
Research Article
KTSDroid: A Framework for Android Malware Categorization
Using the Kernel Task Structure

Saneeha Khalid , Khalid Imran , and Faisal Bashir Hussain

Bahria University, Islamabad, Pakistan

Correspondence should be addressed to Saneeha Khalid; saneeha.nust@gmail.com

Received 11 October 2022; Revised 3 November 2022; Accepted 24 November 2022; Published 13 May 2023

Academic Editor: Hammad Afzal

Copyright © 2023 Saneeha Khalid et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te penetration of malicious applications in the Android market has enhanced the signifcance of designing malware mitigation
systems for Android. Malware detection systems are being developed by examining applications using static and dynamic analysis
techniques.Te use of code obfuscation has highlighted the importance of dynamic analysis as many static analysis schemes can be
evaded by code obfuscation strategies. In order to record the true working of the application, a volatile memory-based solution for
application analysis is presented in this study. Time-based memory dumps are collected after interactions with an application.
Process-specifc artifacts of the application under analysis are extracted by examining the kernel task structure of memory. Te
features in the kernel task structure belong to nine broad categories based on their semantics. An important contribution of the
study is the analysis of the kernel task structure for determining the set of efective categories and features for Android malware
categorization. Tree of the most important categories and fourteen valuable features are reported. Te proposed system cat-
egorizes the applications into fve classes: adware, banking Trojans, riskware, SMS Trojans, and benign. Te proposed system is
able to categorize applications with an average F1-score of 0.984, which is the highest score reported so far for multiclass Android
malware categorization with a minimum number of kernel task structure-based features.

1. Introduction

Te tremendous rise in smartphone usage has transformed
working patterns all over the world. Many business and
personal tasks are performed using smartphones as they are
considered more accessible and easier to use as compared to
other devices. Te adaptability of smartphones all over the
world is due to the highly efcient and usable operating
systems such as Android, iOS, and Windows. Android is the
most used operating system for smartphones and holds
a major market share of 71.45 percent (https://www.statista.
com/statistics/272698/global-market-share-held-by-mobile-
operating-systems-since-2009/). Te success of Android can
be attributed to the large number of Android-compatible user
applications. Tese applications are frequently used by users
and are considered reliable by a large population. Te
malicious application developers take advantage of the usage
and popularity of Android and are developing a large number

of malicious applications for the platform. According to
statistics, 10.5 million Android malware infections were de-
tected in 2019 and 0.48 million new Android malware in-
fections per month were found in 2020 (https://www.statista.
com/statistics/680705/global-android-malware-volume/).

Te increasing rate of malware penetration in An-
droid is a serious threat [1]. Terefore, many schemes
have been proposed to mitigate this issue. Signature-
based schemes have dominated malware detection
techniques, but their major drawback is the inability to
detect zero day malware. Signature-based schemes are
also known to be less efcient against malware variants
[2]. A more generic approach to malware detection and
categorization is the creation of generic behavior pat-
terns. Machine learning-based methods are used for
creating generic patterns; however, the selection of useful
and signifcant features is important for creating efective
classifcation systems.

Hindawi
Security and Communication Networks
Volume 2023, Article ID 7827823, 20 pages
https://doi.org/10.1155/2023/7827823

https://orcid.org/0000-0001-6089-4243
https://orcid.org/0009-0004-0080-812X
https://orcid.org/0000-0002-5819-6160
mailto:saneeha.nust@gmail.com
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7827823

In order to analyze malicious Android applications using
machine learning approaches, static and dynamic analysis
techniques can be used [3]. Static analysis refers to analyzing
an application by examining its structure and code without
execution. Static analysis becomes less efective when the
applications use code obfuscation techniques for hiding the
code semantics [4].

Obfuscation refers to arranging the structure of code in
a way that reverse engineering becomes difcult [5].
Common obfuscation schemes include class encryption,
code reordering, refection, junk code insertion, and control
fow modifcation [6]. In order to minimize the efect of
obfuscation, dynamic analysis techniques are widely being
used at present. Dynamic analysis refers to analyzing the
application by executing it in a sandbox. Tese techniques
extract the runtime activity of applications; therefore, they
are more resilient against obfuscation techniques [7].

Dynamic analysis helps analyze the runtime behavior of
an application with the help of network activity [8], runtime
API usage [9], and volatile memory usage [10]. Te usage of
volatile memory for extracting dynamic features has gained
signifcant attention in recent past, as the true working of the
application is visible by extracting memory artifacts. Also,
code obfuscation schemes become inefective, as memory-
based artifacts show the actual essence of the executed code.

Many recent studies [11–13] have highlighted the im-
portance of volatile memory-based artifacts for Android
malware detection. Process metadata features present in the
kernel task structure of memory represent an important
source of information for malicious application detection
[12, 14, 15].Te kernel task structure is used by the operating
system for managing the running processes. It contains all
the information about the running application which is
needed by the kernel for managing the process. Te in-
formation in the kernel task structure is contained in
a number of features, which are grouped into nine cate-
gories: task_state, mem_info, scheduling_info, signal_info,
process_credentials, I/O_statistics, openfle_info, CPU_s-
pecifc_state, and others. Tese categories contain related
features as per their semantics. In addition to direct features,
the categories of the kernel task structure also contain
a number of structures (structs) that can be traversed for
extracting deep features. However, existing studies lack the
in-depth working on these features in terms of extraction
and analysis. It has been observed that only initial categories
and structures are investigated for extraction of features.Te
analysis of all categories for the selection of most relevant
features for malware identifcation and categorization needs
to be thoroughly investigated. Additionally, existing studies
have focused on the evaluation of process metadata features
for the detection of malicious applications only. Te eval-
uation of these features for categorizing malicious appli-
cations into respective classes is not performed.

In this study, KTSDroid, a malware mitigation frame-
work based on process-specifc artifacts from volatile
memory, is proposed. Te proposed framework captures
volatile memory dumps while executing the application
under analysis. Te application’s behavior profle is gener-
ated by analyzing process-specifc artifacts (process

metadata) from the kernel task structure in memory.
KTSDroid extracts direct features from all nine categories of
the kernel task structure. In addition to direct features, the
nine categories of the kernel task structure are traversed up
to a depth of six levels for the generation of a feature set. In
order to ascertain that the extracted features contain useful
information about the malicious behavior of the application,
a time-based memory dump extraction process is con-
ducted. In addition to this, random events are generated on
the application before the capture of each dump to ensure
interactions. As a result, four dumps with interactions are
generated for each application in the dataset. Each dump is
then utilized for the extraction of the kernel task structure
for the process (application) under analysis. Overall, the
contributions of the study are as follows:

(1) Te study proposes a kernel task structure-based
Android malware categorization framework by
utilizing multiple time-based memory dumps with
interactions.

(2) Te kernel task structure of memory is utilized for
the extraction of features. To the best of our
knowledge, this is the frst study to explore nine
categories of the kernel task structure for the ex-
traction of features w.r.t. the Android platform. In
addition to this, traversal of each category to a depth
of six levels is performed. A comprehensive feature
set comprising 526 process specifc features, grouped
into nine distinct categories, is used for analysis.

(3) Te efectiveness of kernel task structure features is
reported against fve distinct Android application
classes, i.e., adware, banking Trojans, riskware, SMS
Trojans, and benign.

Te rest of the paper is organized as follows: details of the
kernel task structure are discussed in Section 2. Section 3
presents the related work. Proposed methodology for feature
extraction and selection is presented in Section 4. Results for
the proposed methodology are reported in Section 5. Section
6 discusses the results, and fnally, conclusion is presented in
Section 7.

2. Overview of the Kernel Task Structure

KTSDroid utilizes the kernel task structure of memory for
feature set extraction. In order to device an efective malware
mitigation strategy, the understanding of the design and
layout of the kernel task structure is important. Tis section
briefy introduces the functions of this structure and
highlights the categories in which features are organised
within it.

Te kernel task structure, also known as process control
block, is a data structure in the kernel space of memory that
contains important information about the running pro-
cesses. Te operating system uses this structure for man-
aging all the running processes by dynamically allocating the
structure to each process. In order to analyze the task
structure of a particular process, the PID of the process can
be used. Te information in the kernel task structure is

2 Security and Communication Networks

efective in identifcation and classifcation of malware be-
cause it describes the target application in running state and
hence overcomes the problems caused by code obfuscation
techniques. Information contained in the Android kernel
task structure can be grouped into nine categories. Features
from all these categories are utilized by KTSDroid for
malware categorization. Te information contained in each
category is listed in Table 1.

3. Related Work

Recently, the design of memory-based schemes for Android
malware categorization has gained substantial attention due
to their strong resilience against various obfuscation
schemes. Many studies [13, 16, 17] have associated the ef-
fectiveness of memory-based artifacts for malicious Android
application detection with their ability to represent the
runtime execution of the application. Diferent strategies are
adapted by researchers to analyse memory for malicious
application detection. Some of the studies [10, 18] have
utilized volatile memory dumps against malicious applica-
tions in the form of images and classifed them on the basis
of diferences in images. However, the complete memory
dump contains a number of other processes as well, and the
analysis is not specifc to the process (application) under
evaluation. Memory-based features are used by [19] for
classifying Android applications into benign and malicious
classes. Tirty two features using diferent plugins for vol-
atility are extracted and used for analysis. Te study has not
incorporated time-based capturing of features, and the
proposed dataset is built using only one memory snapshot.
Another approach is the use of process metadata features,
available in the kernel task structure of memory. Tese
features contain useful information about the process be-
havior and can be used to create a malware detection system.
Tis section highlights the memory-based frameworks that
have used process metadata features from the kernel task
structure for application analysis, as they are closer to the
approach presented by this study.

Wang and Li [12] proposed a framework for the de-
tection of malware on the Android platform using machine
learning with a feature set from the kernel task structure. A
total of 112 features grouped into 5 categories are extracted
from the task struct using 1275 malware samples and 1275
benign samples. Principal component analysis, chi-squared
statistic, correlation, and information gain are used as di-
mension reduction methods. Te proposed framework is
evaluated by using 4 diferent machine learning algorithms
(Naive Bayes, decision tree, neural network, and K-nearest
neighbors). It is shown that the proposed framework can
achieve 94% to 98% accuracy and less than 10% false
positive rate.

Alawneh et al. [14] proposed a malware detection system
that can identify trojanized malware. Te focus of the study
is on improved detection time rather than the accuracy of the
model. In the experiment, 112 felds were extracted from the
kernel process control block and grouped into fve cate-
gories, including mem_info, CPU_scheduling_info, sig-
nal_info, task_state, and others. For dataset creation, a total

of 2400 apks (1200 benign and 1200 malware) were used.
Features were recorded for 15 seconds for each apk. Te
study is evaluated by using a back propagation neural
network (BPNN). Te model is evaluated by considering the
feature set, and it is reported that the best result is achieved
by selecting 43 features out of 112, with 96.8% detection
accuracy, which takes around 30 seconds for training the
classifer and 73 µs for malware detection after 100ms of
information mining.

Shahzad et al. [15] proposed a real-time malware de-
tection framework, namely, TstructDroid, for Android-
based devices. 110 benign and 110 malicious applications
are used for dataset creation. Out of 99 preliminary task
structure felds, 32 felds are shortlisted for dataset creation
using time series feature shortlisting techniques. After
shortlisting features, time series blocks are created and then
frequency information is calculated using the discrete cosine
transform. Te framework achieves a detection rate of 90-
93.6% with a false alarm rate between 5.4% and 7.3%.

Kim and Choi [20] proposed a malware detection
method for the Android platform. Features are extracted
from the proc flesystem of the Linux platform. Te proc
flesystem is a virtual flesystem which provides an interface
to the kernel structures, i.e., it permits communication
between the user space and the Linux kernel. A total of 36
features out of 59 features are selected from three classes:
memory, CPU, and network. Feature extraction was per-
formed periodically every 10 seconds, against the applica-
tions being executed. Support vector machine (SVM) is used
as a classifer for performance evaluation in the experimental
setup. A TPR of 95.97%, an FPR of 0.67, a precision of
96.63%, and an accuracy of 98.85 were achieved after feature
selection. Te results are computed for six applications only.

A summary of the related work on kernel task structure-
based malware detection is presented in Table 2. It is per-
tinent to highlight that the studies have only classifed the
applications into malicious and benign categories. De-
termining the category or nature of the malware is signif-
icant for understanding the criticality of threat and efective
mitigation. Another important observation is the availability
of a large number of kernel task structure-based features in
Android, whereas previous works have focused on a limited
set of features.

4. KTSDroid Android Malware Categorization
Using the Kernel Task Structure

KTSDroid is an Android malware detection and categori-
zation framework that uses dynamic memory information
extracted from the programs’ kernel task structure. Te
architecture of KTSDroid is shown in Figure 1 that has three
components: feature extraction, feature selection, and
classifcation. During feature extraction, initially, Android
applications are executed and interactions are made to
obtain process-specifc memory dumps. Tese dumps are
further analyzed for extracting process metadata features
from the kernel task structure. In the second phase, a step-
by-step approach is adapted for investigating signifcant
categories and features. Finally, the selected features are used

Security and Communication Networks 3

to classify the applications into respective benign or malware
classes. In the remaining of this section, the aforementioned
three core components of the KTSDroid framework are
discussed in detail.

4.1.KTSDroidFeatureExtraction. KTSDroid uses a dynamic
analysis scheme based on volatile memory artifacts for
application analysis. Tis section covers the details of the
memory-based feature extraction process. Te dataset under
analysis consists of N apk fles, and each apk belongs to
a class Ci, where i ranges from 1  to 5. In order to formulate
a malware detection system using these apks, each apk must
be processed to extract volatile memory-based features.

Te overall process of feature extraction can be divided
into two major steps: memory dump extraction and process
metadata extraction by traversing the kernel task structure.
Te details are provided in the subsections as follows, and an
overall view of the feature extraction process is shown in
Figure 2.

4.1.1. Memory Dump Extraction. Te dynamic nature of the
proposed system requires the applications to be executed in
a controlled environment for evaluation. For this purpose,
an AVD (Android virtual device) environment is chosen,
where the AVD is confgured for application installation and
memory dump extraction. Te AVD is created with the
Nexus 6P hardware profle and Android 9.0 (Google APIs)
system image with x86_64 architecture. Te host system is
Ubuntu 18.04, and communication between the host system
and the virtual device is carried out by using ADB (Android
debug bridge).

Te features used by the system are based on memory;
therefore, memory dump extraction is the frst step in ap-
plication analysis. In order to extract a memory dump, LiME
(Linux Memory Extractor) (https://github.com/
504ensicsLabs/LiME), a loadable kernel module needs to
be compiled for the target kernel of AVD and loaded into the
device. LiME is an open-source loadable kernel module
(LKM) for Linux-based devices, which allows the acquisition
of complete volatile memory dumps. For the LiME module

to be loaded by the target kernel, the kernel needs to be
compiled with loadable kernel module support for the target
device. It is because Android does not have default support
for loadable kernel modules. KTSDroid uses Goldfsh kernel
4.4, compiled with loadable kernel module support.

KTSDroid uses a Python application for automating the
process of scanning a local directory containing a dataset of
apk fles, installing the application (apk fle) on the virtual
device, simulating pseudorandom user input using monkey
(https://developer.android.com/studio/test/other-testing-
tools/monkey) against the installed application and capturing
a memory dump of the virtual device. For analysis, a total of
four volatile memory dumps were obtained. Te frst dump
was taken right after the application installation. Te sun-
sequent dumps were taken after event generation on the apk.
Te events were triggered using Monkey and included 150,
1500, and 4000 events. Acquiring volatile memory dumps
during diferent states of the application adds variability to the
dump and hence contributes to a rich data collection that
comprises 10,000 memory dumps. Simulating user inputs is
required to ensure code coverage and triggering of the
malicious behavior. Installation and execution of applications
(benign/malicious) are performed while the device is running
in the read-only mode. Running the device in the read-only
mode is required to keep changes made by the applications
nonpersistent and ensure the device is in a clean state after
every restart. Although process-specifc features are consid-
ered during the study, but to ensure smooth execution of the
application and the device, a single application is considered
for installation and analysis at a time.

4.1.2. Process Metadata Extraction. Te memory dump
extraction process produces a set of four memory dumps for
each apk in the data set. To extract digital artifacts from these
volatile memory dumps, the Python application is extended
to use the volatility framework (https://www.
volatilityfoundation.org/) as a library. Volatility is an
open-source collection of tools used for the analysis of
volatile memory samples of Mac, Windows, Linux, and
Android-based devices. In order to use volatility for the
analysis of the memory dump of the target Android device,

Table 1: Information in categories of the kernel task structure.

KTS category Information
task_struct State of the process like exit code and process execution domain

mem_info Major and minor page faults, heap address of the process, start and end address of
code segment, and start and end address of data segment

scheduling_info Priority of the process, scheduling state, scheduling policy, execution time, waiting
time, snapshot of user, and system CPU time

signal_info Signal sources, the signal handler, and timers related to the process
process_credentials Ownership and process capabilities

I/O_statistics Block I/O delay and I/O statistics like number of byte read, number of read system
call, and number of write system calls

openfles_info Opened fles related to the process like maximum number of fle descriptor and
opened fle descriptor

CPU_specifc_state CPU state of the process, which includes diferent register states and fault info

Others Miscellaneous information about the process like age of the process and tracer
information

4 Security and Communication Networks

https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/

Ta
bl

e
2:

Re
la
te
d
w
or
k
on

m
al
w
ar
e
de
te
ct
io
n
us
in
g
ke
rn
el

ta
sk

st
ru
ct
ur
e
fe
at
ur
es
.

St
ud

y
N
um

be
r

of
ef
ec
tiv

e
fe
at
ur
es

Fe
at
ur
e
se
le
ct
io
n
te
ch
ni
qu

es
A
lg
or
ith

m
cl
as
sif

ca
tio

n
Re

po
rt
ed

pe
rf
or
m
an
ce

D
at
a
se
ts

iz
e

M
ul
tic
la
ss

cl
as
sif

ca
tio

n
K
TS

ca
te
go
ry

an
al
ys
is

W
an
g
an
d

Li
[1
2]

10
–4

0
ou

to
f1

12
PC

A
,c
or
re
la
tio

n,
IG

,a
nd

ch
i-s
qu

ar
e

N
äı
ve

Ba
ye
s,
de
ci
sio

n
tr
ee
s,
an
d
ne
ur
al

ne
tw
or
k

A
C
C
:9

4%
–

98
%

12
75

m
al
w
ar
e,
12
75

be
ni
gn

×
Pa

rt
ia
l

A
la
w
ne
h

et
al
.[
14
]

43
ou

to
f1

12
Lo

gi
st
ic

re
gr
es
sio

n
N
eu
ra
ln

et
w
or
k

A
C
C
:9

6.
80
%

12
00

m
al
w
ar
e,
12
00

be
ni
gn

×
×

Sh
ah
za
d

et
al
.[
15
]

32
ou

to
f9

0
C
or
re
la
tio

n
D
ec
isi
on

tr
ee
s
(J
48
)

A
C
C
:9

3%
–

96
%

11
0
m
al
ic
io
us
,1

10
be
ni
gn

×
×

K
im

an
d

C
ho

i[
20
]

36
ou

to
f5

9
M
an
ua
l

Su
pp

or
tv

ec
to
r
m
ac
hi
ne
s
(S
V
M
)

A
C
C
:9

8.
85
%
,

6
m
al
ic
io
us

×
×

Security and Communication Networks 5

a profle for the target kernel is generated. Te profle is used
by the volatility framework for locating and parsing in-
formation in the memory dump. Te Linux_pslist plugin of
volatility, which collects active tasks by walking through the
kernel task structure, is utilized for extracting the features of
the running application.

Te kernel task structure is a combination of many
structs, as each feld in the structure may also be a struct
containing other felds. Tis makes it a cascaded structure
with a lot of information about the running process. Te
Python-based application iterates the kernel task structure
six levels deep for the extraction of features. Te depth of
features explored in this study is shown in Figure 3. Te
extracted information is recorded into a csv fle with col-
umns representing the features and rows representing the
memory dumps. Each record consists of 526 felds from the
kernel task structure.

4.2. KTSDroid Feature Selection. Te feature extraction
process produces a rich set of features for each apk in the
dataset. In order to design an efective malware categori-
zation system, all of these features need to be analyzed for

their signifcance in malware detection. For this purpose,
a feature selection process is designed to gauge the im-
portance of features. Feature selection is an important part of
formulating a machine learning-based system, as using
signifcant features positively impacts the performance of the
classifcation system. Feature selection helps improve the
training time, reduce the complexity of the model, and
improve performance. Feature selection is also a useful way
of handling overftting which results in enhanced model
generalization [21].

Feature selection methods can be divided into two broad
categories: wrapper-based methods and flter-based
methods. Wrapper-based methods use a classifcation al-
gorithm to fnd the efectiveness of features, and flter-based
methods use statistical techniques to fnd the importance of
a feature in output prediction [22]. Tis study uses methods
from both of these techniques for fnalizing the set of im-
portant features.

Te feature extraction process iterates through the kernel
task structure to extract a rich set of 526 features. Tese
features belong to nine categories as per the general cate-
gorization of the kernel task structure. As the number of

Extracted Feature Set

Selected Feature Set

Feature Extraction

Feature Selection

Classification

Data Set

ADB AVD LKM Time Based Dumps Volatility

Forward
Selection

Constant
Elimination

Information
Gain

Correlation

Figure 1: KTSDroid framework for feature extraction, feature selection, and classifcation.

6 Security and Communication Networks

features is quite large, selecting the most efective features is
signifcantly important. Te feature selection approach used
in this study comprises two steps. In the frst step, all cat-
egories of the kernel task structure are analyzed to fnd the
categories that are not signifcant for malware categoriza-
tion. Te reason for using this strategy is that all the features
in a certain category are related to each other semantically. It
may be possible that the information present in a certain
category is not an efective identifer of malicious behavior.
Terefore, fnding the signifcant categories that contain
information related to malware identifcation is important.
Once important categories are identifed, the selected cat-
egories are parsed to fnd the most signifcant features for
malware categorization. Details of these steps are described
in the subsections as follows.

4.2.1. Signifcant Kernel Task Structure Category
Identifcation. Te frst step of feature selection is the
identifcation of signifcant categories of the kernel task
structure for malware categorization. For this purpose, the
set of all features is grouped category-wise and labeled for
each class. All categories are then represented by the set
CTall, where CTall � ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9􏼈 􏼉.
Each category, cti, contains a number of features, as shown
in Table 3.

Te initial process of feature selection focuses on eval-
uating the signifcance of a complete category instead of
evaluating each feature individually because the features in
each category are semantically related to each other. For
example, mem_info contains features related to memory
usage, and IO_statistics refer to features related to IO op-
erations. As the features are semantically related, a broader

landscape of feature importance can be extracted by looking
into the signifcance of each category for classifcation.

In order to fnd the set of signifcant categories, CTsig,
where CTsig ⊆CTall, a wrapper-based selection method, is
used. Wrapper methods use the evaluation metrics of the
classifcation model to fnd the best set of features. Features
are supplied to the classifcation system, and performance is
measured. Te set of features that report the highest per-
formance in optimal time is selected [22]. Many wrapper-
based feature selection methods are available. For this study,
the wrapper method of forward selection is used. It utilizes
a model and threshold value of performance measures to fnd
the best set of features. In forward selection, a classifcation
model is created for each feature in the dataset. Te model’s
performance is recorded, and the best performing feature is
selected. In each step, the next best feature is added to the
model and the process continues. Tis method is very
resource-intensive, as there aremany features in a dataset, and
testing each of them one by one is a time- and resource-
intensive task [23]. However, in this experiment, the com-
plexity of forward selection is reduced to only nine features
(CTall � ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9􏼈 􏼉) as a complete
category of features is considered at a time. Tis reduces time
and resource complexity by a large amount.

While applying wrapper-based methods, the selection of
a suitable classifcation algorithm according to the type of
data is important. It should also be considered that in all
wrapper methods, classifcation is performed a number of
times on subsets of features; therefore, the process must be
concluded when a certain threshold for performance is
achieved. In this work, the model used for classifcation in
forward selection is random forest. Random forest is an
ensemble of decision trees. It is recommended as a classifer

Scenario - 2
Extract pid

Execute
Application

Extract package
Event Generator

(150 events)

Scenario - 3

Scenario - 4

apk

apkapk

Scenario - 1

Install
Application (apk)

Extract KTS
- task stat
- mem info
- sched info
- signal info
- process creds
- I/O statistics
- open file info
- CPU specific state
- others

Event Generator
(1500 events)

Event Generator
(4000 events)

Capture device
memory dump

csv file

Figure 2: KTSDroid feature extraction process.

Security and Communication Networks 7

for Android malware detection by a number of studies
[24–26].Te iterations of measuring classifcation results are
terminated when the performance metrics become constant
and adding new categories does not add to the performance
enhancement. After applying forward selection, the set of all
categories CTall is reduced to a smaller set CTsig, where
CTsig � cti ctm􏼈 􏼉 and m is the number of signifcant
categories for malware classifcation.

4.2.2. Signifcant Feature Selection. After the identifcation
of important categories of the kernel task structure, the next
step is to fnd the most minimal and efective feature set for
Android malware categorization. For this purpose, a three-
phase process is used. In the frst phase, features are analyzed
to fnd the set of constant features. All constant features are
identifed and dropped from further analysis. In the second
phase, the remaining set of features is evaluated for their

task_struct

task_state nblocks
ngroups

locked_shm
mq_bytes
unix_inflight

dirtied_when
i_blkbits
i_blocks
i_bytes
.
.

.

arg_end
arg_start
brk
.
.
exe_file
mmap

.

f_flags
f_mode
f_pos
f_version
f_cred
.
.

vm_end
vm_pgoff
vm_start
vm_file
.
.

jit_keyring
securebits
group_info
user
.

f_flags
f_mode
f_pos
f_version
f_inode
.
.mm

mem_info

last_arrival
last_queued
pcount
run_delay

.

deadline
dl_density
dl_throttled
.
.
dl_timer

.

.
dl

.

sched_info

state
on_cpu
prio
.
.

sche_info

.

is_rel
state
base

.

clockid
index
cpu_base

active_bases
max_hang_time
nr_events
nohz_active

.

cgtime
cmaj_flt
cnivcsw
.
.
cputimer

.

.

checking_timer
running
cputime_atomic

.

counter

.
signal

sas_ss_size
sas_ss_sp

signal_info

real_cred
cred

Process Credentials

counter

ioac
delays
I/O statistics

nblocks
ngroups
usage

jit_keyring
securebits
group_info
. jit_keyring

securebits
group_info
.

nblocks
ngroups
usage

counter

blkio_count
blkio_delay
flags
.
.

rchar
read_bytes
wchar
.
. close_on_exec

max_fds
open_fds
.
.

stime

.

files
open_file_info

thread
CPU_specific_state counter

fpregs_active
last_cpu
.
.

last_switch_count
start_time
btrace_seq
.
.

Others

cr2
error_code
.
.
fpu

fdt
.

maj_flt
min_flt
nr_dirtied
stime
.
.

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

exit_state
exit_code
exit_signal
pdeath_signal
jobctl
personality

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)
(ix)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(i)
(ii)

(i)

(i)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)
(ix)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)

(vi)
(vii)

(viii)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(ii)
(i)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(i)
(ii)

(iii)

(i)

(i)

(ii)

(i)
(ii)

(iii)

(i)

(i)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)

(i)
(ii)

Figure 3: Kernel task structure-extracted categories and features.

8 Security and Communication Networks

mutual information (MI) values against the output class.
Features with insignifcant MI values are not considered for
further analysis. Finally, in the last phase, the dimensions of
the data are further reduced by removing the linearly cor-
related features. All phases of feature selection are applied to
each category separately because of the following two
reasons:

(1) Evaluating the features category wise makes the
results manageable and easy to understand

(2) Te fnal result of feature selection summarizes the
contribution of each category of the kernel task
structure in the fnal feature set.

(1) Phase 1: Constant Feature Elimination. Te feature for
which the values remain the same for all classes is referred to
as a constant feature. Tese features increase the di-
mensionality of the feature set and can be a cause of the slow
convergence of the training algorithm [22]. Using these
features has no efect on the predictive power of the model;
only the complexity of the model increases. Terefore, such
features can be dropped from the dataset. In order to fnd
constant features, a statistical measure of variance can be
used [27]. Variance measures the variability in the values of
a variable and can be used to check the constant nature of
a feature. It measures the spread in the values of a variable by
calculating the average squared distance from the mean.
Variance is widely used in feature selection by setting
a threshold value for the variability of values against a fea-
ture. In this study, we are interested in fnding features that
have no variance in values; therefore, the threshold value is 0.
If the value for variance is zero, it indicates that the feature is
constant and can be dropped from further analysis.

KTSDroid groups the extracted features category-wise;
therefore, all features in a category, cti, where cti ∈ CTsig are
evaluated for variance. If fij is the jth feature in the ith

signifcant category, then equation (1) illustrates the process
of feature selection through variance.

f
temp
ij �

fij var fij􏼐 􏼑> 0

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭, (1)

where i ranges from 1, . . . , m andm is the number of selected
categories; j ranges from 1, . . . , n and n is the number of
features in the ith category.

In equation (1), the feature fij is tested using variance as
given by equation (2). It is selected as f

temp
ij if the value for

variance is greater than zero.

var �

�������������

1
N

􏽘

N

i�1
xi − x(􏼁

2

􏽶
􏽴

. (2)

Initially, Fsel
i is an empty set for ith category. After testing

all features in a category, the selected features are added to
set Fsel

i , as shown in the following equation:

F
sel
i ←􏽛

n′

j�1
f
temp
ij , (3)

where n′ is the number of nonconstant features.
Constant feature elimination is the most basic step of

feature selection. Te feature set after constant feature
elimination is stored for further analysis using mutual in-
formation in phase two of feature selection.

4.2.3. Phase 2: Mutual Information (MI). Mutual in-
formation, also referred to as information gain, is one of the
most commonly used flter-based methods for feature se-
lection [28]. Its working is based on entropy, and it measures
the reduction in entropy after the transformation of
a dataset. It estimates the dependency between a feature and
the output. In this work, mutual information is chosen for
feature signifcance evaluation as it estimates linear as well as
nonlinear relationships between feature and output as
compared to other univariate feature selection methods like
F-test that only fnds the linear dependencies between two
variables [29]. Another important point to be considered is
the size of the features to be evaluated. Te features need to
be tested individually; therefore, an efcient algorithm in
terms of time and resource usage must be used. Mutual
information can be easily applied to a large number of
features because of its lower complexity and computation
time [30].

Mutual information helps in fnding signifcant features
by estimating the dependency of output on a feature. Sig-
nifcant features are always related to the output in some
way. However, features that are insignifcant in the pre-
diction of output always have low or no dependency on
output. If the value of mutual information for a feature is
zero, it indicates that the output is independent of the
feature. Higher values show a higher dependency between
the feature and the output.

Te feature set produced by constant feature elimination
Fsel

i for each category, as shown by equation (3), is evaluated
to fnd the value of mutual information against all features. If
fij is the jth feature in the ith category, then equation (4)
represents the application of mutual information and the
selection of signifcant features based on a threshold T.

f
temp
ij �

f
sel
ij MI f

sel
ij􏼐 􏼑>T

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭, (4)

Table 3: Number of features in kernel task structure categories.

KTS category Number of features
task_state 5
mem_info 212
scheduling_info 91
signal_info 83
process_credentials 75
I/O_statistics 18
openfle_info 12
CPU_specifc_state 20
Others 17

Security and Communication Networks 9

where i ranges from 1, . . . , m andm is the number of selected
categories; j ranges from 1, . . . , n′ and n′ is the number of
nonconstant features in the ith category. T is the threshold
value.

MI f
sel
ij ; C􏼐 􏼑 � H f

sel
ij􏼐 􏼑�H f

sel
ij |C􏼐 􏼑. (5)

In equation (4), fsel
ij is tested for mutual information

with respect to output class C by using equation (5). Te
feature, fsel

ij , is selected as f
temp
ij if the value for mutual

information is greater than threshold T. Te set of all
selected features (f

temp
ij) is moved to set Ftemp, as shown in

equation (6). Finally, the set of selected features, Fsel
i , is

replaced by the set of selected features using mutual
information as shown in the following equation:

F
temp
i ←􏽛

n″

j�1
f
temp
ij , (6)

where n″ is the number of features with the MI score greater
than threshold T

F
temp
i ←F

temp
i . (7)

In order to select the features based on mutual in-
formation, the selection of a threshold value (T) is extremely
important, as features with MI scores greater than the
threshold will be included in the Fsel

i set. In order to fnd the
optimal value for T, the feature set is evaluated at diferent
threshold values (T � 0.0, 0.1, . . . , t) against a performance
metric. Te threshold value starts from zero and is increased
by 0.1 for feature set selection. Te process stops for T � t,
where t is a threshold value for which the performance
becomes constant or starts decreasing. Te complete algo-
rithm for feature selection for all categories using mutual
information is shown in Algorithm 1.

After the selection of features using mutual information,
the updated feature set Fsel

i for each category is analyzed to
fnd linearly correlated features.

4.2.4. Phase 3: Correlation. Correlation is a statistical
measure for fnding the linear dependency between two
variables. For feature selection, correlation can be used to
fnd features, which have a strong linear relationship [31]
among themselves. It is benefcial, as two features having
a strong linear dependency on each other will have almost
the same efect on the output variable. Terefore, they may
be replaced by any one of them. Tis helps reduce the di-
mensionality of the data and the complexity of the
model [32].

KTSDroid computes correlation for all features within
a selected category. Fsel

i is the set of features obtained after
eliminating features with mutual information values less
than the desired threshold. If fsel

ij and fsel
ik represent two

features from the set of selected features for a category, then
the application of correlation can be described by equation
(8). Here, one of the features is selected as f

temp
ij if the two

have a correlation value of 0.95.

f
temp
ij �

f
sel
ij corr f

sel
ij , f

sel
ik􏼐 􏼑> 0.95

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭. (8)

If fsel
ij and fsel

ik are represented by f1 and f2, then cor-
relation between the two features can be defned by the
following equation:

corr �
􏽐

n″

i�1 f1i − f1􏼐 􏼑 f2i − f2􏼐 􏼑
�����������������������

􏽐
n″

i�1 f1i − f1􏼐 􏼑
2

f2i − f2􏼐 􏼑
2

􏽱 , (9)

where n″ is the number of features with the MI score greater
than threshold T

Equation (9) refers to the person coefcient for fnding
correlation. A value close to 1 indicates a positive linear
relationship, and a value close to −1 indicates a negative
linear relationship. A value of 0 indicates that both features
are linearly independent. Te set of linearly correlated
features is grouped into a set Ftemp by using equation (7).
Finally, all correlated features are removed from the selected
feature set using the following equation:

F
sel
i ←F

sel
i − F

temp
i . (10)

4.3. KTSDroid Classifcation. Te selected set of features
after applying a number of feature selection techniques can
now be evaluated for performance using a classifcation
model. Random forest (RF) is a classifcationmodel that uses
decision trees as the underlying base classifer. It works by
creating a number of trees and later accumulating the results
from each. Each tree is generated using bagging and
a bootstrap sample of data [33]. Given a training set D,
bagging generates M new training sets Di, where Di is
generated from D uniformly and with replacement. Sam-
pling with replacement means that in each set Di, some
features will be unique and some will duplicate. After the
generation of trees, the fnal result is obtained by either
averaging, weighted averaging, or voting [34]. RF has a low
bias as the trees are unpruned and fully grown. Te cor-
relation among the trees is also low; each tree is built in-
dependent of its peers [26].

KTSDroid used RF for the evaluation of the selected
feature set. It has been chosen for classifcation as the de-
tection of malware is a rule formation problem, and RF
generates a number of rule sets in the form of trees. It is also
not prone to overftting and does not require retraining to
fne-tune a large number of parameters. Overall, it is an
efcient ensemble classifcation model with low bias and
variance. Many malware analysis studies have also reported
higher performance measures with RF as compared to other
classifers [24–26]. In this work, the fnal result of classif-
cation is obtained by voting on the results of candidate trees.

5. Experiments and Results

Te dataset used for this study is CICMalDroid 2020 [35],
developed by the Canadian Institute of Cyber Security.
Applications belonging to fve distinct classes: adware,

10 Security and Communication Networks

banking Trojans, riskware, SMS Trojans, and benign, are
selected for analysis. Te data set consists of 3000 appli-
cations, where each malware class has 500 samples and each
benign class has 1000 samples. As the data set consists of apk
fles, each apk needs to be processed in order to extract useful
artifacts. Te feature extraction process executes each apk
and extracts four memory dumps with interactions. Te
time-based memory dump extraction ensures the capture of
malicious activity. Each dump is processed to traverse the
kernel task structure for the extraction of features. Nine
categories of the kernel task structure are traversed six levels
deep to generate a comprehensive dataset of 526 features.
Overall, the dataset used by the study consists of a total of
12,000 records, with 2000 records against each malware class
and 4000 records against the benign class. A summary of
dataset details is presented in Table 4.

Te comprehensive analysis of kernel task structure
results in a rich set of features. KTSDroid analyzes these
features by using a number of feature selection techniques.
Te fnal set of selected features is then used for classi-
fcation. Te remaining part of this section discusses the
results of all applied feature selection techniques and
classifcation. Te results are organised according to the
sequence of applied techniques. Initially, the results for
fnding the most signifcant categories are reported. Af-
terwards, the results for fnding the most important
features from the signifcant categories using a three-
phase process are shown. Finally, classifcation results
on the fnal feature set for categorizing applications into
fve classes are presented.

5.1. Signifcant Kernel Task Structure Category Identifcation.
Te feature extraction process results in the generation of
a large feature set for each apk in the dataset. In order to
identify important features, a feature selection approach
depicted in Figure 4 is adopted. In the frst step of feature
selection, the set of all categories (CTall) is analyzed to fnd
the set of signifcant categories (CTsig). For this purpose,
a wrapper-based method of forward selection is used. Te
results of the frst iteration of forward selection for selecting
the most signifcant category are shown in Table 5.

It can be inferred from the results that the most sig-
nifcant category for malware categorization in terms of the
F1-score for all malware classes is mem_info. Terefore, it is
selected in the frst iteration. All categories are then added
for evaluation after sorting them by their individual F1-
scores from the frst iteration. Te process of forward se-
lection includes many iterations of feature combinations.
Te result of each step is not shown in the paper, as many
results are intermediate and keep changing when new cat-
egories are added. An overall summary of important results
of the forward selection process is shown in Figure 5. From
the graph, it can be observed that the best performance is
achieved by combining mem_info, process_credentials and
signal_info categories. Combining these three categories
helps in achieving an average F1-score of 0.95. It should also
be noted that adding other categories does not signifcantly
improve the performance of the system.

Te application of forward selection for category analysis
reduces the set of all categories CTall to a set of three sig-
nifcant categories. Tis process reduces the overall size of

(1) procedure Extracting_Signifcant_Features_using_MI
(2) for i⟵ 1 to m do
(3) Load the set of all features in the category (Fsel

i)

(4) //Fsel
i   is  the  feature  set after constant  featureelimination

(5) F
temp
i � []

(6) T � 0.0 //T  is  the  threshold
(7) Previous F1 Score � 0.94
(8) //F1 score after  removing  constant  features
(9) Current F1 Score � 0
(10) while Current F1 Score< � Previous F1 Score do
(11) forj⟵ 1 to Fsel

i .len() do
(12) f

temp
ij ⟵fsel

ij

(13) Score�Mutual Information(f
temp
ij , C)

(14) if Score<T then
(15) F

temp
i .append(f

temp
ij)

(16) end if
(17) end for
(18) Current F1 Score⟵F1 Score(F

temp
i , C)

(19) if Current F1 Score≥ Previous F1 Score then
(20) T � T + 1
(21) end if
(22) end while
(23) Fsel

i ⟵F
temp
i

(24) end for
(25) end procedure

ALGORITHM 1: Algorithm used by KTSDroid for feature selection using mutual information.

Security and Communication Networks 11

Table 4: Dataset details.

Application class Number of samples Number
of memory dumps Events generated Total samples

Adware 500 4 0, 150, 1000, 4000 2,000
Banking Trojans 500 4 0, 150, 1000, 4000 2,000
Riskware 500 4 0, 150, 1000, 4000 2,000
SMS Trojans 500 4 0, 150, 1000, 4000 2,000
Benign 1000 4 0, 150, 1000, 4000 4,000

Input Data: Set of All categories

Output Data : Set of Significant categories
CTsig = {ct1, ct2,ctk}

Category Selection

Mutual Information

Feature Selection

For All
Categories

Constant Feature elimination

Linearly corelated features

CTall = {task_struct, mem_info, signal_info, process_cred, openfiles_info, CPU_speficic_state, scheduling_info, others }

Forward Selection (Wrapper Method)

Extract Features from each Category cti, where i ranges 1 to m
Input Data : Fi = {f1, f2, f3,fn} , where n = total features in ith category

Fsel i= {f1, f2, f3,fn'}

Fsel i= {f1, f2, f3,fn''}

Fsel i= {f1, f2, f3,fn'''}

Remove Feature fi j if variance (σ2 = s2=
∑ (xi–x)2

n – 1
) == 0

) > 0.95Remove Feature f i j if correlation (r =
∑ (x–x)(y–y)

∑ (x–x)2∑ (y–y)2

Remove Feature f i j if MI (I (X;Y)) < TH (X) – H (X | Y)

Figure 4: KTSDroid feature selection process.

Table 5: Results for fnding the most signifcant KTS category using forward selection.

KTS category
F1-score

Adware Banking Trojan Riskware Trojan SMS Benign
task_state 0 0.3 0 0 0
mem_info 0.928 0.927 0.937 0.92 0.92
signal_info 0.768 0.891 0.775 0.834 0.761
process_credentials 0.926 0.912 0.939 0.904 0.963
Scheduling_info 0.597 0.797 0.503 0.70 0.55
IO_statistics 0.668 0.759 0.732 0.767 0.658
Openfle_info 0.531 0.665 0.616 0.758 0.686
CPU_state 0.843 0.756 0.699 0.789 0.702
Others 0.304 0.441 0.252 0.284 0.290

12 Security and Communication Networks

the dataset by 30 percent.Te set of signifcant categories can
now be defned as

CTsig
� ctmem info, ctprocess credentials, ctsignal info􏽮 􏽯. (11)

Further improvement in performance can be achieved
by fnding themost important and efective features from the
selected categories, which are discussed in the next section.

5.2. Signifcant Feature Selection. In order to fnd signifcant
features, the features in each of the selected categories are
evaluated using a three-phase process. Te results of each
phase are discussed as follows.

5.2.1. Phase 1: Constant Feature Elimination. Te frst phase
of signifcant feature selection focuses on constant feature
evaluation and removal from the selected categories of
mem_info, process_credentials, and signal_info. Te set
of nonconstant features for a category Fsel

i is found by
using equations (1) and (2). Te results of applying
constant feature elimination on each category are shown
in Table 6.

Te results show that a large number of constant features
are present in all selected categories. It indicates that

a substantial number of features show the same behavior for
malicious and benign applications. It can be inferred that
these features are indicative of the general working of the
application and are not specifc to the malicious actions.
After removing these constant features, the size of the
dataset is further reduced by 49 percent. Now, the remaining
features will be gauged based on their mutual information
values against the output class.

5.2.2. Phase 2: Mutual Information (MI) for Feature
Selection. Mutual information measures the signifcance of
a feature by estimating the dependency of output on the
feature. After constant feature elimination, the features in
each category are evaluated formutual information scores by
using equations (4) and (5). Te results of mutual in-
formation against all features in the selected categories are
shown in Figures 6–8.

S_1 S_2 S_3 S_4 S_5 S_6
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.928

0.945

0.957 0.957 0.956 0.956

Category Combinations

F-
Sc

or
e

Combination Name Categories in a combination

S-1 mem_info

S-2 mem_info and process_credentials,

S-3 mem_info, process_credentials and signal info,

S-4 mem_info, process_credentials, signal_info, and openfiles_info,

S-5 mem_info, process_credentials,signal_info, openfiles_info and IO_statsistics

S-6 mem_info, process_credentials, signal_info, openfiles_info and IO_statsistics

Figure 5: Forward selection results for signifcant category identifcation.

Table 6: Constant feature elimination results.

KTS category Total
features

Constant
features Remaining features

Mem_info 212 131 81
Process_credentials 75 34 47
Signal_info 83 27 56

Security and Communication Networks 13

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Features (me_info)

M
I s

co
re

M
_F

1
M

_F
3

M
_F

5
M

_F
7

M
_F

9
M

_F
11

M
_F

13
M

_F
15

M
_F

17
M

_F
19

M
_F

21
M

_F
23

M
_F

25
M

_F
27

M
_F

29
M

_F
31

M
_F

33
M

_F
35

M
_F

37
M

_F
39

M
_F

41
M

_F
43

M
_F

45
M

_F
47

M
_F

49
M

_F
51

M
_F

53
M

_F
55

M
_F

57
M

_F
59

M
_F

61
M

_F
62

M
_F

64
M

_F
66

M
_F

68
M

_F
70

M
_F

72
M

_F
74

M
_F

76
M

_F
78

Figure 6: MI scores for mem_info features.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Features (Process_credentials)

M
I S

co
re

s

P_
F1

P_
F3

P_
F5

P_
F7

P_
F1

1

P_
F1

3

P_
F1

5

P_
F1

7

P_
F1

9

P_
F2

1

P_
F2

3

P_
F2

5

P_
F2

7

P_
F2

9

P_
F3

1

P_
F3

3

P_
F3

5

P_
F3

7

P_
F3

9

P_
F4

1

P_
F4

3

P_
F4

5
Figure 7: MI scores for process_credentials features.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Features (signal_info)

M
I S

co
re

s

S_
F1

S_
F3

S_
F5

S_
F7

S_
F9

S_
F1

1
S_

F1
3

S_
F1

5
S_

F1
7

S_
F1

9
S_

F2
1

S_
F2

3
S_

F2
5

S_
F2

7
S_

F2
9

S_
F3

1
S_

F3
3

S_
F3

5
S_

F3
7

S_
F3

9
S_

F4
1

S_
F4

3
S_

F4
5

S_
F4

7
S_

F4
9

S_
F5

1
S_

F5
3

Figure 8: MI scores for signal_info features.

14 Security and Communication Networks

From the results, it can be seen that many features have
very low values for mutual information. It means that the
dependency between these features and output is very less.
In order to drop features with low MI scores, a step-by-step
approach is used. Features are not dropped abruptly; instead,
they are dropped based on a certain threshold value (T) of
MI scores. Initially, the threshold (T) is set to 0.1. All
features below the MI score of 0.1 are dropped, and per-
formance in terms of the F1-score is measured. If there is
improvement in performance, the threshold value T is
updated by a factor of 0.1 and the process of performance
measurement is repeated. Te updation of the threshold
value T is stopped until it reaches a value t at which the
performance becomes constant.

Te result of feature reduction at each threshold value
and corresponding performance is shown in Table 7. It can
be observed that at T� 0.6, the performance becomes
constant, so the iterations for threshold updation can be
stopped. Observing the performance against all thresholds
reveals that the best performance is reported at a threshold
value of 0.4.Terefore, the features at a threshold value of 0.4
are selected for further analysis. It can be observed that the
number of features is now reduced to twenty-eight, of which
twenty-one belong to mem_info, four belong to proces-
s_credentials, and three belong to signal_info. Te names of
selected features along with their MI scores are shown in
Table 8.

5.3. Phase 3: Correlation for Feature Selection. Te selection
of features based on mutual information greatly reduces the
size of the feature set. However, as two linearly correlated
features have the same output, one of them can be dropped
from analysis in order to reduce the dimensionality of the
data. For this purpose, correlation is calculated for all fea-
tures in a category. Two features are considered correlated if
the value of the correlation coefcient as represented in Eqn.
(9) is 0.95. Te correlation matrix for all features in selected
categories is shown in Figures 9–11. Te number of cor-
related features and the size of the fnal set of features after
the removal of correlated features is shown in Table 9.

Te fnal set of features, after the removal of correlated
features, now contains fourteen features in total. Table 10
shows the name, category, and depth of each feature in the
kernel task structure.

5.4. Classifcation. Te application of feature selection re-
sults in a reduced set of efective features. Features belonging
to each category are now combined together and classifed
using random forest. In order to apply random forest, the
length of each tree and the number of trees in the ensemble
need to be assessed. KTSDroid uses unpurged trees to in-
corporate all features, as the feature set is now reduced to
a manageable size. In order to estimate the number of trees
inside the ensemble of random forest, the performance on
the fnal feature set is evaluated for a diferent number of
trees. Te performance is evaluated for three, fve, seven,
nine, and eleven trees. It is observed that the highest average
F1-score of 0.985 is reported for nine trees; therefore, the
number of tress in the random forest ensemble is set to nine.

In order to ascertain the efectiveness of feature selection
approaches, the performance is calculated at all steps of
feature selection, i.e., forward selection (FS), constant feature
elimination (CFE), mutual information (MI), and correla-
tion (Corr). It can be observed from Figures 12 and 13 that
each stage of feature selection results in the reduction of the
feature set and the enhancement of performance. Tis
highlights the preciseness of the proposed feature selection
scheme represented in Figure 4.

One of the important contributions of the study was to
evaluate the signifcance of kernel task structure features for
multiclass classifcation for Android applications. For this
purpose, the performance measures are analyzed for each
class individually. Table 11 and Figure 14 show the per-
formance of the fnal feature set for each class. Te table
shows that adware, riskware, and benign application types
are classifed by an F1-score of 0.99, and banking and SMS
Trojans are classifed by a 0.96 F1-score. Te high rate of
detection is proof of the efectiveness of memory-based
solutions for Android malware categorization in general
and kernel task structure-based features in particular.

KTSDroid is compared with two studies based on
memory-based artifacts for Android malware analysis.
Comparison is conducted in terms of the explored categories
of the kernel task structure, number of features, number of
output classes, and performance. Te comparison shown in
Table 12 highlights that KTSDroid has explored the maxi-
mum number of categories from the kernel task structure
and reported an accuracy of 0.985 using the least number of
features for fve output classes.

Table 7: Performance for MI thresholds.

Treshold for MI score
(T) Features in mem_info Features

in process_credentials Features in signal_info F1-score

0.0 81 47 47 0.942
0.1 56 14 33 0.956
0.2 35 12 19 0.964
0.3 24 11 6 0.974
0.4 21 4 3 0.987
0.5 13 4 2 0.980
0.6 12 4 1 0.980

Security and Communication Networks 15

Table 8: Selected features using mutual information (MI).

Rep Feature name MI score
M_F1 task ->mm->mmap -> vm_fle -> f_inode -> i_generation 1.51
M_F2 task ->mm->mmap_base 1.50
M_F3 task ->mm-> brk 1.50
M_F4 task ->mm->mmap_legacy_base 1.49
M_F5 task ->mm-> start_brk 1.49
M_F6 task ->mm-> end_data 1.49
M_F7 task ->mm-> start_code 1.49
M_F8 task ->mm-> start_data 1.49
M_F9 task ->mm-> end_code 1.48
M_F10 task ->mm->mmap -> vm_fle -> f_inode -> i_ino 1.43
M_F11 task ->mm-> shared_vm 0.74
M_F12 task ->mm-> total_vm 0.64
M_F13 task ->mm-> hiwater_vm 0.59
M_F14 task ->mm-> exec_vm 0.47
M_F15 task ->mm-> env_end 0.43
M_F16 task ->mm-> start_stack 0.43
M_F17 task ->mm-> arg_end 0.42
M_F18 task ->mm-> arg_start 0.42
M_F19 task ->mm-> env_start 0.42
M_F20 task ->mm-> highest_vm_end 0.41
M_F21 task ->mm->mm_count -> counter 0.41
P_F1 task -> cred -> session_keyring -> last_used_at 1.51
P_F2 task -> real_cred -> session_keyring -> last_used_at 1.51
P_F3 task -> real_cred -> session_keyring -> serial 1.50
P_F4 task -> cred -> session_keyring -> serial 1.50
S_F1 task -> sas_ss_sp 1.49
S_F2 task -> signal -> ioac -> rchar 0.60
S_F3 task -> signal -> ioac ->wchar 0.46
S_F4 task -> signal -> real_timer -> base -> cpu_base -> clock_was_set_seq 0.38

M_F1

M_F2

M_F3

M_F4

M_F5

M_F6

M_F7

M_F8

M_F9

M_F10

M_F11

M_F12

M_F13

M_F14

M_F15

M_F16

M_F17

M_F18

M_F19

M_F20

M_F21

M
_F

1

M
_F

2

M
_F

3

M
_F

4

M
_F

5

M
_F

6

M
_F

7

M
_F

8

M
_F

9

M
_F

10

M
_F

11

M
_F

12

M
_F

13

M
_F

14

M
_F

15

M
_F

16

M
_F

17

M
_F

18

M
_F

19

M
_F

20

M
_F

21

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

1

-0.2

-0.24

-0.18

-0.24

-0.24

-0.24

-0.24

-0.24

-0.078

-0.032

-0.19

-0.19

-0.19

-0.19

-0.19

-0.19

-0.19

-0.017

-0.19

-0.056

-0.2 -0.24 -0.18 -0.24 -0.24 -0.24 -0.24 -0.24 -0.078 0.032 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19-0.017-0.19 -0.056

1

0.97

0.97 0.97 0.97 0.97 0.97 0.97

0.96 0.99 0.99 0.99 0.99 0.99 0.99

0.97

0.97

0.97

0.97

0.97

0.97 0.98 0.98 0.98 0.98 0.98 0.980.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1

1

1

1

1

1

0.98 0.98 0.98 0.98 0.98 0.980.97

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1

1

1 1 110.99

0.99

0.99

0.99

0.99

0.99

0.96 0.061 -0.06

-0.065

-0.065

-0.065

-0.065

-0.065

-0.065

-0.059

-0.047

-0.044

-0.052

-0.052

-0.052

-0.052

-0.052

-0.052

0.052

0.047

0.052

0.052

0.052

0.052

0.052

0.97

0.98

0.98

0.98

0.98

0.98

0.98

0.99

0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99

0.99

0.98

0.98

0.98

0.98

0.98

0.98

0.97 0.98 0.980.98 0.98 0.98 0.98

1 1 1 1 1 1

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99

0.99

0.99

0.99

0.99

-0.011

-0.015

-0.015

-0.015

-0.015

-0.015

-0.015

-0.0095

0.98

0.98

0.98

0.98

0.98

0.98

-0.047

0.061 0.052

-0.065 -0.059 -0.065 -0.065 -0.065 -0.065 -0.065 -0.0062

0.047 0.052 0.052 0.052 0.052 0.052

-0.06

-0.011

-0.052

-0.015 -0.015 -0.015 -0.015 -0.015 -0.015-0.0095

-0.044 -0.052 -0.052 -0.052 -0.052 -0.052

1

1

1 1

1

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1 1 1 1

1

0.99 0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

1

1

1

1

1

0.0062 0.053

0.053

0.054 0.052

0.052

0.052

0.052

0.052

0.052

0.052

0.063 0.073-0.01

-0.06 -0.06 -0.06 -0.06 -0.06 -0.060.460.84

0.37

0.052 0.052 0.052 0.052 0.052-0.011 -0.01

0.054

-0.011 0.84

-0.06

-0.06

-0.06

-0.06

-0.06

-0.06

0.46

0.063

0.073

-0.045

-0.045 -0.045 -0.045 -0.045 -0.045

-0.045

-0.045

-0.045

-0.045

-0.045

0.37

-0.045

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01 -0.01-0.01-0.01-0.01-0.01

0.047

0.047

0.056

0.056

0.033

0.045

0.033 0.045

Figure 9: Correlation matrix of mem_info features.

16 Security and Communication Networks

P_
F1

P_
F2

P_
F3

P_
F4

P_F1 P_F2 P_F3 P_F4

1.0

0.8

0.6

0.4

0.2

0.0

1

1

1

1

-0.056

-0.056

-0.056

-0.056

1

1

1

1

-0.056

-0.056 -0.056

-0.056

Figure 10: Correlation matrix of process_cred features.

S_
F1

S_
F2

S_
F3

1.0

0.8

0.6

0.4

0.2

0.0

1

S_F1 S_F2 S_F3

0.0037 -0.011

0.0037

-0.011 0.0031

0.00311

1

Figure 11: Correlation matrix of signal_info features.

Table 9: Correlation results.

KTS category Original features Correlated features Reduced features
mem_info 21 12 9
process_credentials 2 4 2
signal_info 0 3 3

Table 10: Final feature set used by KTSDroid.

Rep Feature name Depth
M_F1 task ->mm->mmap -> vm_fle -> f_inode -> i_generation 6
M_F2 task ->mm->mmap_legacy_base 3
M_F3 task ->mm-> end_data 4
M_F4 task ->mm->mmap_base 3
M_F10 task ->mm->mmap -> vm_fle -> f_inode -> i_ino 6
M_F11 task ->mm-> shared_vm 3
M_F12 task ->mm-> total_vm 3
M_F14 task ->mm-> exec_vm 3
M_F20 task ->mm->mm_count -> counter 4
P_F1 task -> real_cred -> session_keyring -> last_used_at 4
P_F3 task -> real_cred -> session_keyring -> serial 4
S_F1 task -> sas_ss_sp 2
S_F2 task -> signal -> ioac -> rchar 4
S_F3 task -> signal -> ioac ->wchar 4

Security and Communication Networks 17

6. Discussion

KTSDroid analyzes the efect of memory-based features on
Android malware categorization. Te kernel task structure
of memory is used for the extraction of process-specifc
features. It is thoroughly analyzed for nine categories up to
a depth of six levels, as compared to existing studies that
have worked with fve categories for a depth of three. A large
number of features are extracted, which are then evaluated
for signifcance. KTSDroid uses a minimal set of fourteen
features and is able to classify malicious applications with

high performance. Te high performance of KTSDroid can
be attributed to the following important points:

(1) Process-specifc features from the kernel task
structure are used for creating behavior profles for
applications. Tese features are better representative
of the application’s behavior as compared to general
memory usage features, as they are shared by
a number of processes.

(2) Five additional categories of the kernel task structure
are explored for feature extraction by KTSDroid.
Among these, the category of process_credentials is
found to be the second most important for malware
categorization by the forward selection method, as
shown in Table 5. Features from the category of
process_credentials are included in the fnal feature set.

(3) Te deep exploration of the kernel task structure
enables the extraction of features beyond the depth
of three (as per previous studies). Te features be-
yond the depth of three constitute seventy-one
percent of the fnal feature set. Te high percent-
age of features from deeper structures of the kernel
task structure highlights the importance of traversing
deeper levels of the kernel task structure.

7. Conclusion

Dynamic analysis-based solutions for malware analysis have
replaced static analysis solutions due to the inability of static
analysis to explore the runtime working of the application.
Tis study has proposed a dynamic analysis-based malware
categorization system that extracts volatile memory-based

FS FS+CF FS+CF+MI FS+CF+MI+Corr
0

50

100

150

200

250

300

350

400

N
um

be
r o

f F
ea

tu
re

s

Figure 12: Dimensionality reduction by feature selection methods.

FS FS+CF FS+CF+MI FS+CF+MI+Corr
0.93

0.94

0.95

0.96

0.97

0.98

0.99

F!
-S

co
re

Figure 13: Performance improvements by feature selection
methods.

Table 11: KTSDroid performance for malicious and benign classes.

Class F1-score Precision Recall
Adware 0.992 0.988 0.996
Banking Trojans 0.967 0.972 0.962
Riskware 0.992 0.989 0.995
SMS Trojans 0.968 0.969 0.968
Benign 0.993 0.994 0.992

Banking Trojans
0.94

0.95

0.96

0.97

0.98

0.99

1

BenignAdware Riskware SMSware

F1-Score
Precision
Recall

Figure 14: KTSDroid performance for multiclass application
categorization.

Table 12: KTSDroid comparison with existing studies.

Signifcant
categories

Number
of

features

Number
of output
classes

Performance

Wang et al. 2 out of 5 40 2 0.98 (F1-score)
Tstructdroid — 32 2 98 (accuracy)
KTSDroid 3 out of 9 14 5 0.985 (F1-score)

18 Security and Communication Networks

artifacts for malicious Android application detection and
categorization. A time-based memory dump extraction
process with interactions is conducted to ensure the capture
of malicious actions of the applications. Te kernel task
structure from all memory dumps is analyzed for the ex-
traction of process-specifc features. A large number of
process-specifc features grouped into nine categories are
extracted. A comprehensive analysis is conducted on the
extracted set of features to fnd the most important cate-
gories of the kernel task structure for malware categoriza-
tion. Te most signifcant features of the selected categories
are also reported in the study.Te proposed system is able to
classify malicious applications into fve distinct classes by
using a small number of features with high performance.

Data Availability

Te data supporting the fndings of this study are available
on the following git repository: https://github.com/
saneehaAmir/KTSDroid.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] P. Stirparo, I. N. Fovino, and I. Kounelis, “Data-in-use
leakages from Android memory — test and analysis,” in
Proceedings of the 2013 IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Commu-
nications (WiMob), pp. 701–708, Lyon, France, October 2013.

[2] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in Pro-
ceedings of the Te 5th Conference on Information and
Knowledge Technology, pp. 113–120, Shiraz, Iran, May 2013.

[3] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio,
G. B. Junquera, and P. L. de Geus, “Identifying Android
malware using dynamically obtained features,” Journal of
Computer Virology and Hacking Techniques, vol. 11, no. 1,
pp. 9–17, 2015.

[4] Y. Ding, M. Naber, C. L. E. Pafen, J. H. Fabius, and
S. Van der Stigchel, “Saccades reset the priority of visual
information to access awareness,” Vision Research, vol. 173,
pp. 1–6, 2020.

[5] A. Aghamohammadi and F. Faghih, “Lightweight versus
obfuscation-resilient malware detection in android applica-
tions,” Journal of Computer Virology and Hacking Techniques,
vol. 16, no. 2, pp. 125–139, 2020.

[6] M. Hammad, J. Garcia, and S. Malek, “A large-scale empirical
study on the efects of code obfuscations on android apps and
anti-malware products,” in Proceedings of the Proceedings of
the 40th International Conference on Software Engineering,
pp. 421–431, Association for Computing Machinery, New
York, NY, USA, May 2018.

[7] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci,
and R. Baldoni, “Android malware family classifcation based
on resource consumption over time,” in Proceedings of the
2017 12th International Conference on Malicious and Un-
wanted Software (MALWARE), pp. 31–38, Fajardo, PR, USA,
October 2017.

[8] M. Gohari, S. Hashemi, and L. Abdi, “Android malware
detection and classifcation based on network trafc using
deep learning,” in Proceedings of the 2021 7th International
Conference onWeb Research (ICWR), pp. 71–77, Tehran, Iran,
May 2021.

[9] H. Gao, S. Cheng, and W. G. D. Zhang, “GDroid: android
malware detection and classifcation with graph convolutional
network,” Computers & Security, vol. 106, Article ID 102264,
2021.

[10] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I. Kara, “Catch
them alive: a malware detection approach through memory
forensics, manifold learning and computer vision,” Com-
puters & Security, vol. 103, Article ID 102166, 2021.

[11] H.Wang, H. He, andW. Zhang, “Demadroid: object reference
graph-based malware detection in Android,” Security and
Communication Networks, vol. 2018, Article ID 7064131,
16 pages, 2018.

[12] X. Wang and C. Li, “Android malware detection through
machine learning on kernel task structures,”Neurocomputing,
vol. 435, pp. 126–150, 2021.

[13] W. Zhang, H. Wang, H. He, and P. Liu, “DAMBA: detecting
android malware by ORGB analysis,” IEEE Transactions on
Reliability, vol. 69, no. 1, pp. 55–69, 2020.

[14] H. Alawneh, D. Umphress, and A. Skjellum, “Android mal-
ware detection using neural networks & process control block
information,” in Proceedings of the 2019 14th International
Conference on Malicious and Unwanted Software (MAL-
WARE), pp. 3–12, Nantucket, MA, USA, August 2019.

[15] F. Shahzad, M. Akbar, S. Khan, and M. Farooq, “Tstructdroid:
realtime malware detection using in-execution dynamic
analysis of kernel process control blocks on android,”
Technical Report, National University of Computer &
Emerging Sciences, Islamabad, Pakistan, 2013.

[16] A. Ali-Gombe, A. Tambaoan, A. Gurfolino, and G. G. Richard
III, “App-agnostic post-execution semantic analysis of An-
droid in-memory forensics artifacts,” in Proceedings of the
Annual Computer Security Applications Conference, pp. 28–
41, Austin, TX, USA, December 2020.

[17] Y. Dai, H. Li, Y. Qian, and X. Lu, “A malware classifcation
method based on memory dump grayscale image,” Digital
Investigation, vol. 27, pp. 30–37, 2018.

[18] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and
A. Santone, “Visualizing the outcome of dynamic analysis of
Android malware with VizMal,” Journal of Information Se-
curity and Applications, vol. 50, Article ID 102423, 2020.

[19] A. H. Lashkari, B. Li, T. L. Carrier, and G. V. Kaur, “Volatile
memory analyzer for malware classifcation using feature
engineering,” in Proceedings of the 2021 Reconciling Data
Analytics, Automation, Privacy, and Security: A Big Data
Challenge (RDAAPS), pp. 1–8, IEEE, Hamilton, Canada, May
2021.

[20] H. H. Kim and M. J. Choi, “Linux kernel-based feature se-
lection for Android malware detection,” in Proceedings of the
Te 16th Asia-Pacifc Network Operations and Management
Symposium, pp. 1–4, Hsinchu, Taiwan, September 2014.

[21] J. Abawajy, A. Darem, and A. A. Alhashmi, “Feature subset
selection for malware detection in smart IoT platforms,”
Sensors, vol. 21, no. 4, p. 1374, 2021.

[22] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A
review on feature selection in mobile malware detection,”
Digital Investigation, vol. 13, pp. 22–37, 2015.

[23] N. Maleki and H. Rastegari, “An improved method for packed
malware detection using PE header and section table

Security and Communication Networks 19

https://github.com/saneehaAmir/KTSDroid
https://github.com/saneehaAmir/KTSDroid

information,” International Journal of Computer Network and
Information Security, vol. 11, no. 9, 2019.

[24] J. Jung, H. Kim, D. Shin et al., “Android malware detection
based on useful API calls and machine learning,” in Pro-
ceedings of the 2018 IEEE First International Conference on
Artifcial Intelligence and Knowledge Engineering (AIKE),
pp. 175–178, IEEE, Laguna Hills, CA, USA, September 2018.

[25] P. Agrawal and B. Trivedi, “Machine learning classifers for
Android malware detection,” in Data Management, Analytics
and Innovation, pp. 311–322, Springer, Berlin, Germany,
2021.

[26] H. J. Zhu, T. H. Jiang, B. Ma, Z. H. You, W. L. Shi, and
L. Cheng, “HEMD: a highly efcient random forest-based
malware detection framework for Android,” Neural Com-
puting & Applications, vol. 30, no. 11, pp. 3353–3361, 2018.

[27] S. Khalid and F. B. Hussain, “Evaluating dynamic analysis
features for android malware categorization,” in Proceedings
of the 2022 International Wireless Communications and
Mobile Computing (IWCMC), pp. 401–406, IEEE, Dubrovnik,
Croatia, May 2022.

[28] T. A. Alhaj, M. M. Siraj, A. Zainal, H. T. Elshoush, and
F. Elhaj, “Feature selection using information gain for im-
proved structural-based alert correlation,” PLoS One, vol. 11,
2016.

[29] A. Salah, E. Shalabi, and W. Khedr, “A lightweight android
malware classifer using novel feature selection methods,”
Symmetry, vol. 12, no. 5, p. 858, 2020.

[30] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman,
Te Elements of Statistical Learning: Data Mining, Inference,
and Prediction, vol. 2, Springer, Berlin, Germany, 2009.

[31] A. M. Kowshalya, R. Madhumathi, and N. Gopika, “Corre-
lation based feature selection algorithms for varying datasets
of diferent dimensionality,” Wireless Personal Communica-
tions, vol. 108, no. 3, pp. 1977–1993, 2019.

[32] X. F. Song, Y. Zhang, D. W. Gong, and X. Z. Gao, “A fast
hybrid feature selection based on correlation-guided clus-
tering and particle swarm optimization for high-dimensional
data,” IEEE Transactions on Cybernetics, vol. 52, no. 9,
pp. 9573–9586, 2022.

[33] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[34] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Perfor-
mance comparison of support vector machine, random forest,
and extreme learning machine for intrusion detection,” IEEE
Access, vol. 6, pp. 33789–33795, 2018.

[35] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Efective
and efcient hybrid android malware classifcation using
pseudo-label stacked auto-encoder,” Journal of Network and
Systems Management, vol. 30, pp. 22–34, 2022.

20 Security and Communication Networks

