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KUMJIAN-PASK ALGEBRAS OF HIGHER-RANK GRAPHS

GONZALO ARANDA PINO, JOHN CLARK, ASTRID AN HUEF, AND IAIN RAEBURN

Abstract. We introduce higher-rank analogues of the Leavitt path algebras,
which we call the Kumjian-Pask algebras. We prove graded and Cuntz-Krieger
uniqueness theorems for these algebras, and analyze their ideal structure.

1. Introduction

The C∗-algebras of infinite directed graphs were first studied in the 1990s [23,
22] as generalizations of the Cuntz-Krieger algebras of finite {0, 1}-matrices [12].
The Leavitt path algebras, which are a purely algebraic analogue of graph C∗-
algebras, were first studied around 2005 [1, 5]. Both families of algebras have been
intensively studied by a broad range of researchers, both now have substantial
structure theories, and both have proved to be rich sources of interesting examples.

Higher-rank analogues of the Cuntz-Krieger algebras arose first in work of
Robertson and Steger [33, 34], and shortly afterwards Kumjian and Pask [21] intro-
duced higher-rank graphs (or k-graphs) to provide a visualisable model for Robert-
son and Steger’s algebras. The higher-rank graph C∗-algebras constructed in [21]
have generated a great deal of interest among operator algebraists (for example,
[13, 20, 27, 36, 39]), and have broadened the class of C∗-algebras that can be real-
ized as graph algebras [14, 21, 25, 26]. Here we introduce and study an analogue of
Leavitt path algebras for higher-rank graphs. We propose to call these new algebras
the Kumjian-Pask algebras.

For operator algebraists, there is a well-trodden path for studying new ana-
logues of Cuntz-Krieger algebras, which was developed in [19] and [9], and which
was followed in the first four chapters of [28], for example. First, one constructs
an algebra which is universal among C∗-algebras generated by families of partial
isometries satisfying suitable Cuntz-Krieger relations. Next, one proves uniqueness
theorems which say when a representation of this algebra is injective: there should
be a gauge-invariant uniqueness theorem, which works without extra hypotheses on
the graph, and a Cuntz-Krieger uniqueness theorem, which has a stronger conclu-
sion but requires an aperiodicity hypothesis. Then one hopes to use these theorems
to analyze the ideal structure.

Tomforde tramped this path for the Leavitt path algebras over fields [37], and
more recently has retramped it for Leavitt path algebras over commutative rings
[38]. We will use the same path to study the Kumjian-Pask algebras of row-finite
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k-graphs without sources. There are satisfactory C∗-algebraic uniqueness theorems
for larger families of k-graphs, but they can be very complicated to work with (look
at the proof of Cuntz-Krieger uniqueness in [31], for example). So for a first pass it
seems sensible to stick to the row-finite case, which covers most of the interesting
examples. We follow [38] in allowing coefficients in an arbitrary commutative ring
R with identity 1.

We begin with a section on background material. We recall from [21] some
elementary facts about higher-rank graphs and their infinite path spaces, and also
discuss some basic properties of gradings on free algebras which we couldn’t find in
suitable form in the literature. Then in §3, we describe our Kumjian-Pask relations
for a row-finite k-graph Λ without sources, and construct the Kumjian-Pask algebra
KPR(Λ) as a quotient of the free R-algebra on the set of paths in Λ. Because the
Kumjian-Pask relations are substantially more complicated for k-graphs, we have
had to be quite careful with this construction, and in particular with the existence
of the Zk-grading on KPR(Λ).

In §4, we prove a graded-uniqueness theorem and a Cuntz-Krieger uniqueness
theorem for KPR(Λ). We have used similar arguments to those of [38, §§5–6], but,
partly because we are only interested in the row-finite case, we have been able to
streamline the arguments and find a common approach to the two theorems. In
particular, we were able to bypass the complicated induction arguments used in
[38]. As the main hypothesis in our Cuntz-Krieger uniqueness theorem we use the
“finite-path formulation” of aperiodicity due to Robertson and Sims [32].

In §§5 and 6, we investigate the ideal structure of KPR(Λ). The first step is to
describe the graded ideals, which we do in Theorem 5.1; as in [38], to get the usual
description of ideals in terms of saturated hereditary subsets of vertices (which goes
back to Cuntz [11]), we have to restrict attention to a class of “basic ideals”. We
then give an analogue of Conditions (II) of [11] and (K) of [23] which ensures that
every basic ideal is graded, and describe the k-graphs for which KPR(Λ) is “basically
simple”. Then in §6, we find necessary and sufficient conditions for KPR(Λ) to be
simple in the more conventional sense. This last result is new even for 1-graphs.
We discuss examples and applications in §7.

2. Background

We write N for the set of natural numbers, including 0. Let k be a positive
integer. For m,n ∈ Nk, m ≤ n means mi ≤ ni for 1 ≤ i ≤ k and m∨ n denotes the
pointwise maximum. We denote the usual basis in Nk by {ei}.

In a category C with objects C0, we identify objects v ∈ C0 with their identity
morphisms ιv, and write C for the set of morphisms; we write s and r for the
domain and codomain maps from C to C0, and usually denote the composition of
morphisms by juxtaposition.

A directed graph E = (E0, E1, r, s) consists of countable sets E0 and E1 and
functions r, s : E1 → E0. As usual, we think of the elements of E0 as vertices and
the elements e of E1 as edges from s(e) to r(e). Because we are going to be talking
about higher-rank graphs, where a juxtaposition μν stands for the composition of
morphisms μ and ν with s(μ) = r(ν), we use the conventions of [28] for paths
in E. Thus a path of length |μ| := n in E is a string μ = μ1 · · ·μn of edges μi

with s(μi) = r(μi+1) for all i, and the path has source s(μ) := s(μn) and range
r(μ) := r(μ1).
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2.1. Higher-rank graphs. For a positive integer k, we view the additive semi-
group Nk as a category with one object. Following Kumjian and Pask [21], a graph
of rank k or k-graph is a countable category Λ = (Λ0,Λ, r, s) together with a functor
d : Λ → Nk, called the degree map, satisfying the following factorization property :
if λ ∈ Λ and d(λ) = m+n for some m,n ∈ Nk, then there are unique μ, ν ∈ Λ such
that d(μ) = m, d(ν) = n, and λ = μν.

The motivating example is:

Example 2.1. Consider a directed graph E = (E0, E1, r, s). Then the path cate-
gory P (E) has object set E0, and the morphisms in P (E) from v ∈ E0 to w ∈ E0

are finite paths μ with s(μ) = v and r(μ) = w; composition is defined by concate-
nation, and the identity morphisms obtained by viewing the vertices as paths of
length 0. With the degree functor d : μ �→ |μ|, the path category (P (E), d) is a
1-graph.

With this example in mind, we make some conventions. If λ ∈ Λ satisfies d(λ) =
0, the identities ιr(λ)λ = λ = λιs(λ) and the factorization property imply that

ιr(λ) = λ = ιs(λ); thus v �→ ιv is a bijection of Λ0 onto d−1(0). Then for n ∈ Nk,

we write Λn := d−1(n), and call the elements λ of Λn paths of degree n from s(λ)
to r(λ). For v ∈ Λ0 we write vΛn or vΛ for the sets of paths with range v and Λnv
or Λv for paths with source v.

To visualise a k-graph Λ, we think of the object set Λ0 as the vertices in a
directed graph, choose k colours c1, . . . , ck, and then for each λ ∈ Λei , we draw an
oriented edge of colour ci from s(λ) to r(λ). This coloured directed graph E is called
the skeleton of Λ. When k = 1, the skeleton is an ordinary directed graph, and
completely determines the 1-graph: indeed, the factorization property allows us to
write each morphism λ of degree n uniquely as the composition λ1 ◦ λ2 ◦ · · · ◦ λn of
n morphisms of degree 1, and then the map which takes λ to the path λ1λ2 · · ·λn

is an isomorphism of Λ onto P (E). When k > 1, the skeleton does not always
determine the k-graph. To discuss this issue, we need some examples.

Example 2.2. Let Ω0
k := Nk, Ωk := {(p, q) ∈ Nk × Nk : p ≤ q}, define r, s : Ωk →

Ω0
k by r(p, q) := p and s(p, q) := q, define composition by (p, q)(q, r) = (p, r), and

define d : Ωk → Nk by d(p, q) := q − p. Then Ωk = (Ωk, r, s, d) is a k-graph.
Similarly, for m ∈ Nk we define Ω0

k,m := {p ∈ Nk : p ≤ m} and Ωk,m = {(p, q) ∈
Ω0

k,m × Ω0
k,m : p ≤ q}, and then with the same r, s and d, Ωk,m is a k-graph. The

skeleton of Ω2,(3,2), for example, is

(2.1) •
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where the solid arrows are blue, say, and the dashed ones are red. We think of the
paths as rectangles: for example, the path (p, q) with source q and range p would
be the 2× 1 rectangle in the top left, and the different routes efg, lmg, lih from q
to p represent the different factorizations of (p, q).
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The factorization property in a k-graph Λ sets up bijections between the cicj-
coloured paths of length 2 and the cjci-coloured paths, and we think of each pair as
a commutative square in the skeleton. A theorem of Fowler and Sims [16] says that
this collection C of commutative squares determines the k-graph; a path of degree
(3, 2), for example, is obtained by pasting a copy of (2.1) around the skeleton in such
a way that the colours are preserved and each constituent square is commutative.
When k = 2, every collection C which includes each cicj-coloured path exactly once
determines a 2-graph with the given skeleton [21, §6]; for k ≥ 3, the collection C has
to satisfy an extra associativity condition. (For a discussion with some pictures,
see [30].)

A k-graph Λ is row-finite if vΛn is finite for every v ∈ Λ0 and n ∈ Nk; Λ has
no sources if vΛn is nonempty for every v ∈ Λ0 and n ∈ Nk. In this paper we are
interested only in row-finite k-graphs without sources.

2.2. The infinite path space. Suppose that Λ is a row-finite k-graph without
sources. Following [21, §2], an infinite path in Λ is a degree-preserving functor
x : Ωk → Λ. We denote the set of all infinite paths by Λ∞. Since we identify the
object m ∈ Ωk with the identity morphism (m,m) at m, we write x(m) for the
vertex x(m,m). Then the range of an infinite path x is the vertex r(x) := x(0),
and we write vΛ∞ := r−1(v).

Remark 2.3. To motivate this definition, notice that an ordinary path λ ∈ Λn gives
a functor fλ : Ωk,n → Λ. To see this, take 0 ≤ p ≤ q ≤ n, use the factorization
property to see that there are unique paths λ′ ∈ Λp, λ′′ ∈ Λq−p and λ′′′ ∈ Λn−q

such that λ = λ′λ′′λ′′′, and then define fλ(p, q) := λ(p, q) := λ′′. The map λ �→ fλ
is a bijection from Λn onto the set of degree-preserving functors from Ωk,n to Λ [30,
Examples 2.2(ii)].

Since Λ has no sources, every vertex receives paths of arbitrarily large degrees,
and the following lemma from [21] tells us that every vertex receives infinite paths.

Lemma 2.4 ([21, Remarks 2.2]). Suppose that n(i) ≤ n(i+1) in Nk, that n(i)j →
∞ in N for 1 ≤ j ≤ k, and that λi ∈ Λn(i) satisfy λi+1(0, n(i)) = λi. Then there is
a unique y ∈ Λ∞ such that y(0, n(i)) = λi.

The next lemma, also from [21, §2], tells us that we can compose infinite paths
with finite ones, and that there is a converse factorization process. The path x(n,∞)
in part (b) was denoted σn(x) in [21].

Lemma 2.5. (a) Suppose that λ ∈ Λ and x ∈ Λ∞ satisfy s(λ) = r(x). Then there
is a unique y ∈ Λ∞ such that y(0, n) = λx(0, n− d(λ)) for n ≥ d(λ); we then write
λx := y.

(b) For x ∈ Λ∞ and n ∈ Nk, there exist unique x(0, n) ∈ Λn and x(n,∞) ∈ Λ∞

such that x = x(0, n)x(n,∞).

2.3. Graded rings. Let G be an additive abelian group. A ring A is G-graded
if there are additive subgroups {Ag : g ∈ G} of A such that AgAh ⊂ Ag+h and
every nonzero a ∈ A can be written in exactly one way as a finite sum

∑
g∈F ag of

nonzero elements ag ∈ Ag. The elements of Ag are homogeneous of degree g, and
a =

∑
g∈F ag is the homogeneous decomposition of a. If A and B are G-graded

rings, a homomorphism φ : A → B is graded if φ(Ag) ⊂ Bg for all g ∈ G.
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Suppose that A is G-graded by {Ag : g ∈ G}. An ideal I in A is a graded ideal
if {I ∩Ag : g ∈ G} is a grading of I. If I is graded and q : A → A/I is the quotient
map, then A/I is G-graded by {q(Ag) : g ∈ G}. To check that an ideal I is graded,
it suffices (by the uniqueness of homogeneous decompositions in A) to check that
every element of I is a sum of elements in

⋃
g∈G(I ∩ Ag). Every ideal I which is

generated by a set S of homogeneous elements is graded: to see this, it suffices by
linearity and the previous observation to check that every element of

{agxbh : ag ∈ Ag, x ∈ S, bh ∈ Ah}
belongs to some I ∩ Ak, and this is easy.

Let R be a commutative ring with identity 1. For a nonempty set Y , we view the
free R-module FR(Y ) with basis Y as the set of formal sums

∑
y∈Y ryy in which all

but finitely many coefficients ry are zero; we view the elements y ∈ Y as elements
of FR(Y ) by writing them as sums

∑
x rxx where rx = 0 for x �= y and ry = 1. For

a nonempty set X, we let w(X) be the set of words w from the alphabet X, and
we write |w| for the length of w, so that w = w1w2 · · ·w|w| for some wi ∈ X. Then
the free R-module FR(w(X)) is an R-algebra with multiplication given by

(2.2)
( ∑

w∈w(X)

rww
)( ∑

y∈w(X)

syy
)
=

∑
z∈w(X)

( ∑
{w,y∈w(X) :wy=z, rw �=0, sy �=0}

rwsy

)
z.

This algebra is the free R-algebra on X:

Proposition 2.6. The elements of X generate FR(w(X)) as an R-algebra. Suppose
that f is a function from X into an R-algebra A. Then there is an R-algebra
homomorphism φf : FR(w(X)) → A such that

(2.3) φf

( ∑
w∈w(X)

rww
)
=

∑
rw �=0

rwf(w1)f(w2) · · · f(w|w|).

Proof. Since each word w is a product of {wi : 1 ≤ i ≤ |w|} and each wi ∈ X, it
is clear that X generates FR(w(X)) as an algebra. We can extend f to a function
on w(X) by setting f(w) = f(w1)f(w2) · · · f(w|w|). Then the universal property
of the free module FR(w(X)) gives a well-defined R-module homomorphism φf :
FR(w(X)) → A satisfying (2.3). Now a straightforward calculation using (2.2)
shows that φf is an R-algebra homomorphism. �

We will want to put gradings on our free R-algebras, and the next proposition
tells us how to do this.

Proposition 2.7. Suppose that X is a nonempty set and d is a function from X
to an additive abelian group G. Then there is a G-grading on FR(w(X)) such that

FR(w(X))g =
{ ∑

w∈w(X)

rww : rw �= 0 =⇒ d(w) :=

|w|∑
i=1

d(wi) = g
}

for g ∈ G.

Proof. It is straightforward that each FR(w(X))g is an additive subgroup of
FR(w(X)). To see that they span, consider a =

∑
w∈w(X) rww ∈ FR(w(X)), and

let H := {w : rw �= 0}. For g ∈ G and w ∈ w(X), we define

sg,w =

{
rw if d(w) = g,

0 otherwise;
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then ag :=
∑

w∈w(X) sg,ww belongs to FR(w(X))g, and
∑

g∈d(H) ag is a finite sum

which is easily seen to be a. To show that the FR(w(X))g are independent, suppose
that F is a finite subset of G, ag ∈ FR(w(X))g and

∑
g∈F ag = 0. Write ag =∑

w∈w(X) tg,ww. Then tg,w = 0 unless g = d(w), and

0 =
∑
g∈F

∑
w∈w(X)

tg,ww =
∑

w∈w(X)

(∑
g∈F

tg,w

)
w =

∑
w∈w(X)

td(w),ww.

Then, since the 0 element of FR(X) is the sum in which all coefficients are 0, we
get td(w),w = 0 for w ∈ w(X). Thus we have tg,w = 0 for all g, w, and ag = 0 for
all g ∈ F .

To see that FR(w(X))gFR(w(X))h ⊂ FR(w(X))g+h, we take
∑

w∈w(X) rww in

FR(w(X))g and
∑

y∈w(X) syy in FR(w(X))h, and multiply them using (2.2). Sup-

pose that the coefficient of z on the right-hand side of (2.2) is nonzero. Then at
least one summand rwsy is nonzero, and for this summand rw �= 0 and sy �= 0,
which by definition of the FR(w(X))g imply d(w) = g and d(y) = h. But now
d(z) = d(wy) = d(w) + d(y) = g + h, so the product is in FR(w(X))g+h. �

3. Kumjian-Pask families

The algebras of interest to us are algebraic analogues of a family of C∗-algebras
introduced by Kumjian and Pask in [21]. In the algebraic analogue, the generating
relations look a little different, so we begin by examining algebraic consequences of
the relations in [21]. For the benefit of algebraists, we recall that a projection in
a C∗-algebra A is an element P ∈ A such that P ∗ = P = P 2. A partial isometry
is an element S ∈ A such that S = SS∗S; equivalently, one of SS∗ or S∗S is a
projection, and then both are (see the appendix in [28], for example).

Let Λ be a row-finite k-graph without sources. Kumjian and Pask studied col-
lections S = {Sλ : λ ∈ Λ} of partial isometries in a C∗-algebra A such that

(a) {Sv : v ∈ Λ0} is a collection of mutually orthogonal projections,
(b) SλSμ = Sλμ for λ, μ ∈ Λ with r(μ) = s(λ),
(c) S∗

λSλ = Ss(λ) for λ ∈ Λ, and

(d) Sv =
∑

λ∈vΛn SλS
∗
λ for v ∈ Λ0 and n ∈ Nk.

Although they did not use this name, these quickly became known as Cuntz-Krieger
Λ-families.

The relation (c) immediately implies that Sλ = Sλ(S
∗
λSλ) = SλSs(λ). Next,

recall that a finite sum P =
∑

i Pi of projections in a C∗-algebra is a projection if
and only if PiPj = 0 for i �= j, and then PPi = Pi for all i (see [28, Corollary A.3]).
Thus, since Sv is a projection, relation (d) implies that if λ, μ ∈ vΛn and λ �= μ,
then (SλS

∗
λ)(SμS

∗
μ) = 0 and Sv(SλS

∗
λ) = (SλS

∗
λ). In particular, we have Sr(λ)Sλ =

Sr(λ)(SλS
∗
λ)Sλ = (SλS

∗
λ)Sλ = Sλ. Next, note that

S∗
λSμ = S∗

λ(SλS
∗
λ)(SμS

∗
μ)Sμ,

and hence we have the following stronger version of relation (c):

(c′) if λ, μ ∈ vΛn, then S∗
λSμ = δλ,μSs(λ).

The arguments in the previous paragraph do not work in the purely algebraic
setting, and, as was the case for directed graphs in [1], we have to add some extra
relations.
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If Λ is a k-graph, we let Λ�=0 := {λ ∈ Λ : d(λ) �= 0}, and for each λ ∈ Λ�=0 we
introduce a ghost path λ∗; for v ∈ Λ0, we define v∗ := v. We write G(Λ) for the set
of ghost paths, or G(Λ�=0) if we wish to exclude vertices. We define d, r and s on
G(Λ) by

d(λ∗) = −d(λ), r(λ∗) = s(λ), s(λ∗) = r(λ);

we then define composition on G(Λ) by setting λ∗μ∗ = (μλ)∗ for λ, μ ∈ Λ�=0 with
r(μ∗) = s(λ∗). The factorization property of Λ induces a similar factorization
property on G(Λ).

Definition 3.1. Let Λ be a row-finite k-graph without sources and let R be a
commutative ring with 1. A Kumjian-Pask Λ-family (P, S) in an R-algebra A
consists of two functions P : Λ0 → A and S : Λ�=0 ∪G(Λ�=0) → A such that:

(KP1) {Pv : v ∈ Λ0} is a family of mutually orthogonal idempotents,
(KP2) for all λ, μ ∈ Λ�=0 with r(μ) = s(λ), we have

SλSμ=Sλμ, Sμ∗Sλ∗ =S(λμ)∗ , Pr(λ)Sλ=Sλ = SλPs(λ), Ps(λ)Sλ∗ =Sλ∗ = Sλ∗Pr(λ),

(KP3) for all λ, μ ∈ Λ�=0 with d(λ) = d(μ), we have

Sλ∗Sμ = δλ,μPs(λ),

(KP4) for all v ∈ Λ0 and all n ∈ Nk \ {0}, we have

Pv =
∑

λ∈vΛn

SλSλ∗ .

Remarks 3.2. (a) We have been careful to distinguish the vertex idempotents
because we wanted to emphasise that there is only one generator for each
path of degree 0, whereas there are two for each path of nonzero degree.
However, it is convenient when writing formulas such as (3.3) below to allow
Sv := Pv and Sv∗ := Pv, and we do this.

(b) With the conventions we have set up, the last two relations in (KP2) can
be summarized as Pr(x)Sx = Sx = SxPs(x) for all x ∈ Λ ∪ G(Λ). This
observation will be useful in calculations.

(c) Relations (KP2) and (KP3) imply that

(SλSλ∗)(SλSλ∗) = Sλ(Sλ∗Sλ)Sλ∗ = SλPs(λ)Sλ∗ = SλSλ∗ ,

and (KP3) gives (SλSλ∗)(SμSμ∗) = 0 when d(λ) = d(μ) and λ �= μ. Thus
for each n, {SλSλ∗ : λ ∈ Λn} is a set of mutually orthogonal idempotents.

The following analogue of [21, Lemma 3.1] tells us how to simplify products
Sλ∗Sμ.

Lemma 3.3. Suppose that (P, S) is a Kumjian-Pask Λ-family, and λ, μ ∈ Λ. Then
for each q ≥ d(λ) ∨ d(μ), we have

Sλ∗Sμ =
∑

d(λα)=q, λα=μβ

SαSβ∗ .

Proof. By (KP2), we have Sλ∗Sμ = Ps(λ)Sλ∗SμPs(μ), and then applying (KP4) at
v = s(λ) and at v = s(μ) gives

(3.1) Sλ∗Sμ =
∑

α∈s(λ)Λq−d(λ), β∈s(μ)Λq−d(μ)

SαSα∗Sλ∗SμSβSβ∗ .
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Since d(λα) = q = d(μβ), (KP2) and (KP3) give

SαSα∗Sλ∗SμSβSβ∗ = SαS(λα)∗SμβSβ∗ =

{
SαSβ∗ if λα = μβ,

0 otherwise,

and so the right-hand side of (3.1) collapses as required. �

Theorem 3.4. Let Λ be a row-finite k-graph without sources, and let R be a com-
mutative ring with 1. Then there is an R-algebra KPR(Λ) generated by a Kumjian-
Pask Λ-family (p, s) such that, whenever (Q, T ) is a Kumjian-Pask Λ-family in an
R-algebra A, there is a unique R-algebra homomorphism πQ,T : KPR(Λ) → A such
that

(3.2) πQ,T (pv) = Qv, πQ,T (sλ) = Tλ, πQ,T (sμ∗) = Tμ∗

for v ∈ Λ0 and λ, μ ∈ Λ�=0. There is a Zk-grading on KPR(Λ) satisfying

(3.3) KPR(Λ)n = spanR
{
sλsμ∗ : λ, μ ∈ Λ and d(λ)− d(μ) = n

}
,

and we have rpv �= 0 for v ∈ Λ0 and r ∈ R \ {0}.

Standard arguments show that (KPR(Λ), (p, s)) is unique up to isomorphism, and
we call KPR(Λ) the Kumjian-Pask algebra of Λ and (p, s) the universal Kumjian-
Pask Λ-family.

Notation. We find it helpful to use the convention that lower-case letters signify
that a Kumjian-Pask family (p, s) has a universal property.

The proof of this theorem will occupy the rest of the section.
We begin by considering the free algebra FR(w(X)) on X := Λ0∪Λ�=0∪G(Λ�=0).

Let I be the ideal of FR(w(X)) generated by the union of the following sets:

•
{
vw − δv,wv : v, w ∈ Λ0

}
;

•
{
λ− μν, λ∗ − ν∗μ∗ : λ, μ, ν ∈ Λ�=0 and λ = μν

}
∪
{
r(λ)λ− λ, λ− λs(λ), s(λ)λ∗ − λ∗, λ∗ − λ∗r(λ) : λ ∈ Λ�=0

}
;

•
{
λ∗μ− δλ,μs(λ) : λ, μ ∈ Λ�=0 such that d(λ) = d(μ)

}
;

•
{
v −

∑
λ∈vΛn λλ∗ : v ∈ Λ0, n ∈ Nk \ {0}

}
.

We now define KPR(Λ) := FR(w(X))/I. Let q : FR(w(X)) → FR(w(X))/I be the
quotient map. Then {pv, sλ, sμ∗} := {q(v), q(λ), q(μ∗)} gives a generating Kumjian-
Pask Λ-family (p, s) in KPR(Λ).

Now let (Q, T ) be a Kumjian-Pask Λ-family in an R-algebra A. Define fQ,T :
X → A by f(v) = Qv, f(λ) = Tλ and f(μ∗) = Tμ∗ , and the universal property
of FR(w(X)) described in Proposition 2.6 gives an R-algebra homomorphism φf :
FR(w(X)) → A such that φf (v) = Qv, φf (λ) = Tλ and φf (μ

∗) = Tμ∗ . The
Kumjian-Pask relations imply that φf vanishes on the ideal I, and therefore factors
through an R-algebra homomorphism πQ,T : KPR(Λ) → A satisfying (3.2). Since
the elements in X generate FR(w(X)) as an algebra, there is exactly one such
homomorphism.

Applying Proposition 2.7 to the degree map d : X → Nk gives a Zk-grading of
the free algebra FR(w(X)), and every generator of I lies in one of the subgroups
FR(w(X))n of homogeneous elements. Thus the ideal I is graded, and the quotient
KPR(Λ) = FR(w(X))/I is graded by the subgroups q(FR(w(X))n). The following
lemma identifies q(FR(w(X))n) with the subgroup KPR(Λ)n described in (3.3).
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Lemma 3.5. For every w ∈ w(X), we have q(w) ∈ KPR(Λ)d(w).

Proof. We will prove this by induction on |w|. For |w| = 0 or 1, the result is covered
by the convention in Remark 3.2(a) that we can view vertices as paths or ghost
paths, and hence can add appropriate factors sv = pv or sv∗ = pv without changing
q(w).

For |w| = 2, there are four cases to consider: w = λμ∗, w = λ∗μ, w = λμ,
w = μ∗λ∗. For the first, we have q(w) = sλsμ∗ , and there is nothing to prove. For
the second, we apply Lemma 3.3, and observe that λα = μβ implies d(α)− d(β) =
d(μ) − d(λ) = d(w). For the third, we notice that the result is trivial if q(w) = 0,
and if not, (KP2) gives 0 �= q(w) = sλps(λ)pr(μ)sμ, which implies that s(λ) = r(μ)
and that sλsμ = sλμss(μ)∗ belongs to KPR(Λ)d(w). A similar argument works in
the fourth case.

Now suppose that n ≥ 2 and q(y) ∈ KPR(Λ)d(y) for every word y with |y| ≤ n.
Let w be a word with |w| = n+1 and q(w) �= 0. If w contains a subword wiwi+1 =
λμ, then inserting vertex idempotents shows that s(λ) = r(μ), so that λ and μ are
composable in Λ. We now let w′ be the word obtained from w by replacing wiwi+1

with the single path λμ, and then

q(w) = sw1
· · · swi−1

sλsμswi+2
· · · swn+1

= sw1
· · · swi−1

sλμswi+2
· · · swn+1

= q(w′).

Since |w′| = n and d(w′) = d(w), the inductive hypothesis implies that q(w) ∈
KPR(Λ)d(w). A similar argument shows that q(w) ∈ KPR(Λ)d(w) whenever w
contains a subword wiwi+1 = λ∗μ∗.

If w contains no subword of the form λμ or λ∗μ∗, then it must consist of alter-
nating paths and ghost paths. In particular, remembering that |w| = n + 1 ≥ 3,
we see that either w1w2 or w2w3 has the form λ∗μ. Now we can use Lemma 3.3 to
write q(w) as a sum of terms q(yi) with |yi| = n+1 and d(yi) = d(w). Each nonzero
summand q(yi) contains a factor of the form sβ∗sγ∗ or one of the form sδsα, and
the argument of the preceding paragraph shows that every q(yi) ∈ KPR(Λ)d(w).
Thus so is their sum q(w). �

It remains to prove that the elements rpv with r �= 0 are nonzero, and for this
it suffices to produce a Kumjian-Pask Λ-family (Q, T ) in an R-algebra such that
each rQv is nonzero. We do this by modifying the construction in [21, Proposition
2.11]. Let FR(Λ

∞) be the free module with basis the infinite path space. We next
fix v ∈ Λ0 and λ, μ ∈ Λ�=0, and use the composition and factorization constructions
of Lemma 2.5 to define functions fv, fλ, fμ∗ : Λ∞ → FR(Λ

∞) by

fv(x) =

{
x if x(0) = v,

0 otherwise;

fλ(x) =

{
λx if x(0) = s(λ),

0 otherwise; and

fμ∗(x) =

{
x(d(μ),∞) if x(0, d(μ)) = μ,

0 otherwise.

The universal property of free modules now gives nonzero endomorphisms Qv, Tλ,
Tμ∗ : FR(Λ

∞) → FR(Λ
∞) extending fv, fλ and fμ∗ .

It is straightforward to check using Lemma 2.5 that (Q, T ) is a Kumjian-Pask
Λ-family in End(FR(Λ

∞)). For example, to verify (KP3), suppose that d(λ) = d(μ)
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and x ∈ Λ∞. Then

Tλ∗Tμ(x) =

{
Tλ∗(μx) if x(0) = s(μ),

0 otherwise

=

⎧⎨
⎩(μx)(d(λ),∞) if x(0) = s(μ) and (μx)(0, d(λ)) = λ,

0 otherwise.

Since d(λ) = d(μ), Lemma 2.5 implies that (μx)(0, d(λ)) = (μx)(0, d(μ)) = μ if
r(x) = s(μ), so Tλ∗Tμ(x) vanishes for all x unless λ = μ, and then is x if and
only if r(x) = s(μ). But this is exactly what Qs(μ) does to x, and hence we have
Tλ∗Tμ = Qs(μ).

Since (Q, T ) is a Kumjian-Pask Λ-family, there exists an R-algebra homomor-
phism πQ,T : KPR(Λ) → End(FR(Λ

∞)) such that πQ,T (pv) = Qv, πQ,T (sλ) = Tλ

and πQ,T (sμ∗) = Tμ. Since every vertex v is the range of an infinite path, if r �= 0,
then rQv �= 0. It follows that rpv �= 0 too, and this completes the proof of Theo-
rem 3.4.

We call the R-algebra homomorphism πQ,T : KPR(Λ) → End(FR(Λ
∞)) con-

structed above the infinite-path representation of KPR(Λ).

4. The uniqueness theorems

Let Λ be a row-finite k-graph without sources. We write (p, s) for the universal
Kumjian-Pask Λ-family in KPR(Λ). In this section we prove graded-uniqueness
and Cuntz-Krieger uniqueness theorems for KPR(Λ).

Theorem 4.1 (The graded-uniqueness theorem). Let Λ be a row-finite k-graph
without sources, R a commutative ring with 1, and A a Zk-graded ring. If π :
KPR(Λ) → A is a Zk-graded ring homomorphism such that π(rpv) �= 0 for all
r ∈ R \ {0} and v ∈ Λ0, then π is injective.

The next two lemmas are the first steps in the proofs of both uniqueness theo-
rems.

Lemma 4.2. Every nonzero x ∈ KPR(Λ) can be written as a sum∑
(α,β)∈F rα,βsαsβ∗ , where F is a finite subset of Λ × Λ, rα,β ∈ R \ {0} for all

(α, β) ∈ F , and all the β have the same degree. In this case we say x is written in
normal form.

Proof. By Theorem 3.4, we can write x as a finite sum x =
∑

(σ,τ)∈G rσ,τsσsτ∗ with

each rσ,τ �= 0. Set m =
∨

(σ,τ)∈G d(τ ). For each (σ, τ ) ∈ G, applying (KP4) with

nτ := m− d(τ ) gives

sσsτ∗ = sσps(σ)sτ∗ =
∑

λ∈s(σ)Λnτ

sσλs(τλ)∗ ;

substituting back into the expression for x and combining terms gives the result. �

Lemma 4.3. Suppose that x is a nonzero element of KPR(Λ) and x =∑
(α,β)∈F rα,βsαsβ∗ is in normal form. Then there exists γ ∈ F2 := {β : (α, β) ∈

F for some α ∈ Λ} such that

(4.1) 0 �= xsγ =
∑
α∈G

rα,γsα where G := {α : (α, γ) ∈ F}.
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Further, if δ ∈ G, then

(4.2) 0 �= sδ∗xsγ = rδ,γps(δ) +
∑

{α∈G : α�=δ}
rα,γsδ∗sα,

and rδ,γps(δ) is the 0-graded component of sδ∗xsγ .

Proof. Since all β in F2 have the same degree, (KP3) implies that {sβsβ∗ : β ∈
F2} is a set of mutually orthogonal idempotents. Then p =

∑
β∈F2

sβsβ∗ is an
idempotent and satisfies xp = x. In particular, xp �= 0, and hence there exists
γ ∈ F2 such that xsγ �= 0. Now (KP3) gives

0 �= xsγ =
∑

(α,β)∈F

rα,βsαsβ∗sγ =
∑

{(α,β)∈F : β=γ}
rα,βsα =

∑
α∈G

rα,γsα,

and for δ ∈ G, we have

sδ∗xsγ =
∑
α∈G

rα,γsδ∗sα = rδ,γps(δ) +
∑

{α∈G : α�=δ}
rα,γsδ∗sα.

If sδ∗sα �= 0 and α �= δ, then d(α) �= d(δ) by (KP3), and sδ∗sα is a sum of monomials
sμsν∗ all of which have degree d(μ) − d(ν) = d(α) − d(δ) �= 0 (see Lemma 3.3).
Thus rδ,γps(δ) is the 0-graded component of sδ∗xsγ . Since rδ,γps(δ) �= 0, we have
sδ∗xsγ �= 0 too. �

Proof of Theorem 4.1. Let 0 �= x ∈ KPR(Λ). By Lemma 4.2, x can be written
in normal form, and by Lemma 4.3 there exist a finite set G and γ, δ ∈ Λ such
that (4.2) holds and rδ,γps(δ) is the 0-graded component of sδ∗xsγ . Since π is Zk-
graded, π(rδ,γps(δ)) is the 0-graded component of π(sδ∗xsγ), and since π(rδ,γps(δ))
is nonzero by assumption, so is π(sδ∗xsγ). Since π is a ring homomorphism, we
deduce that π(x) �= 0, and hence that π is injective. �

Remark 4.4. The graded-uniqueness theorem is an analogue of the gauge-invariant
uniqueness theorems for graph C∗-algebras, and we will discuss the relationship in
§7.1. The first gauge-invariant uniqueness theorem was for Cuntz-Krieger algebras
[19, Theorem 2.3]; the first versions for graph C∗-algebras and higher-rank graph
algebras were [9, Theorem 2.1] and [21, Theorem 3.4]. The graded-uniqueness
theorem for Leavitt path algebras was originally derived from the classification of
the graded ideals; direct proofs were given in [29] and [37]. Theorem 4.1 and its
proof were motivated by [38, Theorem 6.5].

For the Cuntz-Krieger uniqueness theorem, we need an aperiodicity condition
on Λ. Following Robertson and Sims [32], we say that a k-graph Λ is aperiodic if
for every v ∈ Λ0 and m �= n ∈ Nk there exists λ ∈ vΛ such that d(λ) ≥ m ∨ n and

(4.3) λ(m,m+ d(λ)− (m ∨ n)) �= λ(n, n+ d(λ)− (m ∨ n)).

We say Λ is periodic if Λ is not aperiodic. Several aperiodicity conditions appear in
the literature, but they are all equivalent when Λ is row-finite without sources. We
find the finite path formulation of aperiodicity from [32] easier to understand, and
it allows us to borrow arguments from [17] which do not require readers to know
about the different formulations in [21] and [30].

Example 4.5. Let Λ be a row-finite 1-graph without sources, and let E =
(E0, E1, r, s) be the associated directed graph. Then Λ is aperiodic if and only
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if for every v ∈ E0 and every m,n ∈ N with m < n, there exists a path λ with
r(λ) = v, |λ| ≥ n and λm+1 . . . λm+|λ|−n �= λn+1 . . . λ|λ|.

The following reassuring lemma tells us that, for a directed graph, aperiodicity
is equivalent to the usual hypothesis of Cuntz-Krieger uniqueness theorems.

Lemma 4.6. Let Λ be a 1-graph and E its associated directed graph. Then Λ is
aperiodic if and only if every cycle in E has an entry.

Proof. Suppose that E has a cycle μ of length k ≥ 1 without an entry, and take
v = r(μ), m = 0 and n = k. Since μ has no entry, the only paths λ with r(λ) =
r(μ) and length at least k have the form μlμ′, where l ≥ 1 and μ = μ′μ′′; then
λ1 · · ·λ|λ|−k = μl−1μ′ = λk+1 · · ·λ|λ| for every such λ, which shows that Λ is
periodic.

Conversely, suppose that every cycle in E has an entry. Fix v ∈ E0 and m < n in
N. First, suppose that v can be reached from a cycle μ, that is, there exists α with
r(α) = v such that αμ is a path. Then μ has an entry e ∈ E1, and we may suppose
by adjusting α that s(μ) = r(e). Now choose a path of the form λ = αμμ . . . μe
such that λm is an edge in μ and |λ| ≥ n. Then λm+|λ|−n �= λ|λ|. Second, suppose
that v cannot be reached from a cycle. Choose λ with r(λ) = v and |λ| > n. Then
λm+1 . . . λm+|λ|−n �= λn+1 . . . λ|λ| because otherwise λm+1 . . . λn would be a return
path which connects to v, and which would contain a cycle connecting to v. So
either way, the aperiodicity condition holds for m, n and v, and Λ is aperiodic. �

We can now state our second uniqueness theorem.

Theorem 4.7 (The Cuntz-Krieger uniqueness theorem). Let Λ be an aperiodic
row-finite k-graph without sources, let R be a commutative ring with 1, and let A
be a ring. If π : KPR(Λ) → A is a ring homomorphism such that π(rpv) �= 0 for
all r ∈ R \ {0} and v ∈ Λ0, then π is injective.

We need two preliminary results for the proof. Lemma 4.8 was an ingredient in
the proof of the C∗-algebraic uniqueness theorem in [17], and Proposition 4.9 will
be needed again in our analysis of the ideal structure in §6.

Lemma 4.8 ([17, Lemma 6.2]). Suppose that Λ is an aperiodic row-finite k-graph
without sources, and fix v ∈ Λ0 and m ∈ Nk. Then there exists λ ∈ Λ with r(λ) = v
and d(λ) ≥ m such that

(4.4)
α, β ∈ Λ, s(α) = s(β) = v, d(α), d(β) ≤ m,
and (αλ)(0, d(λ)) = (βλ)(0, d(λ))

}
=⇒ α = β.

Proposition 4.9. Let Λ be an aperiodic row-finite k-graph without sources and let
R be a commutative ring with 1. Let x =

∑
(α,β)∈F rα,βsαsβ∗ be a nonzero element

of KPR(Λ) in normal form. Then there exist σ, τ ∈ Λ, (δ, γ) ∈ F and w ∈ Λ0 such
that sσ∗xsτ = rδ,γpw.

Proof. Lemma 4.3 implies that there exists γ ∈ Λ such that G := {α : (α, γ) ∈ F}
is nonempty and

0 �= sδ∗xsγ = rδ,γps(δ) +
∑

{α∈G : α�=δ}
rα,γsδ∗sα for every δ ∈ G.
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Since Λ is aperiodic we can apply Lemma 4.8 with v = s(δ) and m =
∨

α∈G d(α)
to find λ ∈ s(δ)Λ with d(λ) ≥ m such that (4.4) holds. Now

(4.5) sλ∗(sδ∗xsγ)sλ = rδ,γps(λ) +
∑

{α∈G : α�=δ}
rα,γs(δλ)∗sαλ.

If the summand s(δλ)∗sαλ is nonzero, then s(δλ)(0,d(λ))∗s(αλ)(0,d(λ)) is nonzero, (KP3)
implies that (δλ)(0, d(λ)) = (αλ)(0, d(λ)), and (4.4) implies that α = δ. Thus (4.5)
collapses to s(δλ)∗xsγλ = rδ,γps(λ), and we can take σ = δλ and τ = γλ. �

Proof of Theorem 4.7. Let 0 �= x ∈ KPR(Λ). By Lemma 4.2 we can write x in
normal form. By Proposition 4.9 there exist σ, τ ∈ Λ and r ∈ R \ {0} such that
sσ∗xsτ = rpw for some w ∈ Λ0. Now

π(sσ∗)π(x)π(sτ) = π(sσ∗xsτ ) = π(rpw) �= 0

by assumption, and so π(x) �= 0. Thus π is injective. �

The Cuntz-Krieger uniqueness theorem immediately gives:

Corollary 4.10. Let Λ be an aperiodic row-finite k-graph without sources. Then
the infinite-path representation πQ,T : KPR(Λ) → End(FR(Λ

∞)) from the end of
§3 is injective.

We will see in Lemma 5.9 below that πQ,T is not injective when Λ is periodic.

Remark 4.11. The uniqueness theorem for Cuntz-Krieger algebras was proved in
[12], and extended to graph algebras in [22] and higher-rank graph algebras in [21].
The first versions for Leavitt algebras were in [1, 29, 37]. All require some form
of aperiodicity condition. For graphs, everybody now uses the condition (L) from
[22], which says that every cycle has an entry. For row-finite higher-rank graphs
without sources, all the formulations are equivalent to the finite-path formulation
which we use here [32, Lemma 3.2]. When there are sources or infinite receivers,
one has to be a bit more careful, and we refer to [24] for a detailed discussion.

5. Basic ideals and basic simplicity

Let Λ be a row-finite k-graph without sources; we continue to write (p, s) for the
universal Kumjian-Pask Λ-family in KPR(Λ).

A subset H of Λ0 is hereditary if λ ∈ Λ and r(λ) ∈ H imply s(λ) ∈ H. A
subset H is saturated if v ∈ Λ0, n ∈ Nk and s(vΛn) ⊂ H imply v ∈ H. For a
saturated hereditary subset H, we write IH for the ideal of KPR(Λ) generated by
{pv : v ∈ H}.

The standard path for studying graph algebras predicts that H �→ IH should be
a bijection between the saturated hereditary subsets of Λ0 and the graded ideals
of KPR(Λ). However, since we are allowing coefficients in a commutative ring, we
have to follow [38] and restrict attention to the basic ideals, which are the ideals I
such that rpv ∈ I and r ∈ R \ {0} imply pv ∈ I. This assumption gets us back on
path:

Theorem 5.1. Let Λ be a row-finite k-graph without sources and let R be a commu-
tative ring with 1. Then the map H �→ IH is a lattice isomorphism from the lattice
of saturated hereditary subsets of Λ0 onto the lattice of basic and graded ideals of
KPR(Λ).
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The proof of Theorem 5.1 follows the general path first taken in [9, §4]. The first
lemma is a little more general than we need right now, but the sets HI,r will be of
interest in §6.

Lemma 5.2. Let I be an ideal of KPR(Λ) and r ∈ R. Then HI,r := {v ∈ Λ0 :
rpv ∈ I} is a saturated hereditary subset of Λ0. In particular, HI := HI,1 = {v ∈
Λ0 : pv ∈ I} is saturated and hereditary.

Proof. To see that HI,r is hereditary, suppose λ ∈ Λ and r(λ) ∈ HI,r. Then
rpr(λ) ∈ I and rsλ = rpr(λ)sλ ∈ I. Now rps(λ) = rsλ∗sλ = sλ∗rsλ ∈ I. Thus

s(λ) ∈ HI,r, and HI,r is hereditary. To see that HI,r is saturated, fix v ∈ Λ0 and
n ∈ Nk, and suppose that s(λ) ∈ HI,r for all λ ∈ vΛn. Then rps(λ) ∈ I for all
λ ∈ vΛn, and (KP4) gives

rpv =
∑

λ∈vΛn

rsλsλ∗ =
∑

λ∈vΛn

sλ(rps(λ))sλ∗ ∈ I.

Thus v ∈ HI,r, and HI,r is saturated. �

Lemma 5.3. Suppose Λ is a row-finite k-graph without sources and H is a saturated
hereditary subset of Λ0. Then Λ \ H := (Λ0 \ H, s−1(Λ0 \ H), r, s) is a row-finite
k-graph without sources, and if (Q, T ) is a Kumjian-Pask family for Λ \ H in an
R-algebra A, then

Pv=

{
Qv if v �∈ H

0 otherwise,
Sλ =

{
Tλ if s(λ) �∈H

0 otherwise,
and Sμ∗ =

{
Tμ∗ if s(μ) �∈H

0 otherwise

form a Kumjian-Pask Λ-family (P, S) in A.

Proof. It is straightforward to check that Λ \ H is a subcategory of Λ, and the
hereditariness of H implies that if λ ∈ Λ \H and λ = μν, then the factors μ and ν
have source in Λ0 \H (see [30, Theorem 5.2(b)]). So Λ \H is a row-finite k-graph.
To see that Λ \H has no sources, suppose that v ∈ (Λ \H)0 = Λ0 \H and n ∈ Nk.
Since Λ has no sources, vΛn is nonempty, and if s(λ) ∈ H for every λ ∈ vΛn, then
v ∈ H because H is saturated, which contradicts v ∈ Λ0 \H. Thus there must exist
λ ∈ vΛn such that s(λ) ∈ Λ0 \H, and then λ ∈ v(Λ \H)n, so v is not a source in
Λ \H.

Most of the Kumjian-Pask relations (KP1–3) for (P, S) follow immediately from
those for (Q, T ), though we have to use that H is hereditary to see that s(λ) /∈ H
implies r(λ) /∈ H, so that Sλ = Tλ = Qr(λ)Tλ = Pr(λ)Sλ in (KP2). For (KP4), we
observe that the nonzero terms in

∑
λ∈vΛn SλSλ∗ are parametrized by

{λ ∈ vΛn : s(λ) �∈ H} =

{
∅ if v ∈ H,

v(Λ \H)n if v /∈ H.
�

Recall that an ideal I is idempotent if I = I2 in the sense that I is spanned by
products ab with a, b ∈ I.

Lemma 5.4. Let H be a saturated hereditary subset of Λ0. Then

(5.1) IH = spanR{sσsλ∗ : s(σ) = s(λ) ∈ H},

IH is a basic, graded and idempotent ideal of KPR(Λ), and HIH = H.
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Proof. Since sσsλ∗ = sσps(σ)sλ∗ , the right-hand side J of (5.1) is contained in IH ,
and it contains all the generators pv (by the convention in Remark 3.2). So to prove
(5.1), it suffices for us to prove that J is an ideal. To see this, consider sσsλ∗ with
s(σ) = s(λ) ∈ H and sμsδ∗ ∈ KPR(Λ). Applying Lemma 3.3 with q = d(λ) ∨ d(μ)
gives

(5.2) sσsλ∗sμsδ∗ =
∑

{α∈Λq−d(λ), β∈Λq−d(μ) : λα=μβ}

sσαs(δβ)∗ .

Since H is hereditary, r(α) = s(σ) and r(β) = s(λ) imply that s(α) and s(β) are in
H. Thus each nonzero summand in (5.2) belongs to J . Similarly, sμsδ∗sσsλ∗ ∈ J .
Thus J is an ideal, and we have proved (5.1).

To see that IH is idempotent, we suppose that s(σ) = s(λ) ∈ H, and observe
that the spanning element sσsλ∗ = (sσps(σ))(ps(σ)sλ∗) for IH belongs to (IH)2.
Since (5.1) shows that IH is spanned by homogeneous elements, IH is graded.

To see that IH is basic and that H = HIH , it suffices to fix r �= 0 in R, and
prove that v /∈ H implies rpv /∈ IH . Now consider the universal Kumjian-Pask
(Λ \ H)-family (q, t) in KPR(Λ \ H), and extend it to a Kumjian-Pask Λ-family
(P, S) as in Lemma 5.3. The universal property of KPR(Λ) (see Theorem 3.4) gives
a homomorphism π := πP,S : KPR(Λ) → KPR(Λ \H). Since π(pw) = 0 for w ∈ H,
π vanishes on IH . On the other hand, applying Theorem 3.4 to Λ \H shows that
π(rpv) = rqv �= 0 for every v ∈ Λ0 \H. Thus rpv cannot be in IH ⊂ kerπ. �
Proposition 5.5. Let Λ be a row-finite k-graph without sources and R a com-
mutative ring with 1. Let I be a basic ideal of KPR(Λ), and let (q, t) and (p, s)
be the universal Kumjian-Pask families in KPR(Λ \ HI) and KPR(Λ), respec-
tively. If I is graded or Λ \ HI is aperiodic, then there exists an isomorphism
π : KPR(Λ \HI) → KPR(Λ)/I such that

(5.3) π(qv) = pv + I , π(tλ) = sλ + I and π(tμ∗) = sμ∗ + I

for v ∈ Λ0 \HI and λ, μ ∈ Λ�=0 ∩ s−1(Λ0 \HI).

Proof. Observe that {pv + I, sλ + I, sμ∗ + I} is a Kumjian-Pask (Λ \ HI)-family
(p+ I, s+ I), and the universal property of KPR(Λ\HI) (Theorem 3.4) gives a ho-
momorphism π := πp+I,s+I satisfying (5.3). Since the other generators of KPR(Λ)
belong to I, the family (p+ I, s+ I) generates KPR(Λ)/I, and π is surjective.

Suppose that π(rqv) = 0 for some r ∈ R \ {0} and v �∈ HI . Then rpv + I =
π(rqv) = 0, so that rpv ∈ I and, since I is basic, pv ∈ I as well. But this implies
that v ∈ HI , a contradiction. Thus π(rqv) �= 0 for all r ∈ R \ {0} and v �∈ HI . If
Λ \HI is aperiodic, then the Cuntz-Krieger uniqueness theorem implies that π is
injective.

If I is graded, then KPR(Λ)/I is graded by (KPR(Λ)/I)n = q(KPR(Λ)n), where
q : KPR(Λ) → KPR(Λ)/I is the quotient map. If α, β ∈ (Λ\HI) with d(α)−d(β) =
n ∈ Zk, then

π(tαtβ∗) = sαsβ∗ + I = q(sαsβ∗) ∈ q(KPR(Λ)n) = (KPR(Λ)/I)n.

Thus π is graded, and the graded-uniqueness theorem implies that π is injective. �
Proof of Theorem 5.1. To see that H �→ IH is surjective, let I be a basic graded
ideal. Then HI = {v ∈ Λ0 : pv ∈ I} is saturated and hereditary by Lemma 5.2. Let
J := IHI

. We will show that I = J . Since all the generators of J lie in I, we have
J ⊂ I. Consider the quotient mapQ : KPR(Λ)/J → KPR(Λ)/I. SinceHIH = H by
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Lemma 5.4, Proposition 5.5 gives us an isomorphism π : KPR(Λ\HI) → KPR(Λ)/J .
Now suppose v belongs to Λ0 \ HI and r �= 0. The composition Q ◦ π satisfies
Q ◦ π(rqv) = rpv + I, and since I is basic,

Q ◦ π(rqv) = 0 =⇒ rpv ∈ I =⇒ pv ∈ I =⇒ v ∈ HI ,

which contradicts the choice of v. So Q◦π(rqv) �= 0, and it follows from the graded-
uniqueness theorem (Theorem 4.1) that Q ◦ π is injective. Thus Q is injective, and
I = J . Thus H �→ IH is surjective.

Injectivity of H �→ IH follows because HIH = H by Lemma 5.4. Finally, since
H ⊂ K if and only if IH ⊂ IK , the map H �→ IH preserves least upper bounds and
greatest lower bounds, and hence is a lattice isomorphism. �

The hypothesis that “every Λ\H is aperiodic” in the next theorem is the analogue
for k-graphs of Condition (K) for directed graphs.

Theorem 5.6. Let Λ be a row-finite k-graph without sources and let R be a com-
mutative ring with 1. Then every basic ideal of KPR(Λ) is graded if and only if
Λ \H is aperiodic for every saturated hereditary subset H of Λ0.

Theorem 5.6 and Theorem 5.1 together have the following corollary.

Corollary 5.7. Let Λ be a row-finite k-graph without sources and let R be a com-
mutative ring with 1. Suppose that Λ\H is aperiodic for every saturated hereditary
subset H of Λ0. Then H �→ IH is an isomorphism of the lattice of saturated hered-
itary subsets of Λ0 onto the lattice of basic ideals in KPR(Λ).

To prove Theorem 5.6 we need some more results. The next lemma is [32,
Lemma 3.3]; since the proof in [32] invokes results about a different formulation of
periodicity, we give a direct proof.

Lemma 5.8. Suppose that Λ is periodic. Then there exist v ∈ Λ0 and m �= n ∈ Nk

such that, for all μ ∈ vΛm and α ∈ s(μ)Λ(m∨n)−m, there exists ν ∈ vΛn with
μαy = ναy for all y ∈ s(α)Λ∞.

Proof. Since Λ is periodic, there exist v ∈ Λ0 and m �= n ∈ Nk such that for all
λ ∈ vΛ with d(λ) ≥ m ∨ n we have

(5.4) λ(m,m+ d(λ)− (m ∨ n)) = λ(n, n+ d(λ)− (m ∨ n)).

For every x ∈ vΛ∞ and l ∈ Nk, we can apply (5.4) to λ = x(0, (m ∨ n) + l), and
deduce that x(m,m + l) = x(n, n + l); in other words, for all x ∈ vΛ∞, we have
x(m,∞) = x(n,∞). Let μ ∈ vΛm and α ∈ s(μ)(m∨n)−m. Take ν = (μα)(0, n), and
let y ∈ s(α)Λ∞. Then x := μαy belongs to vΛ∞, and hence

μαy = (μαy)(0, n)(μαy)(n,∞) = (μα)(0, n)(μαy)(n,∞)

= ν(μαy)(n,∞) = ν(μαy)(m,∞) = ναy. �

The following lemma is used in the proofs of Proposition 5.11 and Theorem 5.6.

Lemma 5.9. Let πQ,T : KPR(Λ) → End(FR(Λ
∞)) be the infinite-path representa-

tion from the end of §3. If Λ is periodic, then there exist μ, ν, α ∈ Λ such that

0 �= sμαs(μα)∗ − sναs(μα)∗ ∈ kerπQ,T .
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Proof. Take v ∈ Λ0, m �= n ∈ Nk as given by Lemma 5.8, and choose μ ∈ vΛm

and α ∈ s(μ)Λ(m∨n)−m. Then there exists ν ∈ vΛn such that μαy = ναy for all
y ∈ Λ∞. Suppose, by way of contradiction, that a := sμαs(μα)∗ − sναs(μα)∗ = 0.
Then sμαs(μα)∗ = sναs(μα)∗ . But d(sμαs(μα)∗) = d(μα)− d(μα) = 0, whereas

d(sναs(μα)∗) = d(να)− d(μα) = d(ν) + d(α)− d(μ)− d(α) = n−m �= 0.

Thus sμαs(μα)∗ = sναs(μα)∗ = 0. But now 0 = s(μα)∗(sμαs(μα)∗)sμα = p2s(μα) =

ps(α) contradicts Theorem 3.4. Hence a �= 0.
To see that a ∈ kerπQ,T we fix x ∈ Λ∞ and show that πQ,T (a)(x) = 0. Recall

that πQ,T (sλ) = Tλ and πQ,T (sλ∗) = Tλ∗ , where

Tλ(x) =

{
λx if x(0) = s(λ)

0 otherwise
and Tλ∗(x) =

{
x(d(λ),∞) if x(0, d(λ)) = λ

0 otherwise.

If x(0, d(μα)) �= μα, then T(μα)∗(x) = 0 and hence πQ,T (a)(x) = TμαT(μα)∗(x) −
TναT(μα)∗(x) = 0. On the other hand, if x(0, d(μα)) = μα, then πQ,T (a)(x) =
(Tμα − Tνα)(x(d(μα),∞)) has the form μαy− ναy for y = x(d(μα),∞), and hence
πQ,T (a)(x) = 0. Thus a ∈ kerπQ,T . �

Corollary 5.10. Suppose that Λ is a row-finite k-graph without sources. Then the
infinite-path representation πQ,T from the end of §3 is injective if and only if Λ is
aperiodic.

Proof. Lemma 5.9 shows that kerπQ,T is nonzero when Λ is periodic, and the
converse is Corollary 4.10. �

Proposition 5.11. Let Λ be a row-finite k-graph without sources, and let R be a
commutative ring with 1. Then Λ is aperiodic if and only if every nonzero basic
ideal of KPR(Λ) contains a vertex idempotent pv.

Proof. If Λ is periodic, then we know from Lemma 5.9 that the kernel of the infinite-
path representation is nonzero; it is basic because it contains no rpv where r �= 0
(by construction). So suppose that Λ is aperiodic, and I is a basic ideal in KPR(Λ)
such that pv �∈ I for all v ∈ Λ0; we want to show that I = {0}.

If either sλ ∈ I or sλ∗ ∈ I, then ps(λ) = sλ∗sλ ∈ I, contradicting the assumption.

Thus pv+I, sλ+I, sμ∗ +I are nonzero for all v ∈ Λ0 and λ, μ ∈ Λ�=0, and they form
a Kumjian-Pask Λ-family in KPR(Λ)/I which induces a surjective homomorphism
πp+I,s+I : KPR(Λ) → KPR(Λ)/I such that πp+I,s+I(pv) = pv + I.

Suppose that πp+I,s+I(rpv) = 0 for some r ∈ R\{0}. Then 0 = πp+I,s+I(rpv) =
r(pv + I) implies that rpv ∈ I, and, since I is basic, this implies pv ∈ I, a con-
tradiction. Thus πp+I,s+I(rpv) �= 0 for all r ∈ R \ {0}. Since Λ is aperiodic, the
Cuntz-Krieger uniqueness theorem implies that πp+I,s+I is an isomorphism. But
πp+I,s+I is the quotient map, and hence I = {0}, as required. �

Proof of Theorem 5.6. Suppose that Λ0 contains a saturated hereditary subset H
such that Λ \H is periodic. Let (q, t) be the universal Kumjian-Pask Λ \H family
in KPR(Λ \H). Then Lemma 5.9 implies that the kernel of the infinite-path repre-
sentation is a nonzero ideal in KPR(Λ \H) which contains no rqv, and pulling this
ideal over under the isomorphism of Proposition 5.5 gives an ideal K in KPR(Λ)/IH
which contains no r(pv + IH) for r �= 0 and v /∈ H. But then the inverse image of
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K in KPR(Λ) is an ideal J which strictly contains IH and satisfies

rpv ∈ J for some r �= 0 =⇒ r(pv + IH) ∈ K for some r �= 0

=⇒ pv ∈ J

=⇒ v ∈ H.

These implications show, first, that J is basic, and, second, that HJ = H. But
then J �= IHJ

= IH , and J cannot be graded by Theorem 5.1.
Conversely, suppose that every Λ \H is aperiodic, and that J is a nonzero basic

ideal of KPR(Λ). We trivially have IHJ
⊂ J , and we claim that in fact IHJ

= J .
Suppose not. Then J/IHJ

is a nonzero ideal in KPR(Λ)/IHJ
, and its inverse image

L under the isomorphism of Proposition 5.5 is a nonzero ideal in KPR(Λ \ HJ).
This ideal L is basic: if r �= 0 and qv is a vertex idempotent in KPR(Λ \HJ ), then

rqv ∈ L =⇒ rpv + IHJ
∈ J/IHJ

=⇒ rpv ∈ J =⇒ pv ∈ J =⇒ qv ∈ L.

Since Λ \ HJ is aperiodic, Proposition 5.11 implies that L contains some qv for
v ∈ Λ0 \HJ . But then J contains pv, and v ∈ HJ , which is a contradiction. Thus
J = IHJ

, and Lemma 5.4 implies that J is graded. �

As in [38], we say that KPR(Λ) is basically simple if its only basic ideals are {0}
and KPR(Λ). If R is a field, then every ideal is basic, and hence basic simplicity is
the same as simplicity.

Our next goal is to obtain necessary and sufficient conditions for the basic sim-
plicity of KPR(Λ). We do this independently of Theorem 5.1 by following the
approach of [32]. A k-graph Λ is cofinal if for every x ∈ Λ∞ and every v ∈ Λ0,
there exists n ∈ Nk such that vΛx(n) �= ∅. This cofinality condition is based on the
one used for directed graphs in [23, §3].

Lemma 5.12. If Λ is cofinal, then the only saturated hereditary subsets of Λ0 are
∅ and Λ0.

Proof. Suppose there exists a nontrivial saturated hereditary subset H of Λ0.
Choose v ∈ Λ0 \ H and w ∈ H. Choose a sequence {n(i)} in Nk such that
n(i) ≤ n(i+1) and n(i) → ∞ in the sense that n(i)j → ∞ as i → ∞ for 1 ≤ j ≤ k.

Since v /∈ H and H is saturated, there exists λ1 ∈ vΛn(1) such that s(λ1) /∈ H. By
induction, for i ≥ 1 there exists λi+1 ∈ s(λi)Λ

n(i+1)−n(i) such that s(λi+1) /∈ H.
Now set μ1 = λ1 and μi+1 = μiλi+1 for i ≥ 1. Then μi+1(0, n(i)) = μi, and by
Lemma 2.4 there exists y ∈ Λ∞ such that y(0, n(i)) = μi = λ1 . . . λi.

Since Λ is cofinal, there exists m ∈ Nk such that wΛy(m) �= ∅. Since w ∈ H
and H is hereditary, we have y(m) ∈ H. Choose i0 ∈ N such that n(i0) ≥ m.
Then y(n(i0)) = s(λi0) belongs to H because H is hereditary. But s(λi0) /∈ H by
construction, and we have a contradiction. So the only saturated hereditary subsets
are the trivial ones. �

Proposition 5.13. Let Λ be a row-finite k-graph without sources, and let R be
a commutative ring with 1. Then Λ is cofinal if and only if the only basic ideal
containing a vertex idempotent pv is KPR(Λ).

Proof. Suppose that Λ is cofinal, and I is a basic ideal containing some pw. Then
HI = {v ∈ Λ0 : pv ∈ I} is nonempty, and is saturated and hereditary by Lemma
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5.2. Since Λ is cofinal, HI = Λ0 by Lemma 5.12. Thus pv ∈ I for all v ∈ Λ0, and
we have

KPR(Λ) = span{sαps(α)sβ∗ : α, β ∈ Λ�=0, s(α) = s(β)} ⊂ I.

Now suppose that Λ is not cofinal. Then there exist v ∈ Λ0 and an infinite path
x ∈ Λ∞ such that vΛx(n) = ∅ for every n ∈ Nk. By [32, Proposition 3.4, proof
of (ii) ⇒ (i)] the set Hx := {w ∈ Λ0 : wΛx(n) = ∅ for all n ∈ Nk} is a saturated
hereditary subset of Λ0. Note that Hx is nontrivial since v ∈ Hx and x(0) /∈ Hx.
Now IHx

is a basic ideal of KPR(Λ) by Lemma 5.4, and pv ∈ IHx
. But HIHx

= Hx

by Lemma 5.4, and hence px(0) /∈ IHx
because x(0) /∈ Hx. Thus IHx

�= KPR(Λ),
and we have a nontrivial ideal containing a vertex idempotent. �

Theorem 5.14. Let Λ be a row-finite k-graph without sources, and let R be a
commutative ring with 1. Then KPR(Λ) is basically simple if and only if the graph
Λ is cofinal and aperiodic.

Proof. If KPR(Λ) is basically simple, then the only nonzero basic ideal is KPR(Λ).
So Proposition 5.11 implies that Λ is aperiodic, and Proposition 5.13 implies that
Λ is cofinal.

Conversely, assume that Λ is cofinal and aperiodic and I is a nonzero basic
ideal in KPR(Λ). By Proposition 5.11 there exists v ∈ Λ0 with pv ∈ I. But then
I = KPR(Λ) by Proposition 5.13. Thus KPR(Λ) is basically simple. �

Remark 5.15. The parametrization of ideals in Cuntz-Krieger algebras by the sat-
urated hereditary subsets comes from [11], and was extended to various classes of
graph C∗-algebras in [23, 9, 8, 18]. The ideals in the C∗-algebras of higher-rank
graphs were first analyzed in [30]. The graded ideals in the Leavitt path alge-
bras were described in [5], [37] and [38]. The simplicity theorem for C∗-algebras
goes back to Cuntz and Krieger [12], and for Leavitt path algebras to Abrams
and Aranda Pino [1]. Our proof of basic simplicity was inspired by the work of
Robertson and Sims [32].

6. Simplicity

Let Λ be a row-finite k-graph without sources, and write (p, s) for the universal
Kumjian-Pask family in KPR(Λ). So far the ring R has played little role in our
study of KPR(Λ); in fact, the notion of a basic ideal in the previous section was
engineered by Tomforde to avoid dealing with ideals in R. The main result of this
section is:

Theorem 6.1. Suppose that Λ is a row-finite k-graph without sources, and that R
is a commutative ring with 1. Then KPR(Λ) is simple if and only if R is a field
and Λ is aperiodic and cofinal.

This theorem was motivated by the following observations. If R is an algebra
over a commutative ring S, then [38, Theorem 8.1] implies that LR(E) is isomorphic
to R ⊗S LS(E) as an R-algebra. Moreover, if A is an s-unital algebra over a field
K, and E is a cofinal graph in which every cycle has an entry, then [7, Corollary
7.8] implies that every ideal of A ⊗K LK(E) has the form I ⊗K LK(E) for some
ideal I of A.
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We write L(A) for the lattice of ideals of a ring A. Then we can define restriction
and induction maps

Res : L(KPR(Λ)) → L(R) and Ind : L(R) → L(KPR(Λ))

as follows:

Res I := {r ∈ R : rpv ∈ I for all v ∈ Λ0},
IndM := spanR{rsαs∗β : r ∈ M,α, β ∈ Λ}.

One can easily check that Res I and IndM are ideals in R and KPR(Λ), respectively.
We will need the following lemma in Proposition 6.3 and in Proposition 6.4.

Lemma 6.2. Let M be an ideal of R, r ∈ R, and v ∈ Λ0. If rpv ∈ IndM , then
r ∈ M .

Proof. If rpv = 0, then r = 0 and is in M . So suppose rpv �= 0. We have
rpv =

∑
(α,β)∈F rα,βsαsβ∗ for some rα,β ∈ M \ {0}; by Lemma 4.2 we may assume

this is in normal form, and a glance at the proof of Lemma 4.2 shows that the rα,β
are then still in M \ {0}. By Lemma 4.3 there exists γ ∈ Λ and a finite set G ⊂ Λ
such that 0 �= rpvsγ =

∑
α∈G rα,γsα. Since KPR(Λ) is Z

k-graded we have

0 �= (rpv)sγ =
∑

{α∈G : d(α)=d(γ)}
rα,γsα.

We must have v = r(γ), and applying (KP3) gives

rps(γ) = rsγ∗sγ = sγ∗(rpv)sγ =
∑

{α∈G:d(α)=d(γ)}
rα,γsγ∗sα

=

{
rγ,γps(γ) if γ ∈ G,

0 otherwise.

But now either (r− rγ,γ)ps(γ) = 0 or rps(γ) = 0, and hence either r = rγ,γ or r = 0
by Theorem 3.4. In either case, r ∈ M . �
Proposition 6.3. Suppose that Λ is a row-finite k-graph without sources, that R is
a commutative ring with 1 and that M is a proper ideal of R. Then KPR(Λ)/ IndM
is an R/M -algebra with (r+M)(x+IndM) = rx+IndM , and there is an isomor-
phism π of KPR/M (Λ) onto KPR(Λ)/ IndM which takes the universal Kumjian-
Pask family (q, t) in KPR/M (Λ) to (p+ IndM, s+ IndM).

Proof. To see that the action of R/M is well-defined, note that if r +M = s+M
and x+ IndM = y + IndM , then

rx− sy = r(x− y) + (r − s)y ∈ R · IndM +M ·KPR(Λ) ⊂ IndM,

as required.
The pair (p + IndM, s + IndM) is a Kumjian-Pask family in KPR(Λ)/ IndM ,

and thus the universal property of KPR/M (Λ) (Theorem 3.4) gives a homomor-
phism π taking (q, t) to (p+ IndM, s + IndM); π is surjective because (p, s) gen-
erates KPR(Λ). The ideal IndM is spanned by homogeneous elements, and hence
is graded; then KPR(Λ)/ IndM is graded by the images q(KPR(Λ)n) under the
quotient map q. The homomorphism π is then a graded homomorphism. Since
M is proper, Lemma 6.2 implies that no vertex projection pv belongs to IndM ,
and hence each vertex projection pv + IndM in the quotient is nonzero. Thus the
graded-uniqueness theorem implies that π is injective. �
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Proposition 6.4. Let Λ be a row-finite k-graph without sources, and let R be a
commutative ring with 1.

(a) We have Res ◦ Ind = id. In particular, Ind is injective.
(b) Suppose that Λ is aperiodic and cofinal. Then Ind ◦Res = id, and Ind :

L(R) → L(KPR(Λ)) is a lattice isomorphism with inverse Res.

Proof. (a) Let M be an ideal of R. We will show that Res ◦ Ind(M) = M , and
the injectivity of Ind then follows. If m ∈ M , then mpv ∈ IndM for all v ∈ Λ0,
and hence m ∈ Res ◦ IndM . Thus M ⊂ Res ◦ IndM . For the reverse inclusion, let
t ∈ Res ◦ IndM . Then tpv ∈ IndM for v ∈ Λ0 and hence t ∈ M by Lemma 6.2.

(b) Let I be a nonzero ideal of KPR(Λ). We will show that Ind ◦Res I = I, and
the surjectivity of Ind then follows. Let 0 �= x ∈ I. We write x in normal form∑

(α,β)∈F rα,βsαsβ∗ (see Lemma 4.2). Since Λ is aperiodic, by Proposition 4.9 there

exist σ, τ ∈ Λ and (δ, γ) ∈ F such that sσ∗xsτ = rδ,γpw for some w ∈ Λ0. Then
rδ,γpw ∈ I, and thus w is in the saturated hereditary subset HI,rδ,γ of Lemma 5.2.

Since Λ is cofinal by hypothesis, Lemma 5.12 implies that HI,rδ,γ = Λ0, so that

rδ,γpv ∈ I for all v ∈ Λ0. In particular, rδ,γpr(δ) ∈ I, and hence

y := x− rδ,γpr(δ)sδsγ∗ =
∑

(α,β)∈F\{(δ,γ)}
rα,βsαsβ∗

belongs to I and is in normal form. Repeating the above process |F |−1 times gives
rα,βpv ∈ I for all v ∈ Λ0 and (α, β) ∈ F . Thus rα,β ∈ Res I for (α, β) ∈ F , and
hence x ∈ Ind ◦Res I. Thus I ⊂ Ind ◦Res I.

For the reverse inclusion, let y ∈ Ind ◦Res I. Then y =
∑

rα,βsαsβ∗ , where each
rα,β ∈ Res I, that is, rα,βpv ∈ I for all v ∈ Λ0. But now y =

∑
sα(rα,βps(α))sβ∗ ∈ I.

Thus Ind ◦Res I = I, and Ind is surjective. Since Ind is injective by (a), and
since M1 ⊂ M2 if and only IndM1 ⊂ IndM2, it follows that Ind is a lattice
isomorphism. �

Proof of Theorem 6.1. First suppose that KPR(Λ) is simple. Then KPR(Λ) is ba-
sically simple, and hence Λ is aperiodic and cofinal by Theorem 5.14. Let M
be a nonzero ideal of R. Then IndM is a nonzero ideal of KPR(Λ), and hence
IndM = KPR(Λ). By Proposition 6.4(a), M = Res ◦ IndM = ResKPR(Λ) = R.
Thus R is a field.

Conversely, assume that Λ is aperiodic and cofinal, and that R is a field. Let I be
a nonzero ideal of KPR(Λ). Since Λ is aperiodic and cofinal, by Proposition 6.4(b)
we have I = Ind ◦Res I. Thus Res I is a nonzero ideal of R, and hence Res I = R
since R is simple. But now I = IndR = KPR(Λ). Thus KPR(Λ) is simple. �

The next result is a converse for Proposition 6.4(b).

Proposition 6.5. Let Λ be a row-finite k-graph without sources and let R be a
commutative ring with 1. Then Λ is aperiodic and cofinal if and only if Ind ◦Res =
id.

Proof. Proposition 6.4(b) is the “only if” half. Suppose that Ind ◦Res = id. It
suffices by Theorem 5.14 to prove that KPR(Λ) is basically simple. So let I be a
nonzero basic ideal of KPR(Λ). Then Ind ◦Res I = I implies that Res I is a nonzero
ideal. Let 0 �= r ∈ Res I. Then rpv ∈ I for all v ∈ Λ0, and since I is basic, pv ∈ I
for all v ∈ Λ0, and I = KPR(Λ). Thus KPR(Λ) is basically simple, as required. �
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7. Examples and applications

We begin with the easiest nontrivial example.

Example 7.1. Let R be a commutative ring with 1. View Λ = N2 as a category
with a single object v, and let d : N2 → N2 be the identity map. Then Λ is the
unique 2-graph whose skeleton consists of one blue and one red loop at a single
vertex. For each n ∈ N2 there is a unique path n of degree n, and a Kumjian-Pask
family (P, S) in an R-algebra must satisfy

P 2
v = Pv = Sn∗Sn = SnSn∗ ,

SmSn = Sm+n, Sn∗Sm∗ = S(m+n)∗ ,

PvSn = Sn = SnPv, PvSn∗ = Sn∗ = Sn∗Pv.

For q ≥ m ∨ n in N2, the sum in Lemma 3.3 has exactly one term, and we have
Sm∗Sn = Sq−mS(q−n)∗ ; taking q = m + n gives Sm∗Sn = SnSm∗ . In particular,
KPR(Λ) is commutative. We will use the graded-uniqueness theorem to show that
KPR(Λ) is isomorphic to the ring R[x, x−1, y, y−1] of Laurent polynomials over R
in two commuting indeterminates x and y.

Set Qv = 1, T(i,j) = xiyj and T(i,j)∗ = x−iy−j . Then (Q, T ) is a Kumjian-

Pask Λ-family in R[x, x−1, y, y−1], and the universal property of KPR(Λ) gives a
homomorphism φ : KPR(Λ) → R[x, x−1, y, y−1] such that φ ◦ p = Q and φ ◦ s = T .
The groups A(i,j) := span{xiyj} for (i, j) ∈ Z2 grade R[x, x−1, y, y−1] over Z2, and
φ maps KPR(Λ)(i,j) = span{snsm∗ : n − m = (i, j)} into A(i,j), so φ is graded.
Finally, φ(rpv) = rφ(pv) = r1 = r �= 0 for all r ∈ R \ {0}, and so Theorem 4.1
implies that φ is injective. Since the image of φ contains a generating set for
R[x, x−1, y, y−1], φ is an isomorphism.

Remark 7.2. Let K be a field. We claim that K[x, x−1, y, y−1] cannot be realized
as a Leavitt path algebra LK(E) for any directed graph E. Thus Example 7.1
shows that the class of Kumjian-Pask algebras over K is larger than the class of
Leavitt path algebras over K. To see the claim, recall from [6, Proposition 2.7] that
every commutative Leavitt path algebra has the form (

⊕
i∈I K)⊕(

⊕
j∈J K[x, x−1]).

Since K[x, x−1, y, y−1] has no zero divisors, if K[x, x−1, y, y−1] had this form, then
it would be isomorphic to either K or K[x, x−1] as rings. But both K and K[x, x−1]
are principal ideal domains, whereas K[x, x−1, y, y−1] is not. So K[x, x−1, y, y−1]
is not the Leavitt path algebra of any directed graph.

7.1. The Kumjian-Pask algebra and the C∗-algebra. We have said that the
graded-uniqueness theorem is an analogue for Kumjian-Pask algebras of the gauge-
invariant uniqueness theorem for graph C∗-algebras. Indeed, an original motivation
for graded-uniqueness theorems was to prove that the Leavitt path algebra LC(E)
embeds in the graph C∗-algebra C∗(E), and the proof of this inevitably uses the
gauge action alongside the grading of KPC(Λ). Since the existing treatments ([29,
Corollary 1.3.3] and [37, Theorem 7.3]) are on the terse side, it seems worthwhile
to give a careful treatment of the analogous result for Kumjian-Pask algebras.

When the coefficient ring R is the field C, the Kumjian-Pask algebra KPC(Λ)
has a conjugate linear involution characterized in terms of the generating Kumjian-
Pask family by (csλsμ∗)∗ = c̄sμsλ∗ for c ∈ C. (To see this, we define a �→ a∗ on
FC(w(X)) by the analogous formula on infinite sums, check that this map is an
involution on FC(w(X)), and then observe that the ideal I defined in the proof of
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Theorem 3.4 is ∗-closed, so the involution passes to the quotient KPC(Λ).) Thus
KPC(Λ) is a ∗-algebra.

The C∗-algebra C∗(Λ) is generated by a universal Cuntz-Krieger family (q, t)
of the sort described at the start of §3. It is not completely obvious that such a
C∗-algebra exists (though you’d never guess this to look at the literature!). But if
we take the ∗-algebra A generated by symbols {qv, te} subject to the relations, then
because the elements qv and te are all partial isometries, every generator has norm
at most 1 in every representation of A as bounded operators on Hilbert space; we
can then define a semi-norm on A by

‖a‖ = sup
{
‖π(a)‖ : π : A → B(H) is a ∗-representation of A

}
,

mod out by the ideal of elements of norm 0 to get a normed algebra, and complete
in the norm to get a C∗-algebra [10, §1]. To see that this C∗-algebra is nonzero,
Kumjian and Pask built a Cuntz-Krieger family on 2(Λ∞) in which every generator
is nonzero, so in particular each qv is nonzero in C∗(Λ) [21, Proposition 2.11].

As we saw at the start of §3, the universal Cuntz-Krieger family (q, t) in C∗(Λ) is
a Kumjian-Pask family with tλ∗ := t∗λ. Thus there is a canonical ∗-homomorphism
πq,t : KPC(Λ) → C∗(Λ) which takes sλsμ∗ to tλt

∗
μ.

Proposition 7.3. Suppose that Λ is a row-finite k-graph without sources. Then
πq,t is a ∗-isomorphism of KPC(Λ) onto the ∗-subalgebra

A := span
{
tλt

∗
μ : λ, μ ∈ Λ

}
.

To prove this, one reaches for the graded-uniqueness theorem. However, C∗(Λ)
is not graded in the algebraic sense: the subspaces

(7.1) C∗(Λ)n := span
{
tλt

∗
μ : d(λ)− d(μ) = n

}
satisfy C∗(Λ)mC∗(Λ)n ⊂ C∗(Λ)m+n, and are mutually linearly independent, but
they do not span C∗(Λ) in the usual algebraic sense (see Remark 7.5 below). On
the other hand, we have:

Lemma 7.4. The subspaces

An := span
{
tλt

∗
μ : d(λ)− d(μ) = n

}
form a Zk-grading for the dense subalgebra A of C∗(Λ).

The proof of the lemma uses the gauge action. For a directed graph E, the
gauge action is an action of T := {z ∈ C : |z| = 1} on C∗(E); for a k-graph, it is an
action γ of the k-torus Tk on C∗(Λ). To define γz for z ∈ Tk, invoke the universal
property of (C∗(Λ), (q, t)) to get a homomorphism γz : C∗(Λ) → C∗(Λ) such that
γz(qv) = qv and γz(sλ) = zd(λ)sλ, and check that z �→ γz is a homomorphism into
AutC∗(Λ). Then it follows from an ε/3 argument that γ is strongly continuous in
the sense that z �→ γz(a) is continuous for each fixed a ∈ C∗(Λ). (The details of
the argument are in [28, Proposition 2.1] for k = 1, and the argument carries over.)

Next we need to integrate continuous functions f on Tk with values in a C∗-
algebra B. The easiest way to do this is to represent B faithfully as bounded
operators on a Hilbert space H, prove that there is a unique bounded opera-
tor T on H such that (Th | k) is the usual Riemann integral

∫
Tk(f(z)h | k) dz :=∫

[0,1]k

(
f(e2πiθ)h | k

)
dθ for h, k ∈ H, prove that T belongs to B, and then de-

fine
∫
Tk f(z) dz := T . The construction and its properties are described in [28,
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Lemma 3.1] for the case k = 1, and the general case is similar. The integral is, for
example, linear and norm-decreasing for the sup-norm on C(Tk, B).

Proof of Lemma 7.4. Since each spanning element tλt
∗
μ belongs to Ad(λ)−d(μ), we

can by grouping terms write every a ∈ A as a finite sum
∑

n an with an ∈ An. To
see that the An are independent, suppose that an ∈ An and

∑
n an = 0. Elementary

calculus shows that
∫
Tk z

m dz is 1 if m = 0 and vanishes otherwise, and hence for

m ∈ Zk we have
(7.2)∫

Tk

z−mγz(tλt
∗
μ) dz =

(∫
Tk

z−m+d(λ)−d(μ) dz
)
tλt

∗
μ =

{
tλt

∗
μ if m = d(λ)− d(μ),

0 otherwise.

We deduce from linearity of the integral that if an ∈ An, then∫
Tk

z−mγz(an) dz =

{
am if m = n,

0 otherwise.

Now integrating both sides of
∑

n an = 0 against z−mγz shows that am = 0 for all
m. An application of Lemma 3.3 shows that if tλt

∗
μ ∈ Am and tαt

∗
β ∈ An, then

(tλt
∗
μ)(tαt

∗
β) ∈ Am+n, so AmAn ⊂ Am+n. �

Proof of Proposition 7.3. The homomorphism πq,t takes sλsμ∗ to tλt
∗
μ, hence maps

KPC(Λ) onto A and is graded. Since we know that each qv is nonzero, and since
we are working over a field, we have π(rpv) �= 0 for every r �= 0 and every v ∈ Λ0.
Thus the graded-uniqueness theorem implies that πq,t is injective. �
Remark 7.5. The gauge action γ was crucial in the proof of Lemma 7.4 when we
needed to recover the component am from the expansion

∑
n an, so it is certainly

connected with the grading. To see why it does not give a grading of the whole
C∗-algebra, consider an action β : Tk → AutB of Tk on a C∗-algebra B, and for
each n ∈ Zk, let

Bn := {b ∈ B : βz(b) = znb for all z ∈ Tk}.
Then Bn is a closed subspace of B, and En : b �→ bn :=

∫
Tk z

−nβz(b) dz is a norm-
decreasing linear operator with range Bn satisfying En ◦ En = En. In the proof of
Lemma 7.4, only finitely many am are nonzero, but in general this is not the case,
and we cannot expect to recover every b ∈ B as a finite sum of elements in the Bn;
the subspaces Bn satisfy BmBn ⊂ Bm+n, but they do not grade B in the algebraic
sense. They are independent (because we can recover bm from a finite sum

∑
n bn

by integrating), and they do determine b: if bn = 0 for all n, then b = 0.
One way to see this last point is to represent B faithfully in B(H), and then for

each pair h, k ∈ H,

(bnh | k) =
∫
Tk

z−n(βz(b)h | k) dz

is the nth Fourier coefficient of the continuous function z �→ (βz(b)h | k). Thus if
bn = 0 for all n, all the Fourier coefficients of this function vanish, which implies
that (βz(b)h | k) = 0 for all z, h and k; taking z = 1 shows that (bh | k) = 0 for all
h, k, and b = 0.

This last argument illustrates the difficulty. If f is smooth, then the Fourier series
of f converges uniformly to f . When f is just continuous, the Fourier coefficients
still determine f , but it is not easy to recover f from its Fourier series.
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Remark 7.6. The gauge-invariant uniqueness theorem for C∗(Λ) says that if π :
C∗(Λ) → B is a homomorphism (by which we mean a ∗-homomorphism) such that
π(qv) �= 0 for all v, and if there is a continuous action β of Tk on B such that
π ◦ γz = βz ◦ π for every z ∈ Tk, then π is injective.

For the gauge action γ on C∗(Λ), we trivially have An ⊂ C∗(Λ)n, and since A is
dense in C∗(Λ), the norm continuity of the map En : C∗(Λ) → C∗(Λ)n implies that
C∗(Λ)n is as described in (7.1). One can then check that π ◦ γz = βz ◦ π for every
z ∈ Tk if and only if π(C∗(Λ)n) ⊂ Bn for every n ∈ Zk. (In the “if” direction,
the continuity of the homomorphisms π ◦ γz and βz ◦ π allows us to get away with
checking equality on the dense subalgebra A.) So we could if we wanted reformulate
the gauge-invariant uniqueness theorem to look like a graded-uniqueness theorem.

7.2. Rank-2 Bratteli diagrams. Consider a 2-graph Λ without sources which is
a rank-2 Bratteli diagram in the sense of [25, Definition 4.1]. This means that the
blue subgraph BΛ := (Λ0,Λe1 , r, s) of the skeleton is a Bratteli diagram in the usual
sense, so the vertex set Λ0 is the disjoint union

⊔∞
n=0 Vn of finite subsets Vn, each

blue edge goes from some Vn+1 to Vn, and the red subgraph RΛ := (Λ0,Λe2 , r, s)
consists of disjoint cycles whose vertices lie entirely in some Vn. For each blue edge
e there is a unique red edge f with s(f) = r(e), and hence by the factorization
property there is a unique blue-red path F(e)h such that F(e)h = fe. The map
F : Λe1 → Λe1 is a bijection, and induces a permutation of each finite set Λe1Vn.
We write o(e) for the order of e: the smallest l > 0 such that F l(e) = e.

Proposition 7.7. Suppose that Λ is a rank-2 Bratteli diagram. If Λ is cofinal and
{o(e) : e ∈ Λe1} is unbounded, then Λ is aperiodic.

Proposition 7.7 follows from [25, Theorem 5.1], but since [25] uses a different
formulation of aperiodicity, we also have to invoke the equivalence of the different
notions of aperiodicity [32, Lemma 3.2]. However, the whole point of the finite-path
formulation is that it should be easier to verify. So:

Proof of Proposition 7.7. Let v ∈ Λ0, say v ∈ VN1
, and take m �= n in N2. If

m1 �= n1, then any path λ ∈ vΛm∨n has λ(m) ∈ VN1+m1
and λ(n) ∈ VN1+n1

,
and hence satisfies the aperiodicity condition (4.3). So we suppose that m1 = n1,
and without loss of generality that n2 > m2. As in [25], we further partition each
VN =

⊔cN
i=1 VN,i into the sets of vertices which lie on distinct red cycles.

As in the proof of sufficiency in [25, Theorem 5.1] (see page 158 of [25]), cofinality
implies that there existsN such that, for everyM1 ≥ N , vΛVM1,i is nonempty for all
i ≤ cM1

, and such that there exist M ≥ max(N,n1 +N1), i ≤ cM and g ∈ VM,iΛ
e1

such that o(g) ≥ n2−m2. Now choose μ ∈ vΛVM,i, let α be a red path with vertices
in VM,i, d(α) ≥ (0, n2), r(α) = s(μ) and s(α) = r(g), and take λ := μαg. Then in
particular d(λ) ≥ (n1, n2) = m ∨ n, and r(λ) = v. We then have

λ(n+ d(λ)− (m ∨ n)− e2, n+ d(λ)− (m ∨ n)) = λ(d(λ)− e2, d(λ)) = g,

whereas

λ(m+ d(λ)− (m ∨ n)− e2, m+ d(λ)− (m ∨ n))

= λ(d(λ)− (n2 −m2 + 1)e2, d(λ)− (n2 −m2))

= Fn2−m2(g),

which is not the same as g because o(g) > n2 − m2. Thus the larger segments in
(4.3) cannot be equal, and we have shown that Λ is aperiodic. �
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Corollary 7.8. Suppose that Λ is a rank-2 Bratteli diagram and K is a field. If Λ
is cofinal and {o(e) : e ∈ Λe1} is unbounded, then KPK(Λ) is simple.

Proof. Since K is a field, basic simplicity is the same as simplicity, so the result
follows from Proposition 7.7 and Theorem 5.14. �

Notice that in the next result we have specialized to the case K = C.

Proposition 7.9. Suppose that Λ is a rank-2 Bratteli diagram. If Λ is cofinal and
{o(e) : e ∈ Λe1} is unbounded, then KPC(Λ) is not purely infinite in the sense of
[4].

Proof. Let P0 :=
∑

v∈V0
pv. Since KPC(Λ) is simple by Corollary 7.8, and since

the property of being purely infinite simple passes to corners [2, Proposition 10],
it suffices for us to prove that P0 KPC(Λ)P0 is not purely infinite. We will show
that P0 KPC(Λ)P0 does not contain an infinite idempotent. Suppose it does. Then
there exist nonzero idempotents p, p1, p2 and elements x, y in P0 KPC(Λ)P0 such
that

(7.3) p = p1 + p2, p1p2 = p2p1 = 0, xy = p and yx = p1.

Choose N ∈ N large enough to ensure that all five elements can be written as

linear combinations of elements sλsμ∗ for which s(λ) and s(μ) are in
⋃N

n=0 Vn.
Then the images of these elements under the isomorphism πq,t of Proposition 7.3
all lie in the subalgebra of P0C

∗(Λ)P0 spanned by the corresponding tλt
∗
μ, which

by [25, Lemma 4.8] is isomorphic to P0C
∗(ΛN )P0, where ΛN is the “rank-2 Bratteli

diagram of depth N” consisting of all the paths which begin and end in
⋃N

n=0 Vn.
Applying the Kumjian-Pask relations shows that

C∗(ΛN ) = span{sλs∗μ : s(λ) = s(μ) ∈ VN}.

If s(λ) = s(μ) and s(α) = s(β) lie on different red cycles (that is, belong to different
VN,i), then (sλs

∗
μ)(sαs

∗
β) = 0, and hence C∗(ΛN ) is the C∗-algebraic direct sum of

the subalgebras

CN,i = span{sλs∗μ : s(λ) = s(μ) ∈ VN,i}.
The blue Kumjian-Pask relation implies that the algebras CN,i are unital with iden-
tity Pi :=

∑
α∈ΛNe1VN,i

sαs
∗
α, and indeed CN,i = PiC

∗(ΛN )Pi. Since Pi commutes

with P0, we then have

P0C
∗(ΛN )P0 =

cN⊕
i=1

P0CN,iP0.

The elements p, p1, p2, x and y of P0C
∗(ΛN )P0 all have direct sum decompositions,

and the summands all satisfy the relations (7.3); in at least one summand, the
component of p2 is nonzero, and then the same components of all the rest must be
nonzero too. So we may assume that p, p1, p2, x and y all belong to P0CN,iP0.

Now consider the subgraph ΛN,i of ΛN with vertex set r(s−1(VN,i)). This 2-graph
has sources, but it is locally convex in the sense of [30], and the gauge-invariant
uniqueness theorem proved there implies that the inclusion is an isomorphism of
P0C

∗(ΛN,i)P0 onto P0CN,iP0. The sources in ΛN,i all lie on a single red cycle,
and hence Lemma 4.5 of [25] implies that P0CN,iP0 is isomorphic to MX(C(T)) =
C(T,MX(C)), where X is the finite set ΛNe1VN = V0Λ

Ne1VN . Pulling the five
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elements through all these isomorphisms gives us nonzero idempotents q, q1, q2 and
elements f , g in C(T,MX(C)) such that

q = q1 + q2, q1q2 = q2q1 = 0, fg = q and gf = q1.

Now let z ∈ T. Then the equations f(z)g(z) = q(z) and g(z)f(z) = q1(z) imply
that g(z) is an isomorphism of q(z)CX onto q1(z)C

X , so the matrices q(z) and
q1(z) have the same rank. On the other hand, since q1(z) and q2(z) are orthogo-
nal, rank(q1(z) + q2(z)) = rank q1(z) + rank q2(z). Now q = q1 + q2 implies that
rank q2(z) = 0 for all z, which contradicts the assumption that p2 is nonzero. Thus
there is no infinite idempotent in P0 KPC(Λ)P0, as claimed. Thus P0 KPC(Λ)P0 is
not purely infinite, and neither is KPC(Λ). �

Rank-2 Bratteli diagrams were invented in [25] to prove that the dichotomy of
[22] for simple graph C∗-algebras does not extend to the C∗-algebras of higher-rank
graphs. We can now use them to see that the dichotomy of [3, Theorem 4.4] for
simple Leavitt path algebras does not extend either.

Theorem 7.10. Suppose that Λ is a rank-2 Bratteli diagram, that Λ is cofinal, and
that {o(e) : e ∈ Λe1} is unbounded. Then KPC(Λ) is simple but is neither purely
infinite nor locally matricial.

Proof. Corollary 7.8 implies that KPC(Λ) is simple, and Proposition 7.9 that it is
not purely infinite. To see that it is not locally matricial, consider the element sμ
associated to a single red cycle μ. Since v := r(μ) = s(μ) receives just one red
path of length |μ|, namely μ, the Kumjian-Pask relation (KP4) at v for n = |μ|e2
(which only involves red paths) says that pv = sμs

∗
μ. Thus if E is the directed

graph consisting of a single vertex w and a single loop e at w and (p, s) is the
universal Kumjian-Pask Λ-family in KPC(Λ), then there is a homomorphism π of
the Leavitt path algebra LC(E) into KPC(Λ) which takes w to pw, e to sμ and e∗ to
sμ∗ . Since the image algebra A is graded by Am := A ∩KPC(Λ)m|μ| = span{μm},
and since pw �= 0, the graded-uniqueness theorem for ordinary graphs implies that
π is injective. But e generates the infinite-dimensional algebra LC(E) = C[x, x−1],
so sμ does not lie in a finite-dimensional subalgebra. �

Remark 7.11. The main examples of rank-2 Bratteli diagrams are the families
{Λθ : θ ∈ (0, 1) \ Q} in [25, Example 6.5] and {Λ(m) : m is supernatural} in
[25, Example 6.7]. These provide models for two important families of C∗-algebras
called the irrational rotation algebras Aθ and the Bunce-Deddens algebras BD(m).
That their C∗-algebras satisfy C∗(Λθ) ∼= Aθ and C∗(Λ(m)) ∼= BD(m) is proved in
[25] by showing that the graph algebras are AT-algebras with real rank zero, hence
fall into the class of C∗-algebras covered by a classification theorem of Elliott [15],
computing their K-theory, and comparing this K-theory with the known K-theory
of Aθ and BD(m). So the proofs will not carry over to Kumjian-Pask algebras.
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