
KuberneTSN: a Deterministic Overlay Network for
Time-Sensitive Containerized Environments

Andrea Garbugli, Lorenzo Rosa, Armir Bujari, Luca Foschini
University of Bologna

Department of Computer Science and Engineering
Bologna, Italy

name.surname@unibo.it

Abstract—The emerging paradigm of resource disaggregation
enables the deployment of cloud-like services across a pool
of physical and virtualized resources, interconnected using a
network fabric. This design embodies several benefits in terms
of resource efficiency and cost-effectiveness, service elasticity and
adaptability, etc. Application domains benefiting from such a
trend include cyber-physical systems (CPS), tactile internet, 5G
networks and beyond, or mixed reality applications, all generally
embodying heterogeneous Quality of Service (QoS) requirements.
In this context, a key enabling factor to fully support those mixed-
criticality scenarios will be the network and the system-level
support for time-sensitive communication. Although a lot of work
has been conducted on devising efficient orchestration and CPU
scheduling strategies, the networking aspects of performance-
critical components remain largely unstudied. Bridging this gap,
we propose KuberneTSN, an original solution built on the
Kubernetes platform, providing support for time-sensitive traffic
to unmodified application binaries. We define an architecture
for an accelerated and deterministic overlay network, which
includes kernel-bypassing networking features as well as a novel
userspace packet scheduler compliant with the Time-Sensitive
Networking (TSN) standard. The solution is implemented as
tsn-cni, a Kubernetes network plugin that can coexist alongside
popular alternatives. To assess the validity of the approach, we
conduct an experimental analysis on a real distributed testbed,
demonstrating that KuberneTSN enables applications to easily
meet deterministic deadlines, provides the same guarantees of
bare-metal deployments, and outperforms overlay networks built
using the Flannel plugin.

Index Terms—time-sensitive networking, container, kuber-
netes, cloud continuum, network virtualization, bounded latency

I. INTRODUCTION

The promise of edge computing is that of increasingly
low latency, high bandwidth communication, and improved
data security and privacy. Therefore, a stronger push for edge
applications and service deployment is to be expected [1].
However, in contrast to traditional cloud deployment environ-
ments, the edge has limited resources and may not be able to
satisfy the overlapping and heterogeneous resource demands
of all such applications. This fact has motivated researchers to
extend the well-established cloud computing paradigm into the
idea of edge-cloud computing where an increasingly rich and
heterogeneous set of resources between datacenters and the
network edge, often called cloud continuum, can be virtualized
to host cloud-like services [2]. The power of this paradigm
relies on the combination of the well-known advantages of the
cloud model, in particular flexibility, cost-effectiveness, and

reconfigurability, with the performance advantage of running
services as close to their final user as possible.

The success of this model is clear from its rapid and
wide adoption in several heterogeneous domains, including
application domains that embody time-sensitive requirements.
As an example, the reference architecture of 5G and beyond
standards relies on virtualized applications deployed in edge
datacenters, or even co-located with the widely distributed
base stations [3]. Control applications in the domains of
Cyber-Physical Systems (CPS), Industrial Internet of Things,
Tactile Internet, and in many other fields are increasingly
pursuing the disaggregation trend, with virtualized application
components deployed across the whole continuum of available
resources, embodying heterogeneous Quality of Service (QoS)
requirements, even among their internal components [4], [5].
Although many of those requirements can be easily met just by
placing services physically closer to their final users, reducing
key metrics such as latency or response time, core parts
of these systems still struggle to balance strict performance
demand with the overhead introduced by virtualization.

To mitigate this overhead, lightweight virtualization tech-
niques like containerization have become the standard technol-
ogy for platform-independent prototyping, development, and
deployment of edge components. Compared to hypervisor-
based virtual machines, containers are generally characterized
by reduced overhead and higher scalability, representing a
potential for innovation in service patterns, in virtue of setting
up a unified service provisioning platform capable of adhering
to applications’ QoS specifications [6].

Furthermore, containers are seamlessly integrated into re-
source management and orchestration platforms, with Ku-
bernetes in its full or reduced versions (e.g., k3s) as the
de-facto standard technology [7]. Resource management and
orchestration are paramount in the edge cloud, as it automati-
cally deploys, monitors, and migrates containerized application
components across the shared infrastructure, enforcing appli-
cations’ QoS specifications.

However, containerization alone is not a panacea. Given the
highly distributed nature of edge cloud applications, specific
attention to network and system-level aspects is paramount to
effectively support the most performance-demanding compo-
nents. Yet, previous work mostly focused on efficient orches-
tration and CPU scheduling of containers [8]–[10], leaving

ar
X

iv
:2

30
2.

08
39

8v
1

 [
cs

.N
I]

 1
6

Fe
b

20
23

those aspects largely unstudied.
In this paper, we design a cost-efficient solution to en-

able accelerated and deterministic communication among
containerized applications. To this end, we define a novel
architecture for a container overlay network that combines
two techniques for high-performance communication. First,
we adopt a form of kernel-bypassing networking to remove
the overhead of the kernel networking stack [11]. Second,
we propose a novel userspace packet scheduler, compliant
with the Time-Sensitive Networking (TSN) standard, to allow
the time-bounded data distribution and communication among
networked components [12]. We implement our proposal
as tsn-cni, a novel Kubernetes network plugin that can be
seamlessly integrated alongside existing options (e.g., Flannel,
Calico). This way, application designers are free to choose
the most appropriate support for traffic flows with different
degrees of criticality. Finally, we evaluate tsn-cni on a real
testbed, showing that containerized TSN applications can
achieve determinism and performance comparable to bare
metal applications, and better than using the network fabric
set up by the popular Flannel plugin.

II. BACKGROUND

This section provides a brief introduction to container over-
lay networks, their rationale, and support in the Kubernetes
platform. Next, we provide a concise background on the TSN
standard and kernel-bypassing techniques.

A. Container Overlay Networks

Containers generally have four networking modes available:
bridge, host, macvlan, and overlay. The overlay mode is the
most popular, especially in combination with Kubernetes, as
it provides better isolation, ease of use, and security; hence
we limit our description to this scheme. In this mode, as
depicted in Fig. 1, containers are connected on an overlay
network, potentially spanning multiple physical nodes even
across different networks. On each container, a virtual network
interface is created, to which applications can assign an
arbitrary IP address. This interface is connected to the outside
through a virtual switch, located in the host operating system
kernel, which has two main roles: it works as a network bridge
to allow communication among co-located containers, and it
tunnels network traffic toward the remote container(s) across
the physical network. This way, containers on the same overlay
network have an isolated address namespace and configuration
settings, disjoint from the host network or from other overlays.

When using Kubernetes, by default each container has a
single network interface for all the network traffic, including
management and control plane interactions (e.g., with the
Kubernetes master). To distinguish among different traffic
classes, the Multus plugin [13] allows attaching additional
interfaces to containers. Multus is a meta-plugin, as it de-
fines a container network interface (CNI) that other plugins
can implement to configure a Layer 3 network fabric and
optionally provide additional advanced features. Several such
plugins are available, such as Flannel, Calico, or Weave.

Container

Application

Virtual Network Interface
IP 10.0.0.1

Linux Kernel

UDP/IP

Virtual Switch

UDP/IP

Host Network Interface
IP 192.168.1.1Host

Fig. 1: Container networking in overlay mode.

Unfortunately, none of those supports the definition of an
accelerated and deterministic communication channel among
containers. Compared to these alternatives, in this work we
design a novel plugin architecture to offer such guarantees.
We still rely on a virtual switch, but we move the sender-side
datapath to userspace and provide a novel packet scheduler
compliant with the TSN standard. This choice allows users to
obtain enhanced network performance with no modifications
to application binaries and atop off-the-shelf hardware and
operating systems, without requiring any patches or specific
configurations from the final user.

B. Time-Sensitive Networking

Designed to support soft real-time industrial traffic, the
set of standards grouped under the name of Time-Sensitive
Networking aims to introduce determinism to IEEE 802.1
networks via a set of features, including but not limited to
time synchronization, programmability, etc. [12]. First, TSN
requires that all the communication participants share a unique
time reference, and the IEEE 802.1AS standalone protocol
provides an adequate mechanism to ensure this synchroniza-
tion [14]. A second key concept in TSN is packet scheduling.
The IEEE 802.1Qbv standard defines a traffic shaper, called
Time-Aware Shaper (TAS), that can prioritize the frames be-
longing to classes of traffic with different time criticality. This
prioritization is based on time-aware communication windows,
called time-aware traffic windows, that repeat cyclically. Each
window is divided into time slots that can be associated to
different traffic classes: frames belonging to the same class are
buffered until the next opening of the associated time slot. This
way, TSN guarantees bounded latency and jitter to time-critical
traffic, as well as no interference from best-effort traffic.

From a practical viewpoint, to enable this kind of commu-
nication, developers must configure the kernel-based Traffic
Controller (TC), which implements a TAS shaper, to set up
the desired number of traffic classes, their priority, and time
slots duration. Then, applications open a datagram socket with
the SO_TXTIME flag, so that they can associate a desired
transmission time to each outgoing message. Unfortunately,
there are two obstacles to the adoption of this standard
from containerized environments. First, we noted that some
OS images do not support the SO_TXTIME. Second, the
transmission time is never forwarded outside the container
network namespace to the virtual switch. To overcome these
limitations, KuberneTSN intercepts the container TSN traffic
and forwards it to a novel userspace scheduler, responsible to
enforce the TAS shaping. This component, which replaces the

Linux-specific kernel-based scheduler, is the key architectural
element that we leverage to provide time-sensitive networking
features to containerized applications, and it is fully integrated
into the tsn-cni Kubernetes plugin.

C. Kernel-bypassing Networking

In a container overlay network, each outgoing packet must
cross the networking stack twice, one in its isolated network
namespace and one in the host namespace, and must also
cross through a virtual switch (Fig. 1). The combination of all
these steps adds significant per-packet communication over-
head [15], unacceptable for time-sensitive edge applications.

In recent years, several kernel-bypassing networking ap-
proaches, also known as network acceleration techniques,
have emerged to support performance-critical applications.
Among them, the Data Plane Development Kit (DPDK) [16]
is an increasingly popular library that adopts this approach
without requiring special hardware or OS support. DPDK lets
applications access a userspace version of the network device
drivers (Poll Mode Drivers) to directly send or receive Ethernet
packets on the network. Applications and drivers exchange
data through a shared memory area registered with the network
card for Direct Memory Access (DMA), thus communication
is zero-copy and avoids kernel/user context changes. This way,
communication is much more efficient, and, in principle, ap-
plications in the edge cloud would immensely benefit from the
related performance improvements. However, DPDK exposes
a low-level C interface, very difficult to use and scarcely
integrated within virtualization engines [17].

In KuberneTSN, we accelerate the outgoing container data
path using DPDK transparently to user applications. Specifi-
cally, we design KuberneTSN to bypass the kernel networking
stack in the container namespace, sending data directly to a
userspace virtual switch. Then, we adopt a userspace version
of a widely used and open-source virtual switch, Open vSwitch
(OVS) [18], which in turn uses DPDK to bypass the kernel
networking stack in the host namespace.

Overall, KuberneTSN combines three well-known network-
ing approaches, namely overlay networks, TSN scheduling,
and kernel-bypassing networking, and leverages them to offer
the option of a deterministic and accelerated inter-container
communication, well integrated into the state-of-the-art Kuber-
netes orchestrator and complementary to existing networking
approaches for best-effort traffic.

III. RELATED WORK

Previous research on the containerization of critical appli-
cation components mainly focused on orchestration strategies
and CPU scheduling [8], [10]. These works investigate the
best strategies to place components on suitable resources
and ensure that those resources can schedule the execution
of containerized applications according to their requirements.
Yet, they never take network and system-related aspects into
account. We consider these works complementary to our
proposal, as we envision that network and computing resources
for edge applications should be orchestrated together.

Despite the importance of networking for edge applications,
researchers paid less attention to the networking requirements
of critical applications. Abeni et al. [19] evaluate different
kernel-bypass approaches for inter-container communications,
outlining the great potential of DPDK as network accelerator
compared to the kernel-based approach. However, their contri-
bution is limited to a framework for performance evaluation.

Slim [15] proposes a solution to reduce the processing over-
head on container overlay networks. At its crux, the proposal
avoids processing packets multiple times on the same host (see
Sec. II); instead, it defines a component that intercepts calls
to the socket API and directly translates network addresses
from the overlay into the host namespace (and vice versa).
This way, packets traverse the kernel networking stack only
once. SocksDirect [20] uses the same interception technique to
re-route packets on an accelerated kernel-bypassing datapath,
but this is possible only with the host container networking
mode. Both these works introduce the idea of accelerating
container inter-networking, and both show significant per-
formance advantages for a wide range of applications built
on top of them. However, these solutions are not integrated
with standard production-ready technologies such as Kuber-
netes. Furthermore, as they target datacenter environments,
their focus is on accelerated support for reliable connection-
oriented transport protocols (TCP), and they do not provide
any support for time-sensitive applications such as TSN, a
key requirement for edge applications. In this work, we adopt
similar techniques (socket interception, kernel-bypassing) to
accelerate network operations, but we also provide guarantees
on connection determinism (through TSN) and implement our
solution as a plugin for highly standard development and
deployment technologies.

Finally, the use of TSN in virtual environments is a rel-
atively new trend, as the standard was originally intended
for bare-metal industrial applications. Leonardi et al. [21]
first hypothesized this possibility, identifying three distinct
architectural approaches to enhance hypervisor-based virtu-
alization with time-triggered communication. In a previous
work [22], we showed for the first time on a real testbed
that TSN applications can execute in remote virtual machines,
embodying even better performance than bare-metal thanks to
the adoption of kernel-bypassing techniques. In this paper, we
target containerized applications and take a step further by
implementing our solution as a Kubernetes network plugin,
thus allowing an application to select the most appropriate
overlay network meeting their requirements.

IV. KUBERNETSN: AN ACCELERATED AND
DETERMINISTIC OVERLAY NETWORK

KuberneTSN defines the architecture for a novel accelerated
and deterministic container overlay network, addressing the
time-sensitive requirements of containerized business or con-
trol logic. To achieve this goal, we intervene and modify the
packet processing pipeline for the outgoing container traffic
through the use of two novel architectural components: a
user library named LibKTSN, and a daemon named KTSNd.

Host (Worker Node)

Pod

Container

Application

LibKTSN

eth1 eth2

Pod

Container

KTSNd

UDP/IP

eth1

Shared
Memory

Kubelet

TSN-CNI

OtherCNI

UDP/IP

eth1
Virtual
Switch

UDP/IP

NIC

Virtual
Switch

UDP/IP

NIC

KuberneTSN
Datapath

Flannel
Datapath

Fig. 2: The architecture for an accelerated and deterministic
overlay network, implemented as a Kubernetes CNI plugin.

Fig. 2 shows those components and the role they play in the
definition of a new data path for time-sensitive traffic.

LibKTSN exposes the standard POSIX socket interface to
the application binaries. This way, any time the application
issues a send operation on a datagram socket, the library
intercepts it and forwards the packets to a memory area shared
with the KTSNd daemon. We are interested in servicing time-
sensitive traffic, so we only capture outgoing transmissions
that have an explicit transmission time, i.e., TSN traffic,
with the SO_TXTIME socket option. Otherwise, packets are
forwarded onto the regular data path. This approach enables
TSN networking regardless of the container images, unlike the
currently available alternatives (see Sec. II). LibKTSN is the
only component of our solution that should be present in the
application container. We provide it as a shared library and
use the flag LD_PRELOAD to transparently intercept traffic:
hence, no changes are required to the application code.

The KTSNd daemon represents the key component of our
proposal, as it works both as a packet scheduler and a network
accelerator. Once it detects a new packet from an applica-
tion, KTSNd schedules its actual transmission based on the
application-provided transmission time. Although we design
the daemon to be agnostic to the specific scheduling strategy,
by default it works as a Time-Aware Shaper (TAS) compliant
with the IEEE 802.1Qbv standard (see Sec. II). Currently,
this packet scheduling option is not available for containerized
applications, as popular virtual switches (e.g., Linux bridge,
Open vSwitch, etc.) do not support it. Therefore, our solution
is the first to provide deterministic packet scheduling for
unmodified application binaries running in containers.

When time comes to transmit a scheduled packet, the
scheduler must send it on the network on behalf of the
original application, preserving the source MAC, IP addresses,
and UDP ports, and minimizing the packet processing delays
to meet the user-required transmission time as precisely as
possible. To satisfy these requirements, we adopt a kernel-
bypassing approach and move the entire transmission pipeline

in userspace. This way, we avoid the expensive double-
crossing of the kernel networking stack and the unnecessary
user/kernel thread context switches (see Sec. II) and instead
provide our own simple and efficient implementation of the
UDP/IP stack directly within KTSNd, using the DPDK library
to forward packets on the virtual L2 link. This choice allows us
to preserve the original packet metadata, as we can manipulate
protocol headers directly, and significantly reduce the process-
ing overhead. As shown in Fig. 2, packets are then handled
by a userspace virtual switch that, in turn, should provide its
own UDP/IP userspace stack to forward them on the physical
network. In our implementation, we adopt a widely-used, state-
of-the-art userspace virtual switch, Open vSwitch [18], which
also uses DPDK for kernel-bypassing.

The simple yet powerful design makes KuberneTSN easy
to integrate into standard platforms such as the Kubernetes
orchestrator in its various distributions, making it ready to
use for critical networked applications embodying stringent
requirements. To this aim, we build a Kubernetes network
plugin, tsn-cni, that implements our architecture. Specifically,
tsn-cni implements the Multus CNI interface [13] and thus
a Layer 3 network fabric that includes our accelerated and
deterministic data path. The plugin requires applications to
include LibKTSN in their execution environment, and it en-
capsulates the KTSNd daemon in a separate container. This
approach is strategic to support time-sensitive edge applica-
tions: because multiple network plugins can be used at the
same time, developers can choose standard ones (e.g., Flannel,
Calico) for best-effort traffic, and tsn-cni for time-sensitive
networking, as represented in Fig. 2. Therefore, KuberneTSN
and its tsn-cni implementation enhance the capabilities of the
edge-cloud not only by supporting deterministic networking
but also by integrating this option in a familiar ecosystem
for application designers. By tagging application components
as time-sensitive, they can instruct Kubernetes to automat-
ically deploy KTSNd alongside the application containers,
thus transparently obtaining support for performance-sensitive
workloads.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the tsn-
cni plugin, which implements the KuberneTSN architecture.
The purpose of the experimental assessment is twofold: on
the one hand, we want to show that the accelerated datapath
we propose is indeed faster than the current state-of-the-art
networking options; on the other hand, we demonstrate that
our solution can in fact provide deterministic guarantees. In
particular, we compare tsn-cni against two alternatives. The
first is a bare metal setting that reproduces the way typical
TSN applications are deployed, in order to assess the overhead
introduced by the virtualization layer. The second is Flannel,
a popular CNI plugin for Kubernetes. In its recommended
configuration, Flannel uses a Linux bridge in combination with
VXLAN encapsulation to implement the virtual switch, thus
building an overlay network that corresponds to the regular
datapath of Fig. 2. By comparing tsn-cni and Flannel, we

64 256 1024
Payload (bytes)

0

10

20

30

40

50
L

at
en

cy
(µ

s)

Bare-metal TSN-CNI Flannel

(a) Latency.

64 256 1024
Payload (bytes)

−4

−2

0

2

4

Ji
tte

r
(µ

s)

Bare-metal TSN-CNI Flannel

(b) Jitter.

Fig. 3: Performance comparison among three deployment options for the latency test application: bare metal, containerized
with tsn-cni, containerized with Flannel. The experiment is repeated for increasing payload sizes: 64B, 256B, 1024B.

assess whether KuberneTSN meets its design goal of providing
additional performance benefits and deterministic properties to
inter-container networking.

For the purpose of this evaluation, we build a simple
TSN application consisting of two processes, a talker and
a listener, each running inside a container on two remote
hosts. We then set up a latency test in which the talker sends
UDP packets with a cycle of 1ms. The test measures two
representative indicators of time-sensitive communications:
end-to-end latency and jitter. The end-to-end latency of a
message is defined as the time interval between the time of
transmission predicted by the talker, sometimes also called
transmission time, and the time of actual reception by the
listener. The jitter measures how much the actual arrival time
of each message differs from the expected arrival time: more
precisely, if ti is the arrival time of the i-th message, its jitter
is defined as Jitter(i) = ti − (ti−1 + T), where T is the
transmission period (in this work, T = 1ms). It is noteworthy
to point out that the bare-metal and the tsn-cni test suites are
implemented as actual TSN applications, which associate a
desired transmission time to each packet. However, for the test
adopting Flannel as a communication choice, this option is not
available, as the TSN scheduling would not be enforced (see
Sec. II). Instead, the only alternative is to send one message
and then sleep, repeating this behavior every T .

A. Experimental Settings

The evaluation analysis is conducted on a real testbed
which reproduces an edge deployment scenario. The testbed
comprises two Dell Workstations, each equipped with an Intel
I225 NIC, an Intel i9-10980XE 18/36 CPU, and 64GB RAM.
The two hosts are interconnected through a physical TSN-
compliant switch. Each host runs Ubuntu 22.04 with Linux
kernel 5.16. When using Open vSwitch [18], we adopt its
two variants, the kernel-bypassing on the sender side, and
the kernel-based on the receiver side. As required by TSN,
the clocks of the two hosts are synchronized using two PTP
daemons. Finally, we pin the processes to dedicated cores so
to avoid any bias in the measurements induced by the CPU
scheduling policy.

B. End-to-end Latency

Figure 3a reports the end-to-end latency and jitter mea-
sured for three typical data sizes (64B, 256B, 1024B) for
each of the considered deployment scenarios: bare-metal and
containerized applications with tsn-cni or Flannel as network
plugin. A first consideration is that the performance of tsn-
cni is always very good, with median latency values ranging
from 21.5 µs in the case of small packets (64B) to 41.7 µs for
1024B. These values are almost identical to those registered
for the bare metal deployment, with a small variation in
the ns scale starting to appear for the 1KB packet size.
Latency variability is negligible in both cases. If we consider
Flannel, we note a slight, but evident latency increase (12% on
average). This is the result of the expensive in-kernel packet
processing, which we avoid thanks to the kernel bypassing
technique embodied in our solution. The same trend observed
for latency is confirmed by the analysis of the jitter metric
reported in Fig. 3b: the median value is zero in almost all cases
and the variability is negligible. Therefore, we can conclude
that KuberneTSN and its tsn-cni implementation succeed in
minimizing the packet processing overhead for containerized
applications, achieving the goal of an accelerated data path.

Overall, our experiments show that both tsn-cni and Flannel
show good latency numbers, although our kernel-bypassing
solution shows lower median values. In principle, one could
expect even better performance from tsn-cni, as raw DPDK
is particularly fast [19]. However, we noted that the OVS-
DPDK implementation introduces a non negligible overhead
on our userspace datapath, consisting of at least 23% of the
total reported latency. Nevertheless, we decided to keep it in
our system as it is a widely-used tool, supported by an active
community. Even more importantly, while still demonstrating
better performance, it supports a rich set of additional fea-
tures for virtual networking, e.g. OpenFlow programmability,
compared to the basic Linux bridges used by Flannel.

C. Determinism

To assess whether KuberneTSN can effectively provide
deterministic guarantees to time-sensitive flows, we consider
again the latency test results discussed before, but in Fig. 4 we

0 10 20 30 40 50

Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0
..

Bare-metal
TSN-CNI
Flannel

Fig. 4: CDF with packets of 256 bytes.

plot the respective Cumulative Distribution Function (CDF).
Ideally, the curve should be as vertical as possible, implying
a highly predictable packet reception time. In this context,
the bare metal application and the containerized application
using tsn-cni show overlapping performance, very close to the
ideal behavior. In particular, for tsn-cni the 90% and the 99%
probability correspond to 26.4 µs and 28.1 µs respectively.
Instead, for Flannel these thresholds are 29.6 µs and 30.7 µs
respectively, implying a less precise arrival time interval.

This difference demonstrates the advantage of using Ku-
berneTSN for time-sensitive traffic. The main reason for this
behavior is the way the test application sends messages: when
using Flannel, we cannot explicitly set a transmission time,
as this feature is not supported in current containerized envi-
ronments. Hence, we are constrained to fall back to a classic
send-and-sleep loop, mimicking a periodic send operation. The
effect of this difference is minimal in our experiment, as we do
not have other competing flows; however, previous work [23]
demonstrates that time-sensitive flows require dedicated sup-
port. tsn-cni serves this purpose by providing essential support
to containerized applications so as to meet heterogeneous flow
requirements in mixed-criticality scenarios.

VI. CONCLUSION AND FUTURE WORK

We presented KuberneTSN, an architecture for an ac-
celerated and deterministic container overlay network. Ku-
berneTSN defines a novel userspace TSN packet scheduler
and adopts a kernel-bypassing approach to minimize packet
processing delays. We implemented KuberneTSN as a net-
work plugin for the Kubernetes orchestrator, called tsn-cni,
so that it can be used alongside existing network fabrics to
better support time-sensitive edge applications. The solution
was evaluated on a real testbed, showing that containerized
applications using tsn-cni have the same level of performance
and determinism as bare metal applications, outperforming the
widely used Flannel network plugin.

Future work will include a detailed performance charac-
terization of KuberneTSN under different traffic conditions,
and a demonstration of the use of tsn-cni in combination with
other network plugins. In the longer term, as performance-
demanding AI/ML components are increasingly moved to the

network edge, we are interested in a systematic performance
study of the inter-container datapath to highlight further opti-
mization opportunities.

ACKNOWLEDGEMENTS

This work was partially supported by the H2020 TER-
MINET project (Grant agreement #: 957406).

REFERENCES

[1] F.Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proc. of the MCC Workshop on
Mobile Cloud Computing. New York, NY, USA: ACM, 2012, p. 13–16.

[2] L. Bittencourt, et al., “The Internet of Things, Fog and Cloud continuum:
Integration and challenges,” Internet of Things, vol. 3-4, pp. 134–155,
2018.

[3] P. Trakadas et al., “A Cost-Efficient 5G Non-Public Network Archi-
tectural Approach: Key Concepts and Enablers, Building Blocks and
Potential Use Cases,” Sensors, vol. 21, no. 16, 2021.

[4] Z. Xiang et al., “Reducing Latency in Virtual Machines: Enabling Tactile
Internet for Human-Machine Co-Working,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 5, pp. 1098–1116, 2019.

[5] R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg and H. S. Kim, “URLLC for
5G and Beyond: Requirements, Enabling Incumbent Technologies and
Network Intelligence,” IEEE Access, vol. 9, pp. 67 064–67 095, 2021.

[6] A. Randal, “The Ideal Versus the Real: Revisiting the History of Virtual
Machines and Containers,” ACM Comput. Surv., vol. 53, no. 1, 2020.

[7] Cloud Native Computing Foundation, “Kubernetes.” [Online]. Available:
https://kubernetes.io

[8] L. Toka, “Ultra-reliable and low-latency computing in the edge with
kubernetes,” Journal of Grid Computing, vol. 19, no. 3, pp. 1–23, 2021.

[9] R. Eidenbenz, Y. -A. Pignolet and A. Ryser, “Latency-Aware Industrial
Fog Application Orchestration with Kubernetes,” in Proc. of FMEC,
2020, pp. 164–171.

[10] J. Harmatos and M. Maliosz, “Architecture Integration of 5G Networks
and Time-Sensitive Networking with Edge Computing for Smart Man-
ufacturing,” Electronics, vol. 10, no. 24, 2021.

[11] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang and R. Agarwal,
“Understanding Host Network Stack Overheads,” in Proc. of ACM
SIGCOMM 2021, 2021, p. 65–77.

[12] J. Farkas, L. L. Bello and C. Gunther, “Time-Sensitive Networking
Standards,” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 20–21, 2018.

[13] Kubernetes Network Plumbing Working Group, “Multus CNI.” [Online].
Available: https://github.com/k8snetworkplumbingwg/multus-cni

[14] A. Nasrallah et al., “Ultra-Low Latency (ULL) Networks: The IEEE
TSN and IETF DetNet Standards and Related 5G ULL Research,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 88–145, 2019.

[15] D. Zhuo et al., “Slim: OS Kernel Support for a Low-Overhead Container
Overlay Network,” in Proc. of USENIX NSDI, Boston, MA, 2019, pp.
331–344.

[16] Linux Foundation, “Data Plane Development Kit (DPDK),” 2015.
[Online]. Available: http://www.dpdk.org

[17] L. Rosa and A. Garbugli, “Poster: Insane – a uniform middleware api
for differentiated quality using heterogeneous acceleration techniques at
the network edge,” in Proc. of IEEE ICDCS, 2022, pp. 1282–1283.

[18] B. Pfaff et al., “The Design and Implementation of Open vSwitch,” in
Proc. of USENIX NSDI, Oakland, CA, May 2015, pp. 117–130.

[19] G. Ara et al., “Comparative Evaluation of Kernel Bypass Mechanisms
for High-performance Inter-container Communications,” in Proc. of the
CLOSER, 2020, pp. 44–55.

[20] B. Li, T. Cui, Z. Wang, W. Bai and L. Zhang, “SocksDirect: Datacenter
Sockets can be Fast and Compatible,” in Proc. of ACM SIGCOMM
Conference, 2019.

[21] L. Leonardi, L. L. Bello and G. Patti, “Towards Time-Sensitive Net-
working in Heterogeneous Platforms with Virtualization,” in Proc. of
IEEE ETFA, vol. 1, 2020, pp. 1155–1158.

[22] A. Garbugli, L. Rosa, L. Foschini, A. Corradi and P. Bellavista,,
“A Framework for TSN-enabled Virtual Environments for Ultra-Low
Latency 5G Scenarios,” in Proc. of IEEE ICC, 2022, pp. 5023–5028.

[23] A. Garbugli, A. Sabbioni, A. Corradi and P. Bellavista, “TEMPOS:
QoS Management Middleware for Edge Cloud Computing FaaS in the
Internet of Things,” IEEE Access, vol. 10, pp. 49 114–49 127, 2022.

https://kubernetes.io
https://github.com/k8snetworkplumbingwg/multus-cni
http://www.dpdk.org

	I Introduction
	II Background
	II-A Container Overlay Networks
	II-B Time-Sensitive Networking
	II-C Kernel-bypassing Networking

	III Related Work
	IV KuberneTSN: an Accelerated and Deterministic Overlay Network
	V Experimental evaluation
	V-A Experimental Settings
	V-B End-to-end Latency
	V-C Determinism

	VI Conclusion and future work
	References

