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The family of protein kinases comprises more than 500 genes involved in numerous functions. Hence, 
their physiological dysfunction has paved the way toward drug discovery for cancer, cardiovascular, 
and inflammatory diseases. As a matter of fact, Kinase binding sites high similarity has a double role. 
On the one hand it is a critical issue for selectivity, on the other hand, according to poly-pharmacology, 
a synergistic controlled effect on more than one target could be of great pharmacological interest. 
Another important aspect of binding similarity is the possibility of exploit it for repositioning of drugs 
on targets of the same family. In this study, we propose our approach called Kinase drUgs mAchine 
Learning frAmework (KUALA) to automatically identify kinase active ligands by using specific sets of 
molecular descriptors and provide a multi-target priority score and a repurposing threshold to suggest 
the best repurposable and non-repurposable molecules. The comprehensive list of all kinase-ligand 
pairs and their scores can be found at https://​github.​com/​molin​frimed/​multi-​kinas​es.

The kinase protein family is one of the most studied in literature because of the key role to many crucial biologi-
cal processes such as cell division, signaling, and growth. Therefore, physiological dysfunctions of the kinases’ 
activity have been associated with human diseases1. Given the importance of these proteins, it is not surprising 
that their biological role and the selectivity of their modulators are extensively studied2. Indeed, this protein 
family has entered several drug discovery campaigns to treat cancer, cardiovascular, and inflammatory diseases.

Selectivity is carefully supervised when designing new drugs, in order to minimize adverse effects on off-
targets and consequently to reduce the compound potential toxicity3. However, due to the high similarity of 
kinase binding sites, the design of novel selective inhibitors for a specific target still remains a challenge today4. 
A low selectivity may influence the clinical trials’ progress due to high off-target toxicity. An example was the 
effort of dinaciclib, a CDK inhibitor, in the attempt to reach phase III clinical trial5.

Although the selectivity of a drug towards a specific target should be strongly considered in order to achieve 
the right balance between the success rate and the possible toxicity on the organism, on the other hand, a mul-
titarget effect might have some interesting applications. In fact, recent polypharmacology studies suggest that 
the efficacy of a drug can be improved by specifically modulating multiple targets. In other words, a drug that 
"hits" several targets belonging to one or more pathways (network of interacting proteins) in some cases may 
represent a more effective therapeutic approach, by limiting the drawbacks generally deriving from the use of 
a single-target drug or from a combination of several drugs6. Indeed, a certain rate of drug promiscuity is even 
sought to repurpose drugs to new therapeutical targets. As a matter of fact, the binding site similarity between 
proteins is a crucial aspect to address in the repurposing process of known drugs. However, the right balance 
between protein binding site similarity and the number of targets that a known ligand can bind should be seri-
ously considered in drug repositioning studies7.

In this context, the large amount of data available on public databases like ChEMBL8 and KLIFS9 has allowed 
the scientific community to direct efforts towards the use of computational methodologies, such as machine 
learning (ML) models, to improve the repositioning capabilities of known ligands. In fact, in the literature 
several ML and artificial intelligence (AI) approaches for bioactive ligands identification have been reviewed 
for protein families, such as G protein-coupled receptors10, and human diseases, like the Coronavirus Disease 
2019 (COVID-19)11 and Alzheimer disease12. Furthermore, training of ML algorithms has also been reported 
to develop accurate models for epigenetic targets based on different fingerprint representations of compounds13.
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In the last years, the application of AI in drug design and drug discovery has been largely adopted in order to 
exploit the big amount of data available to create affordable and reliable models. The effort in terms of cost and 
time in designing a clinical trial could potentially be reduced owing to the employment of AI techniques14. In a 
very recent work15, Paul et al. described the use of ML as a technology able to learn from human knowledge about 
a specific research area, and transfer patterns of information to an automated system, that can be effectively used 
in decision making alone or in conjunction with human expertise. An interesting trend was elucidated by Hay 
et al. in 201416, where the success rate of drugs entered clinical development in phase I and subsequently approved 
by the US Food and Drug Administration (FDA) is nearly one-in-six. In the last decades, ML methods have 
also been used to address a wide variety of issues associated with the kinase protein family, such as predicting 
inhibitor activity profiles for a specific kinase17 or predicting different binding modes based on conformational 
kinase data18. In 2005, Briem et al.19 used an in-house dataset of compounds to predict the inhibitory activity 
on kinases without considering their selectivity. Recently, in the literature several works have been reported 
applying artificial intelligence approaches to classify and discover new kinases inhibitors starting from structure- 
and ligand-based approaches. Indeed, in 2020 Miljković et al.18 applied different machine learning approaches 
to generate models on the basis of compounds with binding modes confirmed by X-ray crystallography for 
predicting different classes of kinase inhibitors (including types I, I1/2, and II as well as allosteric inhibitors). 
Similarly, in 2021 Abdelbaky et al.20 described the application of predictive models to discriminate between four 
binding modes: three allosteric inhibitor modes (I, II, I1/2) and one non-allosteric mode. The high accuracy rate 
of both works demonstrated that the new machine learning models have considerable potential for practical 
applications. Furthermore, in recent years deep learning applications based on molecular fingerprints have also 
gained attention to support the virtual screening on specific protein families, such as kinases. An example is the 
EMBER method21, a novel molecular embedding made by seven molecular fingerprints to describe the same 
molecule. This approach employs a deep convolutional architecture that assesses ligands’ bioactivity on a data 
set containing twenty protein kinases with similar binding sites to CDK1. Jannsen and collaborators, in 2019 
produced a great work based on a machine learning model approach to map the activity profile of compounds 
over the kinase family. Such an approach produced Drug Discovery Maps (DDM) created on the t-distributed 
stochastic neighbor embedding (t-SNE) algorithm. The latter was useful to visualize molecular and biological 
target similarity. This method was useful to explore target and chemical space and predicts the activities of novel 
kinase inhibitors22. In a recent work, Zhavoronkov et al.23 adopted a generative tensorial reinforcement learning 
(GENTRL), for de novo small-molecule design that revealed to be useful to discover new DDR1 kinase inhibitors.

However, to our knowledge, a multi-classifier based on the use of molecular descriptors to reposition ligands 
on the kinase family, appears to be lacking in the literature. In our opinion, such an approach could be useful 
in supporting results from classical computational methods, e.g., docking and pharmacophore approaches, to 
strengthen the activity prediction capability of the computational models. Moreover, a well-trained machine 
learning model could help in considering selectivity issues on the one hand, and repurposing on the other hand.

In this work, we present an extensive computational workflow tuned on available human kinome data to assess 
the predictive power of ML algorithms in classifying family-based active and inactive ligands and to evaluate its 
application for the repositioning of known kinase inhibitors.

The workflow uses experimental kinase inhibitor data from the ChEMBL database8 and annotated by target 
and biological activity. The molecular descriptors have been calculated for each ligand using PaDEL24. This 
dataset, after careful data mining and curation step, has been used to train 12 well-known different ML methods 
in order to suggest a methodology to build the best classifier model with the best molecular descriptors set for 
each kinase. This study enlightened the importance of some specific descriptors useful for the classification of 
active kinase inhibitors and the best suitable classification model to be applied in this context. The combination 
of a multi-classifier methodology with a binding site similarity analysis into a scoring function has shown to be 
a valuable tool to further investigate the most promising predicted kinase-ligand pairs. Indeed, based on our 
studies the obtained results will be exploited for further analysis by entering a repositioning process. The entire 
workflow herein described is called Kinase drUgs mAchine Learning frAmework (KUALA) (see Fig. 1).

Figure 1.   Workflow description of KUALA approach. The entire workflow is composed of four principal steps: 
(1) data extraction and filtering; (2) property calculation and data mining; (3) machine learning; and (4) target 
profiling with scoring function estimation for each predicted kinase-ligand pairs.
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Methods
Data extraction and filtering.  In this work, several databases have been employed and processed for the 
research activities described below. In detail, Kinase–Ligand Interaction Fingerprints and Structure (KLIFS) 
is a database which contains several information about kinase protein family, e.g., sequence alignment, struc-
tural kinase-ligand interaction, binding pocket and molecular fingerprints, and crucial residues within kinase-
inhibitor selectivity patterns9. In this work, kinase structures including validated binding sites and their Uniprot 
codes were retrieved from KLIFS database. The overall number of human kinases within the database was 555. 
Proteins for which no binding pocket sequence information was known were filtered and removed. Each Uni-
Prot code was translated into the corresponding ID from ChEMBL database by using “Retrieve/ID mapping 
Tool” in Uniprot database25. ChEMBL collects large-scale information about bioactive molecules with drug-like 
properties8, and also includes the annotation of assays and targets.

Each kinase was annotated with unique ChEMBL ID, in order to retrieve ligand-related half maximal inhibi-
tory concentration (IC50) activity values. All the activity data related to the collected kinases were experimentally 
obtained from different techniques and assays, which provided distinct but comparable concentration for each 
ligand–protein pair. In order to evaluate the activity, the minimum IC50 value was considered. Finally, unique 
pairs of kinases-small molecule were collected and molecules with IC50 below 0.03 µM were marked as active26, 
while those above 10 µM as inactive. The threshold chosen was the best trade-off between separation of active/
inactive classes and loss of inactive ligand information. In addition, ChEMBL provides an "assay confidence 
score", which reflects both the type of target assigned to a particular assay and the certainty that the assigned 
target is the correct target for that experiment. For our analyses, only assay data with an "assay confidence score" 
of 9 were evaluated, that is those with a high degree of confidence assigned.

Both active and inactive small molecules (SMs) were filtered with Schrödinger nodes27 using the Knime28 
platform (version 4.3.0). In particular, ligands with a number of carbon atoms higher than 7, with at least one 
aromatic ring and, finally, with a molecular weight in the range 100 to 700 g/mol were considered. To extract 
and process molecular information, it was decided to calculate molecular descriptors and not to use fingerprints, 
as they are not easily explainable. For this purpose, PaDEL-Descriptor (PaD) software24 was used to calculate 
molecular descriptors for each unique molecule (UM). The dataset consisting of ChEMBL IDs and PaD descrip-
tors was analyzed for missing values number, variance, and zero elements number, thus filtering not available data 
and removing some descriptors. For each remaining descriptor, few missing values (less than 0.008% on complete 
ligands dataset) were replaced with the mean value. On the other hand, some descriptors showed infinite values 
for certain ligands, thus they were replaced with maximum descriptor value. Finally, the descriptors characterized 
by all zero entries were removed. In order to make an early features selection, Pearson’s correlation coefficient was 
computed for each pair of descriptors, then those strongly correlated with similarity above 0.9 were excluded29.

From a preliminary analysis, it was clear that the ligand dataset per single kinase was numerically unbalanced. 
Then, in order to achieve an adequate number of active and inactive compounds for each kinase, the proteins 
were filtered by considering a minimum number of ligands equal to 30. This number corresponds to a value 
between the 50th and 75th percentile of the distribution of the entire ligand set for all proteins, thus obtaining the 
final dataset consisting of 84 unique kinases (UKs) (Supplementary Data 1) with the related active and inactive 
compounds. The whole preprocessing and data extraction is depicted in Supplementary Fig. S1.

Fingerprint calculation.  In addition to the molecular descriptors, different types of fingerprints were cal-
culated for each small molecule. In particular, the Molecular ACCess System (MACCS)30, Extended-Connec-
tivity Fingerprints31 with radius 4 (ECFP4), calculated in the package RDKit, and Klekota-Roth Fingerprints in 
PaDEL-Descriptor software (KRFP)32.

MACCS are 166-bit long structural keys, which encode the molecule structure into a string of binary bits. 
Each bit corresponds to a structural characteristic, e.g., substructure or fragment in a predefined library. If the 
molecule has a predefined characteristic, the position of the bit corresponding to this characteristic is set to 1 
(ON), 0 (OFF), otherwise. It is noteworthy that only the predefined structural keys in the fragment library are 
encoded.

An alternative to structural keys is hashed fingerprints such as ECFP4 (we used the 1024-bit long). Unlike 
structural keys, hashed fingerprints do not require a predefined fragment library. Instead, they are generated 
by enumerating through the molecule all the possible fragments that do not exceed a certain radius and then 
converting them into numerical values using a "hash" function. These functions are used to map data of arbitrary 
size to "fixed size" values. Therefore, enumerating all possible fragments in a molecule inevitably results in a "bit 
collision" that may lead to a loss of information, in which different fragments are converted to the same numerical 
value and to the same bit position. For this reason, there is no one-to-one correspondence between fingerprint 
fragments and bits, contrary to structural keys31.

KRFP are 4860-bit long corresponding to unique substructures predisposed to bioactivity32. Each bit encodes 
the presence or absence of a particular substructure (coded in SMARTS notation) within a molecule. KRFP 
can be used to identify the most frequent chemical motifs related to activity profile suggesting useful rules for 
molecules design.

Feature selection.  Molecular descriptors were used as feature variables in ML approach. In order to reduce 
the computational cost of training and improve the models’ performance, several feature selection techniques 
were used. In particular, variable importance analysis with linear regression33 , Boruta34 algorithm and MRMR35, 
was performed.
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Variable importance analysis with linear Regression.  The dataset was divided into subsets for each 
unique kinase by considering the related active and inactive ligands. Afterwards, the relationship between every 
selected feature and the ligand’s class were evaluated through generalized linear regression models with binomial 
error distribution and logit link function. Only statistically significant features with p values below 0.05 were 
maintained and called this set Linear Regression features (LRs).

Variable importance analysis with Boruta algorithm.  Boruta34 is a feature selection approach based 
on Random Forest (RF) algorithm, which considers all statistically valid variables obtained from the compari-
son between classification performance with respect to random variables. The approach creates pseudo-copies 
of all features and constructs an extended dataset trying to remove their correlations with the dependent vari-
able. Finally, Boruta runs an RF classifier on this dataset and computes the Z-scores from standard error. Then, 
the maximum Z-score attribute (MZSA) among pseudo-variables is evaluated and compared to every feature. 
Those variables performing better than MZSA were labelled as ‘confirmed’. Conversely, the attributes with lower 
performance than MZSA were considered ‘rejected’ and removed. Finally, for each unique kinase, important 
variables confirmed from Boruta analysis were labelled Boruta Algorithm features (BAs).

Variable importance analysis with minimum redundancy maximum relevance.  Minimum 
redundancy maximum relevance (MRMR) is a widely used algorithm that has been conceived and effectively 
applied to microarray datasets to minimize similarity and to discover genes relevant to the phenotype35. It imple-
ments filter type feature selection by choosing the top k characteristics with the intuition that mutual informa-
tion (MI) provides a useful measure of dependence between variables. Hence, the authors proposed to take 
only very dissimilar ones (minimum redundancy) and at the same time those that have high similarity with 
classification variable (maximum relevance). The minimum redundancy is obtained by minimizing the sum of 
MI between each pair of features while the maximum relevance is calculated from the sum of MI between each 
feature with the classification variable. Finally, the feature set is more representative of the classes they belong to.

The authors in Ding et al. compared several values of k. For the sake of completeness, we performed feature 
selection with MRMR (https://​github.​com/​smazz​anti/​mrmr) considering k equal to 10, 50, 100, 150, 200.

Feature sets.  In order to compare the performance between the models trained using the above-mentioned 
variables ensemble, we decided to take into account only the best performing sets of features in terms of metric 
and computational cost, i.e., LRs, BAs, the common features (Cs) between them and, finally, their union (Us) as 
shown in Supplementary Fig. S2a.

Machine learning models.  For each feature set and for each protein, the following twelve well-known 
ML classification methods, i.e., Naïve Bayes (NB)36, Logistic regression (LR)11, Support Vector Machine 
(SVM)37, Decision Tree (C.50)38, Random Forest (RF)39, Neural Network (NNet)40, eXtreme Gradient Boost-
ing (XGBoost)41, K-Nearest Neighbour (K-NN)38, Classification and Regression Tree (CART)42, Least Absolute 
Shrinkage and Selection Operator (LASSO)43, Ridge Regression (RIDGE)44, Elastic net regression (ELNET)39, 
were evaluated in order to train kinase-specific models (Supplementary Fig. S2b).

Previously mentioned algorithms were performed in R (see full list of parameters in Supplementary Table S1). 
In order to take into account the inherent dataset imbalance (see Fig. 2), each method was accurately adjusted 

Figure 2.   Number of active and inactive ligands for each protein of the 84 UKs. Extensive data analysis was 
carried out to balance the total number of active and inactive molecules. Some kinases, e.g., P35968, P00533 
have a higher number of associated molecules.

https://github.com/smazzanti/mrmr
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so that each class within kinase-specific training set, e.g., active, inactive, could be weighed appropriately. Also, 
several performance metrics were considered, i.e., Accuracy (Ac), Specificity (Sp), Balanced Accuracy (Ba), Preci-
sion (Pr), Recall (Re), F1-measure (F1) (Supplementary Fig. S3). The positive class was ‘active ligand for a kinase’, 
while the negative class was ‘inactive ligand for a kinase’. Therefore, true positives and true negatives represented 
the number of correct predictions of positive and negative classes, respectively. Similarly, false positives and false 
negatives counted the number of misleading predictions. All the above metrics were calculated for each kinase, 
classification model, and feature set. Finally, for every protein, the method that achieved the best performances 
and the related feature set were collected.

After the training and test phase of ML models, a further validation step was performed to validate the ML 
model capability to known active prediction. For this reason, a public database of kinase inhibitors currently 
in clinical trials (from phase I to IV), PKIDB45, and a screening library from MedChem Express vendor were 
downloaded. These datasets were filtered to remove the compounds used in the training phase. Moreover, only 
target belonging to the kinase set evaluated (84 UKs) were considered, thus obtaining an activity validation set 
consisting of 50 new single entries (drugs). Thus, these compounds were processed by the classifier to be labelled 
as actives or inactives.

Ensemble model.  In general, machine learning algorithms have their limitations and may be affected by 
high variance or low accuracy predictions. In order to reduce the error, without loss of generality, and to increase 
the performance of the learning model, it is often adopted an ensemble methodology. Such an approach may 
improve the predictive performance of a single algorithm by training multiple models and combining their 
predictions46. Based on these considerations, an ensemble learning was implemented starting from the above-
mentioned ML models. For each feature set and for each kinase, all twelve ML classification methods were 
trained and tested in order to evaluate the performance and each prediction label has been collected. To estimate 
the decision process, an aggregation method that takes into consideration both performance and voting labels 
of all predictions was adopted. This approach computed a single aggregate label from the weighted average of 
models’ performance trained with different feature sets grouped by each class label. Finally, the label which cor-
responds to the maximum vote was selected46.

Multiple sequence alignment and kinase similarity assessment.  In order to examine the kinases 
binding site similarity an alignment of all UKs binding pocket was carried out in Clustal Omega47 with mBed-
like clustering guide-tree enabled. The results of these alignments were then considered for UKs similarity and 
identity computation with Sequence Manipulation Suite48. For similarity analysis, the following groups of amino 
acids with similar properties were considered, i.e., GAVLI, FYW, CM, ST, KRH, DE, NQ, P.

Multi‑target priority score.  A multi-target priority score (MTPS) was created to prioritize ligand affinity 
towards kinases of the final dataset (84 UKs). MTPS takes into account two parameters:

1.	 The similarity between all the target known in the literature for that ligand (Pj) and the one predicted by the 
model (Pi)

2.	 The prediction model performance (mi)

For a given l ligand predicted as active on a generic protein Pi, this score was calculated by using the follow-
ing formula:

where Pj refers to the original protein target for l ligand, si,j is the similarity value between Pi and Pj, whereas NPl 
is the number of all the known protein targets for the l ligand. Finally, mi is the performance metric value (e.g., 
F1-measure, Accuracy, etc.) associated with the goodness of the kinase-specific model for protein Pi.

Statistical analysis.  A statistical-based approach was performed on the MTPS values in order to explore 
their distribution. In particular, the One-sample Kolmogorov–Smirnov test49 was used to assess normality in the 
overall multi-target priority score distribution. The null hypothesis of this test assumes no difference between 
the observed and theoretical distribution. A p value lower than 0.05 was considered to reject the null hypothesis.

Ameijeiras-Alonso excess mass test from package ‘modetest’ was performed in R to test the statistical signifi-
cance of number of modes in MTPS distribution as well as to provide the estimation of the location of Modes 
and Antimodes and their density value. Modes represent the most frequent values in a dataset while the least 
frequent values between the modes are known as Antimodes50.

Repurposing threshold evaluation.  Statistical analysis results provided a tool to define a threshold in 
order to identify potential ligands for repositioning. Once evaluated the MTPS bimodal distribution and the sig-
nificance of statistical tests, the second Mode value was selected as repurposing threshold (RT). In other words, 
ligands with an MTPS score higher than RT were flagged as a ‘reliable’ repurposing choice for a specific kinase.

Docking screening of the predicted compounds.  In order to perform docking screening, nine UKs 
were selected, i.e. proteins with UniProt IDs P31749, P25098, P42336, P06493, P08069, P28482, P07333, P21802 

MTPSi,l =

∑NPl
j=1 si,j

NPl

mi
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and P52333. For this purpose, the following PDB structures were downloaded according to the best resolution 
from the Protein Data Bank51 for each protein, respectively: 4GV1, 3V5W, 6PYS, 6GU2, 3O23, 1TVO, 6T2W, 
6LVK and 3LXL.

Each PDB complex was prepared and optimized through the “Protein Preparation Workflow”52 of Schrödinger 
suite (Schrödinger, LLC, New York, NY, 2021, release 2021-3). The bond orders were assigned to the entire 
structure and the Chemical Component Dictionary was used when assigning bond orders to known het groups. 
Hydrogens were added to the structure. Bonds to metals were broken, zero-order bonds between metals and 
nearby atoms were added, and formal changes to metals and neighboring atoms were corrected. Disulfide bonds 
were generated and water molecules beyond 5 Å from het groups were deleted. Epik53 was used to generate het 
states at pH 7.4 ± 0.2 and, finally, H-bonds were optimized by using PROPKA54 at pH 7.4.

The predicted compounds for the nine above-mentioned UKs were prepared through LigPrep tool (Lig-
Prep, Schrödinger, LLC, New York, NY, 2021) of Schrödinger suite. The employed force field was OPLS455, the 
ionization states were generated at pH 7.4 ± 0.2 by using Epik. The molecules were desalted and tautomers were 
generated.

The docking grids of the nine selected proteins were created whereas each grid was centred on the ligand and 
the van der Waals (vdW) radii scaling factor of receptor atoms was set 1.0 with partial charge cutoff 0.25. Finally, 
these grids and the prepared ligands were used to perform docking screening by using the tool of Schrödinger 
suite. For this purpose, the selected protocol was standard precision and the employed ligand sampling method 
was flexible. The vdW radii scaling factor for ligand non-polar atoms was set 0.8 with partial charge cutoff 0.15.

Results
Data collection outcomes.  After a first dataset physico-chemical preprocessing, 79,350 SMs were obtained 
and 422 out of the total 555 human kinases were collected and used for further analyses. These molecules were 
submitted to PaDEL software24 that returned a total of 1444 molecular descriptors (MDs) for each compound. 
Only the 1D and 2D molecular descriptors were calculated and the 3D ones were excluded from this analysis. 
This choice was adopted to avoid bias related to possible incorrect 3D ligand’s conformers generated in silico. 
Indeed, a wrong 3D conformation could in fact affect the model training and the following prediction capability.

Among the 1444 total molecular descriptors, 195 MDs were characterized by all zero entries, so they were 
removed. Based on a correlation analysis, highly similar SM descriptors with Pearson’s coefficient above 0.9 were 
excluded, providing a final set of 532 descriptors.

Then, for each kinase-small molecule pair, the ligands were filtered based on IC50 values retrieved from 
ChEMBL database8, where compounds with IC50 ≤ 0.03 µM were marked as active26, while molecules with 
IC50 ≥ 10 µM as inactive56–58. These IC50 thresholds for active/inactive compounds provided a total of 48,928 
unique kinase-small molecule pairs. Conversely, the final number of unique SMs was 33,503 and obtained a set 
of 378 unique kinases.

This analysis highlighted that the ligand dataset per single kinase was numerically unbalanced, as shown in 
Fig. 2. However, the dataset was not over-sampled to avoid overfitting. Thus, in order to achieve an adequate 
number of active and inactive compounds for each kinase, the proteins were filtered by considering a minimum 
number of ligands equal to 30 as threshold, i.e., at least 30 active and inactive SMs, corresponding to a threshold 
between the 50th and 75th percentile of the entire protein set. This data curation provided overall 40,483 unique 
pairs (kinase–ligand–label: active or inactive) while the final number of Unique Molecules (UMs) was 29,792. 
Finally, the dataset for our study was composed of a total of 84 UKs. Figure 2 illustrates the number of active 
and inactive ligands for each protein of the 84 unique kinases. As observable, it is evident that the dataset with 
annotated thresholds of 0.03 to 10 µM was still unbalanced in terms of the number of active and inactive ligands. 
We wondered if a threshold of 25 or 50 µM for inactive molecules might generate a balanced ligand distribution 
and consequently improve the model training. However, we were able to prove that the trouble of the dataset 
imbalance still remained, since it should be ascribed to the available kinase data. Therefore, it was preferred to 
proceed with the choice of 0.03 to 10 µM as IC50 range for active compounds in an attempt to populate ‘actives’ 
and ‘inactives’ classes as much as possible.

Variable importance analysis.  The ligand dataset generated from the above-described data curation 
was further processed by performing a variable importance analysis. For this purpose, the importance of each 
molecular descriptor was calculated with reference to the protein of interest, both by fitting generalized linear 
models and by comparing the importance of the original attributes against the random variable, estimated using 
their permuted copies (Supplementary Fig. S4). Statistically significant and confirmed features were selected for 
further analyses.

Moreover, Supplementary Fig. S5 depicts the distribution of sizes of the different feature sets (Boruta, Linear 
Regression, Common and Union) for each kinase. As observable, the number of molecular descriptors related 
to Linear Regression algorithm is higher compared to Boruta feature set. This fact is likely due to the substantial 
difference between the two methods applied for the feature selection process. Indeed, the Boruta algorithm is in 
general more restrictive because it employs a Random Forest-based approach and creates pseudo-copies of all 
features, in order to remove uninformative variables.

MRMR was not included in the analysis since it was not computationally feasible to compute all feature set for 
each k value by considering the size of our dataset. Notably, the features set selected starting from a given value 
of k includes the same features already selected for values less than k, i.e., the features set identified by setting 
k = 50 is a superset of that detected with k = 10 and so on.
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Machine learning performance.  The kinase-specific ligand descriptors selected were used as features in 
order to train twelve ML models employed for this study, i.e., Naïve Bayes (NB)36, Logistic regression (LR)11, 
Support Vector Machine (SVM)37, Decision Tree (C.50)38, Random Forest (RF)39, Neural Network (NNet)40, 
eXtreme Gradient Boosting (XGBoost)41, K-Nearest Neighbour (K-NN)38, Classification and Regression Tree 
(CART)42, Least Absolute Shrinkage and Selection Operator (LASSO)43, Ridge Regression (RIDGE)44, Elastic 
net regression (ELNET)39. This training process was repeated for each feature set, namely BAs, LRs, Cs and Us. 
In order to evaluate ML models performance, each kinase-specific dataset was divided into training and test 
sets with a 70–30 split, such that the results were comparable and the number of active and inactive ligands was 
representative of the initial dataset. The hyperparameter tuning phase, where applicable, was model-dependent, 
since the best parameter values were chosen based on the results obtained from grid search algorithm. For 
example, for ‘kernel’ parameter in SVM, firstly, linear, polynomial and sigmoid kernel performances were com-
pared with each other and sigmoid kernel was selected as the most appropriate. Finally, grid search for gamma, 
cost and epsilon values were carried out. Conversely, the performance of NNet was assessed by considering the 
number of hidden neurons and layers.

Once the models were appropriately tuned, the kinase-specific test set was used to validate the model and 
fill a confusion matrix in order to compute several evaluation metrics (see Machine learning models section for 
details). For a couple of kinases, it was not possible to train some models, therefore the performance in these 
cases was not evaluated. Finally, the performance results were collected and are depicted in Supplementary 
Fig. S6a. The acceptance of metrics is dependent both on the class balance of the original dataset and on the 
aim of the study. Thus, accuracy should guarantee good performance for balanced dataset, while recall might 
be useful when evaluating the ability of a model to find all the active ligands within a dataset. Precision is most 
suitable to identify the rate of success when predicting the activity of a ligand, on the other hand, specificity can 
be employed to assess the probability of a negative test.

In the light of the above, F1-measure was preferred among the other metrics due to its capability to consider 
the dataset imbalance59. With this in mind, the best methods (BMF1) for each kinase were defined as pair of 
ML algorithm-feature set that reported the highest F1-measure. Figure 3 illustrates the percentage of proteins 
within our 84 overall UKs, so that the given algorithm got the best results, in terms of F1-measure, with a given 
feature set (BAs, LRs, Cs, Us). From the analysis of the model performances, the higher average F1-measure was 
obtained by XGBoost and RIDGE algorithms, followed by SVM, even if only XGBoost had the highest average 
score. Specificity for all models had lower values on average (Supplementary Fig. S6a). This might be motivated 
by the fact that for many kinase-specific training sets the number of inactive ligands was lower than the active 
ones as depicted in Fig. 2.

The performance of models calculated through the use of fingerprints, e.g., MACCS, ECFP4, and KRFP are 
reported in Supplementary Fig. S6b, c, and d, respectively.

For an exhaustive analysis, the distribution of BMF1-related feature sets among the kinases is depicted in 
Supplementary Fig. S7. On average the number of kinases that selected BAs as best feature set was about three-
fold lower than those preferring LRs. This was probably due to the substantial difference between the two algo-
rithms. Furthermore, on average, the number of descriptors selected by the linear model was comparable with 
those annotated as ‘union’. This suggests that the descriptors selected by the Boruta algorithm might indicatively 
overlap to the LRs.

Figure 3.   Best performing algorithms for F1-measure. For each algorithm, the Y-axis indicates the percentage 
of kinases for which the corresponding model in the X-axis achieved better performance compared to the 
others. Whereas the values shown at the top of the bars represent the overall average of F1 and each algorithm 
for all proteins in UKs.
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Most frequent descriptors.  The above-described analyses shed light on a group of molecular descriptors 
that were evaluated as ‘best’ in terms of the F1-measure value for each protein. For an exhaustive analysis of 
the results, these descriptors were further examined to understand the possible kinase-ligand binding. For this 
purpose, we used a family classification provided by PaDEL24. In particular, PaD descriptors have been grouped 
by family with 39 different types of 2D descriptors. The basic idea was that for a given protein model the related 
actives share common chemical, topological, geometric, symmetrical or physical characteristics, which are then 
translated into numerical values of molecular descriptors. Therefore, we wondered if the descriptor families 
were all equally shared by our protein dataset or whether there were descriptor’s families specific only for some 
proteins. In Fig. 4, the descriptor classes, which most frequently emerged from feature selection, are shown. In 
detail, the class of descriptors ‘AlogP’, ‘Atom Count’, ‘Autocorrelation’, ‘Aromatic atoms count’, ‘Barysz matrix’, 
‘BCUT’, ‘Burden matrix’, and ‘Atom type electrotopological state’ were present within each kinase-specific feature 
set. Moreover, this result was comparable with the outcome of Abdelbaky et al. work, where the authors found 
that these descriptors reported a good ability to differentiate between the active and inactive classes within the 
kinase family20. This would suggest that these descriptors could well characterize the inhibitors of the examined 
kinases.

In detail, ‘AlogP’ descriptors provide an estimation of atom-based hydrophobicity and hydrophobic interac-
tions in protein − ligand complexes60. Indeed, known kinase inhibitors have been extensively shown to generate 
hydrophobic contacts with their targets61, by participating into the ‘hydrophobic spine’ network typical for 
the protein kinase core62. Furthermore, the ‘Autocorrelation’ descriptors are related to the spatial distribution 
of molecular properties, such as polarizabilities associated with highly electronegative elements present in a 
compound63. In Arthur et al. work these descriptor family has been positively associated with the bioactivity 
of the compounds, hence, by increasing the magnitude of these descriptors, the activity of the molecules is 
also increased64. Moreover, ‘Barysz matrix’ family accounts simultaneously for the presence of heteroatoms 
and multiple bonds in the molecule, while ‘Burden matrix’ descriptors consider atomic properties, such as 
electronegativity contributions, and bond orders (single, double, triple or aromatic bonds) for pairs of bonded 
atoms65. In this context, examples of the importance of these descriptor families for the kinase inhibitors have 
been reported by Ikwu et al.66 and Pourbasheer et al.67. Finally, the ‘Atom type electrotopological state’ encodes 
structural attributes, such as the topology and electronic environment of molecular fragments, correlated to 
various activity responses of the ligands68.

It should be also noted that among the overall 55 2D PaDEL-classified descriptor families, the model returned 
only 39 as the most frequent of the analyzed proteins, the remaining 15 did not report descriptors evaluated as 
relevant for any kinase model.

In the above analysis related to the molecular descriptors families, the features selected by Ensemble and 
fingerprint models have not been included since it is not possible to trace the structural characteristics.

In fact, each Ensemble model directly depends on several ML methods and feature sets while for what 
concerns the fingerprints, although it is always possible to calculate the frequency each bit is selected with, the 

Figure 4.   Most frequent descriptors type. The most frequent descriptors emerged from feature selection used to 
train the BMF1 models related to the 84UKs used in the study.
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information contained within each bit is not directly comparable with the explainability of molecular descrip-
tors. Furthermore, as reported in literature, it is not, indeed, recommended in case of extended topological or 
chimico-physical exploration of molecules, i.e., rational molecular design69.

Validation of ML model prediction capability.  Classification results were further assessed by using 
a public database of kinase inhibitors currently in clinical trials, from phase I to IV, PKIDB45, and a screening 
library from MedChem Express vendor. This dataset was filtered by neglecting compounds used in the training 
phase, and considering only targets belonging to 84 UKs. The resulting 50 new single entries (drugs) were exper-
imentally active on one or more targets of our datasets. Thus, this validation dataset was exploited to test BMF1, 
where the framework was able to correctly assign the ligand as ‘active’ to each of the validated targets in 72% of 
cases (percentage of validated target matching 100%). In 12% of cases, the model was able to classify the ligand 
as "active" for a fraction of its validated targets (percentage of validated target matching between 50 and 83%), 
and finally, only in the remaining 16%, it failed to produce the desired results. Figure 5 shows the validation 
procedure results sorted by the highest number of kinases for which the models predicted the drug as active. As 
shown, the proposed methodology allowed us to obtain results that were compatible with the experimental data.

For the sake of completeness, the validation dataset was fed to the other methodologies, e.g., mRMR, Ensem-
ble, ECFP4, MACCS, and KRFP. Then the classification results were compared with KUALA in terms of capability 
of computed models to correctly label the related inhibitors. Supplementary Fig.S8 shows a heatmap ordered 
by percentage of target match obtained by all the selected methodologies for each drug contained in the valida-
tion dataset. In general KUALA achieved the best results and for a few inhibitors they are comparable only with 
the Ensemble method. Conversely, models obtained from MACCS fingerprint didn’t provide any prediction 
for 4 drugs (Henatinib, Apatinib, Anlotinib, Telatinib) since they were not evaluable. For several inhibitors, 
e.g., Fruquintinib, Tivantinib, Apatinib, KUALA predicted all their targets contained in the 84 UKs while other 
methodologies achieved very low percentage of match. Moreover, KUALA is the only able to classify 50% of 
Balamapimod’s targets. Nevertheless, Ruxolitinib and Fostamatinib are correctly classified by all other methods 
except for KUALA. Overall, considering the global results and the percentage of match, KUALA for 36 inhibi-
tors is able to predict 100% of targets, followed by Ensemble (35 inhibitors), ECFP4 (33 inhibitors), KRFP (33 
inhibitors), mRMR (31 inhibitors), and finally, MACCS (29 inhibitors).

Kinase similarity assessment and kinase‑predicted ligand prioritization.  An interesting aspect 
in drug repurposing is the binding site similarity between targets. Therefore, the similarity between pocket 
sequences can be used to identify new targets70,71.

In the light of above, we decided to build a multi-target priority score (MTPS), that includes a pairwise simi-
larity between pocket residues of the 84 kinases, the number of known targets for each ligand and, finally, the 
classifier performance (i.e., F1-measure).

For each kinase, the dataset used for the MTPS calculation was tuned removing compounds considered 
during the training phase.

In synthesis, our framework was applied again on each protein to search for actives repositioning. These 
calculations provided a list of novel potential active compounds for each kinase. Finally, these predictions were 
fed into a ‘classification matrix’, that was subsequently used for the scoring function computation.

For each UK, the classification matrix was matched with the activity data from ChEMBL database8 to identify 
the known targets for every ligand.

Then, a binding site similarity was computed between the known targets of a current ligand and the protein 
that predicted this molecule as active. On average, the binding pockets shared the same amino acids by 34.37% 
(Supplementary Fig. S9). In Supplementary Fig. S10 the hierarchical clustering of pairwise UKs binding pockets 
similarity is shown where binding pockets had 52.40% of amino acid similarity.

Finally, using the similarity values, the MTPS scores were computed for each predicted protein–ligand pair. 
This scoring function allowed us to rank the putative active compounds for a specific kinase.

Therefore, when the MTPS score is high, it means that ligand identified by the BMF1 might be considered 
as a ‘reliable’ repurposing choice for that protein. Conversely, when the MTPS is low, it suggests that a certain 
ligand might be very promiscuous, thus it might not be optimal for repurposing because of the risk of toxicity 
related to off-targets.

In order to rationalize the results and discriminate optimal from non-optimal ligands to consider for repur-
posing, the MTPS scores were further examined. The statistical analysis demonstrated that MTPS values did 
not approximate normal distribution (Kolmogorov–Smirnov p value < 2.2e− 16). Conversely, Ameijeiras-Alonso 
excess mass test confirmed a bimodal distribution.

This trend is shown in Supplementary Fig. S11 where two modes are clearly visible centered at 0.34 and 0.54, 
respectively. The higher density value corresponds to the second mode which represents a good repurposing 
threshold (RT) separating ‘reliable’ from ‘unreliable’ ligands.

In this case RT, relying on a statistical test, allows to reduce the error, that is the proportion of ligands that 
more likely can be selected for repositioning.

Once a statistical methodology is established in order to define a threshold, we confidently filtered predicted 
active ligands for the kinases under study.

Figure 6 shows the ‘reliable’ ligands distribution for all 84 kinases where on top of each bar the mean multi-
target priority score is reported. It can be seen that there is a wide range of variability among the proteins. For 
example, the BMF1 for P11802 (CDK4 protein) predicted a total of 29,275 compounds of which 15,883 were 
labeled as ‘reliable’ based on MTPS value. This high number of predicted actives depends on the high similarity 
of CDK4 with the other kinases within the dataset. Furthermore, it is also noteworthy that many of the predicted 
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molecules on CDK4 are known actives for the most similar kinases retrieved in this workflow. This outcome for 
CDK4 is depicted in Supplementary Fig. S12, where the distribution of the actives is illustrated as a function of 

Figure 5.   Validation results of the BMF1 on the known kinases inhibitors. PKIDB and MedChem Express 
datasets of kinase inhibitors were fed to the 84 BMF1 to validate their predictive potential. KUALA is able to 
correctly identify active inhibitors in 72% of cases.
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the most CDK4-similar proteins. Conversely, as discussed above, P31749 (AKT1 protein) exhibited an opposite 
trend and, consequently, a low number of potential repurposable ligands (Supplementary Fig. S13).

Therefore, the distribution in Fig. 6 provides crucial insights for drug repurposing and promiscuity. The 
rightmost bars suggest that the protein interaction sites (e.g., for P11802 and P07333) might be very promiscu-
ous by binding a high number of UKs known actives and these proteins might not be suitable for entering a 
drug repurposing process. On the contrary, the leftmost bars refer to kinases reporting a low number of similar 
proteins, e.g., Q13535, Q02750 and P31749, and a very low number of predicted compounds that are also active 
for other kinases. In Table 1, as an example, we provide a comparison between some structures of predicted 
actives and known active ligands and/or drugs for some of the kinases on the left tail of Fig. 6.

Furthermore, Fig. 7 illustrates an example of similar binding sites (identity 35.29% and similarity 56.47%), 
where, for a given compound (CHEMBL212900), the pocket amino acids of the original target (MAP2K1 pro-
tein) have been superimposed to residues from a novel potential target (LCK protein). A complete list of all 
predicted compounds for each kinase accompanied by RT thresholds can be found https://​github.​com/​molin​
frimed/​multi-​kinas​es.

Finally, in order to further explore the reliability of the above-mentioned results, a group of proteins was 
selected from the distribution plot in Fig. 6 to perform docking screening of the predicted molecules. For this 
purpose, overall, nine UKs were chosen from the left tail (UniProt IDs P31749, P25098 and P42336), the center 
(UniProt IDs P06493, P08069 and P28482) and the right tail (UniProt IDs P07333, P21802 and P52333) of the 
plot according to the availability of the PDB structures including co-crystallized compounds within the binding 
sites. Most of the predicted compounds were able to reproduce all or the majority of the interactions observable 
from the PDB complexes. It is also noteworthy that for some of these kinases the top-ranked compounds accord-
ing to MTPS values exhibited chemotype strictly similar to the known active molecule complexed within the PDB 
structure. Supplementary Table S2 depicts a comparison between the interaction diagram of co-crystallized ligand 
and an example of a top-ranked molecule through docking screening. The above-mentioned results highlight 
the importance of the ML and non-ML methods integration when running virtual screening for repurposing 
or for the molecular design in general. The ML approach, based on 2D molecular structure, helps in this case to 
find chemotypes compatible with pharmacophore moiety of the ligand, the structure-based analysis reinforces 
the prediction capability. Testing predictions in the 3D binding site environment. KUALA was actually designed 
as a first step tool to guide the rational and explainable molecule selection for subsequent drug design steps.

Figure 6.   Predicted actives distribution related to 84 UKs models. In the X-axis the BMF1-related kinases 
are reported, while in Y-axis the number of repurposable ligands which achieved an MTPS score higher than 
repurposing threshold (RT) is reported in ascending order. On top of each bar the average MTPS score for each 
predicted protein–ligand pair is reported.

https://github.com/molinfrimed/multi-kinases
https://github.com/molinfrimed/multi-kinases
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Discussion
In the last decades, the issue of familywise bioactive ligand identification and characterization has gained increas-
ing importance within the research community10, especially when referred to polypharmacology or drug repur-
posing issues72,73. In our computational workflow, data extraction from KLIFS and ChEMBL databases were 
used to explore structural and physico-chemical properties distinctive for kinase active ligands. Moreover, the 

Table 1.   Predicted and known actives for kinases. A comparison of the structures of predicted active ligands for 
kinases Q13535, Q02750, P31749, P25098, Q06418 and the structures of some of their known actives.

Figure 7.   Superposition of pocket amino acids belonging to similar kinases. On the left, superposition of 
binding site amino acids from the original MAP2K1 target (UniProt ID: P06239, orange chain from PDB 1S9J), 
complexed with its ligand CHEMBL212900 (green molecule), and the potential novel target, LCK protein 
(UniProt ID: Q02750, cyan chain from PDB 1QPC); on the right, a close-up of the superimposed binding site 
residues.
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methodology used led to the definition of kinase-specific feature set and ML models. Every ML method achieved 
slightly different results for each metric and no one clear ML algorithm-feature set pair is able to reach the best 
performance. Thus, among the ML employed approaches, XGBoost and RIDGE have been shown to correctly 
and better detect active ligands based on F1-measure, as previously shown in Fig. 3.

On these premises, ensemble learning has been taken into consideration. However, the use of this approach 
increases the computational time and especially excludes the possibility to trace the structural and topological 
properties of repurposed ligands for a specific kinase. Briefly, for 64% of kinases, Ensemble approach represents 
the best choice with an increase in performance of 3.01 ± 2.63%. This is a good result but is not sufficient to 
implement a methodology entirely based on such an ensemble method. Moreover, when used to classify known 
drugs it does not outperform KUALA.

In a multi target framework like KUALA, if on one hand it is always possible to add algorithms to make the 
methodology more robust and reliable, on the other hand it is equally important to maintain the link between 
the structural features of molecules and their classification as actives/inactives.

The feature selection represents an important step for the model’s creation. Among the most used algorithms 
it was considered also MRMR35, that is based on minimum number of features that are maximally dissimilar to 
each other. This method is useful when it is necessary to specify a fixed number of features k. In our scenario, 
each kinase induces a specific feature set with different sizes in order to better build the model. Setting this 
parameter to a unique value for all proteins would lead to a very likely decrease in performance. Boruta provides 
a clear methodology to filter out the uninformative features while in MRMR is difficult to set k value a priori and 
evaluate all possible k is not feasible when dealing with multiple algorithms. In general, no single fixed k value is 
the best choice for all kinases. As k varies MRMR is able to provide improved results for small subset of proteins, 
e.g., k = 10 for 7.14%, k = 50 for 10.71%, k = 100 for 5.95%, k = 150 for 14.29%, k = 200 for 5.95%. The delta dif-
ference between the performances of models obtained from MRMR and KUALA feature sets are (2.00 ± 3.40) % 
(mean ± std) in terms of F1-measure. The proposed methodology offers ideas for further insights into the best 
representative molecular descriptors of kinase inhibitors. The results obtained agree with those reported in the 
literature. Indeed, Abdelbaky et al. highlighted that, in terms of performance of the models trained on kinase 
inhibitors, the best descriptors (1D and 2D) calculated with PaDEL were the E-states, Autocorrelation, Burden 
and topological descriptors20. The above-mentioned descriptor families have also been found in other works as 
most representative attributes for kinase inhibitors.

As previously shown in Fig. 4, the descriptors belonging to the “AlogP” class characterize all kinase ligands. 
This result suggests an important role of hydrophobicity contribution in kinase inhibitor binding process60–62. 
Another class of descriptors shared by kinase dataset analyzed is “Autocorrelation” family. These are topologi-
cal descriptors related to the spatial distribution of molecular properties and which encode both the molecular 
structure and the physicochemical properties of a molecule63,64. Moreover, “Burden matrix” descriptors together 
with “Barysz matrix” family account atomic properties, such as electronegativity contributions, and bond orders 
for pairs of bonded atoms65–67. Finally, the “E-state” descriptors provide information about structural attributes, 
such as the topology and electronic environment of molecular fragments, correlated to various activity responses 
of the ligands68.

From the above discussion, we strongly suggest the use of these descriptor families when exploring the chemi-
cal space of the kinase inhibitors for possible target repositioning.

Notably, the computational framework was able to correctly assign kinase inhibitors, currently in clinical 
trials, to each of known targets in 84% of cases and failed to produce the desired results in the remaining 16%. 
The comparison between fingerprints with KUALA approach showed that the adoption of ECFP4 allows to 
obtain better performances for 50% of proteins, MACCS only for 10%, and KRFP for 27%. This is not sufficient 
to implement an approach entirely based on fingerprint. We are aware that it is possible to improve the perfor-
mance of the proposed methodology by using alternative features (fingerprints or substructures), nevertheless, 
the aim of this study is to propose an approach to improve the explainability of ML models. As also reported in 
the literature, fingerprints present many limitations when used for similarity search or property explorations69. 
The performance of each descriptor or fingerprint should indeed be chosen related to the scientific scope. In 
our comparison, for example, MACCS showed a very poor prediction, whereas in other cases reported in the 
literature it outperformed when compared to ECFP474. From the analysis carried out through the use of KRFPs 
it emerges there is not a net distinction between substructure families of active and inactive compounds (In Sup-
plementary Tables S3, S4 we reported the most frequent mutually exclusive smarts for active and inactive ligands).

Our suggestion when applying such an approach to drug design is to start with selected KRFP “building 
blocks” and then consider KUALA ML models which rely on molecular descriptors to predict the activity of 
ligands for a specific kinase.

Furthermore, considering the fundamental aspects for drug repurposing, e.g., high binding site similarity 
against drug promiscuity, a multi-target priority score (MTPS) has been proposed. This scoring function, accom-
panied by a repurposing threshold (RT), enabled prioritizing each protein-predicted ligand pair and separating 
“reliable” from “unreliable” repurposing choice.

Taken together, these results confirmed the high predictive power of the selected ML models in our workflow 
which offer an approach primarily based on artificial intelligence to be used alone or in combination with other 
computational techniques to identify drug repurposing candidates.

KUALA was actually designed as a first step tool to guide the rational and explainable molecule selection 
for drug repurposing and subsequent drug design steps. The concurrent use of KUALA and structure-based 
methods strengthen the prediction capability. The use of molecular descriptors together with an explainable ML 
methodology, perfectly fits with the subsequent structure-based evaluation of the binding mode. The combina-
tion of binding mode prediction with topological features of ligands is suggested as a powerful instrument to 
be used in medicinal chemistry.
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Data availability
The datasets analysed during the current study are publicly available in the KLIFS repository, https://​klifs.​net/ 
and ChEMBL repository, https://​www.​ebi.​ac.​uk/​chembl. The dataset of all predicted compounds for each kinase 
are available for download and to browse the results at Shinyapp https://​molin​frimed.​shiny​apps.​io/​kuala-​demo/ 
and Zenodo, https://​doi.​org/​10.​5281/​zenodo.​65540​43. Stand-alone software (demo script and ML models) has 
been uploaded both on Zenodo (https://​doi.​org/​10.​5281/​zenodo.​71423​70) and on GitHub (https://​github.​com/​
molin​frimed/​multi-​kinas​es).
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