KUMJIAN-PASK ALGEBRAS OF HIGHER-RANK GRAPHS

GONZALO ARANDA PINO, JOHN CLARK, ASTRID AN HUEF, AND IAIN RAEBURN

Abstract

We introduce higher-rank analogues of the Leavitt path algebras, which we call the Kumjian-Pask algebras. We prove graded and Cuntz-Krieger uniqueness theorems for these algebras, and analyze their ideal structure.

1. Introduction

The C^{*}-algebras of infinite directed graphs were first studied in the 1990s [23, 22] as generalizations of the Cuntz-Krieger algebras of finite $\{0,1\}$-matrices [12]. The Leavitt path algebras, which are a purely algebraic analogue of graph C^{*} algebras, were first studied around 2005 [1, [5]. Both families of algebras have been intensively studied by a broad range of researchers, both now have substantial structure theories, and both have proved to be rich sources of interesting examples.

Higher-rank analogues of the Cuntz-Krieger algebras arose first in work of Robertson and Steger [33, 34, and shortly afterwards Kumjian and Pask [21] introduced higher-rank graphs (or k-graphs) to provide a visualisable model for Robertson and Steger's algebras. The higher-rank graph C^{*}-algebras constructed in 21] have generated a great deal of interest among operator algebraists (for example, [13, 20, 27, 36, 39]), and have broadened the class of C^{*}-algebras that can be realized as graph algebras [14, 21, 25, 26. Here we introduce and study an analogue of Leavitt path algebras for higher-rank graphs. We propose to call these new algebras the Kumjian-Pask algebras.

For operator algebraists, there is a well-trodden path for studying new analogues of Cuntz-Krieger algebras, which was developed in [19] and [9, and which was followed in the first four chapters of [28], for example. First, one constructs an algebra which is universal among C^{*}-algebras generated by families of partial isometries satisfying suitable Cuntz-Krieger relations. Next, one proves uniqueness theorems which say when a representation of this algebra is injective: there should be a gauge-invariant uniqueness theorem, which works without extra hypotheses on the graph, and a Cuntz-Krieger uniqueness theorem, which has a stronger conclusion but requires an aperiodicity hypothesis. Then one hopes to use these theorems to analyze the ideal structure.

Tomforde tramped this path for the Leavitt path algebras over fields [37, and more recently has retramped it for Leavitt path algebras over commutative rings [38. We will use the same path to study the Kumjian-Pask algebras of row-finite

[^0]k-graphs without sources. There are satisfactory C^{*}-algebraic uniqueness theorems for larger families of k-graphs, but they can be very complicated to work with (look at the proof of Cuntz-Krieger uniqueness in [31, for example). So for a first pass it seems sensible to stick to the row-finite case, which covers most of the interesting examples. We follow 38 in allowing coefficients in an arbitrary commutative ring R with identity 1 .

We begin with a section on background material. We recall from [21] some elementary facts about higher-rank graphs and their infinite path spaces, and also discuss some basic properties of gradings on free algebras which we couldn't find in suitable form in the literature. Then in \$3, we describe our Kumjian-Pask relations for a row-finite k-graph Λ without sources, and construct the Kumjian-Pask algebra $\mathrm{KP}_{R}(\Lambda)$ as a quotient of the free R-algebra on the set of paths in Λ. Because the Kumjian-Pask relations are substantially more complicated for k-graphs, we have had to be quite careful with this construction, and in particular with the existence of the \mathbb{Z}^{k}-grading on $\mathrm{KP}_{R}(\Lambda)$.

In \$4, we prove a graded-uniqueness theorem and a Cuntz-Krieger uniqueness theorem for $\mathrm{KP}_{R}(\Lambda)$. We have used similar arguments to those of [38, $\left.\S \S 5-6\right]$, but, partly because we are only interested in the row-finite case, we have been able to streamline the arguments and find a common approach to the two theorems. In particular, we were able to bypass the complicated induction arguments used in [38]. As the main hypothesis in our Cuntz-Krieger uniqueness theorem we use the "finite-path formulation" of aperiodicity due to Robertson and Sims 32].

In $\S \$ 5$ and 6 , we investigate the ideal structure of $\mathrm{KP}_{R}(\Lambda)$. The first step is to describe the graded ideals, which we do in Theorem [5.1] as in [38], to get the usual description of ideals in terms of saturated hereditary subsets of vertices (which goes back to Cuntz [11), we have to restrict attention to a class of "basic ideals". We then give an analogue of Conditions (II) of [11] and (K) of [23] which ensures that every basic ideal is graded, and describe the k-graphs for which $\mathrm{KP}_{R}(\Lambda)$ is "basically simple". Then in ${ }_{6}^{6}$ we find necessary and sufficient conditions for $\mathrm{KP}_{R}(\Lambda)$ to be simple in the more conventional sense. This last result is new even for 1 -graphs. We discuss examples and applications in $\$ 7$,

2. Background

We write \mathbb{N} for the set of natural numbers, including 0 . Let k be a positive integer. For $m, n \in \mathbb{N}^{k}, m \leq n$ means $m_{i} \leq n_{i}$ for $1 \leq i \leq k$ and $m \vee n$ denotes the pointwise maximum. We denote the usual basis in \mathbb{N}^{k} by $\left\{e_{i}\right\}$.

In a category \mathcal{C} with objects \mathcal{C}^{0}, we identify objects $v \in \mathcal{C}^{0}$ with their identity morphisms ι_{v}, and write \mathcal{C} for the set of morphisms; we write s and r for the domain and codomain maps from \mathcal{C} to \mathcal{C}^{0}, and usually denote the composition of morphisms by juxtaposition.

A directed graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of countable sets E^{0} and E^{1} and functions $r, s: E^{1} \rightarrow E^{0}$. As usual, we think of the elements of E^{0} as vertices and the elements e of E^{1} as edges from $s(e)$ to $r(e)$. Because we are going to be talking about higher-rank graphs, where a juxtaposition $\mu \nu$ stands for the composition of morphisms μ and ν with $s(\mu)=r(\nu)$, we use the conventions of [28] for paths in E. Thus a path of length $|\mu|:=n$ in E is a string $\mu=\mu_{1} \cdots \mu_{n}$ of edges μ_{i} with $s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)$ for all i, and the path has source $s(\mu):=s\left(\mu_{n}\right)$ and range $r(\mu):=r\left(\mu_{1}\right)$.
2.1. Higher-rank graphs. For a positive integer k, we view the additive semigroup \mathbb{N}^{k} as a category with one object. Following Kumjian and Pask [21, a graph of rank k or k-graph is a countable category $\Lambda=\left(\Lambda^{0}, \Lambda, r, s\right)$ together with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$, called the degree map, satisfying the following factorization property: if $\lambda \in \Lambda$ and $d(\lambda)=m+n$ for some $m, n \in \mathbb{N}^{k}$, then there are unique $\mu, \nu \in \Lambda$ such that $d(\mu)=m, d(\nu)=n$, and $\lambda=\mu \nu$.

The motivating example is:
Example 2.1. Consider a directed graph $E=\left(E^{0}, E^{1}, r, s\right)$. Then the path category $P(E)$ has object set E^{0}, and the morphisms in $P(E)$ from $v \in E^{0}$ to $w \in E^{0}$ are finite paths μ with $s(\mu)=v$ and $r(\mu)=w$; composition is defined by concatenation, and the identity morphisms obtained by viewing the vertices as paths of length 0 . With the degree functor $d: \mu \mapsto|\mu|$, the path category $(P(E), d)$ is a 1-graph.

With this example in mind, we make some conventions. If $\lambda \in \Lambda$ satisfies $d(\lambda)=$ 0 , the identities $\iota_{r(\lambda)} \lambda=\lambda=\lambda \iota_{s(\lambda)}$ and the factorization property imply that $\iota_{r(\lambda)}=\lambda=\iota_{s(\lambda)}$; thus $v \mapsto \iota_{v}$ is a bijection of Λ^{0} onto $d^{-1}(0)$. Then for $n \in \mathbb{N}^{k}$, we write $\Lambda^{n}:=d^{-1}(n)$, and call the elements λ of Λ^{n} paths of degree n from $s(\lambda)$ to $r(\lambda)$. For $v \in \Lambda^{0}$ we write $v \Lambda^{n}$ or $v \Lambda$ for the sets of paths with range v and $\Lambda^{n} v$ or Λv for paths with source v.

To visualise a k-graph Λ, we think of the object set Λ^{0} as the vertices in a directed graph, choose k colours c_{1}, \ldots, c_{k}, and then for each $\lambda \in \Lambda^{e_{i}}$, we draw an oriented edge of colour c_{i} from $s(\lambda)$ to $r(\lambda)$. This coloured directed graph E is called the skeleton of Λ. When $k=1$, the skeleton is an ordinary directed graph, and completely determines the 1 -graph: indeed, the factorization property allows us to write each morphism λ of degree n uniquely as the composition $\lambda_{1} \circ \lambda_{2} \circ \cdots \circ \lambda_{n}$ of n morphisms of degree 1 , and then the map which takes λ to the path $\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ is an isomorphism of Λ onto $P(E)$. When $k>1$, the skeleton does not always determine the k-graph. To discuss this issue, we need some examples.

Example 2.2. Let $\Omega_{k}^{0}:=\mathbb{N}^{k}, \Omega_{k}:=\left\{(p, q) \in \mathbb{N}^{k} \times \mathbb{N}^{k}: p \leq q\right\}$, define $r, s: \Omega_{k} \rightarrow$ Ω_{k}^{0} by $r(p, q):=p$ and $s(p, q):=q$, define composition by $(p, q)(q, r)=(p, r)$, and define $d: \Omega_{k} \rightarrow \mathbb{N}^{k}$ by $d(p, q):=q-p$. Then $\Omega_{k}=\left(\Omega_{k}, r, s, d\right)$ is a k-graph.

Similarly, for $m \in \mathbb{N}^{k}$ we define $\Omega_{k, m}^{0}:=\left\{p \in \mathbb{N}^{k}: p \leq m\right\}$ and $\Omega_{k, m}=\{(p, q) \in$ $\left.\Omega_{k, m}^{0} \times \Omega_{k, m}^{0}: p \leq q\right\}$, and then with the same r, s and $d, \Omega_{k, m}$ is a k-graph. The skeleton of $\Omega_{2,(3,2)}$, for example, is

where the solid arrows are blue, say, and the dashed ones are red. We think of the paths as rectangles: for example, the path (p, q) with source q and range p would be the 2×1 rectangle in the top left, and the different routes efg, lmg, lih from q to p represent the different factorizations of (p, q).

The factorization property in a k-graph Λ sets up bijections between the $c_{i} c_{j}{ }^{-}$ coloured paths of length 2 and the $c_{j} c_{i}$-coloured paths, and we think of each pair as a commutative square in the skeleton. A theorem of Fowler and Sims [16] says that this collection \mathcal{C} of commutative squares determines the k-graph; a path of degree $(3,2)$, for example, is obtained by pasting a copy of (2.1) around the skeleton in such a way that the colours are preserved and each constituent square is commutative. When $k=2$, every collection \mathcal{C} which includes each $c_{i} c_{j}$-coloured path exactly once determines a 2 -graph with the given skeleton [21, $\S 6]$; for $k \geq 3$, the collection \mathcal{C} has to satisfy an extra associativity condition. (For a discussion with some pictures, see 30.)

A k-graph Λ is row-finite if $v \Lambda^{n}$ is finite for every $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k} ; \Lambda$ has no sources if $v \Lambda^{n}$ is nonempty for every $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$. In this paper we are interested only in row-finite k-graphs without sources.
2.2. The infinite path space. Suppose that Λ is a row-finite k-graph without sources. Following [21, §2], an infinite path in Λ is a degree-preserving functor $x: \Omega_{k} \rightarrow \Lambda$. We denote the set of all infinite paths by Λ^{∞}. Since we identify the object $m \in \Omega_{k}$ with the identity morphism (m, m) at m, we write $x(m)$ for the vertex $x(m, m)$. Then the range of an infinite path x is the vertex $r(x):=x(0)$, and we write $v \Lambda^{\infty}:=r^{-1}(v)$.

Remark 2.3. To motivate this definition, notice that an ordinary path $\lambda \in \Lambda^{n}$ gives a functor $f_{\lambda}: \Omega_{k, n} \rightarrow \Lambda$. To see this, take $0 \leq p \leq q \leq n$, use the factorization property to see that there are unique paths $\lambda^{\prime} \in \Lambda^{p}, \lambda^{\prime \prime} \in \Lambda^{q-p}$ and $\lambda^{\prime \prime \prime} \in \Lambda^{n-q}$ such that $\lambda=\lambda^{\prime} \lambda^{\prime \prime} \lambda^{\prime \prime \prime}$, and then define $f_{\lambda}(p, q):=\lambda(p, q):=\lambda^{\prime \prime}$. The map $\lambda \mapsto f_{\lambda}$ is a bijection from Λ^{n} onto the set of degree-preserving functors from $\Omega_{k, n}$ to Λ 30, Examples 2.2(ii)].

Since Λ has no sources, every vertex receives paths of arbitrarily large degrees, and the following lemma from 21 tells us that every vertex receives infinite paths.

Lemma 2.4 ([21, Remarks 2.2]). Suppose that $n(i) \leq n(i+1)$ in \mathbb{N}^{k}, that $n(i)_{j} \rightarrow$ ∞ in \mathbb{N} for $1 \leq j \leq k$, and that $\lambda_{i} \in \Lambda^{n(i)}$ satisfy $\lambda_{i+1}(0, n(i))=\lambda_{i}$. Then there is a unique $y \in \Lambda^{\infty}$ such that $y(0, n(i))=\lambda_{i}$.

The next lemma, also from [21, §2], tells us that we can compose infinite paths with finite ones, and that there is a converse factorization process. The path $x(n, \infty)$ in part (b) was denoted $\sigma^{n}(x)$ in [21.

Lemma 2.5. (a) Suppose that $\lambda \in \Lambda$ and $x \in \Lambda^{\infty}$ satisfy $s(\lambda)=r(x)$. Then there is a unique $y \in \Lambda^{\infty}$ such that $y(0, n)=\lambda x(0, n-d(\lambda))$ for $n \geq d(\lambda)$; we then write $\lambda x:=y$.
(b) For $x \in \Lambda^{\infty}$ and $n \in \mathbb{N}^{k}$, there exist unique $x(0, n) \in \Lambda^{n}$ and $x(n, \infty) \in \Lambda^{\infty}$ such that $x=x(0, n) x(n, \infty)$.
2.3. Graded rings. Let G be an additive abelian group. A ring A is G-graded if there are additive subgroups $\left\{A_{g}: g \in G\right\}$ of A such that $A_{g} A_{h} \subset A_{g+h}$ and every nonzero $a \in A$ can be written in exactly one way as a finite sum $\sum_{g \in F} a_{g}$ of nonzero elements $a_{g} \in A_{g}$. The elements of A_{g} are homogeneous of degree g, and $a=\sum_{g \in F} a_{g}$ is the homogeneous decomposition of a. If A and B are G-graded rings, a homomorphism $\phi: A \rightarrow B$ is graded if $\phi\left(A_{g}\right) \subset B_{g}$ for all $g \in G$.

Suppose that A is G-graded by $\left\{A_{g}: g \in G\right\}$. An ideal I in A is a graded ideal if $\left\{I \cap A_{g}: g \in G\right\}$ is a grading of I. If I is graded and $q: A \rightarrow A / I$ is the quotient map, then A / I is G-graded by $\left\{q\left(A_{g}\right): g \in G\right\}$. To check that an ideal I is graded, it suffices (by the uniqueness of homogeneous decompositions in A) to check that every element of I is a sum of elements in $\bigcup_{g \in G}\left(I \cap A_{g}\right)$. Every ideal I which is generated by a set S of homogeneous elements is graded: to see this, it suffices by linearity and the previous observation to check that every element of

$$
\left\{a_{g} x b_{h}: a_{g} \in A_{g}, x \in S, b_{h} \in A_{h}\right\}
$$

belongs to some $I \cap A_{k}$, and this is easy.
Let R be a commutative ring with identity 1 . For a nonempty set Y, we view the free R-module $\mathbb{F}_{R}(Y)$ with basis Y as the set of formal sums $\sum_{y \in Y} r_{y} y$ in which all but finitely many coefficients r_{y} are zero; we view the elements $y \in Y$ as elements of $\mathbb{F}_{R}(Y)$ by writing them as sums $\sum_{x} r_{x} x$ where $r_{x}=0$ for $x \neq y$ and $r_{y}=1$. For a nonempty set X, we let $w(X)$ be the set of words w from the alphabet X, and we write $|w|$ for the length of w, so that $w=w_{1} w_{2} \cdots w_{|w|}$ for some $w_{i} \in X$. Then the free R-module $\mathbb{F}_{R}(w(X))$ is an R-algebra with multiplication given by

$$
\begin{equation*}
\left(\sum_{w \in w(X)} r_{w} w\right)\left(\sum_{y \in w(X)} s_{y} y\right)=\sum_{z \in w(X)}\left(\sum_{\left\{w, y \in w(X): w y=z, r_{w} \neq 0, s_{y} \neq 0\right\}} r_{w} s_{y}\right) z . \tag{2.2}
\end{equation*}
$$

This algebra is the free R-algebra on X :
Proposition 2.6. The elements of X generate $\mathbb{F}_{R}(w(X))$ as an R-algebra. Suppose that f is a function from X into an R-algebra A. Then there is an R-algebra homomorphism $\phi_{f}: \mathbb{F}_{R}(w(X)) \rightarrow A$ such that

$$
\begin{equation*}
\phi_{f}\left(\sum_{w \in w(X)} r_{w} w\right)=\sum_{r_{w} \neq 0} r_{w} f\left(w_{1}\right) f\left(w_{2}\right) \cdots f\left(w_{|w|}\right) . \tag{2.3}
\end{equation*}
$$

Proof. Since each word w is a product of $\left\{w_{i}: 1 \leq i \leq|w|\right\}$ and each $w_{i} \in X$, it is clear that X generates $\mathbb{F}_{R}(w(X))$ as an algebra. We can extend f to a function on $w(X)$ by setting $f(w)=f\left(w_{1}\right) f\left(w_{2}\right) \cdots f\left(w_{|w|}\right)$. Then the universal property of the free module $\mathbb{F}_{R}(w(X))$ gives a well-defined R-module homomorphism ϕ_{f} : $\mathbb{F}_{R}(w(X)) \rightarrow A$ satisfying (2.3). Now a straightforward calculation using (2.2) shows that ϕ_{f} is an R-algebra homomorphism.

We will want to put gradings on our free R-algebras, and the next proposition tells us how to do this.

Proposition 2.7. Suppose that X is a nonempty set and d is a function from X to an additive abelian group G. Then there is a G-grading on $\mathbb{F}_{R}(w(X))$ such that

$$
\mathbb{F}_{R}(w(X))_{g}=\left\{\sum_{w \in w(X)} r_{w} w: r_{w} \neq 0 \Longrightarrow d(w):=\sum_{i=1}^{|w|} d\left(w_{i}\right)=g\right\} \quad \text { for } g \in G .
$$

Proof. It is straightforward that each $\mathbb{F}_{R}(w(X))_{g}$ is an additive subgroup of $\mathbb{F}_{R}(w(X))$. To see that they span, consider $a=\sum_{w \in w(X)} r_{w} w \in \mathbb{F}_{R}(w(X))$, and let $H:=\left\{w: r_{w} \neq 0\right\}$. For $g \in G$ and $w \in w(X)$, we define

$$
s_{g, w}= \begin{cases}r_{w} & \text { if } d(w)=g \\ 0 & \text { otherwise }\end{cases}
$$

then $a_{g}:=\sum_{w \in w(X)} s_{g, w} w$ belongs to $\mathbb{F}_{R}(w(X))_{g}$, and $\sum_{g \in d(H)} a_{g}$ is a finite sum which is easily seen to be a. To show that the $\mathbb{F}_{R}(w(X))_{g}$ are independent, suppose that F is a finite subset of $G, a_{g} \in \mathbb{F}_{R}(w(X))_{g}$ and $\sum_{g \in F} a_{g}=0$. Write $a_{g}=$ $\sum_{w \in w(X)} t_{g, w} w$. Then $t_{g, w}=0$ unless $g=d(w)$, and

$$
0=\sum_{g \in F} \sum_{w \in w(X)} t_{g, w} w=\sum_{w \in w(X)}\left(\sum_{g \in F} t_{g, w}\right) w=\sum_{w \in w(X)} t_{d(w), w} w .
$$

Then, since the 0 element of $\mathbb{F}_{R}(X)$ is the sum in which all coefficients are 0 , we get $t_{d(w), w}=0$ for $w \in w(X)$. Thus we have $t_{g, w}=0$ for all g, w, and $a_{g}=0$ for all $g \in F$.

To see that $\mathbb{F}_{R}(w(X))_{g} \mathbb{F}_{R}(w(X))_{h} \subset \mathbb{F}_{R}(w(X))_{g+h}$, we take $\sum_{w \in w(X)} r_{w} w$ in $\mathbb{F}_{R}(w(X))_{g}$ and $\sum_{y \in w(X)} s_{y} y$ in $\mathbb{F}_{R}(w(X))_{h}$, and multiply them using (2.2). Suppose that the coefficient of z on the right-hand side of (2.2) is nonzero. Then at least one summand $r_{w} s_{y}$ is nonzero, and for this summand $r_{w} \neq 0$ and $s_{y} \neq 0$, which by definition of the $\mathbb{F}_{R}(w(X))_{g}$ imply $d(w)=g$ and $d(y)=h$. But now $d(z)=d(w y)=d(w)+d(y)=g+h$, so the product is in $\mathbb{F}_{R}(w(X))_{g+h}$.

3. Kumjian-Pask families

The algebras of interest to us are algebraic analogues of a family of C^{*}-algebras introduced by Kumjian and Pask in [21. In the algebraic analogue, the generating relations look a little different, so we begin by examining algebraic consequences of the relations in 21. For the benefit of algebraists, we recall that a projection in a C^{*}-algebra A is an element $P \in A$ such that $P^{*}=P=P^{2}$. A partial isometry is an element $S \in A$ such that $S=S S^{*} S$; equivalently, one of $S S^{*}$ or $S^{*} S$ is a projection, and then both are (see the appendix in [28], for example).

Let Λ be a row-finite k-graph without sources. Kumjian and Pask studied collections $S=\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ of partial isometries in a C^{*}-algebra A such that
(a) $\left\{S_{v}: v \in \Lambda^{0}\right\}$ is a collection of mutually orthogonal projections,
(b) $S_{\lambda} S_{\mu}=S_{\lambda \mu}$ for $\lambda, \mu \in \Lambda$ with $r(\mu)=s(\lambda)$,
(c) $S_{\lambda}^{*} S_{\lambda}=S_{s(\lambda)}$ for $\lambda \in \Lambda$, and
(d) $S_{v}=\sum_{\lambda \in v \Lambda^{n}} S_{\lambda} S_{\lambda}^{*}$ for $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$.

Although they did not use this name, these quickly became known as Cuntz-Krieger Λ-families.

The relation (ㄷC) immediately implies that $S_{\lambda}=S_{\lambda}\left(S_{\lambda}^{*} S_{\lambda}\right)=S_{\lambda} S_{s(\lambda)}$. Next, recall that a finite sum $P=\sum_{i} P_{i}$ of projections in a C^{*}-algebra is a projection if and only if $P_{i} P_{j}=0$ for $i \neq j$, and then $P P_{i}=P_{i}$ for all i (see [28, Corollary A.3]). Thus, since S_{v} is a projection, relation (d) implies that if $\lambda, \mu \in v \Lambda^{n}$ and $\lambda \neq \mu$, then $\left(S_{\lambda} S_{\lambda}^{*}\right)\left(S_{\mu} S_{\mu}^{*}\right)=0$ and $S_{v}\left(S_{\lambda} S_{\lambda}^{*}\right)=\left(S_{\lambda} S_{\lambda}^{*}\right)$. In particular, we have $S_{r(\lambda)} S_{\lambda}=$ $S_{r(\lambda)}\left(S_{\lambda} S_{\lambda}^{*}\right) S_{\lambda}=\left(S_{\lambda} S_{\lambda}^{*}\right) S_{\lambda}=S_{\lambda}$. Next, note that

$$
S_{\lambda}^{*} S_{\mu}=S_{\lambda}^{*}\left(S_{\lambda} S_{\lambda}^{*}\right)\left(S_{\mu} S_{\mu}^{*}\right) S_{\mu},
$$

and hence we have the following stronger version of relation (c) :
(匹) if $\lambda, \mu \in v \Lambda^{n}$, then $S_{\lambda}^{*} S_{\mu}=\delta_{\lambda, \mu} S_{s(\lambda)}$.
The arguments in the previous paragraph do not work in the purely algebraic setting, and, as was the case for directed graphs in [1] we have to add some extra relations.

If Λ is a k-graph, we let $\Lambda^{\neq 0}:=\{\lambda \in \Lambda: d(\lambda) \neq 0\}$, and for each $\lambda \in \Lambda^{\neq 0}$ we introduce a ghost path λ^{*}; for $v \in \Lambda^{0}$, we define $v^{*}:=v$. We write $G(\Lambda)$ for the set of ghost paths, or $G\left(\Lambda^{\neq 0}\right)$ if we wish to exclude vertices. We define d, r and s on $G(\Lambda)$ by

$$
d\left(\lambda^{*}\right)=-d(\lambda), \quad r\left(\lambda^{*}\right)=s(\lambda), \quad s\left(\lambda^{*}\right)=r(\lambda) ;
$$

we then define composition on $G(\Lambda)$ by setting $\lambda^{*} \mu^{*}=(\mu \lambda)^{*}$ for $\lambda, \mu \in \Lambda^{\neq 0}$ with $r\left(\mu^{*}\right)=s\left(\lambda^{*}\right)$. The factorization property of Λ induces a similar factorization property on $G(\Lambda)$.

Definition 3.1. Let Λ be a row-finite k-graph without sources and let R be a commutative ring with 1. A Kumjian-Pask Λ-family (P, S) in an R-algebra A consists of two functions $P: \Lambda^{0} \rightarrow A$ and $S: \Lambda^{\neq 0} \cup G\left(\Lambda^{\neq 0}\right) \rightarrow A$ such that:
(KP1) $\left\{P_{v}: v \in \Lambda^{0}\right\}$ is a family of mutually orthogonal idempotents,
(KP2) for all $\lambda, \mu \in \Lambda^{\neq 0}$ with $r(\mu)=s(\lambda)$, we have
$S_{\lambda} S_{\mu}=S_{\lambda \mu}, S_{\mu^{*}} S_{\lambda^{*}}=S_{(\lambda \mu)^{*}}, P_{r(\lambda)} S_{\lambda}=S_{\lambda}=S_{\lambda} P_{s(\lambda)}, P_{s(\lambda)} S_{\lambda^{*}}=S_{\lambda^{*}}=S_{\lambda^{*}} P_{r(\lambda)}$,
(KP3) for all $\lambda, \mu \in \Lambda^{\neq 0}$ with $d(\lambda)=d(\mu)$, we have

$$
S_{\lambda^{*}} S_{\mu}=\delta_{\lambda, \mu} P_{s(\lambda)}
$$

(KP4) for all $v \in \Lambda^{0}$ and all $n \in \mathbb{N}^{k} \backslash\{0\}$, we have

$$
P_{v}=\sum_{\lambda \in v \Lambda^{n}} S_{\lambda} S_{\lambda^{*}} .
$$

Remarks 3.2. (a) We have been careful to distinguish the vertex idempotents because we wanted to emphasise that there is only one generator for each path of degree 0 , whereas there are two for each path of nonzero degree. However, it is convenient when writing formulas such as (3.3) below to allow $S_{v}:=P_{v}$ and $S_{v^{*}}:=P_{v}$, and we do this.
(b) With the conventions we have set up, the last two relations in (KP2) can be summarized as $P_{r(x)} S_{x}=S_{x}=S_{x} P_{s(x)}$ for all $x \in \Lambda \cup G(\Lambda)$. This observation will be useful in calculations.
(c) Relations (KP2) and (KP3) imply that

$$
\left(S_{\lambda} S_{\lambda^{*}}\right)\left(S_{\lambda} S_{\lambda^{*}}\right)=S_{\lambda}\left(S_{\lambda^{*}} S_{\lambda}\right) S_{\lambda^{*}}=S_{\lambda} P_{s(\lambda)} S_{\lambda^{*}}=S_{\lambda} S_{\lambda^{*}},
$$

and (KP3) gives $\left(S_{\lambda} S_{\lambda^{*}}\right)\left(S_{\mu} S_{\mu^{*}}\right)=0$ when $d(\lambda)=d(\mu)$ and $\lambda \neq \mu$. Thus for each $n,\left\{S_{\lambda} S_{\lambda^{*}}: \lambda \in \Lambda^{n}\right\}$ is a set of mutually orthogonal idempotents.

The following analogue of [21, Lemma 3.1] tells us how to simplify products $S_{\lambda^{*}} S_{\mu}$.
Lemma 3.3. Suppose that (P, S) is a Kumjian-Pask Λ-family, and $\lambda, \mu \in \Lambda$. Then for each $q \geq d(\lambda) \vee d(\mu)$, we have

$$
S_{\lambda^{*}} S_{\mu}=\sum_{d(\lambda \alpha)=q, \lambda \alpha=\mu \beta} S_{\alpha} S_{\beta^{*}}
$$

Proof. By (KP2), we have $S_{\lambda^{*}} S_{\mu}=P_{s(\lambda)} S_{\lambda^{*}} S_{\mu} P_{s(\mu)}$, and then applying (KP4) at $v=s(\lambda)$ and at $v=s(\mu)$ gives

$$
\begin{equation*}
S_{\lambda^{*}} S_{\mu}=\sum_{\alpha \in s(\lambda) \Lambda^{q-d(\lambda), \beta \in s(\mu) \Lambda^{q-d(\mu)}}} S_{\alpha} S_{\alpha^{*}} S_{\lambda^{*}} S_{\mu} S_{\beta} S_{\beta^{*}} \tag{3.1}
\end{equation*}
$$

Since $d(\lambda \alpha)=q=d(\mu \beta)$, (KP2) and (KP3) give

$$
S_{\alpha} S_{\alpha^{*}} S_{\lambda^{*}} S_{\mu} S_{\beta} S_{\beta^{*}}=S_{\alpha} S_{(\lambda \alpha)^{*}} S_{\mu \beta} S_{\beta^{*}}= \begin{cases}S_{\alpha} S_{\beta^{*}} & \text { if } \lambda \alpha=\mu \beta \\ 0 & \text { otherwise }\end{cases}
$$

and so the right-hand side of (3.1) collapses as required.
Theorem 3.4. Let Λ be a row-finite k-graph without sources, and let R be a commutative ring with 1 . Then there is an R-algebra $\mathrm{KP}_{R}(\Lambda)$ generated by a KumjianPask Λ-family (p, s) such that, whenever (Q, T) is a Kumjian-Pask Λ-family in an R-algebra A, there is a unique R-algebra homomorphism $\pi_{Q, T}: \operatorname{KP}_{R}(\Lambda) \rightarrow A$ such that

$$
\begin{equation*}
\pi_{Q, T}\left(p_{v}\right)=Q_{v}, \quad \pi_{Q, T}\left(s_{\lambda}\right)=T_{\lambda}, \quad \pi_{Q, T}\left(s_{\mu^{*}}\right)=T_{\mu^{*}} \tag{3.2}
\end{equation*}
$$

for $v \in \Lambda^{0}$ and $\lambda, \mu \in \Lambda^{\neq 0}$. There is a \mathbb{Z}^{k}-grading on $\operatorname{KP}_{R}(\Lambda)$ satisfying

$$
\begin{equation*}
\operatorname{KP}_{R}(\Lambda)_{n}=\operatorname{span}_{R}\left\{s_{\lambda} s_{\mu^{*}}: \lambda, \mu \in \Lambda \text { and } d(\lambda)-d(\mu)=n\right\}, \tag{3.3}
\end{equation*}
$$

and we have $r p_{v} \neq 0$ for $v \in \Lambda^{0}$ and $r \in R \backslash\{0\}$.
Standard arguments show that $\left(\operatorname{KP}_{R}(\Lambda),(p, s)\right)$ is unique up to isomorphism, and we call $\mathrm{KP}_{R}(\Lambda)$ the Kumjian-Pask algebra of Λ and (p, s) the universal KumjianPask Λ-family.

Notation. We find it helpful to use the convention that lower-case letters signify that a Kumjian-Pask family (p, s) has a universal property.

The proof of this theorem will occupy the rest of the section.
We begin by considering the free algebra $\mathbb{F}_{R}(w(X))$ on $X:=\Lambda^{0} \cup \Lambda^{\neq 0} \cup G\left(\Lambda^{\neq 0}\right)$.
Let I be the ideal of $\mathbb{F}_{R}(w(X))$ generated by the union of the following sets:

- $\left\{v w-\delta_{v, w} v: v, w \in \Lambda^{0}\right\} ;$
- $\left\{\lambda-\mu \nu, \lambda^{*}-\nu^{*} \mu^{*}: \lambda, \mu, \nu \in \Lambda^{\neq 0}\right.$ and $\left.\lambda=\mu \nu\right\}$

$$
\cup\left\{r(\lambda) \lambda-\lambda, \lambda-\lambda s(\lambda), s(\lambda) \lambda^{*}-\lambda^{*}, \lambda^{*}-\lambda^{*} r(\lambda): \lambda \in \Lambda^{\neq 0}\right\} ;
$$

- $\left\{\lambda^{*} \mu-\delta_{\lambda, \mu} s(\lambda): \lambda, \mu \in \Lambda^{\neq 0}\right.$ such that $\left.d(\lambda)=d(\mu)\right\}$;
- $\left\{v-\sum_{\lambda \in v \Lambda^{n}} \lambda \lambda^{*}: v \in \Lambda^{0}, n \in \mathbb{N}^{k} \backslash\{0\}\right\}$.

We now define $\operatorname{KP}_{R}(\Lambda):=\mathbb{F}_{R}(w(X)) / I$. Let $q: \mathbb{F}_{R}(w(X)) \rightarrow \mathbb{F}_{R}(w(X)) / I$ be the quotient map. Then $\left\{p_{v}, s_{\lambda}, s_{\mu^{*}}\right\}:=\left\{q(v), q(\lambda), q\left(\mu^{*}\right)\right\}$ gives a generating KumjianPask Λ-family (p, s) in $\operatorname{KP}_{R}(\Lambda)$.

Now let (Q, T) be a Kumjian-Pask Λ-family in an R-algebra A. Define $f_{Q, T}$: $X \rightarrow A$ by $f(v)=Q_{v}, f(\lambda)=T_{\lambda}$ and $f\left(\mu^{*}\right)=T_{\mu^{*}}$, and the universal property of $\mathbb{F}_{R}(w(X))$ described in Proposition 2.6 gives an R-algebra homomorphism ϕ_{f} : $\mathbb{F}_{R}(w(X)) \rightarrow A$ such that $\phi_{f}(v)=Q_{v}, \phi_{f}(\lambda)=T_{\lambda}$ and $\phi_{f}\left(\mu^{*}\right)=T_{\mu^{*}}$. The Kumjian-Pask relations imply that ϕ_{f} vanishes on the ideal I, and therefore factors through an R-algebra homomorphism $\pi_{Q, T}: \mathrm{KP}_{R}(\Lambda) \rightarrow A$ satisfying (3.2). Since the elements in X generate $\mathbb{F}_{R}(w(X))$ as an algebra, there is exactly one such homomorphism.

Applying Proposition 2.7 to the degree map $d: X \rightarrow \mathbb{N}^{k}$ gives a \mathbb{Z}^{k}-grading of the free algebra $\mathbb{F}_{R}(w(X))$, and every generator of I lies in one of the subgroups $\mathbb{F}_{R}(w(X))_{n}$ of homogeneous elements. Thus the ideal I is graded, and the quotient $\operatorname{KP}_{R}(\Lambda)=\mathbb{F}_{R}(w(X)) / I$ is graded by the subgroups $q\left(\mathbb{F}_{R}(w(X))_{n}\right)$. The following lemma identifies $q\left(\mathbb{F}_{R}(w(X))_{n}\right)$ with the subgroup $\mathrm{KP}_{R}(\Lambda)_{n}$ described in (3.3).

Lemma 3.5. For every $w \in w(X)$, we have $q(w) \in \operatorname{KP}_{R}(\Lambda)_{d(w)}$.
Proof. We will prove this by induction on $|w|$. For $|w|=0$ or 1 , the result is covered by the convention in Remark 3.2(a) that we can view vertices as paths or ghost paths, and hence can add appropriate factors $s_{v}=p_{v}$ or $s_{v^{*}}=p_{v}$ without changing $q(w)$.

For $|w|=2$, there are four cases to consider: $w=\lambda \mu^{*}, w=\lambda^{*} \mu, w=\lambda \mu$, $w=\mu^{*} \lambda^{*}$. For the first, we have $q(w)=s_{\lambda} s_{\mu^{*}}$, and there is nothing to prove. For the second, we apply Lemma 3.3, and observe that $\lambda \alpha=\mu \beta$ implies $d(\alpha)-d(\beta)=$ $d(\mu)-d(\lambda)=d(w)$. For the third, we notice that the result is trivial if $q(w)=0$, and if not, (KP2) gives $0 \neq q(w)=s_{\lambda} p_{s(\lambda)} p_{r(\mu)} s_{\mu}$, which implies that $s(\lambda)=r(\mu)$ and that $s_{\lambda} s_{\mu}=s_{\lambda \mu} s_{s(\mu)^{*}}$ belongs to $\mathrm{KP}_{R}(\Lambda)_{d(w)}$. A similar argument works in the fourth case.

Now suppose that $n \geq 2$ and $q(y) \in \operatorname{KP}_{R}(\Lambda)_{d(y)}$ for every word y with $|y| \leq n$. Let w be a word with $|w|=n+1$ and $q(w) \neq 0$. If w contains a subword $w_{i} w_{i+1}=$ $\lambda \mu$, then inserting vertex idempotents shows that $s(\lambda)=r(\mu)$, so that λ and μ are composable in Λ. We now let w^{\prime} be the word obtained from w by replacing $w_{i} w_{i+1}$ with the single path $\lambda \mu$, and then

$$
q(w)=s_{w_{1}} \cdots s_{w_{i-1}} s_{\lambda} s_{\mu} s_{w_{i+2}} \cdots s_{w_{n+1}}=s_{w_{1}} \cdots s_{w_{i-1}} s_{\lambda \mu} s_{w_{i+2}} \cdots s_{w_{n+1}}=q\left(w^{\prime}\right)
$$

Since $\left|w^{\prime}\right|=n$ and $d\left(w^{\prime}\right)=d(w)$, the inductive hypothesis implies that $q(w) \in$ $\mathrm{KP}_{R}(\Lambda)_{d(w)}$. A similar argument shows that $q(w) \in \operatorname{KP}_{R}(\Lambda)_{d(w)}$ whenever w contains a subword $w_{i} w_{i+1}=\lambda^{*} \mu^{*}$.

If w contains no subword of the form $\lambda \mu$ or $\lambda^{*} \mu^{*}$, then it must consist of alternating paths and ghost paths. In particular, remembering that $|w|=n+1 \geq 3$, we see that either $w_{1} w_{2}$ or $w_{2} w_{3}$ has the form $\lambda^{*} \mu$. Now we can use Lemma 3.3 to write $q(w)$ as a sum of terms $q\left(y^{i}\right)$ with $\left|y^{i}\right|=n+1$ and $d\left(y^{i}\right)=d(w)$. Each nonzero summand $q\left(y^{i}\right)$ contains a factor of the form $s_{\beta^{*}} s_{\gamma^{*}}$ or one of the form $s_{\delta} s_{\alpha}$, and the argument of the preceding paragraph shows that every $q\left(y^{i}\right) \in \operatorname{KP}_{R}(\Lambda)_{d(w)}$. Thus so is their sum $q(w)$.

It remains to prove that the elements $r p_{v}$ with $r \neq 0$ are nonzero, and for this it suffices to produce a Kumjian-Pask Λ-family (Q, T) in an R-algebra such that each $r Q_{v}$ is nonzero. We do this by modifying the construction in [21, Proposition 2.11]. Let $\mathbb{F}_{R}\left(\Lambda^{\infty}\right)$ be the free module with basis the infinite path space. We next fix $v \in \Lambda^{0}$ and $\lambda, \mu \in \Lambda^{\neq 0}$, and use the composition and factorization constructions of Lemma 2.5 to define functions $f_{v}, f_{\lambda}, f_{\mu^{*}}: \Lambda^{\infty} \rightarrow \mathbb{F}_{R}\left(\Lambda^{\infty}\right)$ by

$$
\begin{aligned}
f_{v}(x) & = \begin{cases}x & \text { if } x(0)=v, \\
0 & \text { otherwise } ;\end{cases} \\
f_{\lambda}(x) & = \begin{cases}\lambda x & \text { if } x(0)=s(\lambda), \\
0 & \text { otherwise; and }\end{cases} \\
f_{\mu^{*}}(x) & = \begin{cases}x(d(\mu), \infty) & \text { if } x(0, d(\mu))=\mu, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

The universal property of free modules now gives nonzero endomorphisms Q_{v}, T_{λ}, $T_{\mu^{*}}: \mathbb{F}_{R}\left(\Lambda^{\infty}\right) \rightarrow \mathbb{F}_{R}\left(\Lambda^{\infty}\right)$ extending f_{v}, f_{λ} and $f_{\mu^{*}}$.

It is straightforward to check using Lemma 2.5 that (Q, T) is a Kumjian-Pask Λ-family in $\operatorname{End}\left(\mathbb{F}_{R}\left(\Lambda^{\infty}\right)\right)$. For example, to verify (KP3), suppose that $d(\lambda)=d(\mu)$
and $x \in \Lambda^{\infty}$. Then

$$
\begin{aligned}
T_{\lambda^{*}} T_{\mu}(x) & = \begin{cases}T_{\lambda^{*}}(\mu x) & \text { if } x(0)=s(\mu), \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}(\mu x)(d(\lambda), \infty) & \text { if } x(0)=s(\mu) \text { and }(\mu x)(0, d(\lambda))=\lambda, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $d(\lambda)=d(\mu)$, Lemma 2.5 implies that $(\mu x)(0, d(\lambda))=(\mu x)(0, d(\mu))=\mu$ if $r(x)=s(\mu)$, so $T_{\lambda^{*}} T_{\mu}(x)$ vanishes for all x unless $\lambda=\mu$, and then is x if and only if $r(x)=s(\mu)$. But this is exactly what $Q_{s(\mu)}$ does to x, and hence we have $T_{\lambda^{*}} T_{\mu}=Q_{s(\mu)}$.

Since (Q, T) is a Kumjian-Pask Λ-family, there exists an R-algebra homomor$\operatorname{phism} \pi_{Q, T}: \operatorname{KP}_{R}(\Lambda) \rightarrow \operatorname{End}\left(\mathbb{F}_{R}\left(\Lambda^{\infty}\right)\right)$ such that $\pi_{Q, T}\left(p_{v}\right)=Q_{v}, \pi_{Q, T}\left(s_{\lambda}\right)=T_{\lambda}$ and $\pi_{Q, T}\left(s_{\mu^{*}}\right)=T_{\mu}$. Since every vertex v is the range of an infinite path, if $r \neq 0$, then $r Q_{v} \neq 0$. It follows that $r p_{v} \neq 0$ too, and this completes the proof of Theorem 3.4

We call the R-algebra homomorphism $\pi_{Q, T}: \operatorname{KP}_{R}(\Lambda) \rightarrow \operatorname{End}\left(\mathbb{F}_{R}\left(\Lambda^{\infty}\right)\right)$ constructed above the infinite-path representation of $\operatorname{KP}_{R}(\Lambda)$.

4. The uniqueness theorems

Let Λ be a row-finite k-graph without sources. We write (p, s) for the universal Kumjian-Pask Λ-family in $\mathrm{KP}_{R}(\Lambda)$. In this section we prove graded-uniqueness and Cuntz-Krieger uniqueness theorems for $\mathrm{KP}_{R}(\Lambda)$.

Theorem 4.1 (The graded-uniqueness theorem). Let Λ be a row-finite k-graph without sources, R a commutative ring with 1 , and A a \mathbb{Z}^{k}-graded ring. If π : $\mathrm{KP}_{R}(\Lambda) \rightarrow A$ is a \mathbb{Z}^{k}-graded ring homomorphism such that $\pi\left(r p_{v}\right) \neq 0$ for all $r \in R \backslash\{0\}$ and $v \in \Lambda^{0}$, then π is injective.

The next two lemmas are the first steps in the proofs of both uniqueness theorems.

Lemma 4.2. Every nonzero $x \in \operatorname{KP}_{R}(\Lambda)$ can be written as a sum $\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$, where F is a finite subset of $\Lambda \times \Lambda, r_{\alpha, \beta} \in R \backslash\{0\}$ for all $(\alpha, \beta) \in F$, and all the β have the same degree. In this case we say x is written in normal form.
Proof. By Theorem [3.4, we can write x as a finite $\operatorname{sum} x=\sum_{(\sigma, \tau) \in G} r_{\sigma, \tau} s_{\sigma} s_{\tau^{*}}$ with each $r_{\sigma, \tau} \neq 0$. Set $m=\bigvee_{(\sigma, \tau) \in G} d(\tau)$. For each $(\sigma, \tau) \in G$, applying (KP4) with $n_{\tau}:=m-d(\tau)$ gives

$$
s_{\sigma} s_{\tau^{*}}=s_{\sigma} p_{s(\sigma)} s_{\tau^{*}}=\sum_{\lambda \in s(\sigma) \Lambda^{n_{\tau}}} s_{\sigma \lambda} s_{(\tau \lambda) *} ;
$$

substituting back into the expression for x and combining terms gives the result.
Lemma 4.3. Suppose that x is a nonzero element of $\operatorname{KP}_{R}(\Lambda)$ and $x=$ $\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$ is in normal form. Then there exists $\gamma \in F_{2}:=\{\beta:(\alpha, \beta) \in$ F for some $\alpha \in \Lambda\}$ such that

$$
\begin{equation*}
0 \neq x s_{\gamma}=\sum_{\alpha \in G} r_{\alpha, \gamma} s_{\alpha} \quad \text { where } G:=\{\alpha:(\alpha, \gamma) \in F\} \tag{4.1}
\end{equation*}
$$

Further, if $\delta \in G$, then

$$
\begin{equation*}
0 \neq s_{\delta^{*}} x s_{\gamma}=r_{\delta, \gamma} p_{s(\delta)}+\sum_{\{\alpha \in G: \alpha \neq \delta\}} r_{\alpha, \gamma} s_{\delta^{*}} s_{\alpha}, \tag{4.2}
\end{equation*}
$$

and $r_{\delta, \gamma} p_{s(\delta)}$ is the 0 -graded component of $s_{\delta^{*}} x s_{\gamma}$.
Proof. Since all β in F_{2} have the same degree, (KP3) implies that $\left\{s_{\beta} s_{\beta^{*}}: \beta \in\right.$ $\left.F_{2}\right\}$ is a set of mutually orthogonal idempotents. Then $p=\sum_{\beta \in F_{2}} s_{\beta} s_{\beta^{*}}$ is an idempotent and satisfies $x p=x$. In particular, $x p \neq 0$, and hence there exists $\gamma \in F_{2}$ such that $x s_{\gamma} \neq 0$. Now (KP3) gives

$$
0 \neq x s_{\gamma}=\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}} s_{\gamma}=\sum_{\{(\alpha, \beta) \in F: \beta=\gamma\}} r_{\alpha, \beta} s_{\alpha}=\sum_{\alpha \in G} r_{\alpha, \gamma} s_{\alpha},
$$

and for $\delta \in G$, we have

$$
s_{\delta^{*}} x s_{\gamma}=\sum_{\alpha \in G} r_{\alpha, \gamma} s_{\delta^{*}} s_{\alpha}=r_{\delta, \gamma} p_{s(\delta)}+\sum_{\{\alpha \in G: \alpha \neq \delta\}} r_{\alpha, \gamma} s_{\delta^{*}} s_{\alpha} .
$$

If $s_{\delta^{*}} s_{\alpha} \neq 0$ and $\alpha \neq \delta$, then $d(\alpha) \neq d(\delta)$ by (KP3), and $s_{\delta^{*}} s_{\alpha}$ is a sum of monomials $s_{\mu} s_{\nu^{*}}$ all of which have degree $d(\mu)-d(\nu)=d(\alpha)-d(\delta) \neq 0$ (see Lemma 3.3). Thus $r_{\delta, \gamma} p_{s(\delta)}$ is the 0 -graded component of $s_{\delta^{*}} x s_{\gamma}$. Since $r_{\delta, \gamma} p_{s(\delta)} \neq 0$, we have $s_{\delta^{*}} x s_{\gamma} \neq 0$ too.

Proof of Theorem 4.1. Let $0 \neq x \in \operatorname{KP}_{R}(\Lambda)$. By Lemma 4.2, x can be written in normal form, and by Lemma 4.3 there exist a finite set G and $\gamma, \delta \in \Lambda$ such that (4.2) holds and $r_{\delta, \gamma} p_{s(\delta)}$ is the 0 -graded component of $s_{\delta^{*}} x s_{\gamma}$. Since π is \mathbb{Z}^{k} graded, $\pi\left(r_{\delta, \gamma} p_{s(\delta)}\right)$ is the 0 -graded component of $\pi\left(s_{\delta^{*}} x s_{\gamma}\right)$, and since $\pi\left(r_{\delta, \gamma} p_{s(\delta)}\right)$ is nonzero by assumption, so is $\pi\left(s_{\delta^{*}} x s_{\gamma}\right)$. Since π is a ring homomorphism, we deduce that $\pi(x) \neq 0$, and hence that π is injective.

Remark 4.4. The graded-uniqueness theorem is an analogue of the gauge-invariant uniqueness theorems for graph C^{*}-algebras, and we will discuss the relationship in \$7.1 The first gauge-invariant uniqueness theorem was for Cuntz-Krieger algebras [19, Theorem 2.3]; the first versions for graph C^{*}-algebras and higher-rank graph algebras were [9, Theorem 2.1] and [21, Theorem 3.4]. The graded-uniqueness theorem for Leavitt path algebras was originally derived from the classification of the graded ideals; direct proofs were given in [29] and [37. Theorem 4.1 and its proof were motivated by [38, Theorem 6.5].

For the Cuntz-Krieger uniqueness theorem, we need an aperiodicity condition on Λ. Following Robertson and Sims [32], we say that a k-graph Λ is aperiodic if for every $v \in \Lambda^{0}$ and $m \neq n \in \mathbb{N}^{k}$ there exists $\lambda \in v \Lambda$ such that $d(\lambda) \geq m \vee n$ and

$$
\begin{equation*}
\lambda(m, m+d(\lambda)-(m \vee n)) \neq \lambda(n, n+d(\lambda)-(m \vee n)) . \tag{4.3}
\end{equation*}
$$

We say Λ is periodic if Λ is not aperiodic. Several aperiodicity conditions appear in the literature, but they are all equivalent when Λ is row-finite without sources. We find the finite path formulation of aperiodicity from [32] easier to understand, and it allows us to borrow arguments from [17] which do not require readers to know about the different formulations in [21 and 30.

Example 4.5. Let Λ be a row-finite 1-graph without sources, and let $E=$ (E^{0}, E^{1}, r, s) be the associated directed graph. Then Λ is aperiodic if and only
if for every $v \in E^{0}$ and every $m, n \in \mathbb{N}$ with $m<n$, there exists a path λ with $r(\lambda)=v,|\lambda| \geq n$ and $\lambda_{m+1} \ldots \lambda_{m+|\lambda|-n} \neq \lambda_{n+1} \ldots \lambda_{|\lambda|}$.

The following reassuring lemma tells us that, for a directed graph, aperiodicity is equivalent to the usual hypothesis of Cuntz-Krieger uniqueness theorems.

Lemma 4.6. Let Λ be a 1-graph and E its associated directed graph. Then Λ is aperiodic if and only if every cycle in E has an entry.

Proof. Suppose that E has a cycle μ of length $k \geq 1$ without an entry, and take $v=r(\mu), m=0$ and $n=k$. Since μ has no entry, the only paths λ with $r(\lambda)=$ $r(\mu)$ and length at least k have the form $\mu^{l} \mu^{\prime}$, where $l \geq 1$ and $\mu=\mu^{\prime} \mu^{\prime \prime}$; then $\lambda_{1} \cdots \lambda_{|\lambda|-k}=\mu^{l-1} \mu^{\prime}=\lambda_{k+1} \cdots \lambda_{|\lambda|}$ for every such λ, which shows that Λ is periodic.

Conversely, suppose that every cycle in E has an entry. Fix $v \in E^{0}$ and $m<n$ in \mathbb{N}. First, suppose that v can be reached from a cycle μ, that is, there exists α with $r(\alpha)=v$ such that $\alpha \mu$ is a path. Then μ has an entry $e \in E^{1}$, and we may suppose by adjusting α that $s(\mu)=r(e)$. Now choose a path of the form $\lambda=\alpha \mu \mu \ldots \mu e$ such that λ_{m} is an edge in μ and $|\lambda| \geq n$. Then $\lambda_{m+|\lambda|-n} \neq \lambda_{|\lambda|}$. Second, suppose that v cannot be reached from a cycle. Choose λ with $r(\lambda)=v$ and $|\lambda|>n$. Then $\lambda_{m+1} \ldots \lambda_{m+|\lambda|-n} \neq \lambda_{n+1} \ldots \lambda_{|\lambda|}$ because otherwise $\lambda_{m+1} \ldots \lambda_{n}$ would be a return path which connects to v, and which would contain a cycle connecting to v. So either way, the aperiodicity condition holds for m, n and v, and Λ is aperiodic.

We can now state our second uniqueness theorem.
Theorem 4.7 (The Cuntz-Krieger uniqueness theorem). Let Λ be an aperiodic row-finite k-graph without sources, let R be a commutative ring with 1 , and let A be a ring. If $\pi: \operatorname{KP}_{R}(\Lambda) \rightarrow A$ is a ring homomorphism such that $\pi\left(r p_{v}\right) \neq 0$ for all $r \in R \backslash\{0\}$ and $v \in \Lambda^{0}$, then π is injective.

We need two preliminary results for the proof. Lemma 4.8 was an ingredient in the proof of the C^{*}-algebraic uniqueness theorem in [17, and Proposition 4.9 will be needed again in our analysis of the ideal structure in \$6.

Lemma 4.8 ([17, Lemma 6.2]). Suppose that Λ is an aperiodic row-finite k-graph without sources, and fix $v \in \Lambda^{0}$ and $m \in \mathbb{N}^{k}$. Then there exists $\lambda \in \Lambda$ with $r(\lambda)=v$ and $d(\lambda) \geq m$ such that

$$
\left.\begin{array}{l}
\alpha, \beta \in \Lambda, s(\alpha)=s(\beta)=v, d(\alpha), d(\beta) \leq m, \tag{4.4}\\
\text { and }(\alpha \lambda)(0, d(\lambda))=(\beta \lambda)(0, d(\lambda))
\end{array}\right\} \Longrightarrow \alpha=\beta
$$

Proposition 4.9. Let Λ be an aperiodic row-finite k-graph without sources and let R be a commutative ring with 1 . Let $x=\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$ be a nonzero element of $\operatorname{KP}_{R}(\Lambda)$ in normal form. Then there exist $\sigma, \tau \in \Lambda,(\delta, \gamma) \in F$ and $w \in \Lambda^{0}$ such that $s_{\sigma^{*}} x s_{\tau}=r_{\delta, \gamma} p_{w}$.

Proof. Lemma 4.3 implies that there exists $\gamma \in \Lambda$ such that $G:=\{\alpha:(\alpha, \gamma) \in F\}$ is nonempty and

$$
0 \neq s_{\delta^{*}} x s_{\gamma}=r_{\delta, \gamma} p_{s(\delta)}+\sum_{\{\alpha \in G: \alpha \neq \delta\}} r_{\alpha, \gamma} s_{\delta^{*}} s_{\alpha} \quad \text { for every } \delta \in G
$$

Since Λ is aperiodic we can apply Lemma 4.8 with $v=s(\delta)$ and $m=\bigvee_{\alpha \in G} d(\alpha)$ to find $\lambda \in s(\delta) \Lambda$ with $d(\lambda) \geq m$ such that (4.4) holds. Now

$$
\begin{equation*}
s_{\lambda^{*}}\left(s_{\delta^{*}} x s_{\gamma}\right) s_{\lambda}=r_{\delta, \gamma} p_{s(\lambda)}+\sum_{\{\alpha \in G: \alpha \neq \delta\}} r_{\alpha, \gamma} s_{(\delta \lambda)^{*}} s_{\alpha \lambda} . \tag{4.5}
\end{equation*}
$$

If the summand $s_{(\delta \lambda) *} s_{\alpha \lambda}$ is nonzero, then $s_{(\delta \lambda)(0, d(\lambda)) *} s_{(\alpha \lambda)(0, d(\lambda))}$ is nonzero, (KP3) implies that $(\delta \lambda)(0, d(\lambda))=(\alpha \lambda)(0, d(\lambda))$, and (4.4) implies that $\alpha=\delta$. Thus (4.5) collapses to $s_{(\delta \lambda) *} x s_{\gamma \lambda}=r_{\delta, \gamma} p_{s(\lambda)}$, and we can take $\sigma=\delta \lambda$ and $\tau=\gamma \lambda$.
Proof of Theorem 4.7. Let $0 \neq x \in \operatorname{KP}_{R}(\Lambda)$. By Lemma 4.2 we can write x in normal form. By Proposition 4.9 there exist $\sigma, \tau \in \Lambda$ and $r \in R \backslash\{0\}$ such that $s_{\sigma^{*}} x s_{\tau}=r p_{w}$ for some $w \in \Lambda^{0}$. Now

$$
\pi\left(s_{\sigma^{*}}\right) \pi(x) \pi\left(s_{\tau}\right)=\pi\left(s_{\sigma^{*}} x s_{\tau}\right)=\pi\left(r p_{w}\right) \neq 0
$$

by assumption, and so $\pi(x) \neq 0$. Thus π is injective.
The Cuntz-Krieger uniqueness theorem immediately gives:
Corollary 4.10. Let Λ be an aperiodic row-finite k-graph without sources. Then the infinite-path representation $\pi_{Q, T}: \operatorname{KP}_{R}(\Lambda) \rightarrow \operatorname{End}\left(\mathbb{F}_{R}\left(\Lambda^{\infty}\right)\right)$ from the end of $\S 3$ is injective.

We will see in Lemma 5.9 below that $\pi_{Q, T}$ is not injective when Λ is periodic.
Remark 4.11. The uniqueness theorem for Cuntz-Krieger algebras was proved in [12], and extended to graph algebras in [22] and higher-rank graph algebras in [21]. The first versions for Leavitt algebras were in [1, 29, 37. All require some form of aperiodicity condition. For graphs, everybody now uses the condition (L) from [22], which says that every cycle has an entry. For row-finite higher-rank graphs without sources, all the formulations are equivalent to the finite-path formulation which we use here [32, Lemma 3.2]. When there are sources or infinite receivers, one has to be a bit more careful, and we refer to [24] for a detailed discussion.

5. Basic ideals and basic simplicity

Let Λ be a row-finite k-graph without sources; we continue to write (p, s) for the universal Kumjian-Pask Λ-family in $\mathrm{KP}_{R}(\Lambda)$.

A subset H of Λ^{0} is hereditary if $\lambda \in \Lambda$ and $r(\lambda) \in H$ imply $s(\lambda) \in H$. A subset H is saturated if $v \in \Lambda^{0}, n \in \mathbb{N}^{k}$ and $s\left(v \Lambda^{n}\right) \subset H$ imply $v \in H$. For a saturated hereditary subset H, we write I_{H} for the ideal of $\operatorname{KP}_{R}(\Lambda)$ generated by $\left\{p_{v}: v \in H\right\}$.

The standard path for studying graph algebras predicts that $H \mapsto I_{H}$ should be a bijection between the saturated hereditary subsets of Λ^{0} and the graded ideals of $\mathrm{KP}_{R}(\Lambda)$. However, since we are allowing coefficients in a commutative ring, we have to follow [38] and restrict attention to the basic ideals, which are the ideals I such that $r p_{v} \in I$ and $r \in R \backslash\{0\}$ imply $p_{v} \in I$. This assumption gets us back on path:

Theorem 5.1. Let Λ be a row-finite k-graph without sources and let R be a commutative ring with 1 . Then the map $H \mapsto I_{H}$ is a lattice isomorphism from the lattice of saturated hereditary subsets of Λ^{0} onto the lattice of basic and graded ideals of $\mathrm{KP}_{R}(\Lambda)$.

The proof of Theorem 5.1 follows the general path first taken in [9, §4]. The first lemma is a little more general than we need right now, but the sets $H_{I, r}$ will be of interest in 86 .
Lemma 5.2. Let I be an ideal of $\operatorname{KP}_{R}(\Lambda)$ and $r \in R$. Then $H_{I, r}:=\left\{v \in \Lambda^{0}\right.$: $\left.r p_{v} \in I\right\}$ is a saturated hereditary subset of Λ^{0}. In particular, $H_{I}:=H_{I, 1}=\{v \in$ $\left.\Lambda^{0}: p_{v} \in I\right\}$ is saturated and hereditary.
Proof. To see that $H_{I, r}$ is hereditary, suppose $\lambda \in \Lambda$ and $r(\lambda) \in H_{I, r}$. Then $r p_{r(\lambda)} \in I$ and $r s_{\lambda}=r p_{r(\lambda)} s_{\lambda} \in I$. Now $r p_{s(\lambda)}=r s_{\lambda^{*}} s_{\lambda}=s_{\lambda^{*}} r s_{\lambda} \in I$. Thus $s(\lambda) \in H_{I, r}$, and $H_{I, r}$ is hereditary. To see that $H_{I, r}$ is saturated, fix $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$, and suppose that $s(\lambda) \in H_{I, r}$ for all $\lambda \in v \Lambda^{n}$. Then $r p_{s(\lambda)} \in I$ for all $\lambda \in v \Lambda^{n}$, and (KP4) gives

$$
r p_{v}=\sum_{\lambda \in v \Lambda^{n}} r s_{\lambda} s_{\lambda^{*}}=\sum_{\lambda \in v \Lambda^{n}} s_{\lambda}\left(r p_{s(\lambda)}\right) s_{\lambda^{*}} \in I .
$$

Thus $v \in H_{I, r}$, and $H_{I, r}$ is saturated.
Lemma 5.3. Suppose Λ is a row-finite k-graph without sources and H is a saturated hereditary subset of Λ^{0}. Then $\Lambda \backslash H:=\left(\Lambda^{0} \backslash H, s^{-1}\left(\Lambda^{0} \backslash H\right), r, s\right)$ is a row-finite k-graph without sources, and if (Q, T) is a Kumjian-Pask family for $\Lambda \backslash H$ in an R-algebra A, then
$P_{v}=\left\{\begin{array}{ll}Q_{v} & \text { if } v \notin H \\ 0 & \text { otherwise },\end{array} \quad S_{\lambda}=\left\{\begin{array}{ll}T_{\lambda} & \text { if } s(\lambda) \notin H \\ 0 & \text { otherwise },\end{array} \quad\right.\right.$ and $\quad S_{\mu^{*}}= \begin{cases}T_{\mu^{*}} & \text { if } s(\mu) \notin H \\ 0 & \text { otherwise }\end{cases}$ form a Kumjian-Pask Λ-family (P, S) in A.
Proof. It is straightforward to check that $\Lambda \backslash H$ is a subcategory of Λ, and the hereditariness of H implies that if $\lambda \in \Lambda \backslash H$ and $\lambda=\mu \nu$, then the factors μ and ν have source in $\Lambda^{0} \backslash H$ (see [30, Theorem 5.2(b)]). So $\Lambda \backslash H$ is a row-finite k-graph. To see that $\Lambda \backslash H$ has no sources, suppose that $v \in(\Lambda \backslash H)^{0}=\Lambda^{0} \backslash H$ and $n \in \mathbb{N}^{k}$. Since Λ has no sources, $v \Lambda^{n}$ is nonempty, and if $s(\lambda) \in H$ for every $\lambda \in v \Lambda^{n}$, then $v \in H$ because H is saturated, which contradicts $v \in \Lambda^{0} \backslash H$. Thus there must exist $\lambda \in v \Lambda^{n}$ such that $s(\lambda) \in \Lambda^{0} \backslash H$, and then $\lambda \in v(\Lambda \backslash H)^{n}$, so v is not a source in $\Lambda \backslash H$.

Most of the Kumjian-Pask relations (KP1-3) for (P, S) follow immediately from those for (Q, T), though we have to use that H is hereditary to see that $s(\lambda) \notin H$ implies $r(\lambda) \notin H$, so that $S_{\lambda}=T_{\lambda}=Q_{r(\lambda)} T_{\lambda}=P_{r(\lambda)} S_{\lambda}$ in (KP2). For (KP4), we observe that the nonzero terms in $\sum_{\lambda \in v \Lambda^{n}} S_{\lambda} S_{\lambda^{*}}$ are parametrized by

$$
\left\{\lambda \in v \Lambda^{n}: s(\lambda) \notin H\right\}= \begin{cases}\emptyset & \text { if } v \in H \\ v(\Lambda \backslash H)^{n} & \text { if } v \notin H\end{cases}
$$

Recall that an ideal I is idempotent if $I=I^{2}$ in the sense that I is spanned by products $a b$ with $a, b \in I$.

Lemma 5.4. Let H be a saturated hereditary subset of Λ^{0}. Then

$$
\begin{equation*}
I_{H}=\operatorname{span}_{R}\left\{s_{\sigma} s_{\lambda^{*}}: s(\sigma)=s(\lambda) \in H\right\} \tag{5.1}
\end{equation*}
$$

I_{H} is a basic, graded and idempotent ideal of $\mathrm{KP}_{R}(\Lambda)$, and $H_{I_{H}}=H$.

Proof. Since $s_{\sigma} s_{\lambda^{*}}=s_{\sigma} p_{s(\sigma)} s_{\lambda^{*}}$, the right-hand side J of (15.1) is contained in I_{H}, and it contains all the generators p_{v} (by the convention in Remark 3.2). So to prove (5.1), it suffices for us to prove that J is an ideal. To see this, consider $s_{\sigma} s_{\lambda^{*}}$ with $s(\sigma)=s(\lambda) \in H$ and $s_{\mu} s_{\delta^{*}} \in \operatorname{KP}_{R}(\Lambda)$. Applying Lemma 3.3 with $q=d(\lambda) \vee d(\mu)$ gives

$$
\begin{equation*}
s_{\sigma} s_{\lambda^{*}} s_{\mu} s_{\delta^{*}}=\sum_{\left\{\alpha \in \Lambda^{q-d(\lambda)},\right.} \sum_{\left.\beta \in \Lambda^{q-d(\mu)}: \lambda \alpha=\mu \beta\right\}} s_{\sigma \alpha} s_{(\delta \beta)^{*}} . \tag{5.2}
\end{equation*}
$$

Since H is hereditary, $r(\alpha)=s(\sigma)$ and $r(\beta)=s(\lambda)$ imply that $s(\alpha)$ and $s(\beta)$ are in H. Thus each nonzero summand in (5.2) belongs to J. Similarly, $s_{\mu} s_{\delta^{*}} s_{\sigma} s_{\lambda^{*}} \in J$. Thus J is an ideal, and we have proved (5.1).

To see that I_{H} is idempotent, we suppose that $s(\sigma)=s(\lambda) \in H$, and observe that the spanning element $s_{\sigma} s_{\lambda^{*}}=\left(s_{\sigma} p_{s(\sigma)}\right)\left(p_{s(\sigma)} s_{\lambda^{*}}\right)$ for I_{H} belongs to $\left(I_{H}\right)^{2}$. Since (5.1) shows that I_{H} is spanned by homogeneous elements, I_{H} is graded.

To see that I_{H} is basic and that $H=H_{I_{H}}$, it suffices to fix $r \neq 0$ in R, and prove that $v \notin H$ implies $r p_{v} \notin I_{H}$. Now consider the universal Kumjian-Pask $(\Lambda \backslash H)$-family (q, t) in $\operatorname{KP}_{R}(\Lambda \backslash H)$, and extend it to a Kumjian-Pask Λ-family (P, S) as in Lemma 5.3. The universal property of $\mathrm{KP}_{R}(\Lambda)$ (see Theorem 3.4) gives a homomorphism $\pi:=\pi_{P, S}: \operatorname{KP}_{R}(\Lambda) \rightarrow \operatorname{KP}_{R}(\Lambda \backslash H)$. Since $\pi\left(p_{w}\right)=0$ for $w \in H$, π vanishes on I_{H}. On the other hand, applying Theorem 3.4 to $\Lambda \backslash H$ shows that $\pi\left(r p_{v}\right)=r q_{v} \neq 0$ for every $v \in \Lambda^{0} \backslash H$. Thus $r p_{v}$ cannot be in $I_{H} \subset \operatorname{ker} \pi$.

Proposition 5.5. Let Λ be a row-finite k-graph without sources and R a commutative ring with 1 . Let I be a basic ideal of $\mathrm{KP}_{R}(\Lambda)$, and let (q, t) and (p, s) be the universal Kumjian-Pask families in $\mathrm{KP}_{R}\left(\Lambda \backslash H_{I}\right)$ and $\mathrm{KP}_{R}(\Lambda)$, respectively. If I is graded or $\Lambda \backslash H_{I}$ is aperiodic, then there exists an isomorphism $\pi: \mathrm{KP}_{R}\left(\Lambda \backslash H_{I}\right) \rightarrow \mathrm{KP}_{R}(\Lambda) / I$ such that

$$
\begin{equation*}
\pi\left(q_{v}\right)=p_{v}+I, \pi\left(t_{\lambda}\right)=s_{\lambda}+I \text { and } \pi\left(t_{\mu^{*}}\right)=s_{\mu^{*}}+I \tag{5.3}
\end{equation*}
$$

for $v \in \Lambda^{0} \backslash H_{I}$ and $\lambda, \mu \in \Lambda^{\neq 0} \cap s^{-1}\left(\Lambda^{0} \backslash H_{I}\right)$.
Proof. Observe that $\left\{p_{v}+I, s_{\lambda}+I, s_{\mu^{*}}+I\right\}$ is a Kumjian-Pask $\left(\Lambda \backslash H_{I}\right)$-family $(p+I, s+I)$, and the universal property of $\mathrm{KP}_{R}\left(\Lambda \backslash H_{I}\right)$ (Theorem 3.4) gives a homomorphism $\pi:=\pi_{p+I, s+I}$ satisfying (5.3). Since the other generators of $\operatorname{KP}_{R}(\Lambda)$ belong to I, the family $(p+I, s+I)$ generates $\mathrm{KP}_{R}(\Lambda) / I$, and π is surjective.

Suppose that $\pi\left(r q_{v}\right)=0$ for some $r \in R \backslash\{0\}$ and $v \notin H_{I}$. Then $r p_{v}+I=$ $\pi\left(r q_{v}\right)=0$, so that $r p_{v} \in I$ and, since I is basic, $p_{v} \in I$ as well. But this implies that $v \in H_{I}$, a contradiction. Thus $\pi\left(r q_{v}\right) \neq 0$ for all $r \in R \backslash\{0\}$ and $v \notin H_{I}$. If $\Lambda \backslash H_{I}$ is aperiodic, then the Cuntz-Krieger uniqueness theorem implies that π is injective.

If I is graded, then $\operatorname{KP}_{R}(\Lambda) / I$ is graded by $\left(\operatorname{KP}_{R}(\Lambda) / I\right)_{n}=q\left(\mathrm{KP}_{R}(\Lambda)_{n}\right)$, where $q: \mathrm{KP}_{R}(\Lambda) \rightarrow \mathrm{KP}_{R}(\Lambda) / I$ is the quotient map. If $\alpha, \beta \in\left(\Lambda \backslash H_{I}\right)$ with $d(\alpha)-d(\beta)=$ $n \in \mathbb{Z}^{k}$, then

$$
\pi\left(t_{\alpha} t_{\beta^{*}}\right)=s_{\alpha} s_{\beta^{*}}+I=q\left(s_{\alpha} s_{\beta^{*}}\right) \in q\left(\operatorname{KP}_{R}(\Lambda)_{n}\right)=\left(\operatorname{KP}_{R}(\Lambda) / I\right)_{n}
$$

Thus π is graded, and the graded-uniqueness theorem implies that π is injective.
Proof of Theorem 5.1. To see that $H \mapsto I_{H}$ is surjective, let I be a basic graded ideal. Then $H_{I}=\left\{v \in \Lambda^{0}: p_{v} \in I\right\}$ is saturated and hereditary by Lemma 5.2 Let $J:=I_{H_{I}}$. We will show that $I=J$. Since all the generators of J lie in I, we have $J \subset I$. Consider the quotient map $Q: \mathrm{KP}_{R}(\Lambda) / J \rightarrow \mathrm{KP}_{R}(\Lambda) / I$. Since $H_{I_{H}}=H$ by

Lemma 5.4 Proposition5.5gives us an isomorphism $\pi: \mathrm{KP}_{R}\left(\Lambda \backslash H_{I}\right) \rightarrow \mathrm{KP}_{R}(\Lambda) / J$. Now suppose v belongs to $\Lambda^{0} \backslash H_{I}$ and $r \neq 0$. The composition $Q \circ \pi$ satisfies $Q \circ \pi\left(r q_{v}\right)=r p_{v}+I$, and since I is basic,

$$
Q \circ \pi\left(r q_{v}\right)=0 \Longrightarrow r p_{v} \in I \Longrightarrow p_{v} \in I \Longrightarrow v \in H_{I}
$$

which contradicts the choice of v. So $Q \circ \pi\left(r q_{v}\right) \neq 0$, and it follows from the gradeduniqueness theorem (Theorem 4.1) that $Q \circ \pi$ is injective. Thus Q is injective, and $I=J$. Thus $H \mapsto I_{H}$ is surjective.

Injectivity of $H \mapsto I_{H}$ follows because $H_{I_{H}}=H$ by Lemma 5.4. Finally, since $H \subset K$ if and only if $I_{H} \subset I_{K}$, the map $H \mapsto I_{H}$ preserves least upper bounds and greatest lower bounds, and hence is a lattice isomorphism.

The hypothesis that "every $\Lambda \backslash H$ is aperiodic" in the next theorem is the analogue for k-graphs of Condition (K) for directed graphs.

Theorem 5.6. Let Λ be a row-finite k-graph without sources and let R be a commutative ring with 1 . Then every basic ideal of $\mathrm{KP}_{R}(\Lambda)$ is graded if and only if $\Lambda \backslash H$ is aperiodic for every saturated hereditary subset H of Λ^{0}.

Theorem 5.6 and Theorem 5.1 together have the following corollary.
Corollary 5.7. Let Λ be a row-finite k-graph without sources and let R be a commutative ring with 1 . Suppose that $\Lambda \backslash H$ is aperiodic for every saturated hereditary subset H of Λ^{0}. Then $H \mapsto I_{H}$ is an isomorphism of the lattice of saturated hereditary subsets of Λ^{0} onto the lattice of basic ideals in $\mathrm{KP}_{R}(\Lambda)$.

To prove Theorem 5.6 we need some more results. The next lemma is 32, Lemma 3.3]; since the proof in [32] invokes results about a different formulation of periodicity, we give a direct proof.

Lemma 5.8. Suppose that Λ is periodic. Then there exist $v \in \Lambda^{0}$ and $m \neq n \in \mathbb{N}^{k}$ such that, for all $\mu \in v \Lambda^{m}$ and $\alpha \in s(\mu) \Lambda^{(m \vee n)-m}$, there exists $\nu \in v \Lambda^{n}$ with $\mu \alpha y=\nu \alpha y$ for all $y \in s(\alpha) \Lambda^{\infty}$.

Proof. Since Λ is periodic, there exist $v \in \Lambda^{0}$ and $m \neq n \in \mathbb{N}^{k}$ such that for all $\lambda \in v \Lambda$ with $d(\lambda) \geq m \vee n$ we have

$$
\begin{equation*}
\lambda(m, m+d(\lambda)-(m \vee n))=\lambda(n, n+d(\lambda)-(m \vee n)) . \tag{5.4}
\end{equation*}
$$

For every $x \in v \Lambda^{\infty}$ and $l \in \mathbb{N}^{k}$, we can apply (5.4) to $\lambda=x(0,(m \vee n)+l)$, and deduce that $x(m, m+l)=x(n, n+l)$; in other words, for all $x \in v \Lambda^{\infty}$, we have $x(m, \infty)=x(n, \infty)$. Let $\mu \in v \Lambda^{m}$ and $\alpha \in s(\mu)^{(m \vee n)-m}$. Take $\nu=(\mu \alpha)(0, n)$, and let $y \in s(\alpha) \Lambda^{\infty}$. Then $x:=\mu \alpha y$ belongs to $v \Lambda^{\infty}$, and hence

$$
\begin{aligned}
\mu \alpha y & =(\mu \alpha y)(0, n)(\mu \alpha y)(n, \infty)=(\mu \alpha)(0, n)(\mu \alpha y)(n, \infty) \\
& =\nu(\mu \alpha y)(n, \infty)=\nu(\mu \alpha y)(m, \infty)=\nu \alpha y .
\end{aligned}
$$

The following lemma is used in the proofs of Proposition 5.11 and Theorem 5.6.
Lemma 5.9. Let $\pi_{Q, T}: \operatorname{KP}_{R}(\Lambda) \rightarrow \operatorname{End}\left(\mathbb{F}_{R}\left(\Lambda^{\infty}\right)\right)$ be the infinite-path representation from the end of $\S 3$. If Λ is periodic, then there exist $\mu, \nu, \alpha \in \Lambda$ such that

$$
0 \neq s_{\mu \alpha} s_{(\mu \alpha)^{*}}-s_{\nu \alpha} s_{(\mu \alpha)^{*}} \in \operatorname{ker} \pi_{Q, T}
$$

Proof. Take $v \in \Lambda^{0}, m \neq n \in \mathbb{N}^{k}$ as given by Lemma 5.8, and choose $\mu \in v \Lambda^{m}$ and $\alpha \in s(\mu) \Lambda^{(m \vee n)-m}$. Then there exists $\nu \in v \Lambda^{n}$ such that $\mu \alpha y=\nu \alpha y$ for all $y \in \Lambda^{\infty}$. Suppose, by way of contradiction, that $a:=s_{\mu \alpha} s_{(\mu \alpha)^{*}}-s_{\nu \alpha} s_{(\mu \alpha)^{*}}=0$. Then $s_{\mu \alpha} s_{(\mu \alpha)^{*}}=s_{\nu \alpha} s_{(\mu \alpha)^{*}}$. But $d\left(s_{\mu \alpha} s_{(\mu \alpha)^{*}}\right)=d(\mu \alpha)-d(\mu \alpha)=0$, whereas

$$
d\left(s_{\nu \alpha} s_{(\mu \alpha)^{*}}\right)=d(\nu \alpha)-d(\mu \alpha)=d(\nu)+d(\alpha)-d(\mu)-d(\alpha)=n-m \neq 0 .
$$

Thus $s_{\mu \alpha} s_{(\mu \alpha)^{*}}=s_{\nu \alpha} s_{(\mu \alpha)^{*}}=0$. But now $0=s_{(\mu \alpha)^{*}}\left(s_{\mu \alpha} s_{(\mu \alpha)^{*}}\right) s_{\mu \alpha}=p_{s(\mu \alpha)}^{2}=$ $p_{s(\alpha)}$ contradicts Theorem 3.4. Hence $a \neq 0$.

To see that $a \in \operatorname{ker} \pi_{Q, T}$ we fix $x \in \Lambda^{\infty}$ and show that $\pi_{Q, T}(a)(x)=0$. Recall that $\pi_{Q, T}\left(s_{\lambda}\right)=T_{\lambda}$ and $\pi_{Q, T}\left(s_{\lambda^{*}}\right)=T_{\lambda^{*}}$, where

$$
T_{\lambda}(x)=\left\{\begin{array}{ll}
\lambda x & \text { if } x(0)=s(\lambda) \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad T_{\lambda^{*}}(x)= \begin{cases}x(d(\lambda), \infty) & \text { if } x(0, d(\lambda))=\lambda \\
0 & \text { otherwise }\end{cases}\right.
$$

If $x(0, d(\mu \alpha)) \neq \mu \alpha$, then $T_{(\mu \alpha)^{*}}(x)=0$ and hence $\pi_{Q, T}(a)(x)=T_{\mu \alpha} T_{(\mu \alpha)^{*}}(x)-$ $T_{\nu \alpha} T_{(\mu \alpha)^{*}}(x)=0$. On the other hand, if $x(0, d(\mu \alpha))=\mu \alpha$, then $\pi_{Q, T}(a)(x)=$ $\left(T_{\mu \alpha}-T_{\nu \alpha}\right)(x(d(\mu \alpha), \infty))$ has the form $\mu \alpha y-\nu \alpha y$ for $y=x(d(\mu \alpha), \infty)$, and hence $\pi_{Q, T}(a)(x)=0$. Thus $a \in \operatorname{ker} \pi_{Q, T}$.

Corollary 5.10. Suppose that Λ is a row-finite k-graph without sources. Then the infinite-path representation $\pi_{Q, T}$ from the end of $\S 3$ is injective if and only if Λ is aperiodic.

Proof. Lemma 5.9 shows that ker $\pi_{Q, T}$ is nonzero when Λ is periodic, and the converse is Corollary 4.10

Proposition 5.11. Let Λ be a row-finite k-graph without sources, and let R be a commutative ring with 1 . Then Λ is aperiodic if and only if every nonzero basic ideal of $\mathrm{KP}_{R}(\Lambda)$ contains a vertex idempotent p_{v}.

Proof. If Λ is periodic, then we know from Lemma 5.9 that the kernel of the infinitepath representation is nonzero; it is basic because it contains no $r p_{v}$ where $r \neq 0$ (by construction). So suppose that Λ is aperiodic, and I is a basic ideal in $\operatorname{KP}_{R}(\Lambda)$ such that $p_{v} \notin I$ for all $v \in \Lambda^{0}$; we want to show that $I=\{0\}$.

If either $s_{\lambda} \in I$ or $s_{\lambda^{*}} \in I$, then $p_{s(\lambda)}=s_{\lambda^{*}} s_{\lambda} \in I$, contradicting the assumption. Thus $p_{v}+I, s_{\lambda}+I, s_{\mu^{*}}+I$ are nonzero for all $v \in \Lambda^{0}$ and $\lambda, \mu \in \Lambda^{\neq 0}$, and they form a Kumjian-Pask Λ-family in $\operatorname{KP}_{R}(\Lambda) / I$ which induces a surjective homomorphism $\pi_{p+I, s+I}: \operatorname{KP}_{R}(\Lambda) \rightarrow \mathrm{KP}_{R}(\Lambda) / I$ such that $\pi_{p+I, s+I}\left(p_{v}\right)=p_{v}+I$.

Suppose that $\pi_{p+I, s+I}\left(r p_{v}\right)=0$ for some $r \in R \backslash\{0\}$. Then $0=\pi_{p+I, s+I}\left(r p_{v}\right)=$ $r\left(p_{v}+I\right)$ implies that $r p_{v} \in I$, and, since I is basic, this implies $p_{v} \in I$, a contradiction. Thus $\pi_{p+I, s+I}\left(r p_{v}\right) \neq 0$ for all $r \in R \backslash\{0\}$. Since Λ is aperiodic, the Cuntz-Krieger uniqueness theorem implies that $\pi_{p+I, s+I}$ is an isomorphism. But $\pi_{p+I, s+I}$ is the quotient map, and hence $I=\{0\}$, as required.

Proof of Theorem 5.6. Suppose that Λ^{0} contains a saturated hereditary subset H such that $\Lambda \backslash H$ is periodic. Let (q, t) be the universal Kumjian-Pask $\Lambda \backslash H$ family in $\mathrm{KP}_{R}(\Lambda \backslash H)$. Then Lemma 5.9 implies that the kernel of the infinite-path representation is a nonzero ideal in $\operatorname{KP}_{R}(\Lambda \backslash H)$ which contains no $r q_{v}$, and pulling this ideal over under the isomorphism of Proposition5.5 gives an ideal K in $\mathrm{KP}_{R}(\Lambda) / I_{H}$ which contains no $r\left(p_{v}+I_{H}\right)$ for $r \neq 0$ and $v \notin H$. But then the inverse image of
K in $\mathrm{KP}_{R}(\Lambda)$ is an ideal J which strictly contains I_{H} and satisfies

$$
\begin{aligned}
r p_{v} \in J \text { for some } r \neq 0 & \Longrightarrow r\left(p_{v}+I_{H}\right) \in K \text { for some } r \neq 0 \\
& \Longrightarrow p_{v} \in J \\
& \Longrightarrow v \in H .
\end{aligned}
$$

These implications show, first, that J is basic, and, second, that $H_{J}=H$. But then $J \neq I_{H_{J}}=I_{H}$, and J cannot be graded by Theorem 5.1.

Conversely, suppose that every $\Lambda \backslash H$ is aperiodic, and that J is a nonzero basic ideal of $\mathrm{KP}_{R}(\Lambda)$. We trivially have $I_{H_{J}} \subset J$, and we claim that in fact $I_{H_{J}}=J$. Suppose not. Then $J / I_{H_{J}}$ is a nonzero ideal in $\mathrm{KP}_{R}(\Lambda) / I_{H_{J}}$, and its inverse image L under the isomorphism of Proposition 5.5 is a nonzero ideal in $\mathrm{KP}_{R}\left(\Lambda \backslash H_{J}\right)$. This ideal L is basic: if $r \neq 0$ and q_{v} is a vertex idempotent in $\operatorname{KP}_{R}\left(\Lambda \backslash H_{J}\right)$, then

$$
r q_{v} \in L \Longrightarrow r p_{v}+I_{H_{J}} \in J / I_{H_{J}} \Longrightarrow r p_{v} \in J \Longrightarrow p_{v} \in J \Longrightarrow q_{v} \in L
$$

Since $\Lambda \backslash H_{J}$ is aperiodic, Proposition 5.11 implies that L contains some q_{v} for $v \in \Lambda^{0} \backslash H_{J}$. But then J contains p_{v}, and $v \in H_{J}$, which is a contradiction. Thus $J=I_{H_{J}}$, and Lemma 5.4 implies that J is graded.

As in [38], we say that $\operatorname{KP}_{R}(\Lambda)$ is basically simple if its only basic ideals are $\{0\}$ and $\operatorname{KP}_{R}(\Lambda)$. If R is a field, then every ideal is basic, and hence basic simplicity is the same as simplicity.

Our next goal is to obtain necessary and sufficient conditions for the basic simplicity of $\mathrm{KP}_{R}(\Lambda)$. We do this independently of Theorem 5.1 by following the approach of [32]. A k-graph Λ is cofinal if for every $x \in \Lambda^{\infty}$ and every $v \in \Lambda^{0}$, there exists $n \in \mathbb{N}^{k}$ such that $v \Lambda x(n) \neq \emptyset$. This cofinality condition is based on the one used for directed graphs in [23, §3].
Lemma 5.12. If Λ is cofinal, then the only saturated hereditary subsets of Λ^{0} are \emptyset and Λ^{0}.

Proof. Suppose there exists a nontrivial saturated hereditary subset H of Λ^{0}. Choose $v \in \Lambda^{0} \backslash H$ and $w \in H$. Choose a sequence $\{n(i)\}$ in \mathbb{N}^{k} such that $n(i) \leq n(i+1)$ and $n(i) \rightarrow \infty$ in the sense that $n(i)_{j} \rightarrow \infty$ as $i \rightarrow \infty$ for $1 \leq j \leq k$. Since $v \notin H$ and H is saturated, there exists $\lambda_{1} \in v \Lambda^{n(1)}$ such that $s\left(\lambda_{1}\right) \notin H$. By induction, for $i \geq 1$ there exists $\lambda_{i+1} \in s\left(\lambda_{i}\right) \Lambda^{n(i+1)-n(i)}$ such that $s\left(\lambda_{i+1}\right) \notin H$. Now set $\mu_{1}=\lambda_{1}$ and $\mu_{i+1}=\mu_{i} \lambda_{i+1}$ for $i \geq 1$. Then $\mu_{i+1}(0, n(i))=\mu_{i}$, and by Lemma 2.4 there exists $y \in \Lambda^{\infty}$ such that $y(0, n(i))=\mu_{i}=\lambda_{1} \ldots \lambda_{i}$.

Since Λ is cofinal, there exists $m \in \mathbb{N}^{k}$ such that $w \Lambda y(m) \neq \emptyset$. Since $w \in H$ and H is hereditary, we have $y(m) \in H$. Choose $i_{0} \in \mathbb{N}$ such that $n\left(i_{0}\right) \geq m$. Then $y\left(n\left(i_{0}\right)\right)=s\left(\lambda_{i_{0}}\right)$ belongs to H because H is hereditary. But $s\left(\lambda_{i_{0}}\right) \notin H$ by construction, and we have a contradiction. So the only saturated hereditary subsets are the trivial ones.

Proposition 5.13. Let Λ be a row-finite k-graph without sources, and let R be a commutative ring with 1 . Then Λ is cofinal if and only if the only basic ideal containing a vertex idempotent p_{v} is $\mathrm{KP}_{R}(\Lambda)$.

Proof. Suppose that Λ is cofinal, and I is a basic ideal containing some p_{w}. Then $H_{I}=\left\{v \in \Lambda^{0}: p_{v} \in I\right\}$ is nonempty, and is saturated and hereditary by Lemma
5.2. Since Λ is cofinal, $H_{I}=\Lambda^{0}$ by Lemma 5.12. Thus $p_{v} \in I$ for all $v \in \Lambda^{0}$, and we have

$$
\operatorname{KP}_{R}(\Lambda)=\operatorname{span}\left\{s_{\alpha} p_{s(\alpha)} s_{\beta^{*}}: \alpha, \beta \in \Lambda^{\not \neq 0}, s(\alpha)=s(\beta)\right\} \subset I .
$$

Now suppose that Λ is not cofinal. Then there exist $v \in \Lambda^{0}$ and an infinite path $x \in \Lambda^{\infty}$ such that $v \Lambda x(n)=\emptyset$ for every $n \in \mathbb{N}^{k}$. By [32, Proposition 3.4, proof of (ii) \Rightarrow (i)] the set $H_{x}:=\left\{w \in \Lambda^{0}: w \Lambda x(n)=\emptyset\right.$ for all $\left.n \in \mathbb{N}^{k}\right\}$ is a saturated hereditary subset of Λ^{0}. Note that H_{x} is nontrivial since $v \in H_{x}$ and $x(0) \notin H_{x}$. Now $I_{H_{x}}$ is a basic ideal of $\operatorname{KP}_{R}(\Lambda)$ by Lemma 5.4, and $p_{v} \in I_{H_{x}}$. But $H_{I_{H_{x}}}=H_{x}$ by Lemma 5.4, and hence $p_{x(0)} \notin I_{H_{x}}$ because $x(0) \notin H_{x}$. Thus $I_{H_{x}} \neq \mathrm{KP}_{R}(\Lambda)$, and we have a nontrivial ideal containing a vertex idempotent.

Theorem 5.14. Let Λ be a row-finite k-graph without sources, and let R be a commutative ring with 1 . Then $\operatorname{KP}_{R}(\Lambda)$ is basically simple if and only if the graph Λ is cofinal and aperiodic.

Proof. If $\mathrm{KP}_{R}(\Lambda)$ is basically simple, then the only nonzero basic ideal is $\mathrm{KP}_{R}(\Lambda)$. So Proposition 5.11 implies that Λ is aperiodic, and Proposition 5.13 implies that Λ is cofinal.

Conversely, assume that Λ is cofinal and aperiodic and I is a nonzero basic ideal in $\operatorname{KP}_{R}(\Lambda)$. By Proposition 5.11 there exists $v \in \Lambda^{0}$ with $p_{v} \in I$. But then $I=\mathrm{KP}_{R}(\Lambda)$ by Proposition 5.13. Thus $\mathrm{KP}_{R}(\Lambda)$ is basically simple.

Remark 5.15. The parametrization of ideals in Cuntz-Krieger algebras by the saturated hereditary subsets comes from [11], and was extended to various classes of graph C^{*}-algebras in [23, 9, 8, 18]. The ideals in the C^{*}-algebras of higher-rank graphs were first analyzed in 30. The graded ideals in the Leavitt path algebras were described in [5], [37] and [38]. The simplicity theorem for C^{*}-algebras goes back to Cuntz and Krieger [12], and for Leavitt path algebras to Abrams and Aranda Pino [1]. Our proof of basic simplicity was inspired by the work of Robertson and Sims [32.

6. Simplicity

Let Λ be a row-finite k-graph without sources, and write (p, s) for the universal Kumjian-Pask family in $\mathrm{KP}_{R}(\Lambda)$. So far the ring R has played little role in our study of $\mathrm{KP}_{R}(\Lambda)$; in fact, the notion of a basic ideal in the previous section was engineered by Tomforde to avoid dealing with ideals in R. The main result of this section is:

Theorem 6.1. Suppose that Λ is a row-finite k-graph without sources, and that R is a commutative ring with 1 . Then $\operatorname{KP}_{R}(\Lambda)$ is simple if and only if R is a field and Λ is aperiodic and cofinal.

This theorem was motivated by the following observations. If R is an algebra over a commutative ring S, then [38, Theorem 8.1] implies that $L_{R}(E)$ is isomorphic to $R \otimes_{S} L_{S}(E)$ as an R-algebra. Moreover, if A is an s-unital algebra over a field K, and E is a cofinal graph in which every cycle has an entry, then [7] Corollary 7.8] implies that every ideal of $A \otimes_{K} L_{K}(E)$ has the form $I \otimes_{K} L_{K}(E)$ for some ideal I of A.

We write $\mathcal{L}(A)$ for the lattice of ideals of a ring A. Then we can define restriction and induction maps

$$
\text { Res : } \mathcal{L}\left(\operatorname{KP}_{R}(\Lambda)\right) \rightarrow \mathcal{L}(R) \quad \text { and } \quad \text { Ind }: \mathcal{L}(R) \rightarrow \mathcal{L}\left(\mathrm{KP}_{R}(\Lambda)\right)
$$

as follows:

$$
\begin{aligned}
\operatorname{Res} I & :=\left\{r \in R: r p_{v} \in I \text { for all } v \in \Lambda^{0}\right\}, \\
\text { Ind } M & :=\operatorname{span}_{R}\left\{r s_{\alpha} s_{\beta}^{*}: r \in M, \alpha, \beta \in \Lambda\right\} .
\end{aligned}
$$

One can easily check that Res I and $\operatorname{Ind} M$ are ideals in R and $\operatorname{KP}_{R}(\Lambda)$, respectively.
We will need the following lemma in Proposition 6.3 and in Proposition 6.4
Lemma 6.2. Let M be an ideal of $R, r \in R$, and $v \in \Lambda^{0}$. If $r p_{v} \in \operatorname{Ind} M$, then $r \in M$.

Proof. If $r p_{v}=0$, then $r=0$ and is in M. So suppose $r p_{v} \neq 0$. We have $r p_{v}=\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$ for some $r_{\alpha, \beta} \in M \backslash\{0\}$; by Lemma 4.2 we may assume this is in normal form, and a glance at the proof of Lemma 4.2 shows that the $r_{\alpha, \beta}$ are then still in $M \backslash\{0\}$. By Lemma 4.3 there exists $\gamma \in \Lambda$ and a finite set $G \subset \Lambda$ such that $0 \neq r p_{v} s_{\gamma}=\sum_{\alpha \in G} r_{\alpha, \gamma} s_{\alpha}$. Since $\mathrm{KP}_{R}(\Lambda)$ is \mathbb{Z}^{k}-graded we have

$$
0 \neq\left(r p_{v}\right) s_{\gamma}=\sum_{\{\alpha \in G: d(\alpha)=d(\gamma)\}} r_{\alpha, \gamma} s_{\alpha} .
$$

We must have $v=r(\gamma)$, and applying (KP3) gives

$$
\begin{aligned}
r p_{s(\gamma)}=r s_{\gamma^{*}} s_{\gamma} & =s_{\gamma^{*}}\left(r p_{v}\right) s_{\gamma}=\sum_{\{\alpha \in G: d(\alpha)=d(\gamma)\}} r_{\alpha, \gamma} s_{\gamma^{*}} s_{\alpha} \\
& = \begin{cases}r_{\gamma, \gamma} p_{s(\gamma)} & \text { if } \gamma \in G, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

But now either $\left(r-r_{\gamma, \gamma}\right) p_{s(\gamma)}=0$ or $r p_{s(\gamma)}=0$, and hence either $r=r_{\gamma, \gamma}$ or $r=0$ by Theorem [3.4] In either case, $r \in M$.

Proposition 6.3. Suppose that Λ is a row-finite k-graph without sources, that R is a commutative ring with 1 and that M is a proper ideal of R. Then $\operatorname{KP}_{R}(\Lambda) / \operatorname{Ind} M$ is an R / M-algebra with $(r+M)(x+\operatorname{Ind} M)=r x+\operatorname{Ind} M$, and there is an isomorphism π of $\operatorname{KP}_{R / M}(\Lambda)$ onto $\operatorname{KP}_{R}(\Lambda) / \operatorname{Ind} M$ which takes the universal KumjianPask family (q, t) in $\operatorname{KP}_{R / M}(\Lambda)$ to $(p+\operatorname{Ind} M, s+\operatorname{Ind} M)$.
Proof. To see that the action of R / M is well-defined, note that if $r+M=s+M$ and $x+\operatorname{Ind} M=y+\operatorname{Ind} M$, then

$$
r x-s y=r(x-y)+(r-s) y \in R \cdot \operatorname{Ind} M+M \cdot \operatorname{KP}_{R}(\Lambda) \subset \operatorname{Ind} M
$$

as required.
The pair $(p+\operatorname{Ind} M, s+\operatorname{Ind} M)$ is a Kumjian-Pask family in $\operatorname{KP}_{R}(\Lambda) / \operatorname{Ind} M$, and thus the universal property of $\mathrm{KP}_{R / M}(\Lambda)$ (Theorem (3.4) gives a homomorphism π taking (q, t) to $(p+\operatorname{Ind} M, s+\operatorname{Ind} M) ; \pi$ is surjective because (p, s) generates $\operatorname{KP}_{R}(\Lambda)$. The ideal $\operatorname{Ind} M$ is spanned by homogeneous elements, and hence is graded; then $\mathrm{KP}_{R}(\Lambda) / \operatorname{Ind} M$ is graded by the images $q\left(\mathrm{KP}_{R}(\Lambda)_{n}\right)$ under the quotient map q. The homomorphism π is then a graded homomorphism. Since M is proper, Lemma 6.2 implies that no vertex projection p_{v} belongs to Ind M, and hence each vertex projection $p_{v}+\operatorname{Ind} M$ in the quotient is nonzero. Thus the graded-uniqueness theorem implies that π is injective.

Proposition 6.4. Let Λ be a row-finite k-graph without sources, and let R be a commutative ring with 1 .
(a) We have Res o Ind $=\mathrm{id}$. In particular, Ind is injective.
(b) Suppose that Λ is aperiodic and cofinal. Then $\operatorname{Ind} \circ$ Res $=\mathrm{id}$, and Ind : $\mathcal{L}(R) \rightarrow \mathcal{L}\left(\operatorname{KP}_{R}(\Lambda)\right)$ is a lattice isomorphism with inverse Res.
 the injectivity of Ind then follows. If $m \in M$, then $m p_{v} \in \operatorname{Ind} M$ for all $v \in \Lambda^{0}$, and hence $m \in \operatorname{Res} \circ \operatorname{Ind} M$. Thus $M \subset \operatorname{Res} \circ \operatorname{Ind} M$. For the reverse inclusion, let $t \in \operatorname{Res} \circ \operatorname{Ind} M$. Then $t p_{v} \in \operatorname{Ind} M$ for $v \in \Lambda^{0}$ and hence $t \in M$ by Lemma 6.2,
(b) Let I be a nonzero ideal of $\operatorname{KP}_{R}(\Lambda)$. We will show that $\operatorname{Ind} \circ \operatorname{Res} I=I$, and the surjectivity of Ind then follows. Let $0 \neq x \in I$. We write x in normal form $\sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$ (see Lemma4.2). Since Λ is aperiodic, by Proposition 4.9 there exist $\sigma, \tau \in \Lambda$ and $(\delta, \gamma) \in F$ such that $s_{\sigma^{*}} x s_{\tau}=r_{\delta, \gamma} p_{w}$ for some $w \in \Lambda^{0}$. Then $r_{\delta, \gamma} p_{w} \in I$, and thus w is in the saturated hereditary subset $H_{I, r_{\delta, \gamma}}$ of Lemma5.2, Since Λ is cofinal by hypothesis, Lemma 5.12 implies that $H_{I, r_{\delta, \gamma}}=\Lambda^{0}$, so that $r_{\delta, \gamma} p_{v} \in I$ for all $v \in \Lambda^{0}$. In particular, $r_{\delta, \gamma} p_{r(\delta)} \in I$, and hence

$$
y:=x-r_{\delta, \gamma} p_{r(\delta)} s_{\delta} s_{\gamma^{*}}=\sum_{(\alpha, \beta) \in F \backslash\{(\delta, \gamma)\}} r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}
$$

belongs to I and is in normal form. Repeating the above process $|F|-1$ times gives $r_{\alpha, \beta} p_{v} \in I$ for all $v \in \Lambda^{0}$ and $(\alpha, \beta) \in F$. Thus $r_{\alpha, \beta} \in \operatorname{Res} I$ for $(\alpha, \beta) \in F$, and hence $x \in \operatorname{Ind} \circ \operatorname{Res} I$. Thus $I \subset \operatorname{Ind} \circ \operatorname{Res} I$.

For the reverse inclusion, let $y \in \operatorname{Ind} \circ \operatorname{Res} I$. Then $y=\sum r_{\alpha, \beta} s_{\alpha} s_{\beta^{*}}$, where each $r_{\alpha, \beta} \in \operatorname{Res} I$, that is, $r_{\alpha, \beta} p_{v} \in I$ for all $v \in \Lambda^{0}$. But now $y=\sum s_{\alpha}\left(r_{\alpha, \beta} p_{s(\alpha)}\right) s_{\beta^{*}} \in I$. Thus Ind $\circ \operatorname{Res} I=I$, and Ind is surjective. Since Ind is injective by (回), and since $M_{1} \subset M_{2}$ if and only Ind $M_{1} \subset$ Ind M_{2}, it follows that Ind is a lattice isomorphism.

Proof of Theorem 6.1. First suppose that $\operatorname{KP}_{R}(\Lambda)$ is simple. Then $\operatorname{KP}_{R}(\Lambda)$ is basically simple, and hence Λ is aperiodic and cofinal by Theorem 5.14 Let M be a nonzero ideal of R. Then Ind M is a nonzero ideal of $\mathrm{KP}_{R}(\Lambda)$, and hence Ind $M=\operatorname{KP}_{R}(\Lambda)$. By Proposition 6.4(a),$M=\operatorname{Res} \circ \operatorname{Ind} M=\operatorname{Res} \operatorname{KP}_{R}(\Lambda)=R$. Thus R is a field.

Conversely, assume that Λ is aperiodic and cofinal, and that R is a field. Let I be a nonzero ideal of $\mathrm{KP}_{R}(\Lambda)$. Since Λ is aperiodic and cofinal, by Proposition 6.4(b) we have $I=\operatorname{Ind} \circ \operatorname{Res} I$. Thus $\operatorname{Res} I$ is a nonzero ideal of R, and hence $\operatorname{Res} I=R$ since R is simple. But now $I=\operatorname{Ind} R=\operatorname{KP}_{R}(\Lambda)$. Thus $\operatorname{KP}_{R}(\Lambda)$ is simple.

The next result is a converse for Proposition 6.4(b).
Proposition 6.5. Let Λ be a row-finite k-graph without sources and let R be a commutative ring with 1 . Then Λ is aperiodic and cofinal if and only if $\operatorname{Ind} \circ$ Res $=$ id.

Proof. Proposition 6.4(b) is the "only if" half. Suppose that IndoRes = id. It suffices by Theorem 5.14 to prove that $\mathrm{KP}_{R}(\Lambda)$ is basically simple. So let I be a nonzero basic ideal of $\operatorname{KP}_{R}(\Lambda)$. Then Ind $\circ \operatorname{Res} I=I$ implies that $\operatorname{Res} I$ is a nonzero ideal. Let $0 \neq r \in \operatorname{Res} I$. Then $r p_{v} \in I$ for all $v \in \Lambda^{0}$, and since I is basic, $p_{v} \in I$ for all $v \in \Lambda^{0}$, and $I=\operatorname{KP}_{R}(\Lambda)$. Thus $\operatorname{KP}_{R}(\Lambda)$ is basically simple, as required.

7. Examples and applications

We begin with the easiest nontrivial example.
Example 7.1. Let R be a commutative ring with 1 . View $\Lambda=\mathbb{N}^{2}$ as a category with a single object v, and let $d: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ be the identity map. Then Λ is the unique 2 -graph whose skeleton consists of one blue and one red loop at a single vertex. For each $n \in \mathbb{N}^{2}$ there is a unique path n of degree n, and a Kumjian-Pask family (P, S) in an R-algebra must satisfy

$$
\begin{gathered}
P_{v}^{2}=P_{v}=S_{n^{*}} S_{n}=S_{n} S_{n^{*}}, \\
S_{m} S_{n}=S_{m+n}, S_{n^{*}} S_{m^{*}}=S_{(m+n)^{*}} \\
P_{v} S_{n}=S_{n}=S_{n} P_{v}, P_{v} S_{n^{*}}=S_{n^{*}}=S_{n^{*}} P_{v} .
\end{gathered}
$$

For $q \geq m \vee n$ in \mathbb{N}^{2}, the sum in Lemma 3.3 has exactly one term, and we have $S_{m^{*}} S_{n}=S_{q-m} S_{(q-n)^{*}} ;$ taking $q=m+n$ gives $S_{m^{*}} S_{n}=S_{n} S_{m^{*}}$. In particular, $\mathrm{KP}_{R}(\Lambda)$ is commutative. We will use the graded-uniqueness theorem to show that $\mathrm{KP}_{R}(\Lambda)$ is isomorphic to the ring $R\left[x, x^{-1}, y, y^{-1}\right]$ of Laurent polynomials over R in two commuting indeterminates x and y.

Set $Q_{v}=1, T_{(i, j)}=x^{i} y^{j}$ and $T_{(i, j)^{*}}=x^{-i} y^{-j}$. Then (Q, T) is a KumjianPask Λ-family in $R\left[x, x^{-1}, y, y^{-1}\right]$, and the universal property of $\operatorname{KP}_{R}(\Lambda)$ gives a homomorphism $\phi: \operatorname{KP}_{R}(\Lambda) \rightarrow R\left[x, x^{-1}, y, y^{-1}\right]$ such that $\phi \circ p=Q$ and $\phi \circ s=T$. The groups $A_{(i, j)}:=\operatorname{span}\left\{x^{i} y^{j}\right\}$ for $(i, j) \in \mathbb{Z}^{2}$ grade $R\left[x, x^{-1}, y, y^{-1}\right]$ over \mathbb{Z}^{2}, and ϕ maps $\operatorname{KP}_{R}(\Lambda)_{(i, j)}=\operatorname{span}\left\{s_{n} s_{m^{*}}: n-m=(i, j)\right\}$ into $A_{(i, j)}$, so ϕ is graded. Finally, $\phi\left(r p_{v}\right)=r \phi\left(p_{v}\right)=r 1=r \neq 0$ for all $r \in R \backslash\{0\}$, and so Theorem 4.1 implies that ϕ is injective. Since the image of ϕ contains a generating set for $R\left[x, x^{-1}, y, y^{-1}\right], \phi$ is an isomorphism.
Remark 7.2. Let K be a field. We claim that $K\left[x, x^{-1}, y, y^{-1}\right]$ cannot be realized as a Leavitt path algebra $L_{K}(E)$ for any directed graph E. Thus Example 7.1 shows that the class of Kumjian-Pask algebras over K is larger than the class of Leavitt path algebras over K. To see the claim, recall from [6, Proposition 2.7] that every commutative Leavitt path algebra has the form $\left(\bigoplus_{i \in I} K\right) \oplus\left(\bigoplus_{j \in J} K\left[x, x^{-1}\right]\right)$. Since $K\left[x, x^{-1}, y, y^{-1}\right]$ has no zero divisors, if $K\left[x, x^{-1}, y, y^{-1}\right]$ had this form, then it would be isomorphic to either K or $K\left[x, x^{-1}\right]$ as rings. But both K and $K\left[x, x^{-1}\right]$ are principal ideal domains, whereas $K\left[x, x^{-1}, y, y^{-1}\right]$ is not. So $K\left[x, x^{-1}, y, y^{-1}\right]$ is not the Leavitt path algebra of any directed graph.
7.1. The Kumjian-Pask algebra and the C^{*}-algebra. We have said that the graded-uniqueness theorem is an analogue for Kumjian-Pask algebras of the gaugeinvariant uniqueness theorem for graph C^{*}-algebras. Indeed, an original motivation for graded-uniqueness theorems was to prove that the Leavitt path algebra $L_{\mathbb{C}}(E)$ embeds in the graph C^{*}-algebra $C^{*}(E)$, and the proof of this inevitably uses the gauge action alongside the grading of $\mathrm{KP}_{\mathbb{C}}(\Lambda)$. Since the existing treatments (29, Corollary 1.3.3] and [37, Theorem 7.3]) are on the terse side, it seems worthwhile to give a careful treatment of the analogous result for Kumjian-Pask algebras.

When the coefficient ring R is the field \mathbb{C}, the Kumjian-Pask algebra $\operatorname{KP}_{\mathbb{C}}(\Lambda)$ has a conjugate linear involution characterized in terms of the generating KumjianPask family by $\left(c s_{\lambda} s_{\mu^{*}}\right)^{*}=\bar{c} s_{\mu} s_{\lambda^{*}}$ for $c \in \mathbb{C}$. (To see this, we define $a \mapsto a^{*}$ on $\mathbb{F}_{\mathbb{C}}(w(X))$ by the analogous formula on infinite sums, check that this map is an involution on $\mathbb{F}_{\mathbb{C}}(w(X))$, and then observe that the ideal I defined in the proof of

Theorem 3.4 is *-closed, so the involution passes to the quotient $\left.\mathrm{KP}_{\mathbb{C}}(\Lambda).\right)$ Thus $\mathrm{KP}_{\mathbb{C}}(\Lambda)$ is a $*$-algebra.

The C^{*}-algebra $C^{*}(\Lambda)$ is generated by a universal Cuntz-Krieger family (q, t) of the sort described at the start of \$3, It is not completely obvious that such a C^{*}-algebra exists (though you'd never guess this to look at the literature!). But if we take the $*$-algebra A generated by symbols $\left\{q_{v}, t_{e}\right\}$ subject to the relations, then because the elements q_{v} and t_{e} are all partial isometries, every generator has norm at most 1 in every representation of A as bounded operators on Hilbert space; we can then define a semi-norm on A by

$$
\|a\|=\sup \{\|\pi(a)\|: \pi: A \rightarrow B(H) \text { is a } * \text {-representation of } A\}
$$

mod out by the ideal of elements of norm 0 to get a normed algebra, and complete in the norm to get a C^{*}-algebra [10, §1]. To see that this C^{*}-algebra is nonzero, Kumjian and Pask built a Cuntz-Krieger family on $\ell^{2}\left(\Lambda^{\infty}\right)$ in which every generator is nonzero, so in particular each q_{v} is nonzero in $C^{*}(\Lambda)$ [21, Proposition 2.11].

As we saw at the start of 93 , the universal Cuntz-Krieger family (q, t) in $C^{*}(\Lambda)$ is a Kumjian-Pask family with $t_{\lambda^{*}}:=t_{\lambda}^{*}$. Thus there is a canonical $*$-homomorphism $\pi_{q, t}: \operatorname{KP}_{\mathbb{C}}(\Lambda) \rightarrow C^{*}(\Lambda)$ which takes $s_{\lambda} s_{\mu^{*}}$ to $t_{\lambda} t_{\mu}^{*}$.
Proposition 7.3. Suppose that Λ is a row-finite k-graph without sources. Then $\pi_{q, t}$ is a -isomorphism of $\operatorname{KP}_{\mathbb{C}}(\Lambda)$ onto the $*$-subalgebra

$$
A:=\operatorname{span}\left\{t_{\lambda} t_{\mu}^{*}: \lambda, \mu \in \Lambda\right\} .
$$

To prove this, one reaches for the graded-uniqueness theorem. However, $C^{*}(\Lambda)$ is not graded in the algebraic sense: the subspaces

$$
\begin{equation*}
C^{*}(\Lambda)_{n}:=\overline{\operatorname{span}}\left\{t_{\lambda} t_{\mu}^{*}: d(\lambda)-d(\mu)=n\right\} \tag{7.1}
\end{equation*}
$$

satisfy $C^{*}(\Lambda)_{m} C^{*}(\Lambda)_{n} \subset C^{*}(\Lambda)_{m+n}$, and are mutually linearly independent, but they do not span $C^{*}(\Lambda)$ in the usual algebraic sense (see Remark 7.5 below). On the other hand, we have:

Lemma 7.4. The subspaces

$$
A_{n}:=\operatorname{span}\left\{t_{\lambda} t_{\mu}^{*}: d(\lambda)-d(\mu)=n\right\}
$$

form a \mathbb{Z}^{k}-grading for the dense subalgebra A of $C^{*}(\Lambda)$.
The proof of the lemma uses the gauge action. For a directed graph E, the gauge action is an action of $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ on $C^{*}(E)$; for a k-graph, it is an action γ of the k-torus \mathbb{T}^{k} on $C^{*}(\Lambda)$. To define γ_{z} for $z \in \mathbb{T}^{k}$, invoke the universal property of $\left(C^{*}(\Lambda),(q, t)\right)$ to get a homomorphism $\gamma_{z}: C^{*}(\Lambda) \rightarrow C^{*}(\Lambda)$ such that $\gamma_{z}\left(q_{v}\right)=q_{v}$ and $\gamma_{z}\left(s_{\lambda}\right)=z^{d(\lambda)} s_{\lambda}$, and check that $z \mapsto \gamma_{z}$ is a homomorphism into Aut $C^{*}(\Lambda)$. Then it follows from an $\epsilon / 3$ argument that γ is strongly continuous in the sense that $z \mapsto \gamma_{z}(a)$ is continuous for each fixed $a \in C^{*}(\Lambda)$. (The details of the argument are in [28, Proposition 2.1] for $k=1$, and the argument carries over.)

Next we need to integrate continuous functions f on \mathbb{T}^{k} with values in a C^{*} algebra B. The easiest way to do this is to represent B faithfully as bounded operators on a Hilbert space H, prove that there is a unique bounded operator T on H such that $(T h \mid k)$ is the usual Riemann integral $\int_{\mathbb{T}^{k}}(f(z) h \mid k) d z:=$ $\int_{[0,1]^{k}}\left(f\left(e^{2 \pi i \theta}\right) h \mid k\right) d \theta$ for $h, k \in H$, prove that T belongs to B, and then define $\int_{\mathbb{T}^{k}} f(z) d z:=T$. The construction and its properties are described in 28,

Lemma 3.1] for the case $k=1$, and the general case is similar. The integral is, for example, linear and norm-decreasing for the sup-norm on $C\left(\mathbb{T}^{k}, B\right)$.
Proof of Lemma 7.4. Since each spanning element $t_{\lambda} t_{\mu}^{*}$ belongs to $A_{d(\lambda)-d(\mu)}$, we can by grouping terms write every $a \in A$ as a finite sum $\sum_{n} a_{n}$ with $a_{n} \in A_{n}$. To see that the A_{n} are independent, suppose that $a_{n} \in A_{n}$ and $\sum_{n} a_{n}=0$. Elementary calculus shows that $\int_{\mathbb{T}^{k}} z^{m} d z$ is 1 if $m=0$ and vanishes otherwise, and hence for $m \in \mathbb{Z}^{k}$ we have

$$
\int_{\mathbb{T}^{k}} z^{-m} \gamma_{z}\left(t_{\lambda} t_{\mu}^{*}\right) d z=\left(\int_{\mathbb{T}^{k}} z^{-m+d(\lambda)-d(\mu)} d z\right) t_{\lambda} t_{\mu}^{*}= \begin{cases}t_{\lambda} t_{\mu}^{*} & \text { if } m=d(\lambda)-d(\mu) \tag{7.2}\\ 0 & \text { otherwise }\end{cases}
$$

We deduce from linearity of the integral that if $a_{n} \in A_{n}$, then

$$
\int_{\mathbb{T}^{k}} z^{-m} \gamma_{z}\left(a_{n}\right) d z= \begin{cases}a_{m} & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}
$$

Now integrating both sides of $\sum_{n} a_{n}=0$ against $z^{-m} \gamma_{z}$ shows that $a_{m}=0$ for all m. An application of Lemma 3.3 shows that if $t_{\lambda} t_{\mu}^{*} \in A_{m}$ and $t_{\alpha} t_{\beta}^{*} \in A_{n}$, then $\left(t_{\lambda} t_{\mu}^{*}\right)\left(t_{\alpha} t_{\beta}^{*}\right) \in A_{m+n}$, so $A_{m} A_{n} \subset A_{m+n}$.
Proof of Proposition 7.3. The homomorphism $\pi_{q, t}$ takes $s_{\lambda} s_{\mu^{*}}$ to $t_{\lambda} t_{\mu}^{*}$, hence maps $\mathrm{KP}_{\mathbb{C}}(\Lambda)$ onto A and is graded. Since we know that each q_{v} is nonzero, and since we are working over a field, we have $\pi\left(r p_{v}\right) \neq 0$ for every $r \neq 0$ and every $v \in \Lambda^{0}$. Thus the graded-uniqueness theorem implies that $\pi_{q, t}$ is injective.

Remark 7.5. The gauge action γ was crucial in the proof of Lemma 7.4 when we needed to recover the component a_{m} from the expansion $\sum_{n} a_{n}$, so it is certainly connected with the grading. To see why it does not give a grading of the whole C^{*}-algebra, consider an action $\beta: \mathbb{T}^{k} \rightarrow$ Aut B of \mathbb{T}^{k} on a C^{*}-algebra B, and for each $n \in \mathbb{Z}^{k}$, let

$$
B_{n}:=\left\{b \in B: \beta_{z}(b)=z^{n} b \text { for all } z \in \mathbb{T}^{k}\right\}
$$

Then B_{n} is a closed subspace of B, and $E_{n}: b \mapsto b_{n}:=\int_{\mathbb{T}^{k}} z^{-n} \beta_{z}(b) d z$ is a normdecreasing linear operator with range B_{n} satisfying $E_{n} \circ E_{n}=E_{n}$. In the proof of Lemma 7.4 only finitely many a_{m} are nonzero, but in general this is not the case, and we cannot expect to recover every $b \in B$ as a finite sum of elements in the B_{n}; the subspaces B_{n} satisfy $B_{m} B_{n} \subset B_{m+n}$, but they do not grade B in the algebraic sense. They are independent (because we can recover b_{m} from a finite sum $\sum_{n} b_{n}$ by integrating), and they do determine b : if $b_{n}=0$ for all n, then $b=0$.

One way to see this last point is to represent B faithfully in $B(H)$, and then for each pair $h, k \in H$,

$$
\left(b_{n} h \mid k\right)=\int_{\mathbb{T}^{k}} z^{-n}\left(\beta_{z}(b) h \mid k\right) d z
$$

is the nth Fourier coefficient of the continuous function $z \mapsto\left(\beta_{z}(b) h \mid k\right)$. Thus if $b_{n}=0$ for all n, all the Fourier coefficients of this function vanish, which implies that $\left(\beta_{z}(b) h \mid k\right)=0$ for all z, h and k; taking $z=1$ shows that $(b h \mid k)=0$ for all h, k, and $b=0$.

This last argument illustrates the difficulty. If f is smooth, then the Fourier series of f converges uniformly to f. When f is just continuous, the Fourier coefficients still determine f, but it is not easy to recover f from its Fourier series.

Remark 7.6. The gauge-invariant uniqueness theorem for $C^{*}(\Lambda)$ says that if π : $C^{*}(\Lambda) \rightarrow B$ is a homomorphism (by which we mean a $*$-homomorphism) such that $\pi\left(q_{v}\right) \neq 0$ for all v, and if there is a continuous action β of \mathbb{T}^{k} on B such that $\pi \circ \gamma_{z}=\beta_{z} \circ \pi$ for every $z \in \mathbb{T}^{k}$, then π is injective.

For the gauge action γ on $C^{*}(\Lambda)$, we trivially have $A_{n} \subset C^{*}(\Lambda)_{n}$, and since A is dense in $C^{*}(\Lambda)$, the norm continuity of the map $E_{n}: C^{*}(\Lambda) \rightarrow C^{*}(\Lambda)_{n}$ implies that $C^{*}(\Lambda)_{n}$ is as described in (7.1). One can then check that $\pi \circ \gamma_{z}=\beta_{z} \circ \pi$ for every $z \in \mathbb{T}^{k}$ if and only if $\pi\left(C^{*}(\Lambda)_{n}\right) \subset B_{n}$ for every $n \in \mathbb{Z}^{k}$. (In the "if" direction, the continuity of the homomorphisms $\pi \circ \gamma_{z}$ and $\beta_{z} \circ \pi$ allows us to get away with checking equality on the dense subalgebra A.) So we could if we wanted reformulate the gauge-invariant uniqueness theorem to look like a graded-uniqueness theorem.
7.2. Rank-2 Bratteli diagrams. Consider a 2-graph Λ without sources which is a rank-2 Bratteli diagram in the sense of [25, Definition 4.1]. This means that the blue subgraph $B \Lambda:=\left(\Lambda^{0}, \Lambda^{e_{1}}, r, s\right)$ of the skeleton is a Bratteli diagram in the usual sense, so the vertex set Λ^{0} is the disjoint union $\bigsqcup_{n=0}^{\infty} V_{n}$ of finite subsets V_{n}, each blue edge goes from some V_{n+1} to V_{n}, and the red subgraph $R \Lambda:=\left(\Lambda^{0}, \Lambda^{e_{2}}, r, s\right)$ consists of disjoint cycles whose vertices lie entirely in some V_{n}. For each blue edge e there is a unique red edge f with $s(f)=r(e)$, and hence by the factorization property there is a unique blue-red path $\mathcal{F}(e) h$ such that $\mathcal{F}(e) h=f e$. The map $\mathcal{F}: \Lambda^{e_{1}} \rightarrow \Lambda^{e_{1}}$ is a bijection, and induces a permutation of each finite set $\Lambda^{e_{1}} V_{n}$. We write $o(e)$ for the order of e : the smallest $l>0$ such that $\mathcal{F}^{l}(e)=e$.
Proposition 7.7. Suppose that Λ is a rank-2 Bratteli diagram. If Λ is cofinal and $\left\{o(e): e \in \Lambda^{e_{1}}\right\}$ is unbounded, then Λ is aperiodic.

Proposition 7.7 follows from [25, Theorem 5.1], but since [25] uses a different formulation of aperiodicity, we also have to invoke the equivalence of the different notions of aperiodicity [32, Lemma 3.2]. However, the whole point of the finite-path formulation is that it should be easier to verify. So:

Proof of Proposition 7.7. Let $v \in \Lambda^{0}$, say $v \in V_{N_{1}}$, and take $m \neq n$ in \mathbb{N}^{2}. If $m_{1} \neq n_{1}$, then any path $\lambda \in v \Lambda^{m \vee n}$ has $\lambda(m) \in V_{N_{1}+m_{1}}$ and $\lambda(n) \in V_{N_{1}+n_{1}}$, and hence satisfies the aperiodicity condition (4.3). So we suppose that $m_{1}=n_{1}$, and without loss of generality that $n_{2}>m_{2}$. As in [25], we further partition each $V_{N}=\bigsqcup_{i=1}^{c_{N}} V_{N, i}$ into the sets of vertices which lie on distinct red cycles.

As in the proof of sufficiency in [25, Theorem 5.1] (see page 158 of [25), cofinality implies that there exists N such that, for every $M_{1} \geq N, v \Lambda V_{M_{1}, i}$ is nonempty for all $i \leq c_{M_{1}}$, and such that there exist $M \geq \max \left(N, n_{1}+N_{1}\right), i \leq c_{M}$ and $g \in V_{M, i} \Lambda^{e_{1}}$ such that $o(g) \geq n_{2}-m_{2}$. Now choose $\mu \in v \Lambda V_{M, i}$, let α be a red path with vertices in $V_{M, i}, d(\alpha) \geq\left(0, n_{2}\right), r(\alpha)=s(\mu)$ and $s(\alpha)=r(g)$, and take $\lambda:=\mu \alpha g$. Then in particular $d(\lambda) \geq\left(n_{1}, n_{2}\right)=m \vee n$, and $r(\lambda)=v$. We then have

$$
\lambda\left(n+d(\lambda)-(m \vee n)-e_{2}, n+d(\lambda)-(m \vee n)\right)=\lambda\left(d(\lambda)-e_{2}, d(\lambda)\right)=g,
$$

whereas

$$
\begin{aligned}
\lambda\left(m+d(\lambda)-(m \vee n)-e_{2}\right. & , m+d(\lambda)-(m \vee n)) \\
& =\lambda\left(d(\lambda)-\left(n_{2}-m_{2}+1\right) e_{2}, d(\lambda)-\left(n_{2}-m_{2}\right)\right) \\
& =\mathcal{F}^{n_{2}-m_{2}}(g),
\end{aligned}
$$

which is not the same as g because $o(g)>n_{2}-m_{2}$. Thus the larger segments in (4.3) cannot be equal, and we have shown that Λ is aperiodic.

Corollary 7.8. Suppose that Λ is a rank-2 Bratteli diagram and K is a field. If Λ is cofinal and $\left\{o(e): e \in \Lambda^{e_{1}}\right\}$ is unbounded, then $\mathrm{KP}_{K}(\Lambda)$ is simple.

Proof. Since K is a field, basic simplicity is the same as simplicity, so the result follows from Proposition 7.7 and Theorem 5.14 .

Notice that in the next result we have specialized to the case $K=\mathbb{C}$.
Proposition 7.9. Suppose that Λ is a rank-2 Bratteli diagram. If Λ is cofinal and $\left\{o(e): e \in \Lambda^{e_{1}}\right\}$ is unbounded, then $\operatorname{KP}_{\mathbb{C}}(\Lambda)$ is not purely infinite in the sense of 4 .
Proof. Let $P_{0}:=\sum_{v \in V_{0}} p_{v}$. Since $\operatorname{KP}_{\mathbb{C}}(\Lambda)$ is simple by Corollary 7.8, and since the property of being purely infinite simple passes to corners [2, Proposition 10], it suffices for us to prove that $P_{0} \mathrm{KP}_{\mathbb{C}}(\Lambda) P_{0}$ is not purely infinite. We will show that $P_{0} \mathrm{KP}_{\mathbb{C}}(\Lambda) P_{0}$ does not contain an infinite idempotent. Suppose it does. Then there exist nonzero idempotents p, p_{1}, p_{2} and elements x, y in $P_{0} \operatorname{KP}_{\mathbb{C}}(\Lambda) P_{0}$ such that

$$
\begin{equation*}
p=p_{1}+p_{2}, \quad p_{1} p_{2}=p_{2} p_{1}=0, \quad x y=p \quad \text { and } \quad y x=p_{1} . \tag{7.3}
\end{equation*}
$$

Choose $N \in \mathbb{N}$ large enough to ensure that all five elements can be written as linear combinations of elements $s_{\lambda} s_{\mu^{*}}$ for which $s(\lambda)$ and $s(\mu)$ are in $\bigcup_{n=0}^{N} V_{n}$. Then the images of these elements under the isomorphism $\pi_{q, t}$ of Proposition 7.3 all lie in the subalgebra of $P_{0} C^{*}(\Lambda) P_{0}$ spanned by the corresponding $t_{\lambda} t_{\mu}^{*}$, which by [25, Lemma 4.8] is isomorphic to $P_{0} C^{*}\left(\Lambda_{N}\right) P_{0}$, where Λ_{N} is the "rank-2 Bratteli diagram of depth N " consisting of all the paths which begin and end in $\bigcup_{n=0}^{N} V_{n}$.

Applying the Kumjian-Pask relations shows that

$$
C^{*}\left(\Lambda_{N}\right)=\overline{\operatorname{span}}\left\{s_{\lambda} s_{\mu}^{*}: s(\lambda)=s(\mu) \in V_{N}\right\} .
$$

If $s(\lambda)=s(\mu)$ and $s(\alpha)=s(\beta)$ lie on different red cycles (that is, belong to different $\left.V_{N, i}\right)$, then $\left(s_{\lambda} s_{\mu}^{*}\right)\left(s_{\alpha} s_{\beta}^{*}\right)=0$, and hence $C^{*}\left(\Lambda_{N}\right)$ is the C^{*}-algebraic direct sum of the subalgebras

$$
C_{N, i}=\overline{\operatorname{span}}\left\{s_{\lambda} s_{\mu}^{*}: s(\lambda)=s(\mu) \in V_{N, i}\right\} .
$$

The blue Kumjian-Pask relation implies that the algebras $C_{N, i}$ are unital with identity $P_{i}:=\sum_{\alpha \in \Lambda^{\mathbb{N e}} V_{N, i}} s_{\alpha} s_{\alpha}^{*}$, and indeed $C_{N, i}=P_{i} C^{*}\left(\Lambda_{N}\right) P_{i}$. Since P_{i} commutes with P_{0}, we then have

$$
P_{0} C^{*}\left(\Lambda_{N}\right) P_{0}=\bigoplus_{i=1}^{c_{N}} P_{0} C_{N, i} P_{0}
$$

The elements p, p_{1}, p_{2}, x and y of $P_{0} C^{*}\left(\Lambda_{N}\right) P_{0}$ all have direct sum decompositions, and the summands all satisfy the relations (7.3); in at least one summand, the component of p_{2} is nonzero, and then the same components of all the rest must be nonzero too. So we may assume that p, p_{1}, p_{2}, x and y all belong to $P_{0} C_{N, i} P_{0}$.

Now consider the subgraph $\Lambda_{N, i}$ of Λ_{N} with vertex set $r\left(s^{-1}\left(V_{N, i}\right)\right)$. This 2-graph has sources, but it is locally convex in the sense of [30], and the gauge-invariant uniqueness theorem proved there implies that the inclusion is an isomorphism of $P_{0} C^{*}\left(\Lambda_{N, i}\right) P_{0}$ onto $P_{0} C_{N, i} P_{0}$. The sources in $\Lambda_{N, i}$ all lie on a single red cycle, and hence Lemma 4.5 of [25] implies that $P_{0} C_{N, i} P_{0}$ is isomorphic to $M_{X}(C(\mathbb{T}))=$ $C\left(\mathbb{T}, M_{X}(\mathbb{C})\right.$), where X is the finite set $\Lambda^{N e_{1}} V_{N}=V_{0} \Lambda^{\mathbb{N} e_{1}} V_{N}$. Pulling the five
elements through all these isomorphisms gives us nonzero idempotents q, q_{1}, q_{2} and elements f, g in $C\left(\mathbb{T}, M_{X}(\mathbb{C})\right)$ such that

$$
q=q_{1}+q_{2}, \quad q_{1} q_{2}=q_{2} q_{1}=0, \quad f g=q \quad \text { and } \quad g f=q_{1} .
$$

Now let $z \in \mathbb{T}$. Then the equations $f(z) g(z)=q(z)$ and $g(z) f(z)=q_{1}(z)$ imply that $g(z)$ is an isomorphism of $q(z) \mathbb{C}^{X}$ onto $q_{1}(z) \mathbb{C}^{X}$, so the matrices $q(z)$ and $q_{1}(z)$ have the same rank. On the other hand, since $q_{1}(z)$ and $q_{2}(z)$ are orthogonal, $\operatorname{rank}\left(q_{1}(z)+q_{2}(z)\right)=\operatorname{rank} q_{1}(z)+\operatorname{rank} q_{2}(z)$. Now $q=q_{1}+q_{2}$ implies that $\operatorname{rank} q_{2}(z)=0$ for all z, which contradicts the assumption that p_{2} is nonzero. Thus there is no infinite idempotent in $P_{0} \mathrm{KP}_{\mathbb{C}}(\Lambda) P_{0}$, as claimed. Thus $P_{0} \mathrm{KP}_{\mathbb{C}}(\Lambda) P_{0}$ is not purely infinite, and neither is $\operatorname{KP}_{\mathbb{C}}(\Lambda)$.

Rank-2 Bratteli diagrams were invented in [25] to prove that the dichotomy of 22 for simple graph C^{*}-algebras does not extend to the C^{*}-algebras of higher-rank graphs. We can now use them to see that the dichotomy of [3, Theorem 4.4] for simple Leavitt path algebras does not extend either.

Theorem 7.10. Suppose that Λ is a rank-2 Bratteli diagram, that Λ is cofinal, and that $\left\{o(e): e \in \Lambda^{e_{1}}\right\}$ is unbounded. Then $\operatorname{KP}_{\mathbb{C}}(\Lambda)$ is simple but is neither purely infinite nor locally matricial.

Proof. Corollary 7.8 implies that $\mathrm{KP}_{\mathbb{C}}(\Lambda)$ is simple, and Proposition 7.9 that it is not purely infinite. To see that it is not locally matricial, consider the element s_{μ} associated to a single red cycle μ. Since $v:=r(\mu)=s(\mu)$ receives just one red path of length $|\mu|$, namely μ, the Kumjian-Pask relation (KP4) at v for $n=|\mu| e_{2}$ (which only involves red paths) says that $p_{v}=s_{\mu} s_{\mu}^{*}$. Thus if E is the directed graph consisting of a single vertex w and a single loop e at w and (p, s) is the universal Kumjian-Pask Λ-family in $\operatorname{KP}_{\mathbb{C}}(\Lambda)$, then there is a homomorphism π of the Leavitt path algebra $L_{\mathbb{C}}(E)$ into $\mathrm{KP}_{\mathbb{C}}(\Lambda)$ which takes w to p_{w}, e to s_{μ} and e^{*} to $s_{\mu^{*}}$. Since the image algebra A is graded by $A_{m}:=A \cap \operatorname{KP}_{\mathbb{C}}(\Lambda)_{m|\mu|}=\operatorname{span}\left\{\mu^{m}\right\}$, and since $p_{w} \neq 0$, the graded-uniqueness theorem for ordinary graphs implies that π is injective. But e generates the infinite-dimensional algebra $L_{\mathbb{C}}(E)=\mathbb{C}\left[x, x^{-1}\right]$, so s_{μ} does not lie in a finite-dimensional subalgebra.

Remark 7.11. The main examples of rank-2 Bratteli diagrams are the families $\left\{\Lambda_{\theta}: \theta \in(0,1) \backslash \mathbb{Q}\right\}$ in [25, Example 6.5] and $\{\Lambda(\mathbf{m}): \mathbf{m}$ is supernatural $\}$ in [25, Example 6.7]. These provide models for two important families of C^{*}-algebras called the irrational rotation algebras A_{θ} and the Bunce-Deddens algebras $\operatorname{BD}(\mathbf{m})$. That their C^{*}-algebras satisfy $C^{*}\left(\Lambda_{\theta}\right) \cong A_{\theta}$ and $C^{*}(\Lambda(\mathbf{m})) \cong \mathrm{BD}(\mathbf{m})$ is proved in [25] by showing that the graph algebras are AT-algebras with real rank zero, hence fall into the class of C^{*}-algebras covered by a classification theorem of Elliott [15], computing their K-theory, and comparing this K-theory with the known K-theory of A_{θ} and $\mathrm{BD}(\mathbf{m})$. So the proofs will not carry over to Kumjian-Pask algebras.

References

[1] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319-334. MR2172342 (2007b:46085)
[2] G. Abrams, G. Aranda Pino, Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra 207 (2007), 553-563. MR2265539 (2007f:16062)
[3] G. Abrams, G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2008), 423-442. MR2417402 (2009h:16043)
[4] P. Ara, K.R. Goodearl, E. Pardo, K_{0} of purely infinite simple regular rings, K-Theory $\mathbf{2 6}$ (2002), 69-100. MR 1918211 (2004e:19001)
[5] P. Ara, M.A. Moreno, E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2007), 157-178. MR2310414 (2008b:46094)
[6] G. Aranda Pino, K. Crow, The center of a Leavitt path algebra, Rev. Mat. Iberoam. 27 (2011), 621-644. MR2848533 (2012h:16057)
[7] G. Aranda Pino, K.R. Goodearl, F. Perera, M. Siles Molina, Non-simple purely infinite rings, Amer. J. Math. 132 (2010), 563-610. MR2666902 (2011e:16064)
[8] T. Bates, J.H. Hong, I. Raeburn, W. Szymański, The ideal structure of the C^{*}-algebras of infinite graphs, Illinois J. Math. 46 (2002), 1159-1176. MR1988256 (2004i:46105)
[9] T. Bates, D. Pask, I. Raeburn, W. Szymański, The C^{*}-algebras of row-finite graphs, New York J. Math. 6 (2000), 307-324. MR1777234 (2001k:46084)
[10] B. Blackadar, Shape theory for C^{*}-algebras, Math. Scand. 56 (1985), 249-275. MR 813640 (87b:46074)
[11] J. Cuntz, A class of C^{*}-algebras and topological Markov chains II, Invent. Math. 63 (1981), 25-40. MR608527 (82f:46073b)
[12] J. Cuntz, W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR561974 (82f:46073a)
[13] K.R. Davidson, S.C. Power, D. Yang, Dilation theory for rank 2 graph algebras, J. Operator Theory 63 (2010), 245-270. MR2651911 (2011i:47110)
[14] K.R. Davidson, D. Yang, Periodicity in rank 2 graph algebras, Canad. J. Math. 61 (2009), 1239-1261. MR2588421 (2010h:46077)
[15] G.A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179-219. MR1241132 (94i:46074)
[16] N.J. Fowler, A. Sims, Product systems over right-angled Artin semigroups, Trans. Amer. Math. Soc. 354 (2002), 1487-1509. MR1873016 (2002j:18006)
[17] R. Hazlewood, I. Raeburn, A. Sims, S.B.G. Webster, On some fundamental results about higher-rank graphs and their C^{*}-algebras, to appear in Proc. Edinb. Math. Soc.
[18] J.H. Hong, W. Szymański, The primitive ideal space of the C^{*}-algebras of infinite graphs, J. Math. Soc. Japan 56 (2004), 45-64. MR2023453 (2004j:46088)
[19] A. an Huef, I. Raeburn, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory Dynam. Systems 17 (1997), 611-624. MR 1452183 (98k:46098)
[20] D.W. Kribs, S.C. Power, The analytic algebras of higher rank graphs, Math. Proc. Royal Irish Acad. 106A (2006), 199-218. MR2266827|(2007h:47129)
[21] A. Kumjian, D. Pask, Higher rank graph C^{*}-algebras, New York J. Math. 6 (2000), 1-20. MR1745529 (2001b:46102)
[22] A. Kumjian, D. Pask, I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161-174. MR 1626528 (99i:46049)
[23] A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505-541. MR1432596 (98g:46083)
[24] P. Lewin, A. Sims, Aperiodicity and cofinality for finitely aligned higher-rank graphs, Math. Proc. Camb. Phil. Soc. 149 (2010), 333-350. MR2670219
[25] D. Pask, I. Raeburn, M. Rørdam, A. Sims, Rank-two graphs whose C^{*}-algebras are direct limits of circle algebras, J. Funct. Anal. 239 (2006), 137-178. MR2258220 (2007e:46053)
[26] D. Pask, I. Raeburn, N.A. Weaver, A family of 2-graphs arising from two-dimensional subshifts, Ergodic Theory Dynam. Systems 29 (2009), 1613-1639. MR2545020 (2010g:46115)
[27] S.C. Power, Classifying higher rank analytic Toeplitz algebras, New York J. Math. 13 (2007), 271-298. MR2336241 (2010b:47228)
[28] I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Amer. Math. Soc., Providence, RI, 2005. MR2135030 (2005k:46141)
[29] I. Raeburn, Chapter 1 in: Graph Algebras: Bridging the Gap between Analysis and Algebra, edited by G. Aranda Pino, F. Perera Domènech and M. Siles Molina, University of Malaga, 2006, pages $1-21$. MR2135030 (2005k:46141)
[30] I. Raeburn, A. Sims, T. Yeend, Higher-rank graphs and their C^{*}-algebras, Proc. Edinburgh Math. Soc. 46 (2003), 99-115. MR 1961175 (2004f:46068)
[31] I. Raeburn, A. Sims, T. Yeend, The C^{*}-algebras of finitely aligned higher-rank graphs, J. Funct. Anal. 213 (2004), 206-240. MR2069786 (2005e:46103)
[32] D.I. Robertson, A. Sims, Simplicity of C^{*}-algebras associated to higher-rank graphs, Bull. London Math. Soc. 39 (2007), 337-344. MR2323468 (2008g:46099)
[33] G. Robertson, T. Steger, C^{*}-algebras arising from group actions on the boundary of a triangle building, Proc. London Math. Soc. 72 (1996), 613-637. MR1376771 (98b:46088)
[34] G. Robertson, T. Steger, Affine buildings, tiling systems and higher-rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115-144. MR1713322 (2000j:46109)
[35] A. Sims, Lecture notes on higher-rank graphs and their C^{*}-algebras, Notes for Summer School on C^{*}-algebras and their interplay with dynamics, Nordfjordheid, Norway, 2010.
[36] A. Skalski, J. Zacharias, Entropy of shifts on higher-rank graph C^{*}-algebras, Houston J. Math. 34 (2008), 269-282. MR2383707(2009j:46165)
[37] M. Tomforde, Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra 318 (2007), 270-299. MR2363133 (2008h:16030)
[38] M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J. Pure Appl. Algebra 215 (2011), 471-484. MR2738365
[39] D. Yang, Endomorphisms and modular theory of 2-graph C^{*}-algebras, Indiana Univ. Math. J. 59 (2010), 495-520. MR2648076

Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: g.aranda@uma.es
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

E-mail address: jclark@maths.otago.ac.nz
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

E-mail address: astrid@maths.otago.ac.nz
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

E-mail address: iraeburn@maths.otago.ac.nz

[^0]: Received by the editors June 21, 2011 and, in revised form, October 4, 2011.
 2010 Mathematics Subject Classification. Primary 16W50; Secondary 46L05.
 Key words and phrases. Leavitt path algebra, Cuntz-Krieger algebra, higher-rank graph, graph algebra.

 The results in this paper were obtained during a working seminar at the University of Otago. The authors thank the other participants for their comments and input, and especially Jon Brown, Iain Dangerfield and Robbie Hazlewood.

