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Kumaraswamy Alpha Power Inverted Exponential
Distribution: Properties and Applications

Samuel Chiabom Zelibe *, Joseph Thomas Eghwerido and Eferhonore Efe-Eyefia
Department of Mathematics and Computer Science,

Federal University of Petroleum Resources,

Effurun, Delta State, Nigeria

Abstract: This article proposes a four parameter class of lifetime model called Kumaraswamy Alpha
Power Inverted Exponential (KAPIE) distribution in the family of the alpha power transformation. Various
statistical properties of the KAPIE density including quantile and hazard rate functions, skewness, kurtosis,
order statistics and entropies are investigated. The parameters of the KAPIE distribution are estimated by
a maximum likelihood. The flexibility and behaviour of the estimators were studied through a simulation.
The empirical flexibility of the KAPIE distribution was examined by means of real life data. It was observed
that the KAPIE distribution can serve as an alternative model to other existing densities in literature for
modeling lifetime data.
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1. Introduction
Despite many life time distributions in literature, many new flexible distributions are still being

developed to suit real life scenarios. Exponential distribution is a continuous memoryless distri-
butions widely used to describe the time interval between events that follows Poisson processes.
However, despite its importance in modeling lifetime Poisson data, the exponential distribution
has a constant failure rate. However, real life Poisson constant failure rate are rare to see. Thus,
the exponential distribution becomes unsuitable to modeling real life scenarios. However, to make
up for this deficiency, Keller and Kamath [18] introduced inverted bathtub hazard rate function
which has an inverted exponential distribution. Suppose a random variable U has an exponen-
tial distribution, then the random variable, say, Y = 1

U
has inverted exponential (IE) distribution.

Hence, the probability density function (pdf) of the random variable is expressed as

w(u) =
λ

u2
exp(−λ

u
) ; λ> 0, u≥ 0. (1.1)

The cumulative distribution function (cdf) that corresponds is given as

W (u) = exp(−λ
u

) ; λ> 0, u≥ 0; (1.2)

where λ is the scale parameter.
The inverted exponential distribution has a wide range of applications in medicine, engineering,
computer software and biology where failure rate are modeled [13]. Oguntunde et al. [27] proposed
the transmuted inverse exponential distribution. Generalized exponential was proposed in Gupta
and Kundu [14]. Oguntunde et al. [28] examined the properties of the exponentiated generalized
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inverted exponential distribution. Eghwerido et al. [8] proposed the extended new generalized expo-
nential distribution. Nadarajah and Okorie [23] proposed a method of alpha power transformation
for obtaining the moments of the generalized exponential distribution. Abouammoh and Ashingiti
[1] proposed the generalized inverted exponential distribution. The extended generalized expo-
nential distribution was proposed in Olapade [29]. Fatima and Roohi [12] proposed the extended
Poisson exponential distribution. Efe-Eyefia et al. [7] proposed the Weibull-alpha power inverted
exponential distribution. Eghwerido et al. [9] proposed the Gompertz alpha power inverted expo-
nential distribution. Unal et al. [33] proposed the alpha power inverted exponential distribution.
The Harris extended exponential distribution was proposed in Pinho et al. [30]. Hamedani et al. [15]
proposed the type 1 general exponential distribution. The generalized odd generalized exponential
distribution was proposed in Alizadeh et al. [2]. Extended weighted exponential distribution was
proposed in Mahdavi and Jabari [20]. Beta exponential distribution was proposed in Nadarajah
and Kotz [22]. Nassar et al. [24] proposed alpha power Weibull distribution.
However, to make the inverted exponential distribution more flexible, Unal et al. [33] adopted the
alpha power transformation and defined the cumulative distribution function of the alpha power
inverted exponential distribution as

W (u) =

⎧⎪⎪⎨
⎪⎪⎩

αe
−λ
u −1

α−1 , if α > 0, α �= 1

e−
λ
u , if α= 1

(1.3)

and the corresponding probability density function is

w(u) =

⎧⎪⎨
⎪⎩

logα
(α−1)

λ
u2
e−

λ
uαe

−λ
u , if α > 0, α �= 1

λ
u2
e−

λ
u , if α= 1

(1.4)

More so, Eugene et al. [11] made the exponential distribution more flexible by introducing a beta
random variable that introduces skewness and a tail weighted into the distribution. This led many
authors to introduce alternative distributions [26]. The inadequacy of the beta distribution not
being tractable led many researchers suggesting alternative bounded distributions.
Kumaraswamy distribution was named after Ponndi Kumaraswamy in (1980)[19]. The
Kumaraswamy distribution provides a better alternative to the beta distribution because of its
boundedness, unimodality, decreasing, increasing as well as constant failure rate and its mono-
tonicity property. [17]. Oguntunde et al. [26] proposed the Kumaraswamy inverse exponential
distribution.
Cordeiro and de-Castro [4] introduced the Kumaraswamy-G family of distributions with a cdf
expressed as

W (u) = 1−{1−F (u)ψ}b (1.5)

The corresponding pdf is given as

w(u) = ψb f(u)[F (u)]ψ−1{1− [F (u)]ψ}b−1 (1.6)

where F (u), and f(u) are the baseline cdf and pdf, b > 0 and ψ > 0 are additional shape parameters.
This study is motivated as a result of lack of knowledge of the class of the Kumaraswamy alpha
power transformed family of distribution called Kumaraswamy alpha power inverted exponential
(KAPIE) distribution with a Kumaraswamy distribution characterization.
In this article, we propose a four-parameter family of distributions called KAPIE distribution, which
can be applied to life time data. The statistical properties of the KAPIE family of distributions
will be established. In addition, the(MLEs) of the parameters will be obtained in a closed form.
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2. KAPIE distribution (KAPIE-D)
The probability density function of the KAPIE-D given as

wKAPIE(u) =
ψbλexp(−λ

u
) log(α)α(e

−λ
u )

u2(α− 1)

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b−1⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ−1

(2.1)

α∈�+−{1}.
The corresponding cdf is expressed as

WKAPIE(u) = 1−

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b

α∈�+−{1}. (2.2)

The plot for KAPIE-D different values of parameters for the probability density function is shown
in Figure 1 and Figure 2 is the plot for cumulative density function.

φ   α  λ
φ   α  λ
φ   α  λ
φ   α  λ
φ   α  λ

Figure 1. The plots for the KAPIE pdf for different parameter values

Remark 1. The shape of the KAPIE-D pdf in Figure 1 could be inverted bathtub, negatively
skewed or positively skewed. In Figure 2, the shape of the cdf of the KAPIE-D shows that it is
increasing.

2.1. Survival and hazard rate
The survival function (SKAPIE(u)) for the KAPIE-D is given by

SKAPIE(u) = 1−WKAPIE(u) (2.3)

Hence,

SKAPIE(u) =

⎛
⎝1−

(
αexp(

−λ
u )− 1

α− 1

)ψ⎞⎠
b

(2.4)
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Figure 2. The plots for the KAPIE cdf for different parameter values

The hazard rate is also a very important property to consider. It is given by

HKAPIE(u) =
wKAPIE
SKAPIE

(2.5)

Substituting Equations (2.1) and (2.4) into Equations (2.5) gives

HKAPIE(u) =
ψb log(α)λe

−λ
u α(e

−λ
u )

u2(α− 1)

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ−1⎛⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
−1

(2.6)

Figure 3 shows some examples for the hazard shape of the KAPIE distribution.
Remark 2. The hazard rate function HKAPIE(x) of the KAPIE-D is right skewed unimodal

and decreasing for different parameter value.
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Figure 3. The plots for the KAPIE hazard rate function for different parameter values

3. Mixture representation of the KAPIE-D
In this section, we shall derive the algebraic expression of the KAPIE distribution. However,

(x+ y)n =
∑m

n=0 x
n−iyi.

Then, let the quantity (1− (α
e
−λ
u −1
α−1 )ψ)b−1 in Equation (2.1) be B; where b is a positive integer.

Then, by binomial expansion

B =
b−1∑
ρ=0

(
b− 1

ρ

)
(−1)ρ(α− 1)−ψρ(αe

−λ
u − 1)ψρ

This implies that

(α− 1)−ψ(αe
−λ
u − 1)ψ−1B =

b−1∑
ρ=0

(
b− 1

ρ

)
(α− 1)−ψ(ρ+1)(αe

−λ
u − 1)ψ(ρ+1)−1(−1)ρ. (3.1)

However, the quantity (αe
−λ
u − 1)ψ(ρ+1)−1 can be expressed as

(αe
−λ
u − 1)ψ(ρ+1)−1 =

ψ(ρ+1)−1∑
j=0

(
ψ(ρ+ 1)− 1

j

)
(−1)jαe

−λ
u (ψ(ρ+1)−1−j)

.

Then, Equation (3.1) can be expressed as

Qρj =

ψ(ρ+1)−1∑
j=0

b−1∑
ρ=0

(
b− 1

ρ

)(
ψ(ρ+ 1)− 1

j

)
(−1)ρ+j(α− 1)−ψ(ρ+1)αe

−λ
u (ψ(ρ+1)−j−1)

. (3.2)

Multiplying Equation (3.2) by αe
−λ
u , we have

ψ(ρ+1)−1∑
j=0

b−1∑
ρ=0

(
b− 1

ρ

)(
ψ(ρ+ 1)− 1

j

)
(−1)ρ+j(α− 1)−ψ(ρ+1)αe

−λ
u (ψ(ρ+1)−j)

. (3.3)
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More so, the αe
−D

u for D= λ(ψ(ρ+ 1)− j) can be expressed as

αe
−D

u =
∞∑
k=0

(logα)k

k!
e−

Dk
u .

However, on simplifying Equation (2.1) reduces to

wKAPIE(u) =

ψ(ρ+1)−1∑
j=0

b−1∑
ρ=0

∞∑
k=0

μρjk
u2

exp(−1

u
(Dk+λ)) α> 0 α �= 1. (3.4)

where

μρjk =ψbλ

(
ψ(ρ+ 1)− 1

j

)(
b− 1

ρ

)
(−1)ρ+j(α− 1)−ψ(ρ+1) (logα)k+1

k!
.

The corresponding cdf is given as

WKAPIE(u) = 1−
b∑

ρ=0

ψρ∑
j=0

∞∑
k=0

mρjke
−λ

uk(ψρ−j) (3.5)

where

mρjk =

(
ψρ

j

)(
b

ρ

)
(−1)ρ+j(α− 1)−ψρ

(logα)k

k!

4. KAPIE Statistical Properties
This section investigates some basic statistical properties of the KAPIE distribution. These

include quantile function, order statistics, moments of the residual and entropies.

4.1. Quantile function
Let U be a random variable such that X ∼KAPIE(b,ψ,α,λ). Then, the quantile function of U

for �∈ (0,1) is given as

Q(�) = inf{x∈� : �≤WKAPIE(u)}=W−1
KAPIE(u). (4.1)

u� =−λ
(

log

((
logα

)−1
log
((

1− (1− �)
1
b
) 1
ψ (α− 1) + 1

)))−1
�∈ (0,1). (4.2)

Setting �= 0.5 in Equation (4.2), we have the median (M) of the KAPIE random variable X as

M =−λ
(

log

((
logα

)−1
log
((

1− (0.5)
1
b
) 1
ψ (α− 1) + 1

)))−1
. (4.3)

However, the 25th and 75th percentile for the random variable X is obtained as

Q1 =−λ
(

log

((
logα

)−1
log
((

1− (0.75)
1
b
) 1
ψ (α− 1) + 1

)))−1
. (4.4)

Q3 =−λ
(

log

((
logα

)−1
log
((

1− (0.25)
1
b
) 1
ψ (α− 1) + 1

)))−1
. (4.5)

The Bowley’s skewness is based on quartiles as follows

Sk =
Q( 3

4
)− 2Q( 1

2
) +Q( 1

4
)

Q( 3
4
)−Q( 1

4
)

. (4.6)

The Moor’s kurtosis is given as

KKAPIE =
Q( 7

8
)−Q( 5

8
)−Q( 3

8
) +Q( 1

8
)

Q( 6
8
)−Q( 2

8
)

(4.7)

where Q(.) is the KAPIE quantile function.
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İSTATİSTİK: Journal of the Turkish Statistical Association 12(1-2), pp. 35–48, c© 2019 İstatistik 41

4.2. KAPIE entropies

The Rényi entropy Rδ(U) of the variable U that is KAPIE distributed measures the variation

of the uncertainty. Thus, it is given as

Rδ(U) =
1

1− δ log

∫ ∞
−∞

wδKAPIE(u)du δ > 0, δ �= 0. (4.8)

However, thus, the Equation (4.8) is expressed as

Rδ(U) =
1

1− δ log
( b−1∑
ρ=0

ψ(ρ+1)−1∑
j=0

∞∑
k=0

(
μρjk
u2

)δ
∫ ∞
0

e−
λδ
u Dρjkdu

)

Integrating and simplifying, we have

Rδ(U) =
1

1− δ log
(ψ(ρ+1)−1∑

j=0

b−1∑
ρ=0

∞∑
k=0

μ∗ρjk(δλDρjk)
1−2δΓ(2δ− 1)

)
. (4.9)

where μ∗ρjk =−μρjk
The δ−entropy, say Mδ(U) is expressed as

Mδ(U) =
1

1− δ log
[
1−
∫ ∞
−∞

wδKAPIE(u) du
]
, δ > 0, δ �= 1

Mδ(U) =
1

1− δ log
[(ψ(ρ+1)−1∑

j=0

b−1∑
ρ=0

∞∑
k=0

μρjk(δλDρjk)
1−2δΓ(2δ− 1)

)
+ 1
]
, δ > 0, δ �= 1 (4.10)

4.3. Moments of the residual

The βth moment of the residual life, say dβ(t) = E
[(
U − t)β|U > t

]
for β = 1,2, . . . uniquely

determines WKAPIE(u) (see Navarro et al. [25]). However, the βth moment of the residual life is

given as

dβ(t) =
1

1−WKAPIE(t)

∫ ∞
t

(
U − t)β dWKAPIE(u)

dβ(t) =
1

1−WKAPIE(t)

β∑
p=0

(
β

p

)
(−1)β−p

∫ β−p

t

uptβ−pwKAPIE(t) du. (4.11)

Integrating and simplifying, we have

dβ(t) =
1

WKAPIE(t)− 1

b−1∑
ρ=0

ψ(ρ+1)−1∑
j=0

β∑
p=0

∞∑
k=0

(
β

p

)
(−1)β−ptβ−pμρjk

× (δλDρjk)
p−1�1−3pγ(2p,β− p) �> 1; p < 0 (4.12)

where γ(2p,β− p) is lower incomplete gamma function.
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4.4. Order statistics
Let U1,U2, ...,Uβ be a random sample of the KAPIE-D. Let Uρ:n indicates the ρth order statistics

for Uρ:β(1≤ ρ≤ β) for KAPIE distribution given by

wKAPIEρ:β
=

β!

(ρ− 1)!(β− ρ)!
wKAPIE(uρ)[WKAPIE(uρ)]

i−1[WKAPIE(uρ)]
β−ρ (4.13)

wKAPIEρ:β
=

β!

(ρ− 1)!(β− ρ)!

ψb log(α)λe
−λ
u α(e

−λ
u )

u2(α− 1)

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ−1⎛⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b−1

×

⎛
⎜⎝1−

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b⎞
⎟⎠
ρ−1⎛
⎜⎝1−

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b⎞
⎟⎠
β−ρ

(4.14)

From (4.14), for ρ= 1, the pdf of the minimum order statistics of the KAPIE-D is expressed as

wKAPIE1:β =
β!

(β− 1)!
wKAPIE(u1)[WKAPIE(u1)]

β−1 = βwKAPIE(u1)[WKAPIE(u1)]
β−1 (4.15)

wKAPIE1:β =
β!

(β− 1)!

ψb log(α)λe
−λ
u α(e

−λ
u )

u2(α− 1)

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ−1⎛⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b−1

×

⎛
⎜⎝1−

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b⎞
⎟⎠
β−1 (4.16)

also, for β = 1, the pdf of the maximum order statistics of the KAPIE-D is expressed as

wKAPIEβ:β
=

β!

(β− 1)!
wKAPIE(uβ)[WKAPIE(uβ)]β−1 (4.17)

wKAPIEβ:β
=

β!

(β− 1)!

ψb log(α)λe
−λ
u α(e

−λ
u )

u2(α− 1)

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ−1⎛⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b−1

×

⎛
⎜⎝1−

⎛
⎜⎝1−

⎛
⎝αe−λ

u − 1

α− 1

⎞
⎠
ψ
⎞
⎟⎠
b⎞
⎟⎠
β−1 (4.18)

5. Parameter estimation of KAPIE-D
Several approaches have been employed for estimating parameters in literature. The maximum

likelihood method is adopted to obtain the parameters of the KAPIE-D in this study.



Zelibe et al.: Kumaraswamy alpha power inverted exponential distribution: properties and applications

İSTATİSTİK: Journal of the Turkish Statistical Association 12(1-2), pp. 35–48, c© 2019 İstatistik 43

Let x = (u1, u2, . . . , uβ) be a random sample from the KAPIE model with unknown parameter
vector θ= (b,ψ,α,λ)T . Then log-likelihood function, say ν, of the KAPIE is expressed as

ν = β logψ b λ+β logα−
β∑
ρ=1

λ

uρ
−

β∑
ρ=0

u2−β log(α− 1)−β(ψ− 1) log(α− 1)

+ (ψ− 1)

β∑
ρ=1

log(αe
− λ
uρ − 1) + (b− 1)

β∑
ρ=1

log(1− (
αe

− λ
uρ − 1

α− 1
)ψ)

(5.1)

Let

m= (ψ− 1)

β∑
ρ=1

log(αe
− λ
uρ − 1)

and

z = (b− 1)

β∑
ρ=1

log(1− (
αe

− λ
uρ − 1

α− 1
)ψ)

such that m′ψ = ∂m
∂ψ

; m′λ = ∂m
∂λ

; m′α = ∂m
∂α

; z′ψ = ∂z
∂ψ

; z′λ = ∂z
∂λ

; z′α = ∂z
∂α

; z′b = ∂z
∂b

Then, the partial derivative of � with respect to each parameter and equating to zero is given as

∂ν

∂ψ
=
β

ψ
−β log(α− 1) + z′ψ; (5.2)

∂ν

∂b
=
β

b
+ z′b; (5.3)

∂ν

∂λ
=
β

λ
−

β∑
ρ=1

1

uρ
+m′λ + z′λ; (5.4)

∂ν

∂α
=
β

α
− β

α− 1
− β(ψ− 1)

α− 1
+m′α + z′α; (5.5)

The parameter estimates of the unknown is obtained by equating the vector to zero. The solution
to the vector is obtained analytically using Newton-Raphson algorithm. R, MATLAB, MAPLE
Software are used to obtain their estimates.
A simulation is carried out to test the flexibility and efficiency of the KAPIE distribution. The
simulation for various values of parameters are shown in Table 1. The simulation of the KAPIE
model is performed as follows:
• Data are generated using

xu =−λ
(

log

((
logα

)−1
log
(
(α− 1)

(
1− (1−u)

1
b
) 1
ψ + 1

)))−1
0<u< 1.

• The values of the parameters are set as ψ = 1.0,1.5,2.0,2.5 and 3.0; b = 1.0,1.5,2.0,2.5 and
3.0; α= 2.0,2.5, and 3.0 and λ= 1.0,1.5,2.0,2.5 and 3.0
• The sample sizes of n= 50,100 and 150 are taken.
• Each of the sample size is replicated 1000 times.

In this simulation study, we investigate the biases, means squared errors (RMSEs), kurtosis, skew-
ness, median, first and third quatiles.
The bias is calculated by (for R= ψ̂, b̂, α̂, λ̂,)

B̂iasR =
1

1000

1000∑
ρ=1

(
R̂ρ−R

)
.
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Table 1. A simulation Study of the KAPIE Distribution
Sample size Parameters Bias MSE Kurtosis Skewness Median 25th 75th

ψ= 1.00, b= 1.00, α= 2.00, λ= 1.00 0.8747, 0.2797, 4.9919, -0.5442 1.9847, 1.0282, 37.4683, 0.3681 -1.593219 -0.9246245 6.929397 -12.68539 -0.8492979
ψ= 1.50, b= 1.00, α= 2.00, λ= 1.00 -0.1329, -0.3071, 4.9740, -0.5624 0.6760, 0.2582, 30.6805, 0.3648 -0.9505154 -0.6019234 -2.549937 -1.848672 -0.785338

50 ψ= 1.50, b= 1.50, α= 2.00, λ= 1.00 -0.3658, -0.5121, 4.5508, -0.2471 0.2021, 0.4792, 25.9758, 0.6328 -1.160371 -0.7041206 -6.854841 -3.318867 -0.8864735
ψ= 1.50, b= 1.50, α= 2.00, λ= 1.50 -0.1248, -0.4667, 6.3303, -0.8234 0.2916, 0.7463, 49.1789, 0.8455 -1.160371 -0.7041206 -10.28226 -4.9783 -1.32971
ψ= 1.50, b= 1.50, α= 2.50, λ= 1.50 1.3389, 2.5130, 16.4693, -0.7842 3.1269, 11.7366, 344.6195, 0.7142 -1.338551 -0.794868 -71.62764 -8.504993 -1.495328
ψ= 2.00, b= 1.00, α= 2.00, λ= 1.00 -0.2825, 0.4266, 4.5316, -0.5487 3.7491, 4.7169, 31.9002, 0.4675 -0.7697992 -0.490566 -1.514219 -1.295374 -0.7568395
ψ= 1.00, b= 2.00, α= 2.00, λ= 1.00 0.8250, -0.4257, 4.9425, -0.5206 1.3707, 1.3038, 41.3284, 0.9442 4.055039 -2.866188 1.276765 1.83493 -1.295374

100 ψ= 1.00, b= 1.00, α= 2.00, λ= 2.00 0.6469, 0.2629, 4.9001, -1.5618 0.8926, 0.8531, 30.2054, 2.4698 -1.593219 -0.9246245 13.85879 -25.37078 -1.698596
ψ= 2.00, b= 2.00, α= 2.00, λ= 2.00 -0.5974, -0.6579, 8.6906, -1.0273 0.4689, 0.5433, 80.1832, 1.1252 -0.9192074 -0.5609955 -5.865997 -4.347139 -1.788027
ψ= 2.00, b= 2.00, α= 2.50, λ= 2.00 0.3772, 1.4898, 10.9089, -1.5053 1.3376, 11.9132, 155.5866, 2.3040 -1.030194 -0.6251974 -9.258945 -5.967798 -2.01286
ψ= 2.50, b= 2.50, α= 2.50, λ= 2.50 -0.1525, 1.6166, 7.0826, -1.6152 0.8977, 5.1402, 52.2378, 2.7973 -0.8505584 -0.5161039 -7.022994 -5.524683 -2.50368
ψ= 2.50, b= 2.50, α= 3.00, λ= 2.50 -0.3303, 1.4104, 9.2154, -1.6623 1.1916, 4.7327, 90.8108, 3.1617 -0.8883787 -0.5387582 -8.115947 -6.179299 -2.62994

150 ψ= 3.00, b= 2.50, α= 3.00, λ= 2.50 1.8888, 1.4702, 16.6342, -2.0169 6.7118, 3.8098, 298.9408, 4.0946 -0.7308612 -0.4427666 -5.295817 -4.52471 -2.481304
ψ= 3.00, b= 3.00, α= 3.00, λ= 2.50 -0.4463, 1.0699, 9.6314, -1.9316 0.4797, 1.2376, 101.2376, 3.7423 -0.7623993 -0.4600106 -6.042407 -5.051648 -2.601823
ψ= 3.00, b= 3.00, α= 3.00, λ= 3.00 -0.0346, 1.6108, 10.0964, -2.0497 1.1743, 6.3628, 108.7375, 4.5048 -0.7623993 -0.4600106 -7.250888 -6.061977 -3.122188

Also, the MSE is obtained as

M̂SER =
1

1000

1000∑
ρ=1

(
R̂ρ−R

)2

,

The kurtosis, skewness, median, the first and third quartiles in Table 1 decreases as the parameters
increases.

6. Real life application
A gas fiber real life data was applied to the proposed model. This is to examine the performances

of the model based on its statistical properties. Some criteria were employed to determine the
distribution for best fit: Consistent Akaike Information Criteria (CAIC), Bayesian Information
Criteria (BIC), Akaike Information Criteria (AIC) and Hannan and Quinn Information Criteria
(HQIC). The Cramer-von Mises statistic (W), Anderson Darling (A) statistic, Kolmogorov Smirnov
(KS) statistic, and the p value were also provided.

6.1. Glass fiber data
The data set on 1.5 cm glass strengths fibres were collected by workers at the UK National

Physical Laboratory. These data were used to compare the performance of the KAPIE distribution
as used in Smith and Naylor [32], Bourguignon et al. [3], Haq et al. [16], Merovci et al. [21] (2016),
Rastogi and Oguntunde [31] and Eghwerido et al. [10]. The observations are as follows:
0.81, 0.84, 0.55, 0.74, 0.77,1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.36, 1.39, 1.42, 1.48, 1.27, 1.28,
1.29, 1.48,1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,
1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76,
1.76,1.84, 2.00, 2.01, 2.24, 1.77, 1.89, 1.81, 1.82, 1.84.
Table 2 is the descriptive statistics of the glass fibers dataset. Table 3 is the measure of comparison
for the various distribution under consideration. Figure 4 is the plots of some estimated densities

Table 2. Descriptive statistics for the Glass Fibers dataset to 2 decimal points

Mean Median Mode St.D IQR Variance Skewness Kurtosis 25thP. 75thP.
1.51 1.59 1.61 0.32 0.31 0.11 -0.81 0.80 1.38 1.69

of the models under consideration. Figure 5 is the plots of some estimated cdfs. These plots show
that the KAPIE distribution produces a better fit when compared with others continuous models.
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Table 3. Performance rating of the KAPIE distribution with glass fibres dataset

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

ψ̂= 1.044277478

b̂= 19.303904609
KAPIE 52.71052 53.40017 61.28306 56.08214 0.5063777 2.770684

λ̂= 7.427692354
α̂= 0.002053295
α̂= 3.023170

Kumaraswamy Inverted Exponential λ̂= 163.215156 53.42339 53.83017 59.85279 55.95211 0.5113895 2.832409

β̂ = 2.696144
α̂= 0.65238

β̂ = 6.874409
Transmuted Marshall-Olkin Frechét 56.5234 57.21306 65.09594 59.89502 2.50127 3.1009

λ̂= 376.26842
γ̂ = 0.149932
â= 18.1737

b̂= 26.7645
Beta Lomax 56.8068 57.4964 65.3793 60.1784 2.542603 3.1986

ĉ= 10.8769
α̂= 0.0329

α̂= 61.0991524

Alpha Power Inverted Weibull β̂ = 0.7750625 82.58 82.99 89.01 85.11 0.9853 4.2956

λ̂= 3.8048114
α̂= 1.306830

Transmuted Frechét β̂ = 2.7898 100.125 100.5318 106.5544 102.6537 0.9901 4.2832

λ̂= 0.129842
α̂= 144.0791

β̂ = 0.055021
Extended Generalized Exponential 145.3 145.9 153.8 148.6 0.9922 4.2501

λ̂= 137.8711
γ̂ = 7.994

Exponential λ̂= 0.6637 179.6 181.8 185.9 179.7 0.9969 4.2902
α̂= 53.5634269

Alpha Power Inverted Exponential λ̂= 0.3508747 196.3253 196.5253 200.6116 198.0111 0.777503 4.238456

Figure 4. The plots of fitted estimated KAPIE density

6.2. Discussion
The proposed model performance is determined by the value of the lowest Akaike Information
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Figure 5. The plots of fitted estimated cdf of the KAPIE model

Criteria (AIC). The real life case considered has the KAPIE distribution with AIC value 52.71052.
Hence, it is regarded as a better model for the data used compare to some other existing distribu-
tions.

7. Conclusion
The KAPIE distribution has been successfully studied. The basic statistical properties of the

KAPIE model such as the order statistics distribution, hazard rate function, quantile function,
median, odds function have been established. The shape of the KAPIE-D could be inverted bathtub
or decreasing (depending on the value of the parameters). An application to the real life data shows
that the KAPIE distribution is a strong competitor and can also be used as alternative model in
modeling lifetime processes.
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