications. Smith et al (1997) provide
a framework using first-order Markov chain approaches for modelling thresh-
old exceedances and analysing the distribution of cluster functionals of ex-
treme events. A weakness with their approach is that it assumes that at lag
1 only asymptotic dependence is possible, and this implies asymptotic depen-
dence holds at all lags. Yun (2000), Fawcett and Walshaw (2006) and Ribatet
et al (2009) outline extensions of this approach to kth-order Markov chains
but also they are restricted to assuming asymptotic dependence for all lags.
More recently, Reich et al (2014) formulate an asymptotically dependent max-
stable process using random effects within a Bayesian framework, incorporat-
ing dependence within 10 day windows. A range of asymptotically independent
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Markov processes have been assumed. After marginal preprocessing, Dupuis
(2012) models heatwaves using an asymptotically independent AR(8) model.
However this model is fitted to the whole series, not simply the extremes, so
may lead to bias when applied to the extremes. Bortot and Tawn (1998) use
theory from Ledford and Tawn (1997) to derive a class of models for first-order
Markov chains that permits both asymptotic independence and asymptotic de-
pendence. However these models are only justified when consecutive values are
large, i.e., Yt > uY and Yt+1 > uY , which is restrictive for our application.

Winter and Tawn (2016) built a first-order Markov approach, based upon
the conditional extremes approach of Heffernan and Tawn (2004), that can
account for both asymptotic dependence and asymptotic independence and
applies if at least one component of (Yt, Yt+1) is greater than uY . The limit
theory for this model has been studied by Papastathopoulos et al (2017). They
find the limiting joint behaviour of (Yt+1, . . . , Yt+m)|Yt > uY , after suitable
normalisation, as uY → yF , for any integer m ≥ 1. For the daily maximum
temperature data that are analysed in our paper, Winter and Tawn (2016)
found that standard time series diagnostics, e.g., PACF and a comparison of
observed and modelled cluster functionals, suggest that the first-order Markov
assumption was reasonable. However, the physical mechanisms of heatwaves
suggest that this is perhaps an oversimplification that could lead to an under-
estimation of the risk of a heatwave event. They also found strong evidence
of asymptotic independence, with significant positive dependence, and that
falsely assuming a first-order Markov model with asymptotic dependence leads
to overestimation of heatwave characteristics. This paper seeks to take advan-
tage of the higher-order structure of the extreme values of the process through
a kth-order Markov model for extremes to provide more accurate estimates of
the risk of a heatwave event.

We also seek to develop diagnostic tests to choose an appropriate order for
the Markov process to fit to extreme events. Standard time-series diagnostics
for choosing an appropriate Markov process are potentially misleading when
considering the behaviour of extremes. If the process is kth-order Markov,
then its extreme states will follow a Markov process with order of at most k.
Ledford and Tawn (2003) developed diagnostic tools to test long and short
range dependence assumptions within extreme events of both asymptotically
dependent and asymptotically independent processes. However, these methods
were unable to detect the order of the process. For asymptotically dependent
processes Fawcett and Walshaw (2006) and Ribatet et al (2009) explore heuris-
tic methods proposed in Smith et al (1997) for identifying the order. Here we
seek to extend these tools to select the order of an extremal Markov process
irrespective of whether it is asymptotically independent or asymptotically de-
pendent. There are natural connections with the equivalent issue of identifying
graphical structures in multivariate extremes, see Papastathopoulos and Tawn
(2013) and Hitz and Evans (2015), but in these cases again the focus to date
has been on asymptotically dependent variables.
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Section 2 sets out the copula formulation for kth-order stationary Markov
chains, with the asymptotic representations for these processes when in ex-
treme states being identified in Section 3. Our asymptotically justified model
for kth-order chains is set out in Section 4 and the inference for this is discussed
in Section 5. A discussion of diagnostic methods for the choice of the order of
the extremal Markov process is given in Section 6. Section 7 gives results for
our temperature data set, from Orleans in central France, and includes com-
parisons with the results of Winter and Tawn (2016) for a first order Markov
model. Discussion and conclusions are presented in Section 8.

2 Copula formulations for stationary Markov processes

We shall model the stationary time-series {Yt} by a kth-order Markov chain
using copula time series methods. Under the assumption that a stationary
time-series {Yt} follows a kth-order Markov process, the joint density function
f1:n of Y1:n = (Y1, . . . , Yn) can be written as

f1:n(y1:n) = f1:k(y1:k)
n−k
∏

t=1

fk+1|1:k(yt+k | yt:t+k−1),

where fk+1|1:k(· | ·) is the conditional density function of Yk+1|Y1:k. Here and
throughout we subscript densities and vector variables to denote the associated
indices of {Yt}. We also use the notation i : j to denote (i, i + 1, . . . , j). For
stationarity the joint density f1:k+1(y1:k+1) must satisfy the property that its
m-dimensional joint margins satisfy the condition

fi1,...,im(y1:m) = fi1+τ,...,im+τ (y1:m), (3)

for all m < k + 1, τ ∈ N, ij ∈ N for j = 1, . . . ,m, with 1 ≤ i1 < . . . <
im + τ ≤ k + 1 and y1:m ∈ R

m (Joe 1997). As a consequence of condition (3)
the margins fi must be identical and we subsequently denote them by f . Ad-
ditional dependence conditions must also hold, e.g., (Yi, Yj) and (Yi+τ , Yj+τ )
have identical joint distributions.

We shall adopt a copula framework for modelling f1:k+1, with associated joint
distribution function F1:k+1 satisfying

F1:k+1(y1:k+1) = C(FY (y1), . . . , FY (yk+1))

= CX(F−1
X {FY (y1)}, . . . , F

−1
X {FY (yk+1)}), (4)

where C is a copula with uniform margins and CX is the associated joint
distribution with identical marginal distribution functions FX , where F−1

X is
the inverse of FX . The copula C and joint distribution function CX inherit the
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stationarity conditions (3) that are required for f1:k+1. Specifically, for C
X we

require that its m-dimensional marginal CX
i1,...,im

satisfies

CX
i1,...,im(x1:m) = CX

i1+τ,...,im+τ (x1:m), (5)

for all m < k+1, τ ∈ N, ij ∈ N for j = 1, . . . ,m, with 1 ≤ i1 < . . . < im+ τ ≤
k + 1 and x1:m ∈ R

m.

The reason for considering the joint distributions CX with non-uniform iden-
tical margins, instead of copulas with uniform margins, is that the extremal
properties are more simply expressed for some non-uniform marginal choices.
The most convenient choice of FX depends on the context: the Fréchet or
Pareto distributions are typically assumed for max-stable distributions; for
conditional extremes Heffernan and Tawn (2004) use Gumbel margins; whereas
for joint tail modelling Wadsworth and Tawn (2013) used exponential mar-
gins. Keef et al (2013) showed that a more comprehensive approach arises for
Laplace margins with

FX(x) =

{

1
2 exp(x), x < 0,

1− 1
2 exp(−x), x ≥ 0.

Trivially, if {Yt} is a stationary kth-order Markov chain, then {Xt}, defined
by

Xt =

{

log {2F (Yt)} if F (Yt) < 1/2,

−log {2 [1− F (Yt)]} if F (Yt) ≥ 1/2,

is a stationary kth-order Markov chain with Laplace margins. With this for-
mulation it follows that the likelihood is

f1:n(y1:n) = f1:k(y1:k)

n−k
∏

t=1

cX1:k+1(xt:t+k)

cX1:k(xt:t+k−1)

f(yt+k)

fX(F−1
X (FY (yt+k)))

, (6)

where cX1:k+1 and cX1:k are the copula densities for Xt:t+k and Xt:t+k−1 respec-

tively and xt = F−1
X {FY (yt)} for all t. Here cX1:k+1 satisfies the joint density

condition that arises from the stationary copula condition (5). Note that the
term in the product of the likelihood factorises into separate terms for the
marginal and dependence structure of the time series.

3 Asymptotic representations for stationary extremal Markov

chains

3.1 Preliminaries

We now restrict the stationary kth-order Markov chain {Yt} to only extreme
events, i.e., what we call extremal Markov chains. We focus on the extreme
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events as we don’t want the dependence structure of the body of the process
to influence the fitting of the model to the extreme events. In particular we
do this by defining an extreme event to be when the first component of the
vector Yt:t+k is extreme, i.e., Yt > uE , where uE is a high threshold. Here
uE is not necessarily equal to the marginal modelling threshold uY , defined
in Section 1, as it is a dependence structure definition of an extreme which
can differ from a marginal definition as the rate of convergence to the limiting
form can be different for these two characteristics.

So we only model the conditional distribution Yt+k|Yt:t+k−1 parametrically
when Yt > uE , and we model this conditional distribution non-parametrically
when Yt ≤ uE . Equivalently, this corresponds to modelling Xt+k|Xt:t+k−1

when Xt > u, where u = F−1
X (FY (uE)). Similarly, marginally we model

the distribution FY parametrically for Yt > uY and non-parametrically for
Yt ≤ uY . If we use the copula formulation (4) then for large n, the likeli-
hood (6) for our model simplifies to

f1:n(y1:n) ≈
∏

t:xt>u

cX1:k+1(xt:t+k)

cX1:k(xt:t+k−1)

∏

t:yt>uY

f(yt), (7)

as the terms that have been dropped contribute little or nothing to the like-
lihood for the extreme value model. Details of the marginal model for FY ,
that is required for the second product in this likelihood, are given in Sec-
tion 4.1. The first term requires the conditional distribution of Xt+k | Xt:t+k−1

when Xt > u. Section 3.2 presents our main method for modelling extremal
dependence based upon the conditional approach outlined in Heffernan and
Tawn (2004). However, this model gives a limiting representation only for
Xt+1:t+k | (Xt > u) as u→ ∞. Therefore we propose an extension to give the
behaviour of the distribution of Xt+k | Xt:t+k−1 when Xt > u for u→ ∞.

3.2 Asymptotics for conditional extremes

Heffernan and Tawn (2004) propose an asymptotically justified conditional
multivariate extremes approach for modelling the extremes of a vector Xt:t+m,
for any integer m > 0, with all variables having Laplace margins and a joint
density. We present that model and then discuss the additional conditions re-
quired for {Xt} to be a stationary kth-order Markov process. Throughout the
rest of the paper all vector calculations are to be interpreted componentwise.

To explore the conditional distribution P {Xt+1:t+m ≤ x | Xt > u} for large
u we use an asymptotically justified form for this distribution as u → ∞. If
x is fixed, in general the limit distribution will be a degenerate distribution.
Hence Xt+1:t+m needs to be normalised appropriately so that the limiting
conditional distribution is non-degenerate as u → ∞. Heffernan and Resnick
(2007) propose that Xt+1:t+m is linearly normalised as a function of either Xt



8 Hugo C. Winter, Jonathan A. Tawn

or u. For statistical purposes it is most simple to use the approach of Heffernan
and Tawn (2004) and to normalise by Xt, so that is the approach that we will
take.

Heffernan and Tawn (2004) assume that there exist functions a: R → R
m

and b: R → R
m
+ , such that

P

(

Xt+1:t+m − a(Xt)

b(Xt)
≤ z1:m, Xt − u > x

∣

∣

∣

∣

∣

Xt > u

)

→ G1:m(z1:m) exp(−x),

(8)

as u → ∞ with z1:m ∈ R
m, where G1:m is a joint distribution function that

is non-degenerate in each margin, i.e., for j = 1, . . . ,m the jth margin Gj of
G1:m is non-degenerate. There is no finite parametric form for G1:m.

Under weak assumptions on the joint distribution of Xt:t+m, Heffernan and
Resnick (2007) show that componentwise a and b must be regularly varying
functions satisfying certain constraints, which for Laplace margins corresponds
to each of the components of a (respectively b) being regularly varying func-
tions of index 1 (respectively less than 1). Within this structure Heffernan and
Tawn (2004) found that a simple form for a and b holds for a very broad range
of copulas. In particular, they assume that

a(Xt) = α1:mXt and b(Xt) = X
β

1:m

t (9)

where α1:m = (α1, . . . , αm) ∈ [−1, 1]m and β1:m = (β1, . . . , βm) ∈ (−∞, 1)m.
This canonical parametric subfamily of a and b provides a parsimonious yet
flexible family for statistical modelling.

A key property of the limit (8) is that the limiting distribution factorises,
corresponding to large values of Xt being independent of the associated nor-
malised Xt+1:t+m. Here, stationarity of {Xt} ensures that α1:m, β1:m and
G1:m do not depend on t. When βi < 0 then Xt+i is asymptotically a multiple
of Xt for all Xt > u as u → ∞. As this deterministic structure is unlikely to
occur in practice, we take a pragmatic approach and restrict the parameter
space for β1:m so that (β1, . . . , βm) ∈ [0, 1)m.

Different types of extremal dependence lead to different values of the extremal
dependence parameters α1:m and β1:m. For 1 ≤ j ≤ m, when αj = 1 and
βj = 0 the variables (Xt, Xt+j) are asymptotically dependent and are asymp-
totically independent when αj < 1. Within the asymptotic independence case
a further resolution of the dependence structure is possible with 0 < αj < 1
or αj = 0 and βj > 0 corresponding to positive dependence; independence
when αj = βj = 0 and Gj is the Laplace distribution function; and negative
dependence when −1 ≤ αj < 0. For more information see Keef et al (2013).

Stationarity of {Xt} requires condition (5). However these conditions do not
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appear to impose any further constraints on the α1:k, β1:k and G1:k, when
k is the order of the Markov process in expression (8), for k ≤ m. We have
explored a range of examples that seem to support this. The reason for this
freedom appears to be that we are not looking at the whole copula but at a
slice with large Xt. Based on these empirical findings, we conjecture that there
is no relationship between these features and so in our model these features
are unconstrained. In contrast the values of αk+1:m, and βk+1:m and joint
distribution function Gk+1:m, for any m ≥ k + 1, do have structure imposed
by the stationary Markov behaviour and are determined entirely by α1:k, β1:k

and G1:k.

For stationary kth-order Markov chains with k > 1 no theoretical results
are published other than for asymptotically dependent processes (Yun 2000).
However for asymptotically dependent and asymptotically independent sta-
tionary first-order Markov processes, k = 1, Papastathopoulos et al (2017)
derive two possible forms for α2:m, β2:m and G1:m for all m ≥ 2 depending on
the value of α1. Specifically, when if 0 < α1 ≤ 1 then, for 2 ≤ τ ≤ m, ατ = ατ

1 ,
βτ = β1 and where G1:τ is the joint distribution of Z1:τ where

Zj =

j
∑

i=1

ατ−i+iβ1

1 Z1,i for j = 1, . . . , τ,

where Z1,i are independent and identically distributed over i, with distribution
function G1. Note that the situation where α1 = 1 and β1 = 0, i.e., asymptotic
dependence at lag one leads to asymptotic dependence at all lags, and that
{Zτ} is a random walk, thus giving the results of Smith (1992). Alternatively,
when α1 = 0 and 0 ≤ β1 < 1, they find that, for 2 ≤ τ ≤ m, ατ = 0, βτ = βτ

1

with G1:τ the joint distribution of

Zj =

j
∏

i=1

(Z1,i)
βi−1

1 for j = 1, . . . , τ,

with Z1,i ≥ 0 being independent and identically distributed over i, with dis-
tribution function G1. These results prove helpful in Section 6 for developing
tests for the process being a first, or higher, order extremal Markov chain.

Finally note that a kth-order Markov process can behave as a Markov pro-
cess with order kE , with kE ≤ k, in its extremes. In this case the information
in expression (8) for m = kE is only required to determine αkE+1:m, and
βkE+1:m and joint distribution function GkE+1:m for any m > kE . The situ-
ation kE < k arises for a kth-order Markov process when (αkE+1:k,βkE+1:k)
are determined by (α1:kE

,β1:kE
) and G1:k factorises into G1:kE

and GkE :k,
with the latter being the product of Laplace distribution functions. From a
statistical perspective we are only interested in estimating kE . For notational
simplification though, throughout the rest of the paper we do not distinguish
between kE and k, and use k to denote kE .



10 Hugo C. Winter, Jonathan A. Tawn

4 Models for conditional extremes

4.1 Marginal modelling

As {Yt} is a stationary series the marginal distributions FY are identical. As
discussed in Section 1, there is an asymptotic justification for modelling the
marginal excesses of uY by Yt as following a GPD with distribution func-
tion (1). But we do not specify a parametric form for the distribution of Yt
below uY . Following Coles and Tawn (1991) we model the marginal distribu-
tion of Yt as

FY (y) =







1− [1− F̃ (uY )]
(

1 + ξ y−uY

σuY

)−1/ξ

+
, y > uY ,

F̃ (y), y ≤ uY ,

where F̃ (y) is the empirical marginal distribution function of Y1:n.

4.2 Temporal dependence modelling

The limiting form of the conditional distribution (8) motivates our asymptoti-
cally justified model for the conditional distribution of Xt+1:t+k given Xt > u
for a large fixed value u, and k the order of the extremal Markov process.
Specifically, we assume that the limiting form (8) holds exactly for all values
of Xt > u with m = k, that the normalising functions a and b can be given by
forms (9), and that Xt:t+k has a density. It follows that we have

Xt+1:t+k|(Xt > u) = α1:kXt +X
β

1:k

t Z1:k, (10)

for α1:k ∈ [−1, 1]k, β1:k ∈ [0, 1)k and Z1:k is a random variable, independent
of t and Xt, with distribution function G1:k and joint density g1:k. Trivially,
model (10) satisfies the limiting property (8) as Z1:k and Xt are independent
and exceedances of uY > 0 are unit exponential. The recurrence relation-
ship (10) cannot be interpreted as holding for all Xt, as it only applies for
Xt > u. As such, series generated under this process (like tail chains in Smith
(1992) and Papastathopoulos et al (2017)) have negative drifts that ensure the
process returns from an extreme state to the body of the distribution.

We need an asymptotically motivated model forXt+k | Xt:t+k−1 whenXt > u.
As no formal limiting results exist our approach provides a heuristic approach
which provides a flexible modelling framework. By assuming that model (10)
holds exactly for Xt = xt > u it follows that

Xt+k|(Xt:t+k−1 = xt:t+k−1) = αkXt +Xβk

t Zk|1:k−1, (11)

where Zk|1:k−1 is a random variable with the same distribution as the condi-
tional distribution of Zk given that

Z1:k−1 =
x1:k−1 −α1:kxt

x
β

1:k

t

:= z1:k−1.
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This conditional variable Zk | Z1:k−1 = z1:k−1 has distribution function

Gk|1:k−1(z | z1:k−1) =

∫ z

−∞

gk|1:k−1(s | z1:k−1)ds,

where gk|1:k−1(· | z1:k−1) is the associated conditional density function, given
by g1:k(z1:k−1, ·)/g1:k−1(z1:k−1). It follows iteratively that for j = 1, . . . that
Xt+k+j |(Xt:t+k+j−1 = xt:t+k+j−1) is also given by expression (11). Conse-
quently we can simulate the values of Xt+k+j , for 1 ≤ j ≤ m, without explic-
itly evaluating αk+1:m,βk+1:m and Gk+1:m.

As this is a statistical model developed based on heuristic arguments it may
not give a structure that is consistent with the limiting tail chain of the kth-
order process, but what is critical here is that it gives a flexible and parsi-
monious statistical model for capturing the dependence of the process over a
high threshold. Section 7 presents evidence that supports our statistical model
through the realistic realisations of extreme events that it generates.

5 Inference

5.1 Inference for model parameters

Here we assume that the process is a stationary kth-order extremal Markov
process, with k known. The estimation of k is discussed in Section 6. Under
this assumption we estimate the extremal marginal parameters (σuY

, ξ), the
extremal dependence parameters (α1:k,β1:k) and the distribution Gk|1:k−1.
Our approach is a pseudo maximum likelihood inference scheme with block
bootstrap methods for obtaining confidence intervals. Specifically, we use step-
wise inference, with marginal parameters estimated first, then the dependence
parameters, and then Gk|1:k−1 is estimated non-parametrically. This approach
to separate inference for marginal and dependence structure is standard in
copula modelling and has been shown to not lose much efficiency; see Genest
et al (1995) and Liang and Self (1996).

From likelihood (7) our approach corresponds to standard maximum likeli-
hood estimation for (σuY

, ξ) using all the threshold exceedances of uY by
{Yt}. Likelihood (7) then simplifies down to a product over the density con-
tributions for Xt+k | Xt:t+k−1 when Xt > u. Since G1:k and its marginals do
not take any finite parametric form, we make a temporary working assump-
tion that Z1:k are independent Gaussian variables with Zj ∼ N(µj , γ

2
j ) for

j = 1, . . . , k (Keef et al 2013). Under this assumption

Xt+j | {Xt = x} ∼ N
(

αjx+ µjx
βj , γ2j x

2βj
)

for x > u, (12)
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where j = 1, . . . , k for all t with Xt > u. If we denote the corresponding
Gaussian likelihood by Lj , for j = 1, . . . , k, then the overall likelihood is

L(α1:k,β1:k,µ1:k,γ1:k) =

k
∏

j=1

Lj(αj , βj , µj , γj), (13)

due to the independence assumption. Maximisation of likelihood L gives esti-
mates (α̂1:k, β̂1:k, µ̂1:k, γ̂1:k). Unless there are constraints on the parameters
across lags then in practice these values can be most easily be obtained through
maximising Lj separately for each j. Although it may appear that ignoring
the dependence of Z1:k would bias the inference for α1:k and β1:k, standard
regression results show this is not the case. Furthermore, Lugrin et al (2016)

find that estimating (α̂1:k, β̂1:k) while accounting for the dependence in Z1:k,
through a Bayesian non-parametric estimate of G1:k, gives only small improve-
ments relative to our much simpler approach.

At this stage the Gaussian assumption is discarded and a non-parametric
estimate of the conditional distribution function Gk|1:k−1 is formed. This step
accounts for the dependence of Z1:k in the subsequent inference. Our approach
to estimating Gk|1:k−1 is to obtain an estimate of the joint density function
g1:k and use this to derive the conditional distribution. For this purpose we
use kernel density estimation, similar to Papastathopoulos and Tawn (2013).
Under model (10) we have that Zt+1:t+k ∼ G1:k for all t with Xt > u. We

first derive an estimated identically distributed sample ẑ
(i)
1:k, i = 1, . . . , nu from

Z1:k, where nu is the number of exceedances by {Yt} of uE . Specifically, let
t1, . . . , tnu

be the indices of t = 1, . . . , n where xt > u. By inverting equa-
tion (10) we have for i = 1, . . . , nu

ẑ
(i)
1:k =

xti+1:ti+k − α̂1:kxti − µ̂1:k(xti)
β̂

1:k

γ̂1:k(xti)
β̂

1:k

. (14)

For each j = 1, . . . , k, the sample ẑj = (ẑ
(i)
j , i = 1, . . . , nu) has zero mean and

unit variance.

Based on the ẑ1:k data, we estimate the joint density g1:k using a multivariate
kernel density estimation methods, i.e.,

g̃1:k(z) =
1

nu

nu
∑

i=1

KH

(

z− ẑ
(i)
1:k

)

, (15)

where KH is the independent multivariate Gaussian kernel function, with H =
(h1, . . . , hk) the vector of the marginal bandwidths. It follows that our estimate
of the conditional distribution function Gk|1:k−1 is

Ĝk|1:k−1(z | z1:k−1) =

nu
∑

i=1

wiΦ

(

z − ẑ
(i)
k

hk

)

,



kth-order Markov extremal models for assessing heatwave risks 13

where the weights

wi =

k−1
∏

j=1

φ

(

zj − ẑ
(i)
j

hj

)/

nu
∑

r=1

k−1
∏

j=1

φ

(

zj − ẑ
(r)
j

hj

)

i = 1, . . . , nu, (16)

satisfy 0 ≤ wi ≤ 1,
∑nu

i=1 wi = 1, and where φ is the standard normal density.

5.2 Inference for cluster functionals

From the estimates of the model parameters we can derive estimates of inter-
esting cluster functionals by using the estimated model to repeatedly simulate
the within cluster behaviour of the process. Our strategy for generating within
cluster behaviour is to use the properties of the tail chain, where a tail chain
describes the nature of the Markov chain after an extreme observation, ex-
pressed in the limit as the observation tends to the upper endpoint of the
marginal distribution; see Rootzén (1988), Smith (1992), Smith et al (1997),
Yun (2000) and Drees et al (2015).

Tail chains were originally developed for asymptotically dependent processes,
where for Laplace margins, they correspond to the limiting process of {Xt −
u; t = 0, 1, . . .}|X0 > u as u → ∞. Normalisation of Xt by a subtraction
of u leads to non-degeneracy for asymptotic dependence. Denote the limit-
ing tail chain by {X+

t ; t = 0, 1, . . .}. It follows that X+
0 follows an standard

Exponential distribution and subsequent values that exceed 0 contribute to
the limiting cluster. This tail chain is used to approximate the behaviour of
the asymptotically dependent processes during extreme events which exceed a
high threshold v, giving the approximation for {Xt}, subject to X0 > v, being

provided {X
(v)
t := v+X+

t ; t = 0, 1, . . .}. In essence the tail chain is assumed to
hold exactly over v. The tail chain has a negative drift and so after sufficient
steps no further exceedances of v are possible within the cluster.

Kulik and Soulier (2015) and Papastathopoulos et al (2017) consider tail chains
for first-order asymptotically independent processes. Normalising using a sub-
traction of u leads to degeneracy in this case, and less powerful location-scale
norming is required. In fact for kth-order Markov chains with Laplace mar-
gins, the required normalisations under the Heffernan and Tawn (2004) model
formulation are given by the results in Section 4.2, with both location and
scaling required.

To be precise we now set out how to simulate from the kth-order tail chain

approximation above threshold v. The tail chain {X
(v)
t ; t = 0, 1, . . .}, is sim-

ulated in three steps. First the initial exceedance, X
(v)
0 , of v is simulated as

X
(v)
0 = v + E0 where E0 is an Exponential(1) random variable. For the kth-

order extremal Markov chain the next k − 1 values, X
(v)
1:k−1, of the tail-chain
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are generated jointly, conditional on X
(v)
0 , as

X
(v)
1:k−1 = α̂1:k−1X

(v)
0 +

(

X
(v)
0

)β̂
1:k−1

Z1:k−1, (17)

where Z1:k−1 is sampled independently from ĝ1:k−1, the marginal of ĝ1:k given
by equation (15). At all subsequent time-steps j ≥ k, the transition kernel of
the tail chain is used, i.e.,

X
(v)
j = αkX

(v)
j−k +

(

X
(v)
j−k

)βk

Zj|j−k+1:j−1, (18)

where the Zj|j−k+1:j−1 values are sampled independently from Ĝk|1:k−1. The
final stage is to transform the simulated tail chain back to the original mar-

gins, i.e., Y
(v)
t = F−1

Y (FX(X
(v)
t )) for t = 0, 1, . . ., and so when X

(v)
t > u then

Y
(v)
t > uY .

The justification for the use of the asymptotically motivated transition ker-

nel (18) is that X
(v)
j−k > u. When X

(v)
j−k < u the algorithm can still be used but

the quality of the approximation is likely to become poor the further X
(v)
j−k

drops below u. When X
(v)
j−k < 0 the transition (18) cannot be used as βk < 1

and so the tail chain is immediately terminated before generating X
(v)
j . This

is not restrictive as X
(v)
j−k < 0 corresponds to the process falling below the

median and so it is reasonable to treat the extreme event as having finished.

The tail chain is run until X
(v)
j is small enough that there is a negligible prob-

ability of obtaining a further exceedance of v. In practice it is most simple to
run the chain for a fixed long time m, with m = 40 found to be sufficient for
our examples in Section 7.

For first-order processes, Winter and Tawn (2016) showed that it is equally
easy to simulate the tail chain forwards and backwards from a cluster maxi-
mum M , given that M > v, or to simulate an arbitrary exceedance of v and
simulate forwards only. For kth-order tail chains it is more computationally ef-
ficient to use the latter approach since it requires only forward simulation and
does not require the initial simulated value to be the cluster maximum, which
would lead to the simulation scheme requiring rejection methods to ensure
this property. As all the cluster functionals that we are interested in can be
evaluated using only forwards simulation we restrict attention to this approach.

There are a range of cluster functionals that we are interested in estimat-
ing. The extremal dependence measure χτ , defined by expression (2), is not
helpful as for all processes that are asymptotically independent at lag τ then
χτ = 0. However the sub-asymptotic extremal dependence measure χτ (v) for
τ = 1, 2, . . ., i.e.,

χτ (v) = P(Xτ > v | X0 > v) = P(Yτ > yv | Y0 > yv), (19)
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where yv = F−1
Y (FX(v)), provides a helpful summary of the level of dependence

in the tail. This can be evaluated as the proportion of tail chains which are
above the threshold j steps after an exceedance. We are also interested in the
distribution π(i, v) of Dv, the number of exceedances of v, in a cluster. To be
precise

Dv =
∑

t∈C

I (Xt − v)+ ,

where I(.) is the indicator function and C is a set of values constituting a
cluster and π(i, v) = P(Dv = i | Dv > 0). Furthermore we use the notation
Π(i, v) = P(Dv ≥ i | Dv > 0) to denote the probability of a cluster above v
with at least i exceedances.

The mean of the cluster size distribution π(·, v) is the most widely used cluster
functional of the extremes in a time-series at a level v, i.e.,

∞
∑

i=1

iπ(i, v) = θ(v)−1, (20)

which is given by the reciprocal of the sub-asymptotic extremal index θ(v) (Led-
ford and Tawn 2003), with θ(v) ∈ [0, 1]. See Winter and Tawn (2016) for details
of how to use the forward tail chain for estimating these functionals.

When reporting results it is more instructive to give estimates of the proba-
bility of a cluster functional value occurring within a given time period rather
than in a single event. To make such a conversion we need to account for there
being a Poisson, mean ψv, number of independent and identically distributed
clusters of the level v in the time period, where for v ≥ u

ψv = θ(v)[1− F̃ (u)]nT

[

1 + ξ

(

v − u

σu

)]−1/ξ

+

,

where nT is the number of observations in the period (Winter and Tawn 2016).
The expression for ψv can be seen to be the expected number of exceedances
of v if the series was independent multiplied by θ(v). As θ(v) is the ratio of
the probability of a cluster divided by the probability of an exceedance, this
converts ψv to be the expected number of clusters in the period. To illustrate
the type of calculation involved, consider the probability of observing at least
one cluster with at least i days above the critical level v occurring in the time
period. By averaging over the Poisson number of clusters it follows that this
probability is 1− exp {−ψvΠ(i, v)}.

6 Selection of the order of the extremal Markov process

We have presented an approach that enables inference for cluster functionals
for a kth-order extremal Markov process when k is known. Here we present
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methods for the selection of the order of the process when k is unknown. We
denote the order of our modelled process by τ and the true order by k. If
τ > k then the inclusion of unnecessary higher-order information introduces
extra parameters than are required which leads to higher than necessary vari-
ability in our cluster functional inferences. If τ < k we may not adequately
capture the extremal dependence structure which will lead to biases in our
estimates of cluster functionals. Therefore, we are interested in developing di-
agnostic methods to select τ so that it is as close as possible to k. Inference
methods for first order processes already exist, i.e., testing a null hypothesis
of k = 0 against and alternative of k = 1 (Winter and Tawn 2016). We want
to test whether incorporating higher order structure into the modelling leads
to significantly different inferences, i.e., testing if k = 1 or k > 1.

A standard approach to estimate the order of a Markov chain is to identify the
largest lag at which the partial auto-correlation function (PACF) is deemed
to be significantly different from zero (Chatfield 2003), since this function, at
lag j, gives the strength of the dependence between (Xt, Xt+j) | Xt+1:t+j−1.
However this is not necessarily appropriate for an extremal Markov process as
the PACF inference is dominated by the data in the body of the distribution
and extremal data may exhibit either more or less complex behaviour than
data from the body of the distribution. The PACF is helpful as one of a set
of diagnostics, but we require other diagnostics which focus more explicitly on
the extreme events.

Our new diagnostic methods for the selection of the order τ of the extremal
Markov process are motivated by standard univariate threshold selection di-
agnostics. Essentially these diagnostics are equivalent to using a threshold
stability plot which assesses the stability of extremal parameters relative to a
range of thresholds (Coles 2001). Here we compare the stability of estimates
of the cluster functionals, discussed in Section 5.2, over a range of τ . For the
inference of any cluster functional all the data are used from the τ -tuples
(Xt, . . . , Xt+τ−1), with Xt > u, where u is the modelling threshold. We take
our selected value, τ̂ , to be the lowest value of τ above which the estimated
cluster functionals are stable, other than for sampling variability. This exploits
the changing bias in these cluster functionals as τ increases when τ < k and
that there is no bias for all τ ≥ k but simply increasing variance in the cluster
functional estimates. This leads to a value of τ̂ that if decreased (increased)
cause the estimates of cluster functional to change (not change) relative to the
variability of the estimates.

The method can be applied to a wide range of cluster functionals and a se-
lection for τ̂ made based on average values for the best values of τ for the
different cluster functionals. Alternatively, the approach allows τ̂ to be se-
lected for the most important cluster functional which depends on the context
of the problem. For our analysis of heatwaves in Section 7, one such type of
cluster functional is the probability of short, medium and long runs of ex-
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ceedances of a high level.

If no particular cluster functional is required then we have found that the
threshold dependent extremal dependence measure χj(v) and the sub-asymptotic
extremal index θ(v), introduced in equations (19) and (20) respectively, are
particularly helpful for use in the selection of τ , particularly when studied
over a range of j and v. To be specific how we use the diagnostic methods,
consider these two cluster functionals explicitly. Let χ̃j(v) and θ̃(v) be the
respective empirical estimates of χj(v) and θ(v). Here χ̃j(v) is the proportion

of pairs (Xt, Xt+j) with Xt > v that also have Xt+j > v and θ̃(v) is the runs
estimator of Smith and Weissman (1994) using the optimal run length given
by Ferro and Segers (2003). These empirical estimates are reliable only over
a subset R of j and v, e.g., v and j not too large. Over R we pick nJ and
nV equally spaced values for j and v respectively. Under a fitted τth-order
extremal Markov model we denote the respective estimates of these cluster

functionals by χ̂
(τ)
j (v) and θ̂(τ)(v), where these estimates are derived using the

methods of Section 5.2. Then the best estimate of the order of the Markov
process is τ̂ , where

τ̂ = min







τ > 0 :
∑

v∈R

{|θ̂(τ)(v)− θ̃(v)|+
1

nJ

∑

j∈R

|χ̂
(τ)
j (v)− χ̃j(v)|} < ǫ







,

for a choice of ǫ > 0.

When v is sufficiently large that θ̃(v) is unreliable, we also assess the per-

formance of χ̂
(τ)
j (v) using the unconstrained pairwise conditional model of

Heffernan and Tawn (2004) for Xt+j | Xt when Xt > u. We denote the
corresponding estimate by χ̂j(v), for v ≥ u, and term it the unconstrained
parametric estimate.

The diagnostic methods we propose for selecting the order of the extremal
process do not check formally whether the inclusion of higher order structure
leads to statistically significant differences. Winter and Tawn (2016) presented
a likelihood ratio test for k = 1 against k = 0. So here we present a test for
k > 1 against k = 1, by testing k = τ against k = 1, for range of τ > 1. Reich
et al (2014) perform such a test for their asymptotically dependent model. If
the τth-order approach is found to obtain a significantly better fit than the
first-order approach, a natural next step is to ask whether the τth-order result
is a better fit than the jth-order result for all j = 2, . . . , τ − 1. Such a set
of nested tests exists when modelling time-series using AR models (Brockwell
and Davis 2006), but has not been developed yet in our context.

Details of our likelihood ratio test are as follows. If the extremal process is
believed to be of order τ , we fit the model as described in Section 5.1 with
k = τ , maximising likelihood (13) over (α1:τ ,β1:τ ,µ1:τ ,γ1:τ ), and denoting
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the maximised likelihood for model (12), by Lτ . If the extremal process is
believed to be of order 1 then the parameters (α1:τ ,β1:τ ) simplify under the
results of Papastathopoulos et al (2017). As identified in Section 4.1, there are
two possible forms for (α1:τ ,β1:τ ) with either

αj = αj
1, βτ = β1 when 0 < α1 ≤ 1 (21)

or
αj = 0, βτ = βj

1 when α1 = 0. (22)

We maximise likelihood (13) over (α1:τ ,β1:τ ,µ1:τ ,γ1:τ ) with (α1:τ ,β1:τ ) un-
der the different sets of constraints given by expressions (21) and (22). We
denote the respective maximised likelilhoods by L1,a and L1,b. We then use
the test statistics Da = 2 log(Lτ/L1,a) and Db = 2 log(Lτ/L1,b). Under the
null hypothesis that k = 1, following standard likelihood methods these test
statistics follow a chi-squared distribution on 2τ − 2 and 2τ − 1 degrees of
freedom respectively. To counteract any problems associated with multiple
testing, the Bonferroni correction is used (Dunn 1961).

7 Data analysis

Daily maximum temperature observations are taken at Orleans, in central
France, for the period 1946-2012. Four missing values exist in the time-series
and are omitted, none occur during the 2003 heatwave event that we focus
aspects of our analysis on. Heatwaves are most likely to occur in summer
months. The temperature data from the three month period of June-August
are extracted from each year and exploratory analysis suggests that they form
an approximately stationary time-series. Given that extreme hot temperature
days are unlikely to occur outside this period the return levels that are esti-
mated for the summer season correspond to the yearly return levels.

Throughout this section, unless stated otherwise, the critical level for extreme
events is set at the one-year return level, denoted by v1. In 2003 there were
two events, of length 2 and 11, above the critical level v1 during a four week
period. Winter and Tawn (2016) used a first-order extremal Markov chain to
estimate the probability of an event that lasts at least as long as each of these
2003 events. We are interested in how unlikely such events are when estimated
using higher-order extremal Markov chains, and how sensitive these estimates
are to the selected order of the chain.

First, a GPD is fitted to exceedances of the modelling threshold uY , where uY
was chosen to be 29.7oC, based on standard diagnostics (Coles 2001). Diag-
nostic plots for this data set and justification of the GPD model and threshold
choice are given in Winter and Tawn (2016). The estimated threshold ex-
ceedance probability is 1− F̃ (uY ) = 0.099 (0.007), with estimated GPD scale

and shape parameters σ̂u = 3.002 (0.225) and ξ̂ = −0.215 (0.033); the stan-
dard errors are given in the parentheses. It follows that the estimated one-year
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j α̂j β̂j χ̂j(v1)
1 0.713 (0.072) 0.524 (0.094) 0.508 (0.027)
2 0.576 (0.080) 0.538 (0.126) 0.276 (0.042)
3 0.440 (0.084) 0.514 (0.163) 0.186 (0.041)
4 0.342 (0.083) 0.400 (0.182) 0.144 (0.037)
5 0.395 (0.082) 0.301 (0.201) 0.117 (0.031)
6 0.288 (0.077) 0.286 (0.226) 0.095 (0.026)
7 0.313 (0.069) 0.253 (0.210) 0.076 (0.018)
8 0.259 (0.053) 0.280 (0.193) 0.067 (0.016)
9 0.198 (0.040) 0.091 (0.158) 0.036 (0.011)
10 0.162 (0.037) -0.061 (0.143) 0.019 (0.008)

Table 1 Estimates for the extremal dependence parameters (αj ,βj) and estimated extremal
dependence measure χ̂j(v1) for a set of different lag values j = 1, . . . , 10 at the one year
return level v1. The estimates of χj(v) are obtained from the pairwise model for Xt+j | Xt.
Standard errors are given in parentheses.

return level is v1 = 35oC.

Before we examine the precise form of the extremal Markov process we in-
vestigate how the extremal dependence decays with lag. Figure 1 (left) shows
that the auto-correlation function for the Orleans daily maximum temperature
data decays monotonically in a near exponential form. However, this estimate
is dominated by the data in the body of the series and so may not reflect the
extremal dependence.

To assess if this feature is observed for the extreme events we examine the
extremal dependence parameters (α1:10,β1:10). Estimation uses a threshold
corresponding to the 90% marginal quantile, with this level being selected
based on the diagnostics proposed by Heffernan and Tawn (2004). Estimates
(and standard errors in parentheses) of these parameters are given in Table 1.
These estimates are obtained without making any extremal Markov process
assumptions. The estimated values α̂1:10 are all statistically significantly differ-
ent from one and zero, indicating the positive dependence form of asymptotic
independence at lags 1−10. Furthermore, there is a general pattern of the val-
ues decreasing with lag, though it is not entirely monotone. The β̂1:10 exhibit

a similar pattern. As (α̂1:10, β̂1:10) are often correlated it is helpful to also
consider a cluster functional estimate as the extremal dependence parameters
combine to produce these. Here we examine the extremal dependence measure
χj(v1); j = 1, . . . , 10 estimated using the unconstrained parametric estimate,
where χ̂j(v) is as described in Section 6. Table 1 shows that χ̂j(v1) decreases
monotonically with increasing lag, so the pattern of dependence decay is sim-
ilar for both typical and extreme values.

Figure 1 (right) presents the PACF for the Orleans’ daily maximum tempera-
ture data, which shows a large spike in the PACF at lag 1 with smaller values
at all larger lags. This diagnostic was used by Winter and Tawn (2016) to
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Fig. 1 Auto-correlation function (left) and partial auto-correlation function (right) for Or-
leans daily maximum temperature data. Dashed intervals represent a 95% tolerance inter-
vals.

motivate their choice of a first-order Markov model. However, there are some
values of the PACF that lie outside the 95% tolerance intervals up to lag 6.
These values suggest that a first-order Markov model might omit some impor-
tant higher-order structure and, as discussed in Section 6, this diagnostic may
miss features of the extremal process.

We wish to examine whether there is statistically significant evidence for
higher-order dependence than first-order for the process when in an extreme
state, defined here to be when the process exceeds the 90% marginal quantile.
A hypothesis test is constructed to test whether a τth-order dependence struc-
ture provides a significantly better fit than a first-order approach. However,
if the null hypothesis is rejected this only suggests that the true order of the
extremal Markov process is greater than or equal to 2. The test is explained
in Section 6. Under a first-order model the parameters (α2:10, β2:10) are con-
strained to satisfy either condition (21) or (22), whereas for the τth-order
model (α2:τ ,β2:τ ) are unconstrained. Tests are constructed for τ = 2, . . . , 10
and using Bonferroni bounds the significance level is set at 0.05/9. All tests
for which τ ≥ 7 were found to be significant at the 5% significance level.

Section 5 set out that our main diagnostic for the selection of the order of
the extremal Markov process is a comparison of estimates of χj(v) for j ≥ 1.
We have two reference estimates to compare our extremal Markov models
to: non-parametric estimates χ̃j(v) when v is low enough that empirical esti-
mates of χj(v) are reliable and the unconstrained parametric estimates χ̂j(v)
for larger v. In each case we compare these estimates with τth-order extremal

Markov model estimates χ̂
(τ)
j (v).

If the process is a kth-order extremal Markov process then we should find
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Fig. 2 Estimates of the threshold dependent extremal measure χj(v) using empirical ap-
proach (black) and different order extremal Markov chains (rainbow) with v set at 90% (left)
and 95% (right) quantiles respectively. Grey shaded region corresponds to 95% confidence
interval for empirical obtained via a block bootstrap approach.

that χ̂
(k)
j (v) is close to χ̃j(v) for all j for low v and to χ̂j(v) for high v. Fur-

thermore as

χ̂
(τ2)
j (v) = χ̂

(τ1)
j (v) for all j ≤ τ1 < τ2,

our ability to distinguish between models of orders τ1 < τ2 is only through the

values of χ̂
(τ2)
j (v) and χ̂

(τ1)
j (v) for j > τ1. Consequently in the plots of χ̂

(τ)
j (v)

against j in Figure 2 we select a different colour when j > τ .

Figure 2 plots these diagnostics for v corresponding to the marginal 90% and
95% quantiles (denoted v0.9 and v0.95). With v0.9 it appears that the third-
order scheme comes closest to the pattern observed in the empirical estimates.
First- and second-order schemes seem to underestimate the strength of the
dependence whereas higher-order estimates seem to lead to an overestima-
tion, reflecting their greater variation. Similar patterns are found for v0.95,
although the higher-order schemes seem to be contained within the empirical
confidence bands for higher values of j due to the increased uncertainty in the
empirical estimate. Figure 3 shows the diagnostic for v = v1, which suggests
that lower-order schemes are picking up the general behaviour better, being
contained with the confidence intervals at all values of j. However, the higher-
order schemes do seem to pick up some higher-order structure that is present
in the original data set that is missed by a lower-order scheme. Taking all the
diagnostics into account, we conclude that the third-order scheme seems to
provide the most reliable estimates of χj(v) at all levels.

The cluster functionals that are of most importance for heatwaves are θ(v1),
the reciprocal of the mean cluster length, and Π(2, v1), Π(6, v1), Π(11, v1), the
probabilities of a cluster with at least 2, 6 and 11 exceedances of v1. The prob-
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Fig. 3 Estimates of the threshold dependent extremal measure χj(v1) using unconstrained
parametric estimates (black) and different order extremal Markov chains (rainbow). Grey
shaded region corresponds to 95% confidence interval for unconstrained parametric approach
obtained via a block bootstrap approach.
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Fig. 4 Estimates of within cluster extremal quantities for different higher-order schemes
with v set at the one-year return level v1. Cluster functions are θ(v1), Π(2, v1), Π(6, v1)
and Π(11, v1). Modified bootstrapping approach used to obtain 95% confidence intervals
(dotted). Estimates have been smoothed using loess method for clarity.
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abilities of short and long events are of particular interest as these correspond
the observed durations of the 2003 European heatwave at Orleans. We wish
to assess the sensitivity of these cluster functional estimates to the choice of
the order of the extremal process.

Figure 4 shows estimates of these cluster functionals for orders of τ = 1 . . . , 14
for the extremal Markov model. As explained in Section 6, we aim to iden-
tify the lowest order for which these cluster functionals remain constant at
all higher orders, other than for sampling variability. The uncertainty bounds
used in this figure are obtained via the block bootstrap. As the accurate evalu-
ation of cluster functional is computationally intensive it is not feasible to run
many bootstrap replications. Instead we run a reduced number of replications
to approximate the standard error for the cluster functional sampling distri-
bution and then construct symmetric confidence intervals around the point
estimate using this standard error.

The estimates of the average duration of a heatwave and the probabilities
of short, median and long clusters all increase when a higher-order extremal
Markov chain is used. Typically the estimates increase rapidly until τ = 3,
continue to increase until τ = 7 and then stabilise. However, this pattern is
somewhat masked by the confidence intervals which broadly cover all esti-
mates at all orders, so there is limited information about choice of the order.
Of course we could have used a lower value of the critical level than v1 which
would have been better for diagnostic purposes, but would not have shown the
sensitivity issues of the features most relevant in practice. But even at level
v1 we find that for probabilities Π(2, v1) our diagnostic suggests that we need
τ ≥ 3.

Finally we focus on estimating the probability of particular cluster functionals
occurring in a year. To take into account the uncertainty that we found in the
selection of the order of the extremal Markov process, we compare estimates
using τ = 1, 3 and 7. For τ = 1 the estimated probability of observing at least
one event in a year that lasts at least 2 days as 0.208 (0.200, 0.216); for 11
days the equivalent probability is 0.001 (1 × 10−4, 0.004), equivalent to the
1000 year return level. When τ = 3 these estimates are 0.196 (0.171, 0.221)
and 0.002 (0, 0.004) respectively. The equivalent probabilities for τ = 7 are
0.201 (0.179, 0.224) and 0.003 (0, 0.007) respectively. Thus it appears that
the inclusion of higher order structure does not greatly affect the probability
of smaller events but can lead to a 3-fold increase in the point estimates of
the probability of very long duration extreme events. As expected, uncertainty
estimates are wider for the higher-order approaches, reflecting the increased
number of parameters to be estimated.
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8 Discussion and conclusion

This paper provides a new framework for incorporating higher-order Markov
models for temporal dependence when modelling extreme events covering pro-
cesses which can be either asymptotically dependent or asymptotically inde-
pendent. For this purpose we have developed a kth-order extremal Markov
model framework for incorporating higher-order information using the condi-
tional extremes approach of Heffernan and Tawn (2004). Such an approach is
motivated by an application to heatwave events, since all the existing time se-
ries extremes models, which have been developed under assumptions of either
a first-order Markov model or that the variables are asymptotically dependent,
do not adequately capture the properties we observe for heatwaves.

Our results show that using standard time series diagnostics to identify the or-
der of an extremal Markov process can lead to errors when interest is restricted
to the extremes of the process. This necessitated the development of a range of
new diagnostics for choosing the ‘best’ order scheme to use for extreme events.
Specifically, in our example the use of standard time-series diagnostics ignored
structure in the extremes which leads to the underestimation in the probabil-
ity of longer and potentially devastating heatwave events. One area for further
work is to formalise and unify our range of heuristic diagnostic methods for
estimating the order of the extremal Markov process. To help achieve this a
systematic study of the performance of these methods in a simulation study is
needed. This study should cover both asymptotically independent and asymp-
totically dependence kth-order Markov processes, each with varying strengths
of dependence.

As in Winter and Tawn (2016), daily maximum temperatures have been anal-
ysed instead of looking at the joint distribution of daily maximum and mini-
mum temperatures. An extremal Markov model would still be appropriate in
such a situation but a different order scheme might be required and stationar-
ity be imposed separately on the maximum and minimum temperature series.
The effect of climate change and other large scale climatic phenomena have
not been incorporated into this paper. Winter et al (2016) illustrate how the
tail chain simulation approach with first-order dependence structure can be
altered to take into account the effect of covariates. A similar extension could
be applied to the methodology outlined here.
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